1
|
Montaser AB, Gao F, Peters D, Vainionpää K, Zhibin N, Skowronska-Krawczyk D, Figeys D, Palczewski K, Leinonen H. Retinal proteome profiling of inherited retinal degeneration across three different mouse models suggests common drug targets in retinitis pigmentosa. Mol Cell Proteomics 2024:100855. [PMID: 39389360 DOI: 10.1016/j.mcpro.2024.100855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/14/2024] [Accepted: 10/06/2024] [Indexed: 10/12/2024] Open
Abstract
Inherited retinal degenerations (IRDs) are a leading cause of blindness among the population of young people in the developed world. Approximately half of IRDs initially manifest as gradual loss of night vision and visual fields, characteristic of retinitis pigmentosa (RP). Due to challenges in genetic testing, and the large heterogeneity of mutations underlying RP, targeted gene therapies are an impractical largescale solution in the foreseeable future. For this reason, identifying key pathophysiological pathways in IRDs that could be targets for mutation-agnostic and disease-modifying therapies (DMTs) is warranted. In this study, we investigated the retinal proteome of three distinct IRD mouse models, in comparison to sex- and age-matched wild-type mice. Specifically, we used the Pde6βRd10 (rd10) and RhoP23H/WT (P23H) mouse models of autosomal recessive and autosomal dominant RP, respectively, as well as the Rpe65-/- mouse model of Leber´s congenital amaurosis type 2 (LCA2). The mice were housed at two distinct institutions and analyzed using LC-MS in three separate facilities/instruments following data-dependent and data-independent acquisition modes. This cross-institutional and multi-methodological approach signifies the reliability and reproducibility of the results. The largescale profiling of the retinal proteome, coupled with in vivo electroretinography recordings, provided us with a reliable basis for comparing the disease phenotypes and severity. Despite evident inflammation, cellular stress, and downscaled phototransduction observed consistently across all three models, the underlying pathologies of RP and LCA2 displayed many differences, sharing only four general KEGG pathways. The opposite is true for the two RP models in which we identify remarkable convergence in proteomic phenotype even though the mechanism of primary rod death in rd10 and P23H mice is different. Our data highlights the cAMP and cGMP second-messenger signaling pathways as potential targets for therapeutic intervention. The proteomic data is curated and made publicly available, facilitating the discovery of universal therapeutic targets for RP.
Collapse
Affiliation(s)
- Ahmed B Montaser
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | - Fangyuan Gao
- Center for Translational Vision Research, Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, 92697, USA; Department of Physiology and Biophysics, Department of Chemistry, Department of Molecular Biology and Biochemistry; University of California, Irvine, Irvine, CA, 92697, USA
| | - Danielle Peters
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Katri Vainionpää
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Ning Zhibin
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Dorota Skowronska-Krawczyk
- Center for Translational Vision Research, Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, 92697, USA; Department of Physiology and Biophysics, Department of Chemistry, Department of Molecular Biology and Biochemistry; University of California, Irvine, Irvine, CA, 92697, USA
| | - Daniel Figeys
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Krzysztof Palczewski
- Center for Translational Vision Research, Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, 92697, USA; Department of Physiology and Biophysics, Department of Chemistry, Department of Molecular Biology and Biochemistry; University of California, Irvine, Irvine, CA, 92697, USA
| | - Henri Leinonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| |
Collapse
|
2
|
Leinonen H, Zhang J, Occelli LM, Seemab U, Choi EH, L P Marinho LF, Querubin J, Kolesnikov AV, Galinska A, Kordecka K, Hoang T, Lewandowski D, Lee TT, Einstein EE, Einstein DE, Dong Z, Kiser PD, Blackshaw S, Kefalov VJ, Tabaka M, Foik A, Petersen-Jones SM, Palczewski K. A combination treatment based on drug repurposing demonstrates mutation-agnostic efficacy in pre-clinical retinopathy models. Nat Commun 2024; 15:5943. [PMID: 39009597 PMCID: PMC11251169 DOI: 10.1038/s41467-024-50033-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 06/21/2024] [Indexed: 07/17/2024] Open
Abstract
Inherited retinopathies are devastating diseases that in most cases lack treatment options. Disease-modifying therapies that mitigate pathophysiology regardless of the underlying genetic lesion are desirable due to the diversity of mutations found in such diseases. We tested a systems pharmacology-based strategy that suppresses intracellular cAMP and Ca2+ activity via G protein-coupled receptor (GPCR) modulation using tamsulosin, metoprolol, and bromocriptine coadministration. The treatment improves cone photoreceptor function and slows degeneration in Pde6βrd10 and RhoP23H/WT retinitis pigmentosa mice. Cone degeneration is modestly mitigated after a 7-month-long drug infusion in PDE6A-/- dogs. The treatment also improves rod pathway function in an Rpe65-/- mouse model of Leber congenital amaurosis but does not protect from cone degeneration. RNA-sequencing analyses indicate improved metabolic function in drug-treated Rpe65-/- and rd10 mice. Our data show that catecholaminergic GPCR drug combinations that modify second messenger levels via multiple receptor actions provide a potential disease-modifying therapy against retinal degeneration.
Collapse
Affiliation(s)
- Henri Leinonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, 70211, Kuopio, Finland.
| | - Jianye Zhang
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, 92697, USA
| | - Laurence M Occelli
- Small Animal Clinical Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Umair Seemab
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, 70211, Kuopio, Finland
| | - Elliot H Choi
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, 92697, USA
| | | | - Janice Querubin
- Small Animal Clinical Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Alexander V Kolesnikov
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, 92697, USA
| | - Anna Galinska
- International Centre for Translational Eye Research, Warsaw, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Kordecka
- International Centre for Translational Eye Research, Warsaw, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Thanh Hoang
- Department of Ophthalmology, Department of Cell & Developmental Biology, Ann Arbor, MI, 48105, USA
| | - Dominik Lewandowski
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, 92697, USA
| | - Timothy T Lee
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, 92697, USA
| | - Elliott E Einstein
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, 92697, USA
| | - David E Einstein
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, 92697, USA
| | - Zhiqian Dong
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, 92697, USA
| | - Philip D Kiser
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, 92697, USA
- Department of Physiology and Biophysics, School of Medicine, University of California - Irvine, Irvine, CA, 92697, USA
- Department of Clinical Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, University of California - Irvine, Irvine, CA, 92697, USA
- Research Service, VA Long Beach Healthcare System, Long Beach, California, 90822, USA
| | - Seth Blackshaw
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Vladimir J Kefalov
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, 92697, USA
- Department of Physiology and Biophysics, School of Medicine, University of California - Irvine, Irvine, CA, 92697, USA
| | - Marcin Tabaka
- International Centre for Translational Eye Research, Warsaw, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Andrzej Foik
- International Centre for Translational Eye Research, Warsaw, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | | | - Krzysztof Palczewski
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, 92697, USA.
- Department of Physiology and Biophysics, School of Medicine, University of California - Irvine, Irvine, CA, 92697, USA.
- Department of Chemistry, University of California-Irvine, Irvine, CA, 92697, USA.
- Department of Molecular Biology and Biochemistry, University of California-Irvine, Irvine, CA, 92697, USA.
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
3
|
Engfer ZJ, Lewandowski D, Dong Z, Palczewska G, Zhang J, Kordecka K, Płaczkiewicz J, Panas D, Foik AT, Tabaka M, Palczewski K. Distinct mouse models of Stargardt disease display differences in pharmacological targeting of ceramides and inflammatory responses. Proc Natl Acad Sci U S A 2023; 120:e2314698120. [PMID: 38064509 PMCID: PMC10723050 DOI: 10.1073/pnas.2314698120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/25/2023] [Indexed: 12/17/2023] Open
Abstract
Mutations in many visual cycle enzymes in photoreceptors and retinal pigment epithelium (RPE) cells can lead to the chronic accumulation of toxic retinoid byproducts, which poison photoreceptors and the underlying RPE if left unchecked. Without a functional ATP-binding cassette, sub-family A, member 4 (ABCA4), there is an elevation of all-trans-retinal and prolonged buildup of all-trans-retinal adducts, resulting in a retinal degenerative disease known as Stargardt-1 disease. Even in this monogenic disorder, there is significant heterogeneity in the time to onset of symptoms among patients. Using a combination of molecular techniques, we studied Abca4 knockout (simulating human noncoding disease variants) and Abca4 knock-in mice (simulating human misfolded, catalytically inactive protein variants), which serve as models for Stargardt-1 disease. We compared the two strains to ascertain whether they exhibit differential responses to agents that affect cytokine signaling and/or ceramide metabolism, as alterations in either of these pathways can exacerbate retinal degenerative phenotypes. We found different degrees of responsiveness to maraviroc, a known immunomodulatory CCR5 antagonist, and to the ceramide-lowering agent AdipoRon, an agonist of the ADIPOR1 and ADIPOR2 receptors. The two strains also display different degrees of transcriptional deviation from matched WT controls. Our phenotypic comparison of the two distinct Abca4 mutant-mouse models sheds light on potential therapeutic avenues previously unexplored in the treatment of Stargardt disease and provides a surrogate assay for assessing the effectiveness for genome editing.
Collapse
Affiliation(s)
- Zachary J. Engfer
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA92697
- Department of Physiology and Biophysics, University of California, Irvine, CA92697
| | - Dominik Lewandowski
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA92697
| | - Zhiqian Dong
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA92697
| | - Grazyna Palczewska
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA92697
| | - Jianye Zhang
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA92697
| | - Katarzyna Kordecka
- Ophthalmic Biology Group, International Centre for Translational Eye Research, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw01-224, Poland
| | - Jagoda Płaczkiewicz
- Ophthalmic Biology Group, International Centre for Translational Eye Research, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw01-224, Poland
| | - Damian Panas
- International Centre for Translational Eye Research, Warsaw01-224, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw01-224, Poland
| | - Andrzej T. Foik
- Ophthalmic Biology Group, International Centre for Translational Eye Research, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw01-224, Poland
| | - Marcin Tabaka
- International Centre for Translational Eye Research, Warsaw01-224, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw01-224, Poland
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA92697
- Department of Physiology and Biophysics, University of California, Irvine, CA92697
- Department of Chemistry, University of California, Irvine, CA92697
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA92697
| |
Collapse
|
4
|
Saadane A, Veenstra AA, Minns MS, Tang J, Du Y, Abubakr Elghazali F, Lessieur EM, Pearlman E, Kern TS. CCR2-positive monocytes contribute to the pathogenesis of early diabetic retinopathy in mice. Diabetologia 2023; 66:590-602. [PMID: 36698021 PMCID: PMC9892100 DOI: 10.1007/s00125-022-05860-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/13/2022] [Indexed: 01/27/2023]
Abstract
AIMS/HYPOTHESIS Accumulating evidence suggests that leucocytes play a critical role in diabetes-induced vascular lesions and other abnormalities that characterise the early stages of diabetic retinopathy. However, the role of monocytes has yet to be fully investigated; therefore, we used Ccr2-/- mice to study the role of CCR2+ inflammatory monocytes in the pathogenesis of diabetes-induced degeneration of retinal capillaries. METHODS Experimental diabetes was induced in wild-type and Ccr2-/- mice using streptozotocin. After 2 months, superoxide levels, expression of inflammatory genes, leucostasis, leucocyte- and monocyte-mediated cytotoxicity against retinal endothelial cell death, retinal thickness and visual function were evaluated. Retinal capillary degeneration was determined after 8 months of diabetes. Flow cytometry of peripheral blood for differential expression of CCR2 in monocytes was assessed. RESULTS In nondiabetic mice, CCR2 was highly expressed on monocytes, and Ccr2-/- mice lack CCR2+ monocytes in the peripheral blood. Diabetes-induced retinal superoxide, expression of proinflammatory genes Inos and Icam1, leucostasis and leucocyte-mediated cytotoxicity against retinal endothelial cells were inhibited in diabetic Ccr2-deficient mice and in chimeric mice lacking Ccr2 only from myeloid cells. In order to focus on monocytes, these cells were immuno-isolated after 2 months of diabetes, and they significantly increased monocyte-mediated endothelial cell cytotoxicity ex vivo. Monocytes from Ccr2-deficient mice caused significantly less endothelial cell death. The diabetes-induced retinal capillary degeneration was inhibited in Ccr2-/- mice and in chimeric mice lacking Ccr2 only from myeloid cells. CONCLUSIONS/INTERPRETATION CCR2+ inflammatory monocytes contribute to the pathogenesis of early lesions of diabetic retinopathy.
Collapse
Affiliation(s)
- Aicha Saadane
- Department of Ophthalmology, University of California-Irvine, Irvine, CA, USA.
| | | | - Martin S Minns
- Institute for Immunology, University of California-Irvine, Irvine, CA, USA
| | - Jie Tang
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Yunpeng Du
- Department of Ophthalmology, University of California-Irvine, Irvine, CA, USA
| | | | - Emma M Lessieur
- Department of Ophthalmology, University of California-Irvine, Irvine, CA, USA
| | - Eric Pearlman
- Institute for Immunology, University of California-Irvine, Irvine, CA, USA
| | - Timothy S Kern
- Department of Ophthalmology, University of California-Irvine, Irvine, CA, USA
- Veterans Administration Medical Center Research Service, Long Beach, CA, USA
| |
Collapse
|
5
|
The Selective α1 Antagonist Tamsulosin Alters ECM Distributions and Cellular Metabolic Functions of ARPE 19 Cells in a Concentration-Dependent Manner. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9100556. [PMID: 36290524 PMCID: PMC9598783 DOI: 10.3390/bioengineering9100556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/27/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022]
Abstract
The purpose of the present study was to examine the effect of the selective α1 antagonist tamsulosin (TAM) on human retinal pigment epithelium cells, ARPE 19. Two-dimension (2D) and three-dimension (3D) cultured ARPE 19 cells were used in the following characterizations: (1) ultrastructure by scanning electron microscopy (SEM) (2D); (2) barrier functions by transepithelial electrical resistance (TEER) measurements, and FITC-dextran permeability (2D); (3) real time cellular metabolisms by Seahorse Bioanalyzer (2D); (4) physical properties, size and stiffness measurements (3D); and (5) expression of extracellular matrix (ECM) proteins, including collagen1 (COL1), COL4, COL6 and fibronectin (FN) by qPCR and immunohistochemistry (2D and 3D). TAM induced significant effects including: (1) alteration of the localization of the ECM deposits; (2) increase and decrease of the TEER values and FITC-dextran permeability, respectively; (3) energy shift from glycolysis into mitochondrial oxidative phosphorylation (OXPHOS); (4) large and stiffened 3D spheroids; and (5) down-regulations of the mRNA expressions and immune labeling of most ECM proteins in a concentration-dependent manner. However, in some ECM proteins, COL1 and COL6, their immunolabeling intensities were increased at the lowest concentration (1 μM) of TAM. Such a discrepancy between the gene expressions and immunolabeling of ECM proteins may support alterations of ECM localizations as observed by SEM. The findings reported herein indicate that the selective α1 antagonist, TAM, significantly influenced ECM production and distribution as well as cellular metabolism levels in a concentration-dependent manner.
Collapse
|
6
|
Chang Q, Chen S, Yang T. The GPCR Antagonistic Drug CM-20 Stimulates Mitochondrial Activity in Human RPE Cells. Open Biochem J 2022; 16. [PMID: 36090845 PMCID: PMC9460984 DOI: 10.2174/1874091x-v16-e2206270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background:
Mitochondrial dysfunction in retinal pigment epithelium (RPE) is a pathogenic factor in age-related macular degeneration (AMD). Improvement of mitochondrial function may ameliorate RPE bioenergetics status, which may in turn nourish the retinal photoreceptors against degenerative loss.
Objective:
The purpose of this study is to examine the G-protein coupled receptor (GPCR) antagonistic drug CM-20 in modulating mitochondrial function in RPE cells.
Methods:
Human-derived ARPE-19 cell line was differentiated to improve RPE morphology. Dose response of CM-20 was performed to examine mitochondrial membrane potential (MMP). Secondary validation with multiplexed live-cell mitochondrial imaging was performed. Protection of CM-20 to mitochondria against oxidative stress was detected under co-treatment with hydrogen peroxide.
Results:
Treatment with CM-20 elicited a dose-dependent increase of MMP. Multiplexed live-cell mitochondrial imaging showed consistent increase of MMP at an optimal concentration of CM-20 (12.5 µM). MMP was significantly reduced under hydrogen peroxide-induced oxidative stress and treatment with CM-20 showed rescue effects to MMP.
Conclusion:
CM-20 increases mitochondrial function and protects mitochondria under oxidative stress. As both GPCRs and mitochondria are potential drug targets, retinal neuroprotective testing of CM-20 is warranted in animal models of retinal degeneration.
Collapse
|
7
|
Cheng C, Weiss L, Leinonen H, Shmara A, Yin HZ, Ton T, Do A, Lee J, Ta L, Mohanty E, Vargas J, Weiss J, Palczewski K, Kimonis V. VCP/p97 inhibitor CB-5083 modulates muscle pathology in a mouse model of VCP inclusion body myopathy. J Transl Med 2022; 20:21. [PMID: 34998409 PMCID: PMC8742393 DOI: 10.1186/s12967-021-03186-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 12/07/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Pathogenic gain of function variants in Valosin-containing protein (VCP) cause a unique disease characterized by inclusion body myopathy with early-onset Paget disease of bone and frontotemporal dementia (also known as Multisystem proteinopathy (MSP)). Previous studies in drosophila models of VCP disease indicate treatment with VCP inhibitors mitigates disease pathology. Earlier-generation VCP inhibitors display off-target effects and relatively low therapeutic potency. New generation of VCP inhibitors needs to be evaluated in a mouse model of VCP disease. In this study, we tested the safety and efficacy of a novel and potent VCP inhibitor, CB-5083 using VCP patient-derived myoblast cells and an animal model of VCP disease. METHODS First, we analyzed the effect of CB-5083 in patient-derived myoblasts on the typical disease autophagy and TDP-43 profile by Western blot. Next, we determined the maximum tolerated dosage of CB-5083 in mice and treated the 2-month-old VCPR155H/R155H mice for 5 months with 15 mg/kg CB-5083. We analyzed motor function monthly by Rotarod; and we assessed the end-point blood toxicology, and the muscle and brain pathology, including autophagy and TDP-43 profile, using Western blot and immunohistochemistry. We also treated 12-month-old VCPR155H/+ mice for 6 months and performed similar analysis. Finally, we assessed the potential side effects of CB-5083 on retinal function, using electroretinography in chronically treated VCPR155H/155H mice. RESULTS In vitro analyses using patient-derived myoblasts confirmed that CB-5083 can modulate expression of the proteins in the autophagy pathways. We found that chronic CB-5083 treatment is well tolerated in the homozygous mice harboring patient-specific VCP variant, R155H, and can ameliorate the muscle pathology characteristic of the disease. VCP-associated pathology biomarkers, such as elevated TDP-43 and p62 levels, were significantly reduced. Finally, to address the potential adverse effect of CB-5083 on visual function observed in a previous oncology clinical trial, we analyzed retinal function in mice treated with moderate doses of CB-5083 for 5 months and documented the absence of permanent ocular toxicity. CONCLUSIONS Altogether, these findings suggest that long-term use of CB-5083 by moderate doses is safe and can improve VCP disease-associated muscle pathology. Our results provide translationally relevant evidence that VCP inhibitors could be beneficial in the treatment of VCP disease.
Collapse
Affiliation(s)
- Cheng Cheng
- Division of Genetics and Genomic Medicine, Dept. of Pediatrics, UC Irvine, Irvine, CA, USA
| | - Lan Weiss
- Division of Genetics and Genomic Medicine, Dept. of Pediatrics, UC Irvine, Irvine, CA, USA
| | - Henri Leinonen
- Gavin Herbert Eye Institute, and the Department of Ophthalmology, Center for Translational Vision Research, University of California, Irvine, Irvine, CA, USA
| | - Alyaa Shmara
- Division of Genetics and Genomic Medicine, Dept. of Pediatrics, UC Irvine, Irvine, CA, USA
| | - Hong Z Yin
- Department of Neurology, University of California, Irvine, Irvine, CA, USA
| | - Timothy Ton
- Division of Genetics and Genomic Medicine, Dept. of Pediatrics, UC Irvine, Irvine, CA, USA
| | - Annie Do
- Division of Genetics and Genomic Medicine, Dept. of Pediatrics, UC Irvine, Irvine, CA, USA
| | - Jonathan Lee
- Division of Genetics and Genomic Medicine, Dept. of Pediatrics, UC Irvine, Irvine, CA, USA
| | - Lac Ta
- Division of Genetics and Genomic Medicine, Dept. of Pediatrics, UC Irvine, Irvine, CA, USA
| | - Eshanee Mohanty
- Division of Genetics and Genomic Medicine, Dept. of Pediatrics, UC Irvine, Irvine, CA, USA
| | - Jesse Vargas
- Cleave Therapeutics, Inc., San Francisco, CA, USA
| | - John Weiss
- Department of Neurology, University of California, Irvine, Irvine, CA, USA
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute, and the Department of Ophthalmology, Center for Translational Vision Research, University of California, Irvine, Irvine, CA, USA
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA, USA
- Department of Chemistry, Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Virginia Kimonis
- Division of Genetics and Genomic Medicine, Dept. of Pediatrics, UC Irvine, Irvine, CA, USA.
- Department of Neurology, University of California, Irvine, Irvine, CA, USA.
- Department of Pathology, University of California, Irvine, Irvine, CA, USA.
- Department of Environmental Medicine, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
8
|
Kern TS, Du Y, Tang J, Lee CA, Liu H, Dreffs A, Leinonen H, Antonetti DA, Palczewski K. Regulation of Adrenergic, Serotonin, and Dopamine Receptors to Inhibit Diabetic Retinopathy: Monotherapies versus Combination Therapies. Mol Pharmacol 2021; 100:470-479. [PMID: 34393108 PMCID: PMC9175131 DOI: 10.1124/molpharm.121.000278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 08/03/2021] [Indexed: 11/22/2022] Open
Abstract
We compared monotherapies and combinations of therapies that regulate G-protein-coupled receptors (GPCRs) with respect to their abilities to inhibit early stages of diabetic retinopathy (DR) in streptozotocin-diabetic mice. Metoprolol (MTP; 0.04-1.0 mg/kg b.wt./day), bromocriptine (BRM; 0.01-0.1 mg/kg b.wt./day), doxazosin (DOX; 0.01-1.0 mg/kg b.wt./day), or tamsulosin (TAM; 0.05-0.25 mg/kg b.wt./day) were injected individually daily for 2 months in dose-response studies to assess their effects on the diabetes-induced increases in retinal superoxide and leukocyte-mediated cytotoxicity against vascular endothelial cells, both of which abnormalities have been implicated in the development of DR. Each of the individual drugs inhibited the diabetes-induced increase in retinal superoxide at the higher concentrations tested, but the inhibition was lost at lower doses. To determine whether combination therapies had superior effects over individual drugs, we intentionally selected for each drug a low dose that had little or no effect on the diabetes-induced retinal superoxide for use separately or in combinations in 8-month studies of retinal function, vascular permeability, and capillary degeneration in diabetes. At the low doses used, combinations of the drugs generally were more effective than individual drugs, but the low-dose MTP alone totally inhibited diabetes-induced reduction in a vision task, BRM or DOX alone totally inhibited the vascular permeability defect, and DOX alone totally inhibited diabetes-induced degeneration of retinal capillaries. Although low-dose MTP, BRM, DOX, or TAM individually had beneficial effects on some endpoints, combination of the therapies better inhibited the spectrum of DR lesions evaluated. SIGNIFICANCE STATEMENT: The pathogenesis of early stages of diabetic retinopathy remains incompletely understood, but multiple different cell types are believed to be involved in the pathogenic process. We have compared the effects of monotherapies to those of combinations of drugs that regulate GPCR signaling pathways with respect to their relative abilities to inhibit the development of early diabetic retinopathy.
Collapse
Affiliation(s)
- Timothy S Kern
- Center for Translational Vision Research, Gavin Herbert Eye Institute (T.S.K., Y.D., H.L., K.P.), Department of Physiology and Biophysics (K.P.), and Department of Chemistry (K.P.), University of California-Irvine, Irvine, California; Veterans Administration Medical Center, Long Beach Healthcare System, Research Service, Long Beach, California (T.S.K.); Department of Ophthalmology, Case Western Reserve University, Cleveland, Ohio (J.T., C.A.L.); and Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan (A.D., D.A.A.)
| | - Yunpeng Du
- Center for Translational Vision Research, Gavin Herbert Eye Institute (T.S.K., Y.D., H.L., K.P.), Department of Physiology and Biophysics (K.P.), and Department of Chemistry (K.P.), University of California-Irvine, Irvine, California; Veterans Administration Medical Center, Long Beach Healthcare System, Research Service, Long Beach, California (T.S.K.); Department of Ophthalmology, Case Western Reserve University, Cleveland, Ohio (J.T., C.A.L.); and Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan (A.D., D.A.A.)
| | - Jie Tang
- Center for Translational Vision Research, Gavin Herbert Eye Institute (T.S.K., Y.D., H.L., K.P.), Department of Physiology and Biophysics (K.P.), and Department of Chemistry (K.P.), University of California-Irvine, Irvine, California; Veterans Administration Medical Center, Long Beach Healthcare System, Research Service, Long Beach, California (T.S.K.); Department of Ophthalmology, Case Western Reserve University, Cleveland, Ohio (J.T., C.A.L.); and Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan (A.D., D.A.A.)
| | - Chieh Allen Lee
- Center for Translational Vision Research, Gavin Herbert Eye Institute (T.S.K., Y.D., H.L., K.P.), Department of Physiology and Biophysics (K.P.), and Department of Chemistry (K.P.), University of California-Irvine, Irvine, California; Veterans Administration Medical Center, Long Beach Healthcare System, Research Service, Long Beach, California (T.S.K.); Department of Ophthalmology, Case Western Reserve University, Cleveland, Ohio (J.T., C.A.L.); and Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan (A.D., D.A.A.)
| | - Haitao Liu
- Center for Translational Vision Research, Gavin Herbert Eye Institute (T.S.K., Y.D., H.L., K.P.), Department of Physiology and Biophysics (K.P.), and Department of Chemistry (K.P.), University of California-Irvine, Irvine, California; Veterans Administration Medical Center, Long Beach Healthcare System, Research Service, Long Beach, California (T.S.K.); Department of Ophthalmology, Case Western Reserve University, Cleveland, Ohio (J.T., C.A.L.); and Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan (A.D., D.A.A.)
| | - Alyssa Dreffs
- Center for Translational Vision Research, Gavin Herbert Eye Institute (T.S.K., Y.D., H.L., K.P.), Department of Physiology and Biophysics (K.P.), and Department of Chemistry (K.P.), University of California-Irvine, Irvine, California; Veterans Administration Medical Center, Long Beach Healthcare System, Research Service, Long Beach, California (T.S.K.); Department of Ophthalmology, Case Western Reserve University, Cleveland, Ohio (J.T., C.A.L.); and Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan (A.D., D.A.A.)
| | - Henri Leinonen
- Center for Translational Vision Research, Gavin Herbert Eye Institute (T.S.K., Y.D., H.L., K.P.), Department of Physiology and Biophysics (K.P.), and Department of Chemistry (K.P.), University of California-Irvine, Irvine, California; Veterans Administration Medical Center, Long Beach Healthcare System, Research Service, Long Beach, California (T.S.K.); Department of Ophthalmology, Case Western Reserve University, Cleveland, Ohio (J.T., C.A.L.); and Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan (A.D., D.A.A.)
| | - David A Antonetti
- Center for Translational Vision Research, Gavin Herbert Eye Institute (T.S.K., Y.D., H.L., K.P.), Department of Physiology and Biophysics (K.P.), and Department of Chemistry (K.P.), University of California-Irvine, Irvine, California; Veterans Administration Medical Center, Long Beach Healthcare System, Research Service, Long Beach, California (T.S.K.); Department of Ophthalmology, Case Western Reserve University, Cleveland, Ohio (J.T., C.A.L.); and Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan (A.D., D.A.A.)
| | - Krzysztof Palczewski
- Center for Translational Vision Research, Gavin Herbert Eye Institute (T.S.K., Y.D., H.L., K.P.), Department of Physiology and Biophysics (K.P.), and Department of Chemistry (K.P.), University of California-Irvine, Irvine, California; Veterans Administration Medical Center, Long Beach Healthcare System, Research Service, Long Beach, California (T.S.K.); Department of Ophthalmology, Case Western Reserve University, Cleveland, Ohio (J.T., C.A.L.); and Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan (A.D., D.A.A.)
| |
Collapse
|
9
|
Genovese F, Reisert J, Kefalov VJ. Sensory Transduction in Photoreceptors and Olfactory Sensory Neurons: Common Features and Distinct Characteristics. Front Cell Neurosci 2021; 15:761416. [PMID: 34690705 PMCID: PMC8531253 DOI: 10.3389/fncel.2021.761416] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/20/2021] [Indexed: 12/24/2022] Open
Abstract
The past decades have seen tremendous progress in our understanding of the function of photoreceptors and olfactory sensory neurons, uncovering the mechanisms that determine their properties and, ultimately, our ability to see and smell. This progress has been driven to a large degree by the powerful combination of physiological experimental tools and genetic manipulations, which has enabled us to identify the main molecular players in the transduction cascades of these sensory neurons, how their properties affect the detection and discrimination of stimuli, and how diseases affect our senses of vision and smell. This review summarizes some of the common and unique features of photoreceptors and olfactory sensory neurons that make these cells so exciting to study.
Collapse
Affiliation(s)
| | | | - Vladimir J Kefalov
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States.,Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
10
|
Saadane A, Du Y, Thoreson WB, Miyagi M, Lessieur EM, Kiser J, Wen X, Berkowitz BA, Kern TS. Photoreceptor Cell Calcium Dysregulation and Calpain Activation Promote Pathogenic Photoreceptor Oxidative Stress and Inflammation in Prodromal Diabetic Retinopathy. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1805-1821. [PMID: 34214506 PMCID: PMC8579242 DOI: 10.1016/j.ajpath.2021.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 05/20/2021] [Accepted: 06/15/2021] [Indexed: 12/13/2022]
Abstract
This study tested the hypothesis that diabetes promotes a greater than normal cytosolic calcium level in rod cells that activates a Ca2+-sensitive protease, calpain, resulting in oxidative stress and inflammation, two pathogenic factors of early diabetic retinopathy. Nondiabetic and 2-month diabetic C57Bl/6J and calpain1 knockout (Capn1-/-) mice were studied; subgroups were treated with a calpain inhibitor (CI). Ca2+ content was measured in photoreceptors using Fura-2. Retinal calpain expression was studied by quantitative RT-PCR and immunohistochemistry. Superoxide and expression of inflammatory proteins were measured using published methods. Proteomic analysis was conducted on photoreceptors isolated from untreated diabetic mice or treated daily with CI for 2 months. Cytosolic Ca2+ content was increased twofold in photoreceptors of diabetic mice as compared with nondiabetic mice. Capn1 expression increased fivefold in photoreceptor outer segments of diabetic mice. Pharmacologic inhibition or genetic deletion of Capn1 significantly suppressed diabetes-induced oxidative stress and expression of proinflammatory proteins in retina. Proteomics identified a protein (WW domain-containing oxidoreductase [WWOX]) whose expression was significantly increased in photoreceptors from mice diabetic for 2 months and was inhibited with CI. Knockdown of Wwox using specific siRNA in vitro inhibited increase in superoxide caused by the high glucose. These results suggest that reducing Ca2+ accumulation, suppressing calpain activation, and/or reducing Wwox up-regulation are novel targets for treating early diabetic retinopathy.
Collapse
Affiliation(s)
- Aicha Saadane
- Department of Ophthalmology, University of California, Irvine, Irvine, California.
| | - Yunpeng Du
- Department of Ophthalmology, University of California, Irvine, Irvine, California
| | - Wallace B Thoreson
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska
| | - Masaru Miyagi
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio
| | - Emma M Lessieur
- Department of Ophthalmology, University of California, Irvine, Irvine, California
| | - Jianying Kiser
- Department of Ophthalmology, University of California, Irvine, Irvine, California
| | - Xiangyi Wen
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska
| | - Bruce A Berkowitz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan
| | - Timothy S Kern
- Department of Ophthalmology, University of California, Irvine, Irvine, California; Veterans Administration Medical Center Research Service, Long Beach, California
| |
Collapse
|
11
|
Huang D, Heath Jeffery RC, Aung-Htut MT, McLenachan S, Fletcher S, Wilton SD, Chen FK. Stargardt disease and progress in therapeutic strategies. Ophthalmic Genet 2021; 43:1-26. [PMID: 34455905 DOI: 10.1080/13816810.2021.1966053] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background: Stargardt disease (STGD1) is an autosomal recessive retinal dystrophy due to mutations in ABCA4, characterized by subretinal deposition of lipofuscin-like substances and bilateral centrifugal vision loss. Despite the tremendous progress made in the understanding of STGD1, there are no approved treatments to date. This review examines the challenges in the development of an effective STGD1 therapy.Materials and Methods: A literature review was performed through to June 2021 summarizing the spectrum of retinal phenotypes in STGD1, the molecular biology of ABCA4 protein, the in vivo and in vitro models used to investigate the mechanisms of ABCA4 mutations and current clinical trials.Results: STGD1 phenotypic variability remains an challenge for clinical trial design and patient selection. Pre-clinical development of therapeutic options has been limited by the lack of animal models reflecting the diverse phenotypic spectrum of STDG1. Patient-derived cell lines have facilitated the characterization of splice mutations but the clinical presentation is not always predicted by the effect of specific mutations on retinoid metabolism in cellular models. Current therapies primarily aim to delay vision loss whilst strategies to restore vision are less well developed.Conclusions: STGD1 therapy development can be accelerated by a deeper understanding of genotype-phenotype correlations.
Collapse
Affiliation(s)
- Di Huang
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Western Australia, Australia.,Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), the University of Western Australia, Nedlands, Western Australia, Australia.,Perron Institute for Neurological and Translational Science & the University of Western Australia, Nedlands, Western Australia, Australia
| | - Rachael C Heath Jeffery
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), the University of Western Australia, Nedlands, Western Australia, Australia
| | - May Thandar Aung-Htut
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Western Australia, Australia.,Perron Institute for Neurological and Translational Science & the University of Western Australia, Nedlands, Western Australia, Australia
| | - Samuel McLenachan
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), the University of Western Australia, Nedlands, Western Australia, Australia
| | - Sue Fletcher
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Western Australia, Australia.,Perron Institute for Neurological and Translational Science & the University of Western Australia, Nedlands, Western Australia, Australia
| | - Steve D Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Western Australia, Australia.,Perron Institute for Neurological and Translational Science & the University of Western Australia, Nedlands, Western Australia, Australia
| | - Fred K Chen
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), the University of Western Australia, Nedlands, Western Australia, Australia.,Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia.,Department of Ophthalmology, Royal Perth Hospital, Perth, Western Australia, Australia.,Department of Ophthalmology, Perth Children's Hospital, Nedlands, Western Australia, Australia
| |
Collapse
|
12
|
Kanar HS, Olcucu MT, Ozdemir I. Comparison of effects of tamsulosin and silodosin on subfoveal choroidal thickness and pupil size diameters in patients with prostatic hyperplasia. Int Ophthalmol 2021; 41:3921-3927. [PMID: 34319502 DOI: 10.1007/s10792-021-01961-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/16/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE To compare the effects of selective α-1 adrenoceptor antagonists on subfoveal choroidal thickness (SFCT) and pupil diameter size (PDS). METHODS This prospective study included 87 patients diagnosed with benign prostatic hyperplasia who were treated with tamsulosin hydrochloride (n = 41) or silodosin (n = 46). SFCT measurements were obtained using spectral domain optic coherence tomography (SD-OCT), and PDS measurements were obtained under mesopic, photopic and scotopic conditions using a photography-based topography system. SFCT and PDS were evaluated at baseline and 3-, 6- and 12-mo follow-ups. RESULTS The initial mean SFCT was 270.53 ± 21.48 µm in tamsulosin group and 271.95 ± 24. 73 in silodosin group (P = 0.078). There was no statistically significant change in SFCT at the 3-mo visit. At the 6-mo follow-up, the mean SFCT was 281.34 ± 22.09 µm in tamsulosin group and 272.5 ± 22.4 µm in silodosin group. At the 12th month, the mean SFCT in tamsulosin group was 290.80 ± 17.27 µm, and it was 270.80 ± 13.14 µm in silodosin group. There was statistically significant difference in at 6th and 12-mo visits (P = 0.014 and P = 0.00). During the follow-up, both drugs induced a similar significant decrease in PDS under all conditions. CONCLUSIONS Tamsulosin hydrochloride caused a significant increase in SFCT. In contrast, SFCT did not increase in silodosin group. The decreases in PDS achieved using both drugs were similar. This should be kept in mind when choroidal disease and its response to treatment are followed by CT imaging.
Collapse
Affiliation(s)
- Hatice Selen Kanar
- Kartal Dr. Lutfi Kirdar Training and Research Hospital, Department of Ophthalmology, Member of Turkey Ophthalmology Society, Member of Euretina, Fellowship of International Council Ophthalmology, Fellowship of European Board Ophthalmology, Health Science University, Istanbul, Turkey.
| | - Mahmut Taha Olcucu
- Antalya Training and Research Hospital, Member of Turkey Urology Society, Fellowship of European Board Urology, Department of Urology, Health Science University, Antalya, Turkey
| | - Ibrahim Ozdemir
- Department of Ophthalmology, Member of Turkey Ophthalmology Society, Sakarya Yenikent State Hospital, Sakarya, Turkey
| |
Collapse
|
13
|
Choi EH, Suh S, Einstein DE, Leinonen H, Dong Z, Rao SR, Fliesler SJ, Blackshaw S, Yu M, Peachey NS, Palczewski K, Kiser PD. An inducible Cre mouse for studying roles of the RPE in retinal physiology and disease. JCI Insight 2021; 6:146604. [PMID: 33784255 PMCID: PMC8262343 DOI: 10.1172/jci.insight.146604] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/25/2021] [Indexed: 01/04/2023] Open
Abstract
The retinal pigment epithelium (RPE) provides vital metabolic support for retinal photoreceptor cells and is an important player in numerous retinal diseases. Gene manipulation in mice using the Cre-LoxP system is an invaluable tool for studying the genetic basis of these retinal diseases. However, existing RPE-targeted Cre mouse lines have critical limitations that restrict their reliability for studies of disease pathogenesis and treatment, including mosaic Cre expression, inducer-independent activity, off-target Cre expression, and intrinsic toxicity. Here, we report the generation and characterization of a knockin mouse line in which a P2A-CreERT2 coding sequence is fused with the native RPE-specific 65 kDa protein (Rpe65) gene for cotranslational expression of CreERT2. Cre+/– mice were able to recombine a stringent Cre reporter allele with more than 99% efficiency and absolute RPE specificity upon tamoxifen induction at both postnatal days (PD) 21 and 50. Tamoxifen-independent Cre activity was negligible at PD64. Moreover, tamoxifen-treated Cre+/– mice displayed no signs of structural or functional retinal pathology up to 4 months of age. Despite weak RPE65 expression from the knockin allele, visual cycle function was normal in Cre+/– mice. These data indicate that Rpe65CreERT2 mice are well suited for studies of gene function and pathophysiology in the RPE.
Collapse
Affiliation(s)
- Elliot H Choi
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, California, USA.,Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Susie Suh
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, California, USA.,Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - David E Einstein
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, California, USA.,Research Service, VA Long Beach Healthcare System, Long Beach, California, USA
| | - Henri Leinonen
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, California, USA
| | - Zhiqian Dong
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, California, USA
| | - Sriganesh Ramachandra Rao
- Departments of Ophthalmology and Biochemistry, Jacobs School of Medicine and Biomedical Sciences and.,Neuroscience Graduate Program, University at Buffalo, The State University of New York, Buffalo, New York, USA.,Research Service, VA Western New York Healthcare System, Buffalo, New York, USA
| | - Steven J Fliesler
- Departments of Ophthalmology and Biochemistry, Jacobs School of Medicine and Biomedical Sciences and.,Neuroscience Graduate Program, University at Buffalo, The State University of New York, Buffalo, New York, USA.,Research Service, VA Western New York Healthcare System, Buffalo, New York, USA
| | - Seth Blackshaw
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Minzhong Yu
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA.,Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| | - Neal S Peachey
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA.,Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA.,Research Service, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, USA
| | - Krzysztof Palczewski
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, California, USA.,Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, California, USA.,Department of Chemistry, School of Physical Sciences, University of California, Irvine, Irvine, California, USA
| | - Philip D Kiser
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, California, USA.,Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, California, USA.,Research Service, VA Long Beach Healthcare System, Long Beach, California, USA
| |
Collapse
|
14
|
Leinonen H, Cheng C, Pitkänen M, Sander CL, Zhang J, Saeid S, Turunen T, Shmara A, Weiss L, Ta L, Ton T, Koskelainen A, Vargas JD, Kimonis V, Palczewski K. A p97/Valosin-Containing Protein Inhibitor Drug CB-5083 Has a Potent but Reversible Off-Target Effect on Phosphodiesterase-6. J Pharmacol Exp Ther 2021; 378:31-41. [PMID: 33931547 DOI: 10.1124/jpet.120.000486] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 04/29/2021] [Indexed: 12/16/2022] Open
Abstract
CB-5083 is an inhibitor of p97/valosin-containing protein (VCP), for which phase I trials for cancer were terminated because of adverse effects on vision, such as photophobia and dyschromatopsia. Lower dose CB-5083 could combat inclusion body myopathy with early-onset Paget disease and frontotemporal dementia or multisystem proteinopathy caused by gain-of-function mutations in VCP. We hypothesized that the visual impairment in the cancer trial was due to CB-5083's inhibition of phosphodiesterase (PDE)-6, which mediates signal transduction in photoreceptors. To test our hypothesis, we used in vivo and ex vivo electroretinography (ERG) in mice and a PDE6 activity assay of bovine rod outer segment (ROS) extracts. Additionally, histology and optical coherence tomography were used to assess CB-5083's long-term ocular toxicity. A single administration of CB-5083 led to robust ERG signal deterioration, specifically in photoresponse kinetics. Similar recordings with known PDE inhibitors sildenafil, tadalafil, vardenafil, and zaprinast showed that only vardenafil had as strong an effect on the ERG signal in vivo as did CB-5083. In the biochemical assay, CB-5083 inhibited PDE6 activity with a potency higher than sildenafil but lower than that of vardenafil. Ex vivo ERG revealed a PDE6 inhibition constant of 80 nM for CB-5083, which is 7-fold smaller than that for sildenafil. Finally, we showed that the inhibitory effect of CB-5083 on visual function is reversible, and its chronic administration does not cause permanent retinal anomalies in aged VCP-disease model mice. Our results warrant re-evaluation of CB-5083 as a clinical therapeutic agent. We recommend preclinical ERG recordings as a routine drug safety screen. SIGNIFICANCE STATEMENT: This report supports the use of a valosin-containing protein (VCP) inhibitor drug, CB-5083, for the treatment of neuromuscular VCP disease despite CB-5083's initial clinical failure for cancer treatment due to side effects on vision. The data show that CB-5083 displays a dose-dependent but reversible inhibitory action on phosphodiesterase-6, an essential enzyme in retinal photoreceptor function, but no long-term consequences on retinal function or structure.
Collapse
Affiliation(s)
- Henri Leinonen
- Gavin Herbert Eye Institute, Department of Ophthalmology (H.L., C.L.S., J.Z., K.P.), Department of Physiology & Biophysics (K.P.), Department of Chemistry (K.P.), and Division of Genetics and Genomic Medicine, Department of Pediatrics (C.C., A.S., L.W., L.T., T.T., V.K.), University of California Irvine, Irvine, California; Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio (C.L.S.); Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland (M.P., S.S., T.T., A.K.); and Cleave Therapeutics, Inc., San Francisco, California (J.D.V.)
| | - Cheng Cheng
- Gavin Herbert Eye Institute, Department of Ophthalmology (H.L., C.L.S., J.Z., K.P.), Department of Physiology & Biophysics (K.P.), Department of Chemistry (K.P.), and Division of Genetics and Genomic Medicine, Department of Pediatrics (C.C., A.S., L.W., L.T., T.T., V.K.), University of California Irvine, Irvine, California; Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio (C.L.S.); Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland (M.P., S.S., T.T., A.K.); and Cleave Therapeutics, Inc., San Francisco, California (J.D.V.)
| | - Marja Pitkänen
- Gavin Herbert Eye Institute, Department of Ophthalmology (H.L., C.L.S., J.Z., K.P.), Department of Physiology & Biophysics (K.P.), Department of Chemistry (K.P.), and Division of Genetics and Genomic Medicine, Department of Pediatrics (C.C., A.S., L.W., L.T., T.T., V.K.), University of California Irvine, Irvine, California; Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio (C.L.S.); Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland (M.P., S.S., T.T., A.K.); and Cleave Therapeutics, Inc., San Francisco, California (J.D.V.)
| | - Christopher L Sander
- Gavin Herbert Eye Institute, Department of Ophthalmology (H.L., C.L.S., J.Z., K.P.), Department of Physiology & Biophysics (K.P.), Department of Chemistry (K.P.), and Division of Genetics and Genomic Medicine, Department of Pediatrics (C.C., A.S., L.W., L.T., T.T., V.K.), University of California Irvine, Irvine, California; Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio (C.L.S.); Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland (M.P., S.S., T.T., A.K.); and Cleave Therapeutics, Inc., San Francisco, California (J.D.V.)
| | - Jianye Zhang
- Gavin Herbert Eye Institute, Department of Ophthalmology (H.L., C.L.S., J.Z., K.P.), Department of Physiology & Biophysics (K.P.), Department of Chemistry (K.P.), and Division of Genetics and Genomic Medicine, Department of Pediatrics (C.C., A.S., L.W., L.T., T.T., V.K.), University of California Irvine, Irvine, California; Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio (C.L.S.); Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland (M.P., S.S., T.T., A.K.); and Cleave Therapeutics, Inc., San Francisco, California (J.D.V.)
| | - Sama Saeid
- Gavin Herbert Eye Institute, Department of Ophthalmology (H.L., C.L.S., J.Z., K.P.), Department of Physiology & Biophysics (K.P.), Department of Chemistry (K.P.), and Division of Genetics and Genomic Medicine, Department of Pediatrics (C.C., A.S., L.W., L.T., T.T., V.K.), University of California Irvine, Irvine, California; Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio (C.L.S.); Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland (M.P., S.S., T.T., A.K.); and Cleave Therapeutics, Inc., San Francisco, California (J.D.V.)
| | - Teemu Turunen
- Gavin Herbert Eye Institute, Department of Ophthalmology (H.L., C.L.S., J.Z., K.P.), Department of Physiology & Biophysics (K.P.), Department of Chemistry (K.P.), and Division of Genetics and Genomic Medicine, Department of Pediatrics (C.C., A.S., L.W., L.T., T.T., V.K.), University of California Irvine, Irvine, California; Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio (C.L.S.); Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland (M.P., S.S., T.T., A.K.); and Cleave Therapeutics, Inc., San Francisco, California (J.D.V.)
| | - Alyaa Shmara
- Gavin Herbert Eye Institute, Department of Ophthalmology (H.L., C.L.S., J.Z., K.P.), Department of Physiology & Biophysics (K.P.), Department of Chemistry (K.P.), and Division of Genetics and Genomic Medicine, Department of Pediatrics (C.C., A.S., L.W., L.T., T.T., V.K.), University of California Irvine, Irvine, California; Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio (C.L.S.); Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland (M.P., S.S., T.T., A.K.); and Cleave Therapeutics, Inc., San Francisco, California (J.D.V.)
| | - Lan Weiss
- Gavin Herbert Eye Institute, Department of Ophthalmology (H.L., C.L.S., J.Z., K.P.), Department of Physiology & Biophysics (K.P.), Department of Chemistry (K.P.), and Division of Genetics and Genomic Medicine, Department of Pediatrics (C.C., A.S., L.W., L.T., T.T., V.K.), University of California Irvine, Irvine, California; Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio (C.L.S.); Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland (M.P., S.S., T.T., A.K.); and Cleave Therapeutics, Inc., San Francisco, California (J.D.V.)
| | - Lac Ta
- Gavin Herbert Eye Institute, Department of Ophthalmology (H.L., C.L.S., J.Z., K.P.), Department of Physiology & Biophysics (K.P.), Department of Chemistry (K.P.), and Division of Genetics and Genomic Medicine, Department of Pediatrics (C.C., A.S., L.W., L.T., T.T., V.K.), University of California Irvine, Irvine, California; Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio (C.L.S.); Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland (M.P., S.S., T.T., A.K.); and Cleave Therapeutics, Inc., San Francisco, California (J.D.V.)
| | - Timothy Ton
- Gavin Herbert Eye Institute, Department of Ophthalmology (H.L., C.L.S., J.Z., K.P.), Department of Physiology & Biophysics (K.P.), Department of Chemistry (K.P.), and Division of Genetics and Genomic Medicine, Department of Pediatrics (C.C., A.S., L.W., L.T., T.T., V.K.), University of California Irvine, Irvine, California; Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio (C.L.S.); Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland (M.P., S.S., T.T., A.K.); and Cleave Therapeutics, Inc., San Francisco, California (J.D.V.)
| | - Ari Koskelainen
- Gavin Herbert Eye Institute, Department of Ophthalmology (H.L., C.L.S., J.Z., K.P.), Department of Physiology & Biophysics (K.P.), Department of Chemistry (K.P.), and Division of Genetics and Genomic Medicine, Department of Pediatrics (C.C., A.S., L.W., L.T., T.T., V.K.), University of California Irvine, Irvine, California; Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio (C.L.S.); Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland (M.P., S.S., T.T., A.K.); and Cleave Therapeutics, Inc., San Francisco, California (J.D.V.)
| | - Jesse D Vargas
- Gavin Herbert Eye Institute, Department of Ophthalmology (H.L., C.L.S., J.Z., K.P.), Department of Physiology & Biophysics (K.P.), Department of Chemistry (K.P.), and Division of Genetics and Genomic Medicine, Department of Pediatrics (C.C., A.S., L.W., L.T., T.T., V.K.), University of California Irvine, Irvine, California; Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio (C.L.S.); Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland (M.P., S.S., T.T., A.K.); and Cleave Therapeutics, Inc., San Francisco, California (J.D.V.)
| | - Virginia Kimonis
- Gavin Herbert Eye Institute, Department of Ophthalmology (H.L., C.L.S., J.Z., K.P.), Department of Physiology & Biophysics (K.P.), Department of Chemistry (K.P.), and Division of Genetics and Genomic Medicine, Department of Pediatrics (C.C., A.S., L.W., L.T., T.T., V.K.), University of California Irvine, Irvine, California; Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio (C.L.S.); Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland (M.P., S.S., T.T., A.K.); and Cleave Therapeutics, Inc., San Francisco, California (J.D.V.)
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute, Department of Ophthalmology (H.L., C.L.S., J.Z., K.P.), Department of Physiology & Biophysics (K.P.), Department of Chemistry (K.P.), and Division of Genetics and Genomic Medicine, Department of Pediatrics (C.C., A.S., L.W., L.T., T.T., V.K.), University of California Irvine, Irvine, California; Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio (C.L.S.); Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland (M.P., S.S., T.T., A.K.); and Cleave Therapeutics, Inc., San Francisco, California (J.D.V.)
| |
Collapse
|
15
|
Leinonen H, Pham NC, Boyd T, Santoso J, Palczewski K, Vinberg F. Homeostatic plasticity in the retina is associated with maintenance of night vision during retinal degenerative disease. eLife 2020; 9:e59422. [PMID: 32960171 PMCID: PMC7529457 DOI: 10.7554/elife.59422] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/08/2020] [Indexed: 11/18/2022] Open
Abstract
Neuronal plasticity of the inner retina has been observed in response to photoreceptor degeneration. Typically, this phenomenon has been considered maladaptive and may preclude vision restoration in the blind. However, several recent studies utilizing triggered photoreceptor ablation have shown adaptive responses in bipolar cells expected to support normal vision. Whether such homeostatic plasticity occurs during progressive photoreceptor degenerative disease to help maintain normal visual behavior is unknown. We addressed this issue in an established mouse model of Retinitis Pigmentosa caused by the P23H mutation in rhodopsin. We show robust modulation of the retinal transcriptomic network, reminiscent of the neurodevelopmental state, and potentiation of rod - rod bipolar cell signaling following rod photoreceptor degeneration. Additionally, we found highly sensitive night vision in P23H mice even when more than half of the rod photoreceptors were lost. These results suggest retinal adaptation leading to persistent visual function during photoreceptor degenerative disease.
Collapse
Affiliation(s)
- Henri Leinonen
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, IrvineIrvineUnited States
| | - Nguyen C Pham
- John A. Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of UtahSalt Lake CityUnited States
| | - Taylor Boyd
- John A. Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of UtahSalt Lake CityUnited States
| | - Johanes Santoso
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, IrvineIrvineUnited States
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, IrvineIrvineUnited States
- Departments of Physiology and Biophysics, and Chemistry, University of California, IrvineIrvineUnited States
| | - Frans Vinberg
- John A. Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of UtahSalt Lake CityUnited States
| |
Collapse
|
16
|
Saadane A, Lessieur EM, Du Y, Liu H, Kern TS. Successful induction of diabetes in mice demonstrates no gender difference in development of early diabetic retinopathy. PLoS One 2020; 15:e0238727. [PMID: 32941450 PMCID: PMC7498040 DOI: 10.1371/journal.pone.0238727] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/21/2020] [Indexed: 01/29/2023] Open
Abstract
Purpose Female mice have been found to be resistant to streptozotocin (STZ)-induced diabetes, and pre-clinical research related to diabetic complications commonly omits females. The purpose of this study was to develop a method to induce diabetes in female mice, and to determine if retinas of diabetic female mice develop molecular changes and histopathological abnormalities comparable to those which develop in male diabetic mice. Methods To induce diabetes, animals of both sexes received daily intraperitoneal (i.p.) injection of STZ for 5 consecutive days at 55 mg/kg BW (a dose that is known to induce diabetes in male mice) or for females, 75 mg/kg BW of STZ. Retinal abnormalities that have been implicated in the development of the retinopathy (superoxide generation and expression of inflammatory proteins, iNOS and ICAM-1) were evaluated at 2 months of diabetes, and retinal capillary degeneration was evaluated at 8 months of diabetes. Results Daily i.p. injection of STZ for 5 consecutive days at a concentration of 55 mg/kg BW was sufficient to induce diabetes in 100% of male mice, but only 33% of female mice. However, females did become hyperglycemic when the dose of STZ administered was increased to 75 mg/kg BW. The resulting STZ-induced hyperglycemia in female and male mice was sustained for at least 8 months. After induction of the diabetes, both sexes responded similarly with respect to the oxidative stress, expression of iNOS, and degeneration of retinal capillaries, but differed in the limited population evaluated with respect to expression of ICAM-1. Conclusions The resistance of female mice to STZ-induced diabetes can be overcome by increasing the dose of STZ used. Female mice can, and should, be included in pre-clinical studies of diabetes and its complications.
Collapse
Affiliation(s)
- Aicha Saadane
- Department of Ophthalmology, University of California-Irvine, Irvine, California, United States of America
- * E-mail:
| | - Emma M. Lessieur
- Department of Ophthalmology, University of California-Irvine, Irvine, California, United States of America
| | - Yunpeng Du
- Department of Ophthalmology, University of California-Irvine, Irvine, California, United States of America
| | - Haitao Liu
- Department of Ophthalmology, Children's Hospital of University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Timothy S. Kern
- Department of Ophthalmology, University of California-Irvine, Irvine, California, United States of America
- Veterans Administration Medical Center Research Service, Long Beach, California, United States of America
| |
Collapse
|
17
|
Leinonen H, Choi EH, Gardella A, Kefalov VJ, Palczewski K. A Mixture of U.S. Food and Drug Administration-Approved Monoaminergic Drugs Protects the Retina From Light Damage in Diverse Models of Night Blindness. Invest Ophthalmol Vis Sci 2019; 60:1442-1453. [PMID: 30947334 PMCID: PMC6736410 DOI: 10.1167/iovs.19-26560] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Purpose The purpose of this study was to test the extent of light damage in different models of night blindness and apply these paradigms in testing the therapeutic efficacy of combination therapy by drugs acting on the Gi, Gs, and Gq protein-coupled receptors. Methods Acute bright light exposure was used to test susceptibility to light damage in mice lacking the following crucial phototransduction proteins: rod transducin (GNAT1), cone transducin (GNAT2), visual arrestin 1 (ARR1), and rhodopsin kinase 1 (GRK1). Mice were intraperitoneally injected with either vehicle or drug combination consisting of metoprolol (β1-receptor antagonist), bromocriptine (dopamine family-2 receptor agonist) and tamsulosin (α1-receptor antagonist) before bright light exposure. Light damage was primarily assessed with optical coherence tomography and inspection of cone population in retinal whole mounts. Retinal inflammation was assessed in a subset of experiments using autofluorescence imaging by scanning laser ophthalmoscopy and by postmortem inspection of microglia and astrocyte activity. Results The Gnat1−/− mice showed slightly increased susceptibility to rod light damage, whereas the Gnat2−/− mice were very resistant. The Arr1−/− and Grk1−/− mice were sensitive for both rod and cone light damage and showed robust retinal inflammation 7 days after bright light exposure. Pretreatment with metoprolol + bromocriptine + tamsulosin rescued the retina in all genetic backgrounds, starting at doses of 0.2 mg/kg metoprolol, 0.02 mg/kg bromocriptine, and 0.01 mg/kg tamsulosin in the Gnat1−/− mice. The therapeutic drug doses increased in parallel with light-damage severity. Conclusions Our results suggest that congenital stationary night blindness and Oguchi disease patients can be at an elevated risk of the toxic effects of bright light. Furthermore, systems pharmacology drug regimens that stimulate Gi signaling and attenuate Gs and Gq signaling present a promising disease-modifying therapy for photoreceptor degenerative diseases.
Collapse
Affiliation(s)
- Henri Leinonen
- Gavin Herbert Eye Institute and the Department of Ophthalmology, University of California-Irvine, Irvine, California, United States.,Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States
| | - Elliot H Choi
- Gavin Herbert Eye Institute and the Department of Ophthalmology, University of California-Irvine, Irvine, California, United States.,Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States
| | - Anthony Gardella
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, United States
| | - Vladimir J Kefalov
- Department of Ophthalmology and Visual Sciences, Washington University, St. Louis, Missouri, United States
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute and the Department of Ophthalmology, University of California-Irvine, Irvine, California, United States.,Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States
| |
Collapse
|
18
|
Retinal Gene Distribution and Functionality Implicated in Inherited Retinal Degenerations Can Reveal Disease-Relevant Pathways for Pharmacologic Intervention. Pharmaceuticals (Basel) 2019; 12:ph12020074. [PMID: 31108889 PMCID: PMC6631933 DOI: 10.3390/ph12020074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/08/2019] [Accepted: 05/15/2019] [Indexed: 01/17/2023] Open
Abstract
The advent of genetic therapies for inherited retinal diseases (IRDs) has spurred the need for precise diagnosis and understanding of pathways for therapeutic targeting. The majority of IRDs that are clinically diagnosed, however, lack an identifiable mutation in established disease-causing loci and thus can be investigated with limited rational drug discovery methods. Transcriptome profiling of the retina can reveal the functional state of the tissue, and geographic profiling can uncover the various clinical phenotypic presentations of IRDs and aid in pharmaceutical intervention. In this investigation, we detail the retinal geographic expression of known retinal disease-causing genes in the primate retina and functional targetable pathways in specific IRDs. Understanding the genetic basis as well as the resulting functional consequences will assist in the discovery of future therapeutic interventions and provide novel insights to medicinal chemists. Herein, we report that, despite the genetic heterogeneity of retinal diseases, potential functional pathways can be elucidated for therapeutic targeting and be used for predictive phenotypic and genotypic modeling of novel IRD presentations.
Collapse
|
19
|
Chen Y, Chen Y, Jastrzebska B, Golczak M, Gulati S, Tang H, Seibel W, Li X, Jin H, Han Y, Gao S, Zhang J, Liu X, Heidari-Torkabadi H, Stewart PL, Harte WE, Tochtrop GP, Palczewski K. A novel small molecule chaperone of rod opsin and its potential therapy for retinal degeneration. Nat Commun 2018; 9:1976. [PMID: 29773803 PMCID: PMC5958115 DOI: 10.1038/s41467-018-04261-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 04/13/2018] [Indexed: 12/21/2022] Open
Abstract
Rhodopsin homeostasis is tightly coupled to rod photoreceptor cell survival and vision. Mutations resulting in the misfolding of rhodopsin can lead to autosomal dominant retinitis pigmentosa (adRP), a progressive retinal degeneration that currently is untreatable. Using a cell-based high-throughput screen (HTS) to identify small molecules that can stabilize the P23H-opsin mutant, which causes most cases of adRP, we identified a novel pharmacological chaperone of rod photoreceptor opsin, YC-001. As a non-retinoid molecule, YC-001 demonstrates micromolar potency and efficacy greater than 9-cis-retinal with lower cytotoxicity. YC-001 binds to bovine rod opsin with an EC50 similar to 9-cis-retinal. The chaperone activity of YC-001 is evidenced by its ability to rescue the transport of multiple rod opsin mutants in mammalian cells. YC-001 is also an inverse agonist that non-competitively antagonizes rod opsin signaling. Significantly, a single dose of YC-001 protects Abca4 -/- Rdh8 -/- mice from bright light-induced retinal degeneration, suggesting its broad therapeutic potential.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.
- The McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive Suite 300, Pittsburgh, PA, 15219, USA.
- Department of Ophthalmology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA, 15260, USA.
| | - Yu Chen
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
- Yueyang Hospital and Clinical Research Institute of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 200437, Shanghai, China
| | - Beata Jastrzebska
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, 1819 E. 101st Street, Cleveland, OH, 44106, USA
| | - Marcin Golczak
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, 1819 E. 101st Street, Cleveland, OH, 44106, USA
| | - Sahil Gulati
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, 1819 E. 101st Street, Cleveland, OH, 44106, USA
| | - Hong Tang
- Drug Discovery Center, University of Cincinnati, 2180 E. Galbraith Road, Cincinnati, OH, 45237, USA
| | - William Seibel
- Drug Discovery Center, University of Cincinnati, 2180 E. Galbraith Road, Cincinnati, OH, 45237, USA
| | - Xiaoyu Li
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Hui Jin
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Yong Han
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Songqi Gao
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Jianye Zhang
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Xujie Liu
- Department of Ophthalmology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA, 15260, USA
| | - Hossein Heidari-Torkabadi
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Phoebe L Stewart
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, 1819 E. 101st Street, Cleveland, OH, 44106, USA
| | - William E Harte
- Office of Translation and Innovation, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Gregory P Tochtrop
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Krzysztof Palczewski
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, 1819 E. 101st Street, Cleveland, OH, 44106, USA.
| |
Collapse
|