1
|
Luhovyy BL, Kathirvel P. Food proteins in the regulation of blood glucose control. ADVANCES IN FOOD AND NUTRITION RESEARCH 2022; 102:181-231. [PMID: 36064293 DOI: 10.1016/bs.afnr.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Food proteins, depending on their origin, possess unique characteristics that regulate blood glucose via multiple physiological mechanisms, including the insulinotropic effects of amino acids, the activation of incretins, and slowing gastric emptying rate. The strategies aimed at curbing high blood glucose are important in preventing impaired blood glucose control, including insulin resistance, prediabetes and diabetes. The effect of proteins on blood glucose control can be achieved with high-protein foods short-term, and high-protein diets long-term using foods that are naturally high in protein, such as dairy, meat, soy and pulses, or by formulating high-protein functional food products using protein concentrates and isolates, or blended mixtures of proteins from different sources. Commercial sources of protein powders are represented by proteins and hydrolysates of caseins, whey proteins and their fractions, egg whites, soy, yellow pea and hemp which will be reviewed in this chapter. The effective doses of food protein that are capable of reducing postprandial glycemia start from 7 to 10g and higher per serving; however, the origin of protein, and macronutrient composition of a meal will determine the magnitude and duration of their effect on glycemia. The theoretical and methodological framework to evaluate the effect of foods, including food proteins, on postprandial glycemia for substantiation of health claims on food has been proposed in Canada and is discussed in the context of global efforts to harmonize the international food regulation and labeling.
Collapse
Affiliation(s)
- Bohdan L Luhovyy
- Department of Applied Human Nutrition, Mount Saint Vincent University, Halifax, Nova Scotia, Canada.
| | - Priya Kathirvel
- Department of Applied Human Nutrition, Mount Saint Vincent University, Halifax, Nova Scotia, Canada
| |
Collapse
|
2
|
Yang X, Lou J, Shan W, Ding J, Jin Z, Hu Y, Du Q, Liao Q, Xie R, Xu J. Pathophysiologic Role of Neurotransmitters in Digestive Diseases. Front Physiol 2021; 12:567650. [PMID: 34194334 PMCID: PMC8236819 DOI: 10.3389/fphys.2021.567650] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 05/06/2021] [Indexed: 01/09/2023] Open
Abstract
Neurotransmitters are special molecules that serve as messengers in chemical synapses between neurons, cells, or receptors, including catecholamines, serotonin, dopamine, and other neurotransmitters, which play an important role in both human physiology and pathology. Compelling evidence has indicated that neurotransmitters have an important physiological role in various digestive diseases. They act as ligands in combination with central or peripheral receptors, and transmits signals through chemical synapses, which are involved in regulating the physiological and pathological processes of the digestive tract organs. For instance, neurotransmitters regulate blood circulation and affect intestinal movement, nutrient absorption, the gastrointestinal innate immune system, and the microbiome. In this review, we will focus on the role of neurotransmitters in the pathogenesis of digestive tract diseases to provide novel therapeutic targets for new drug development in digestive diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Rui Xie
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jingyu Xu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
3
|
Abstract
Gastric motility disorders present both diagnostic and therapeutic challenges and likely are under-recognized in small animal practice. This review includes a comparative overview of etiopathogenesis and clinical presentation of gastric motility disorders, suggests a practical approach to the diagnosis of these conditions, and provides an update on methods to evaluate gastric motor function. Furthermore, management of gastric dysmotility is discussed, including a review of the documented effect of gastric prokinetics.
Collapse
Affiliation(s)
- Roman Husnik
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West Lafayette, IN 47907, USA.
| | - Frédéric Gaschen
- Department of Veterinary Clinical Sciences, Louisiana State University School of Veterinary Medicine, Skip Bertman Drive, Baton Rouge, LA 70803, USA
| |
Collapse
|
4
|
Tabassum S, Ahmad S, Madiha S, Shahzad S, Batool Z, Sadir S, Haider S. Free L-glutamate-induced modulation in oxidative and neurochemical profile contributes to enhancement in locomotor and memory performance in male rats. Sci Rep 2020; 10:11206. [PMID: 32641780 PMCID: PMC7343824 DOI: 10.1038/s41598-020-68041-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 05/04/2020] [Indexed: 12/30/2022] Open
Abstract
Glutamate (Glu), the key excitatory neurotransmitter in the central nervous system, is considered essential for brain functioning and has a vital role in learning and memory formation. Earlier it was considered as a harmful agent but later found to be useful for many body functions. However, studies regarding the effects of free l-Glu administration on CNS function are limited. Therefore, current experiment is aimed to monitor the neurobiological effects of free l-Glu in male rats. l-Glu was orally administered to rats for 5-weeks and changes in behavioral performance were monitored. Thereafter, brain and hippocampus were collected for oxidative and neurochemical analysis. Results showed that chronic supplementation of free l-Glu enhanced locomotor performance and cognitive function of animals which may be attributed to the improved antioxidant status and cholinergic, monoaminergic and glutamatergic neurotransmission in brain and hippocampus. Current results showed that chronic supplementation of l-Glu affects the animal behaviour and brain functioning via improving the neurochemical and redox system of brain. Free l-Glu could be a useful therapeutic agent to combat neurological disturbances however this requires further targeted studies.
Collapse
Affiliation(s)
- Saiqa Tabassum
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi, 75270, Pakistan.,Department of Biosciences, Faculty of Life Science, Shaheed Zulfiqar Ali Bhutto Institute of Science and Technology (Szabist), Karachi, Pakistan
| | - Saara Ahmad
- Department of Biological and Biomedical Sciences, Aga Khan University Hospital, Karachi, Pakistan
| | - Syeda Madiha
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Sidrah Shahzad
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Zehra Batool
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Sadia Sadir
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Saida Haider
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
5
|
Benvenuti E, Pierini A, Gori E, Bartoli F, Erba P, Ruggiero P, Marchetti V. Serum amino acid profile in 51 dogs with immunosuppressant-responsive enteropathy (IRE): a pilot study on clinical aspects and outcomes. BMC Vet Res 2020; 16:117. [PMID: 32321505 PMCID: PMC7178940 DOI: 10.1186/s12917-020-02334-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/05/2020] [Indexed: 12/11/2022] Open
Abstract
Background Lower levels of tryptophan (TRP) have been identified in people with inflammatory bowel disease and in dogs with protein-losing enteropathy (PLE). No data on serum amino acids (AAs) but some on plasma in canine immunosuppressant-responsive enteropathy (IRE) are available. The aim of this study is to compare serum AAs between healthy and IRE dogs, considering clinicopathological variables and follow-up. Results Twenty-six healthy control dogs (CD) and 51 IRE dogs were included. IRE was diagnosed after the exclusion of extra-intestinal diseases and food and antibiotic responsive enteropathies. The canine chronic enteropathy clinical activity index (CCECAI) was assessed at presentation and during the clinical follow-up. In CD and IRE dogs, 19 different serum AAs were measured. IRE dogs were classified into responders, partial responders and non-responders, based on CCECAI after 1 month, and divided into PLE and non-PLE, based on albumin level. IRE dogs showed lower L-Tyrosine (TYR), L-Phenylalanine (PHE) and TRP (p < 0.001) and higher L-Serine (SER), L-Glutamic acid (GLU), L-Arginine (p < 0.001), L-Threonine (p = 0.013), Proline (p = 0.044), L-Cysteine (p = 0.003), L-Valine (p = 0.018), L-Lysine (p = 0.01) and L-Isoleucine (p = 0.005) than CDs. PLE dogs showed lower L-Histidine (HIS) (p = 0.008), PHE (p = 0.005) and TRP (p = 0.005) than non-PLE dogs. In IRE dogs, median GLU was significantly lower in dogs with BCS 3/9 than BCS 5/9 category (p = 0.036). Total protein was positively correlated with PHE and TRP (both p = 0.031, r = 0.30) and albumin was positively correlated with HIS (p = 0.025, r = 0.31), PHE and TRP (both p = 0.001, r = 0.46). HIS (p = 0.041), PHE (p = 0.047) and TRP (p = 0.044) concentrations were significantly lower in non-responders than in responders and partial responders. Conclusions This study may suggest further investigation on serum, HIS, PHE, TRP and TYR as markers of intestinal disease and proposed HIS, PHE and TRP as prognostic marker for response to therapy.
Collapse
Affiliation(s)
- Elena Benvenuti
- Department of Veterinary Science, University of Pisa, via Livornese, 56122 San Piero a Grado, Pisa, Italy
| | - Alessio Pierini
- Department of Veterinary Science, University of Pisa, via Livornese, 56122 San Piero a Grado, Pisa, Italy.
| | - Eleonora Gori
- Department of Veterinary Science, University of Pisa, via Livornese, 56122 San Piero a Grado, Pisa, Italy
| | - Francesco Bartoli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Savi, 10, Pisa, 56126, Italy
| | - Paola Erba
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Savi, 10, Pisa, 56126, Italy
| | | | | |
Collapse
|
6
|
Guo WJ, Yao SK, Zhang YL, Du SY, Wang HF, Yin LJ, Li HL. Impaired vagal activity to meal in patients with functional dyspepsia and delayed gastric emptying. J Int Med Res 2017; 46:792-801. [PMID: 28874084 PMCID: PMC5971509 DOI: 10.1177/0300060517726442] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Objective This study was performed to investigate impaired vagal activity to meal in patients with functional dyspepsia (FD) with delayed gastric emptying (GE). Methods Eighty-five patients were studied. GE parameters, including those in the overall and proximal stomach, were measured by GE functional tests at the Department of Nuclear Medicine. Autonomic nervous function was tested by spectral analysis of heart rate variability (HRV). The vagal activity and sympathetic activity were analyzed by recording the power in the high-frequency component (HF), low-frequency component (LF), and LF/HF ratio. Results Overall and proximal GE were delayed in 47.2% and 50.9% of the patients, respectively. Spectral analysis of HRV showed that the HF in patients with delayed proximal GE was significantly lower and that the LF/HF ratio was significantly higher than those in patients with normal proximal GE after a meal. Conclusion Delayed proximal GE might be caused by disrupted sympathovagal balance as a result of decreased vagal activity after a meal. Improvement in vagal activity may constitute an effective treatment method for patients with FD.
Collapse
Affiliation(s)
- W-J Guo
- 1 Department of Gastroenterology, 36635 China-Japan Friendship Hospital , Beijing, China
| | - S-K Yao
- 1 Department of Gastroenterology, 36635 China-Japan Friendship Hospital , Beijing, China
| | - Y-L Zhang
- 1 Department of Gastroenterology, 36635 China-Japan Friendship Hospital , Beijing, China
| | - S-Y Du
- 1 Department of Gastroenterology, 36635 China-Japan Friendship Hospital , Beijing, China
| | - H-F Wang
- 1 Department of Gastroenterology, 36635 China-Japan Friendship Hospital , Beijing, China
| | - L-J Yin
- 2 Department of Nuclear Medicine, 36635 China-Japan Friendship Hospital , Beijing, China
| | - H-L Li
- 2 Department of Nuclear Medicine, 36635 China-Japan Friendship Hospital , Beijing, China
| |
Collapse
|