1
|
Zhang F, Cheng K, Zhang XS, Zhou S, Zou JH, Tian MY, Hou XL, Hu YG, Yuan J, Fan JX, Zhao YD, Liu TC. Cascade-catalysed nanocarrier degradation for regulating metabolism homeostasis and enhancing drug penetration on breast cancer. J Nanobiotechnology 2024; 22:680. [PMID: 39506777 PMCID: PMC11542379 DOI: 10.1186/s12951-024-02948-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024] Open
Abstract
The abnormal structure of tumor vascular seriously hinders the delivery and deep penetration of drug in tumor therapy. Herein, an integrated and tumor microenvironment (TME)-responsive nanocarrier is designed, which can dilate vessle and improve the drug penetration by in situ releasing nitric oxide (NO). Briefly, S-nitroso-glutathione (GSNO) and curcumin (Cur) were encapsulatd into the Cu-doped zeolite imidazole framework-8 (Cu-ZIF-8) and modified with hyaluronic acid. The nanocarrier degradation in the weakly acidic of TME releases Cu2+, then deplete overexpressed intratumourally glutathione and transformed into Cu+, thus disrupting the balance between nicotinamide adenine dinucleotide phosphate and flavin adenine dinucleotide (NADPH/FAD) during the metabolism homeostasis of tumor. The Cu+ can generate highly toxic hydroxyl radical through the Fenton-like reaction, enhancing the chemodynamic therapeutic effect. In addition, Cu+ also decomposes GSNO to release NO by ionic reduction, leading to vasodilation and increased vascular permeability, significantly promoting the deep penetration of Cur in tumor. Afterwards, the orderly operation of cell cycle is disrupted and arrested in the S-phase to induce tumor cell apoptosis. Deep-hypothermia potentiated 2D/3D fluorescence imaging demonstrated nanocarrier regulated endogenous metabolism homeostasis of tumor. The cascade-catalysed multifunctional nanocarrier provides an approach to treat orthotopic tumor.
Collapse
Affiliation(s)
- Fang Zhang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P.R. China
| | - Kai Cheng
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P.R. China
| | - Xiao-Shuai Zhang
- Basic Medical Laboratory, General Hospital of Central Theater Command, Wuhan, Hubei, 430081, P.R. China
| | - Sui Zhou
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P.R. China
| | - Jia-Hua Zou
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P.R. China
- Department of Oncology, Huanggang Central Hospital of Yangtze University, Huanggang, Hubei, 438000, P.R. China
| | - Ming-Yu Tian
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P.R. China
| | - Xiao-Lin Hou
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P.R. China
| | - Yong-Guo Hu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P.R. China
| | - Jing Yuan
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P.R. China
| | - Jin-Xuan Fan
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P.R. China.
| | - Yuan-Di Zhao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P.R. China.
- NMPA Research Base of Regulatory Science for Medical Devices & Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P.R. China.
| | - Tian-Cai Liu
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, 510515, P.R. China.
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, P.R. China.
| |
Collapse
|
2
|
Wang S, Cheng M, Wang S, Jiang W, Yang F, Shen X, Zhang L, Yan X, Jiang B, Fan K. A Self-Catalytic NO/O 2 Gas-Releasing Nanozyme for Radiotherapy Sensitization through Vascular Normalization and Hypoxia Relief. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403921. [PMID: 39101290 DOI: 10.1002/adma.202403921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/29/2024] [Indexed: 08/06/2024]
Abstract
Radiotherapy (RT), essential for treating various cancers, faces challenges from tumor hypoxia, which induces radioresistance. A tumor-targeted "prosthetic-Arginine" coassembled nanozyme system, engineered to catalytically generate nitric oxide (NO) and oxygen (O2) in the tumor microenvironment (TME), overcoming hypoxia and enhancing radiosensitivity is presented. This system integrates the prosthetic heme of nitric oxide synthase (NOS) and catalase (CAT) with NO-donating Fmoc-protected Arginine and Ru3+ ions, creating HRRu nanozymes that merge NOS and CAT functionalities. Surface modification with human heavy chain ferritin (HFn) improves the targeting ability of nanozymes (HRRu-HFn) to tumor tissues. In the TME, strategic arginine incorporation within the nanozyme allows autonomous O2 and NO release, triggered by endogenous hydrogen peroxide, elevating NO and O2 levels to normalize vasculature and improve blood perfusion, thus mitigating hypoxia. Employing the intrinsic O2-transporting ability of heme, HRRu-HFn nanozymes also deliver O2 directly to the tumor site. Utilizing esophageal squamous cell carcinoma as a tumor model, the studies reveal that the synergistic functions of NO and O2 production, alongside targeted delivery, enable the HRRu-HFn nanozymes to combat tumor hypoxia and potentiate radiotherapy. This HRRu-HFn nanozyme based approach holds the potential to reduce the radiation dose required and minimize side effects associated with conventional radiotherapy.
Collapse
Affiliation(s)
- Shuyu Wang
- Nanozyme Laboratory in Zhongyuan, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Miaomiao Cheng
- Nanozyme Laboratory in Zhongyuan, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Shenghui Wang
- Nanozyme Laboratory in Zhongyuan, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Wei Jiang
- Nanozyme Laboratory in Zhongyuan, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Feifei Yang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Xiaomei Shen
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Lirong Zhang
- State Key Laboratory of Esophageal Cancer Prevention &Treatment, Henan, 450001, China
| | - Xiyun Yan
- Nanozyme Laboratory in Zhongyuan, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 451163, China
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bing Jiang
- Nanozyme Laboratory in Zhongyuan, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 451163, China
| | - Kelong Fan
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 451163, China
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
3
|
Wan YX, Qi XW, Lian YY, Liu ZY, Wang H, Qiu YQ, Zhang CG, Li WN, Jiang HL, Yang DH, Zhao W, Chen ZS, Huang JC. Electroacupuncture facilitates vascular normalization by inhibiting Glyoxalase1 in endothelial cells to attenuate glycolysis and angiogenesis in triple-negative breast cancer. Cancer Lett 2024; 598:217094. [PMID: 38945204 DOI: 10.1016/j.canlet.2024.217094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/13/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Recent therapeutic strategies for the treatment of triple-negative breast cancer (TNBC) have shifted the focus from vascular growth factors to endothelial cell metabolism. This study highlights the underexplored therapeutic potential of peri-tumoral electroacupuncture, a globally accepted non-pharmacological intervention for TNBC, and molecular mechanisms. Our study showed that peri-tumoral electroacupuncture effectively reduced the density of microvasculature and enhanced vascular functionality in 4T1 breast cancer xenografts, with optimal effects on day 3 post-acupuncture. The timely integration of peri-tumoral electroacupuncture amplified the anti-tumor efficacy of paclitaxel. Multi-omics analysis revealed Glyoxalase 1 (Glo1) and the associated methylglyoxal-glycolytic pathway as key mediators of electroacupuncture-induced vascular normalization. Peri-tumoral electroacupuncture notably reduced Glo1 expression in the endothelial cells of 4T1 xenografts. Using an in vivo matrigel plug angiogenesis assay, we demonstrated that either Glo1 knockdown or electroacupuncture inhibited angiogenesis. In contrast, Glo1 overexpression increased blood vessel formation. In vitro pharmacological inhibition and genetic knockdown of Glo1 in human umbilical vein endothelial cells inhibited proliferation and promoted apoptosis via downregulating the methylglyoxal-glycolytic pathway. The study using the Glo1-silenced zebrafish model further supported the role of Glo1 in vascular development. This study underscores the pivotal role of Glo1 in peri-tumoral electroacupuncture, spotlighting a promising avenue for enhancing vascular normalization and improving TNBC treatment outcomes.
Collapse
Affiliation(s)
- Yu-Xiang Wan
- The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xue-Wei Qi
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 100029, China
| | - Yan-Yan Lian
- The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ze-Yu Liu
- Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Hui Wang
- The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yu-Qin Qiu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Chun-Guang Zhang
- The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Wen-Na Li
- The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Hong-Lin Jiang
- The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Dong-Hua Yang
- New York College of Traditional Chinese Medicine, Mineola, NY, 11501, USA
| | - Wei Zhao
- Guanganmen Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, 100029, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| | - Jin-Chang Huang
- The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
4
|
Clark GC, Lai A, Agarwal A, Liu Z, Wang XY. Biopterin metabolism and nitric oxide recoupling in cancer. Front Oncol 2024; 13:1321326. [PMID: 38469569 PMCID: PMC10925643 DOI: 10.3389/fonc.2023.1321326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/26/2023] [Indexed: 03/13/2024] Open
Abstract
Tetrahydrobiopterin is a cofactor necessary for the activity of several enzymes, the most studied of which is nitric oxide synthase. The role of this cofactor-enzyme relationship in vascular biology is well established. Recently, tetrahydrobiopterin metabolism has received increasing attention in the field of cancer immunology and immunotherapy due to its involvement in the cytotoxic T cell response. Past research has demonstrated that when the availability of BH4 is low, as it is in chronic inflammatory conditions and tumors, electron transfer in the active site of nitric oxide synthase becomes uncoupled from the oxidation of arginine. This results in the production of radical species that are capable of a direct attack on tetrahydrobiopterin, further depleting its local availability. This feedforward loop may act like a molecular switch, reinforcing low tetrahydrobiopterin levels leading to altered NO signaling, restrained immune effector activity, and perpetual vascular inflammation within the tumor microenvironment. In this review, we discuss the evidence for this underappreciated mechanism in different aspects of tumor progression and therapeutic responses. Furthermore, we discuss the preclinical evidence supporting a clinical role for tetrahydrobiopterin supplementation to enhance immunotherapy and radiotherapy for solid tumors and the potential safety concerns.
Collapse
Affiliation(s)
- Gene Chatman Clark
- Department of Biochemistry, Virginia Commonwealth University, Richmond, VA, United States
- School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Alan Lai
- School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | | | - Zheng Liu
- Department of Human Molecular Genetics, Virginia Commonwealth University, Richmond, VA, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Xiang-Yang Wang
- Department of Human Molecular Genetics, Virginia Commonwealth University, Richmond, VA, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
- Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
5
|
Alam A, Smith SC, Gobalakrishnan S, McGinn M, Yakovlev VA, Rabender CS. Uncoupled nitric oxide synthase activity promotes colorectal cancer progression. Front Oncol 2023; 13:1165326. [PMID: 36998441 PMCID: PMC10046306 DOI: 10.3389/fonc.2023.1165326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 02/24/2023] [Indexed: 03/16/2023] Open
Abstract
Increased levels of reactive oxygen/nitrogen species are one hallmark of chronic inflammation contributing to the activation of pro-inflammatory/proliferative pathways. In the cancers analyzed, the tetrahydrobiopterin:dihydrobiopterin ratio is lower than that of the corresponding normal tissue, leading to an uncoupled nitric oxide synthase activity and increased generation of reactive oxygen/nitrogen species. Previously, we demonstrated that prophylactic treatment with sepiapterin, a salvage pathway precursor of tetrahydrobiopterin, prevents dextran sodium sulfate-induced colitis in mice and associated azoxymethane-induced colorectal cancer. Herein, we report that increasing the tetrahydrobiopterin:dihydrobiopterin ratio and recoupling nitric oxide synthase with sepiapterin in the colon cancer cell lines, HCT116 and HT29, inhibit their proliferation and enhance cell death, in part, by Akt/GSK-3β-mediated downregulation of β-catenin. Therapeutic oral gavage with sepiapterin of mice bearing azoxymethane/dextran sodium sulfate-induced colorectal cancer decreased metabolic uptake of [18F]-fluorodeoxyglucose and enhanced apoptosis nine-fold in these tumors. Immunohistochemical analysis of both mouse and human tissues indicated downregulated expression of key enzymes in tetrahydrobiopterin biosynthesis in the colorectal cancer tumors. Human stage 1 colon tumors exhibited a significant decrease in the expression of quinoid dihydropteridine reductase, a key enzyme involved in recycling tetrahydrobiopterin suggesting a potential mechanism for the reduced tetrahydrobiopterin:dihydrobiopterin ratio in these tumors. In summary, sepiapterin treatment of colorectal cancer cells increases the tetrahydrobiopterin:dihydrobiopterin ratio, recouples nitric oxide synthase, and reduces tumor growth. We conclude that nitric oxide synthase coupling may provide a useful therapeutic target for treating patients with colorectal cancer.
Collapse
Affiliation(s)
- Asim Alam
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, United States
| | - Steven C. Smith
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, United States
| | | | - Mina McGinn
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, United States
| | - Vasily A. Yakovlev
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, United States
| | - Christopher S. Rabender
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
6
|
Sulukan E, Şenol O, Baran A, Kankaynar M, Yıldırım S, Kızıltan T, Bolat İ, Ceyhun SB. Nano-sized polystyrene plastic particles affect many cancer-related biological processes even in the next generations; zebrafish modeling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156391. [PMID: 35654199 DOI: 10.1016/j.scitotenv.2022.156391] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
With the ever-increasing plastic pollution, the nano-sized plastic particles that are constantly released from the main materials have a greater potential threat. Studies continue on how to eliminate plastic waste, which has become a global problem, from nature. We are aware that complete elimination is not easy at all, but it is not known clearly that even if it is successful, its effects on organisms will also disappear completely. In this study, zebrafish injected with 20 nm-sized polystyrene particles (PS) only during the embryonic period were grown in an environment without plastic exposure. The effects of PS on their offspring embryo/larvae were examined at morphological, molecular and metabolomic levels. Results showed that parental PNP exposure caused significant malformations, decreased survival rate, increased heart rate and blood flow rate, as well as decreased eye size, height and locomotor activity, which were attributed to growth retardation in the offspring. According to the results of whole-mount immunofluorescence larval staining, cell death and reactive oxygen species were significantly increased, while lipid accumulation was decreased in new generation larvae from zebrafish injected with PNP. In order to elucidate the mechanisms underlying these morphological, physiological and molecular damages, the metabolome analyses were performed by evaluating the Q-TOF MS/MS spectra with chemometric analyses in the offspring larvae. According to the metabolomics results, 28 annotated metabolomes suggested by the OPLS-DA analysis that may vary significantly through a variable in projection scores were detected. In addition, it was detected that the significantly increased histopathological findings and immunopositivity of JNK, H2A.X, PI3 and NOP10 in new generation larvae. In conclusion, it has been shown that exposure to PS, even only during the embryonic period, may affect many cancer-related biological processes in the next generation.
Collapse
Affiliation(s)
- Ekrem Sulukan
- Aquatic Biotechnology Laboratory, Fisheries Faculty, Atatürk University, Erzurum, Turkey; Department of Aquaculture, Fisheries Faculty, Atatürk University, Erzurum, Turkey
| | - Onur Şenol
- Department of Analytical Chemistry, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey
| | - Alper Baran
- Department of Food Quality Control and Analysis, Erzurum Vocational School, Atatürk University, Erzurum, Turkey
| | - Meryem Kankaynar
- Aquatic Biotechnology Laboratory, Fisheries Faculty, Atatürk University, Erzurum, Turkey; Department of Nanoscience and Nanoengineering, Graduate School of Natural and Applied Science, Atatürk University, Erzurum, Turkey
| | - Serkan Yıldırım
- Department of Pathology, Faculty of Veterinary, Atatürk University, Erzurum, Turkey
| | - Tuba Kızıltan
- Aquatic Biotechnology Laboratory, Fisheries Faculty, Atatürk University, Erzurum, Turkey; Department of Nanoscience and Nanoengineering, Graduate School of Natural and Applied Science, Atatürk University, Erzurum, Turkey
| | - İsmail Bolat
- Department of Pathology, Faculty of Veterinary, Atatürk University, Erzurum, Turkey
| | - Saltuk Buğrahan Ceyhun
- Aquatic Biotechnology Laboratory, Fisheries Faculty, Atatürk University, Erzurum, Turkey; Department of Aquaculture, Fisheries Faculty, Atatürk University, Erzurum, Turkey.
| |
Collapse
|
7
|
Feng Y, Deng L, Guo H, Zhao Y, Peng F, Wang G, Yu C. The Anti-Colon Cancer Effects of Essential Oil of Curcuma phaeocaulis Through Tumour Vessel Normalisation. Front Oncol 2021; 11:728464. [PMID: 34765545 PMCID: PMC8576404 DOI: 10.3389/fonc.2021.728464] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/08/2021] [Indexed: 12/28/2022] Open
Abstract
Background Normalising tumour vessels had become a significant research focus in tumour treatment research in recent years. Curcumae rhizoma (CR) is an essential plant in traditional Chinese medicine as it promotes blood circulation and removes blood stasis. Similarly, CR improves local blood circulation. Purpose We explored the anti-colon cancer effects of essential oil from CR (OCR) by investigating its role in normalising tumour vessels. We also provided a basis for research and development into new anti-cancer drugs. Methods We used colon cancer as a research focus to investigate OCR. We established an in vitro co-culture model of colon cancer cells and human umbilical vein endothelial cells (HUVEC). We also established an in vivo subcutaneous implant colon cancer model in nude mice. These studies allowed us to evaluate the comprehensive effects of OCR in in vivo and in vitro colon cancer and its role in normalising tumour blood vessels. Results In vitro, we found that OCR inhibited Human colon cancer cells (HCT116) and HUVEC cell proliferation and inhibited vascular endothelial growth factor-a (VEGFa) mRNA and protein expression in HUVECs in a co-culture system. Our in vivo studies showed that OCR inhibited colon cancer tumour growth, reduced angiogenesis in tumours and increased vascular endothelial (VE)-cadherin and pericyte coverage in tumour vessels. Conclusions OCR inhibited colon cancer growth both in in vivo and in vitro models, reduced angiogenesis in tumours, improved tumour vessel structures and normalised tumour vessels.
Collapse
Affiliation(s)
- Yewen Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Deng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Hengrui Guo
- Southwest Jiaotong University, Chengdu, China
| | - Yumin Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fu Peng
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Gang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Chenghao Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
8
|
Liu J, Chen J, Liu H, Zhang K, Zeng Q, Yang S, Jiang Z, Zhang X, Chen T, Li D, Shan H. Bi/Se-Based Nanotherapeutics Sensitize CT Image-Guided Stereotactic Body Radiotherapy through Reprogramming the Microenvironment of Hepatocellular Carcinoma. ACS APPLIED MATERIALS & INTERFACES 2021; 13:42473-42485. [PMID: 34474563 DOI: 10.1021/acsami.1c11763] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The particular characteristics of hypoxia, immune suppression in the tumor microenvironment, and the lack of accurate imaging guidance lead to the limited effects of stereotactic body radiotherapy (SBRT) in reducing the recurrence rate and mortality of hepatocellular carcinoma (HCC). This research developed a novel theranostic agent based on Bi/Se nanoparticles (NPs), synthesized by a simple reduction reaction method for in vivo CT image-guided SBRT sensitization in mice. After loading Lenvatinib (Len), the obtained Bi/Se-Len NPs had excellent performance in reversing hypoxia and the immune suppression status of HCC. In vivo CT imaging results uncovered that the radiotherapy (RT) area could be accurately labeled after the injection of Bi/Se-Len NPs. Under Len's unique and robust properties, in vivo treatment was then carried out upon injection of Bi/Se-Len NPs, achieving excellent RT sensitization effects in a mouse HCC model. Comprehensive tests and histological stains revealed that Bi/Se-Len NPs could reshape and normalize tumor blood vessels, reduce the hypoxic situation of the tumor, and upregulate tumor-infiltrating CD4+ and CD8+ T lymphocytes around the tumors. Our work highlights an excellent proposal of Bi/Se-Len NPs as theranostic nanoparticles for image-guided HCC radiotherapy.
Collapse
Affiliation(s)
- Jiani Liu
- Center for Interventional Medicine, The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai, Guangdong Province 519000, P. R. China
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, P. R. China
- The Cancer Center of The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai, Guangdong Province 519000, P. R. China
| | - Jiayao Chen
- Center for Interventional Medicine, The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai, Guangdong Province 519000, P. R. China
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, P. R. China
| | - Hongxing Liu
- Department of Chemistry, Jinan University, Guangzhou, Guangdong Province, 510632, P. R. China
| | - Ke Zhang
- Center for Interventional Medicine, The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai, Guangdong Province 519000, P. R. China
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, P. R. China
| | - Qi Zeng
- The Cancer Center of The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai, Guangdong Province 519000, P. R. China
| | - Shuai Yang
- The Cancer Center of The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai, Guangdong Province 519000, P. R. China
| | - Zebo Jiang
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, P. R. China
| | - Xiaoting Zhang
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, P. R. China
| | - Tianfeng Chen
- Department of Chemistry, Jinan University, Guangzhou, Guangdong Province, 510632, P. R. China
| | - Dan Li
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, P. R. China
| | - Hong Shan
- Center for Interventional Medicine, The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai, Guangdong Province 519000, P. R. China
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, P. R. China
| |
Collapse
|
9
|
Feng Y, Feng Y, Gu L, Liu P, Cao J, Zhang S. The Critical Role of Tetrahydrobiopterin (BH4) Metabolism in Modulating Radiosensitivity: BH4/NOS Axis as an Angel or a Devil. Front Oncol 2021; 11:720632. [PMID: 34513700 PMCID: PMC8429800 DOI: 10.3389/fonc.2021.720632] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/12/2021] [Indexed: 12/16/2022] Open
Abstract
Ionizing radiation and radioactive materials have been widely used in industry, medicine, science and military. The efficacy of radiotherapy and adverse effects of normal tissues are closed related to cellular radiosensitivity. Molecular mechanisms underlying radiosensitivity are of significance to tumor cell radiosensitization as well as normal tissue radioprotection. 5,6,7,8-Tetrahydrobiopterin (BH4) is an essential cofactor for nitric oxide synthases (NOS) and aromatic amino acid hydroxylases, and its biosynthesis involves de novo biosynthesis and a pterin salvage pathway. In this review we overview the role of BH4 metabolism in modulating radiosensitivity. BH4 homeostasis determines the role of NOS, affecting the production of nitric oxide (NO) and oxygen free radicals. Under conditions of oxidative stress, such as UV-radiation and ionizing radiation, BH4 availability is diminished due to its oxidation, which subsequently leads to NOS uncoupling and generation of highly oxidative free radicals. On the other hand, BH4/NOS axis facilitates vascular normalization, a process by which antiangiogenic therapy corrects structural and functional flaws of tumor blood vessels, which enhances radiotherapy efficacy. Therefore, BH4/NOS axis may serve as an angel or a devil in regulating cellular radiosensitivity. Finally, we will address future perspectives, not only from the standpoint of perceived advances in treatment, but also from the potential mechanisms. These advances have demonstrated that it is possible to modulate cellular radiosensitivity through BH4 metabolism.
Collapse
Affiliation(s)
- Yang Feng
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine, Soochow University, Suzhou, China
| | - Yahui Feng
- China National Nuclear Corporation 416 Hospital (Second Affiliated Hospital of Chengdu Medical College), Chengdu, China
| | - Liming Gu
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine, Soochow University, Suzhou, China
| | - Pengfei Liu
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine, Soochow University, Suzhou, China
| | - Jianping Cao
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine, Soochow University, Suzhou, China
| | - Shuyu Zhang
- China National Nuclear Corporation 416 Hospital (Second Affiliated Hospital of Chengdu Medical College), Chengdu, China.,West China Second University Hospital, Sichuan University, Chengdu, China.,West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Gonçalves DA, Jasiulionis MG, de Melo FHM. The Role of the BH4 Cofactor in Nitric Oxide Synthase Activity and Cancer Progression: Two Sides of the Same Coin. Int J Mol Sci 2021; 22:9546. [PMID: 34502450 PMCID: PMC8431490 DOI: 10.3390/ijms22179546] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer development is associated with abnormal proliferation, genetic instability, cell death resistance, metabolic reprogramming, immunity evasion, and metastasis. These alterations are triggered by genetic and epigenetic alterations in genes that control cell homeostasis. Increased reactive oxygen and nitrogen species (ROS, RNS) induced by different enzymes and reactions with distinct molecules contribute to malignant transformation and tumor progression by modifying DNA, proteins, and lipids, altering their activities. Nitric oxide synthase plays a central role in oncogenic signaling modulation and redox landscape. Overexpression of the three NOS isoforms has been found in innumerous types of cancer contributing to tumor growth and development. Although the main function of NOS is the production of nitric oxide (NO), it can be a source of ROS in some pathological conditions. Decreased tetrahydrobiopterin (BH4) cofactor availability is involved in NOS dysfunction, leading to ROS production and reduced levels of NO. The regulation of NOSs by BH4 in cancer is controversial since BH4 has been reported as a pro-tumoral or an antitumoral molecule. Therefore, in this review, the role of BH4 in the control of NOS activity and its involvement in the capabilities acquired along tumor progression of different cancers was described.
Collapse
Affiliation(s)
- Diego Assis Gonçalves
- Micro-Imuno-Parasitology Department, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil;
- Department of Parasitology, Microbiology and Immunology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
| | | | - Fabiana Henriques Machado de Melo
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, Brazil
- Institute of Medical Assistance to Public Servants of the State (IAMSPE), São Paulo 04039-000, Brazil
| |
Collapse
|
11
|
Rabender CS, Mezzaroma E, Yakovlev VA, Mauro AG, Bonaventura A, Abbate A, Mikkelsen RB. Mitigation of Radiation-Induced Lung and Heart Injuries in Mice by Oral Sepiapterin after Irradiation. Radiat Res 2021; 195:463-473. [PMID: 33822229 DOI: 10.1667/rade-20-00249.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/21/2021] [Indexed: 01/12/2023]
Abstract
After radiation exposure, endothelium-dependent vasorelaxation is impaired due to impaired nitric oxide production. Endothelial dysfunction is characterized by uncoupled endothelial nitric oxide synthase activity, oxidation of the reduced cofactor tetrahydrobiopterin to dihydrobiopterin as one well recognized mechanism. Oral treatment with sepiapterin, a tetrahydrobiopterin precursor, decreased infiltrating inflammatory cells and cytokine levels in mice with colitis. We therefore tested whether a synthetic sepiapterin, PTC923, might mitigate radiation-induced cardiac and pulmonary injuries. C57L/J wild-type 6-8-week-old mice of both sexes received 5 Gy total-body irradiation (TBI), followed by a top-up dose of 6.5 Gy to the thorax (total thoracic dose of 11.5 Gy). Starting from 24 h postirradiation, mice were treated once daily with 1 mg/kg PTC923 for six days by oral gavage. Assessment of lung injury by breathing rate was measured every other week and echocardiography to assess heart function was performed at different time points (8, 30, 60, 90 and 180 days). Plasma proteins (fibrinogen, neutrophil elastase, C-reactive protein, and IL-6) were assessed as well. TBI induced a reduction in cardiac contractile reserve and an impairment in diastolic function restored by daily oral PTC923. Postirradiation lung injury was significantly delayed by PTC923. TBI mice treated with PTC923 experienced a longer survival compared to nonirradiated mice (71% vs. 40% of mice alive after 180 days). PTC923-treated mice showed a reduction in inflammatory mediators, especially IL-6 and IL-1b. In conclusion, these findings support the proposal that PTC923 is a potential mitigator of cardiac and lung injury caused by TBI.
Collapse
Affiliation(s)
- Christopher S Rabender
- Department of Radiation Oncology, Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia
| | - Eleonora Mezzaroma
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia
| | - Vasily A Yakovlev
- Department of Radiation Oncology, Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia
| | - Adolfo G Mauro
- Internal Medicine, Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia
| | - Aldo Bonaventura
- Internal Medicine, Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia
| | - Antonio Abbate
- Internal Medicine, Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia
| | - Ross B Mikkelsen
- Department of Radiation Oncology, Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
12
|
Reduced Basal Nitric Oxide Production Induces Precancerous Mammary Lesions via ERBB2 and TGFβ. Sci Rep 2019; 9:6688. [PMID: 31040372 PMCID: PMC6491486 DOI: 10.1038/s41598-019-43239-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 04/18/2019] [Indexed: 02/08/2023] Open
Abstract
One third of newly diagnosed breast cancers in the US are early-stage lesions. The etiological understanding and treatment of these lesions have become major clinical challenges. Because breast cancer risk factors are often linked to aberrant nitric oxide (NO) production, we hypothesized that abnormal NO levels might contribute to the formation of early-stage breast lesions. We recently reported that the basal level of NO in the normal breast epithelia plays crucial roles in tissue homeostasis, whereas its reduction contributes to the malignant phenotype of cancer cells. Here, we show that the basal level of NO in breast cells plummets during cancer progression due to reduction of the NO synthase cofactor, BH4, under oxidative stress. Importantly, pharmacological deprivation of NO in prepubertal to pubertal animals stiffens the extracellular matrix and induces precancerous lesions in the mammary tissues. These lesions overexpress a fibrogenic cytokine, TGFβ, and an oncogene, ERBB2, accompanied by the occurrence of senescence and stem cell-like phenotype. Consistently, normalization of NO levels in precancerous and cancerous breast cells downmodulates TGFβ and ERBB2 and ameliorates their proliferative phenotype. This study sheds new light on the etiological basis of precancerous breast lesions and their potential prevention by manipulating the basal NO level.
Collapse
|
13
|
Zhang X, Wang Y, Xie M, Corbett C, Singhal S, Dai B, Wang J, Ding Q, Lu Q, Wang Y. Downregulating Heparanase-Induced Vascular Normalization: A New Approach To Increase the Bioavailability of Chemotherapeutics in Solid Tumors. Mol Pharm 2018; 15:4303-4309. [PMID: 30059227 DOI: 10.1021/acs.molpharmaceut.8b00628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Downregulating heparanase has been shown to reduce tumor angiogenesis and prevent chemoresistance, and it is becoming an appealing approach to treat solid tumors. However, little attention has been given to its underlying antitumor mechanisms, especially the relationship between heparanase and vascular development in solid tumors, which is not yet fully understood. In this study, we found that downregulating heparanase through orthotopic injection of heparanase small interfering RNA not only could reduce vascular density but, more importantly, lead to vascular normalization in solid tumors. Consequently, this may lead to a more efficient delivery of chemotherapeutic agents. These findings provide the basis for developing new approaches to treat solid tumors with a combination of heparanase inhibitors and chemotherapeutics.
Collapse
Affiliation(s)
- Xudong Zhang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences , Nanjing University , 22 Hankou Road , Nanjing , Jiangsu Province 210093 , China
| | - Yuxin Wang
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital , Medical School of Nanjing University , Nanjing 210008 , China
| | - Manman Xie
- Department of Biomedical Engineering, College of Engineering and Applied Sciences , Nanjing University , 22 Hankou Road , Nanjing , Jiangsu Province 210093 , China
| | - Christopher Corbett
- Department of Surgery , University of Pennsylvania Perelman School of Medicine , Philadelphia , Pennsylvania 19104 , United States
| | - Sunil Singhal
- Department of Surgery , University of Pennsylvania Perelman School of Medicine , Philadelphia , Pennsylvania 19104 , United States
| | - Bo Dai
- Drum Tower Clinical Medical College of Nanjing Medical University , Nanjing , Jiangsu 210000 , China
| | - Jianquan Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences , Nanjing University , 22 Hankou Road , Nanjing , Jiangsu Province 210093 , China
| | - Qingqing Ding
- Department of Geriatric Gastroenterology , The First Affiliated Hospital of Nanjing Medical University , Nanjing 210029 , China
| | - Qian Lu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences , Nanjing University , 22 Hankou Road , Nanjing , Jiangsu Province 210093 , China
| | - Yiqing Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences , Nanjing University , 22 Hankou Road , Nanjing , Jiangsu Province 210093 , China
| |
Collapse
|