1
|
Burke EL, Desai RI. Reinforcing and adverse observable effects of nicotine and minor tobacco alkaloids in squirrel monkeys. Drug Alcohol Depend 2024; 258:111280. [PMID: 38614019 PMCID: PMC11117166 DOI: 10.1016/j.drugalcdep.2024.111280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/15/2024]
Abstract
The most prevalent psychoactive chemical in tobacco smoke is nicotine, which has been shown to maintain tobacco consumption as well as cause acute adverse effects at high doses, like nausea and emesis. Recent studies in laboratory animals have suggested that many non-nicotine constituents of tobacco smoke (e.g., minor tobacco alkaloids) may also contribute to tobacco's overall reinforcing and adverse effects. Here, we used intravenous (IV) self-administration (n = 3) and observation (n = 4) procedures in squirrel monkeys to, respectively, compare the reinforcing and adverse observable effects of nicotine and three prominent minor tobacco alkaloids, nornicotine, anatabine, and myosmine. In self-administration studies, male squirrel monkeys were trained to respond under a second-order fixed-interval schedule of reinforcement and dose-effects functions for nicotine and each of the minor tobacco alkaloids nornicotine, anatabine, and mysomine were determined. Observation studies were conducted in a different group of male squirrel monkeys to quantify the ability of nicotine, nornicotine, anatabine, and mysomine to produce adverse overt effects, including hypersalivation, emesis, and tremors. Results show that nicotine and to a lesser extent nornicotine were readily self-administered, whereas anatabine and myosmine were not. In observation studies, all minor tobacco alkaloids produced adverse observable effects that were either comparable or more pronounced than nicotine. Collectively, the present results showing that nicotine and the minor tobacco alkaloids nornicotine, anatabine, and myosmine produce differential reinforcing and acute adverse observable effects in monkeys provides further evidence that these constituents may differently contribute to the psychopharmacological and adverse effects of tobacco consumption.
Collapse
Affiliation(s)
- Emily L Burke
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA; Integrative Neurochemistry Laboratory, Behavioral Biology Program, McLean Hospital, Belmont, MA 02478, USA
| | - Rajeev I Desai
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA; Integrative Neurochemistry Laboratory, Behavioral Biology Program, McLean Hospital, Belmont, MA 02478, USA.
| |
Collapse
|
2
|
Wang X, Yang J, Huang P, Wang D, Zhang Z, Zhou Z, Liang L, Yao R, Yang L. Cytisine: State of the art in pharmacological activities and pharmacokinetics. Biomed Pharmacother 2024; 171:116210. [PMID: 38271893 DOI: 10.1016/j.biopha.2024.116210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/02/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024] Open
Abstract
Cytisine is a naturally occurring bioactive compound, an alkaloid mainly isolated from legume plants. In recent years, various biological activities of cytisine have been explored, showing certain effects in smoking cessation, reducing drinking behavior, anti-tumor, cardiovascular protection, blood sugar regulation, neuroprotection, osteoporosis prevention and treatment, etc. At the same time, cytisine has the advantages of high efficiency, safety, and low cost, has broad development prospects, and is a drug of great application value. However, a summary of cytisine's biological activities is currently lacking. Therefore, this paper summarizes the pharmacological action, mechanism, and pharmacokinetics of cytisine by referring to numerous databases, and analyzes the new and core targets of cytisine with the help of computer simulation technology, to provide reference for doctors.
Collapse
Affiliation(s)
- Xuezhen Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiaming Yang
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Peifeng Huang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Dong Wang
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhibin Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zehua Zhou
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Leiqin Liang
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Rongmei Yao
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Long Yang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Public Health, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
3
|
Sawagashira R, Tanaka M. Nicotine promotes the utility of short-term memory during visual search in macaque monkeys. Psychopharmacology (Berl) 2022; 239:3019-3029. [PMID: 35802143 DOI: 10.1007/s00213-022-06186-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/27/2022] [Indexed: 10/17/2022]
Abstract
RATIONALE The central cholinergic system is a major therapeutic target for restoring cognitive functions. Although manipulation of cholinergic signaling is known to alter working memory (WM), the underlying mechanism remains unclear. It is widely accepted that WM consists of multiple functional modules, one storing short-term memory and the other manipulating and utilizing it. A recently developed visual search task and a relevant model can be used to assess multiple components of WM during administration of acetylcholine receptor (AChR)-related substances. OBJECTIVES The effects of systemic administration of AChR-related agents on WM and eye movements were examined during the oculomotor foraging task. METHODS Three monkeys performing the task received an intramuscular injection of saline or the following AChR-related agents: nicotine (24 or 56 μg/kg), mecamylamine (nicotinic AChR antagonist, 1.0 mg/kg), oxotremorine (muscarinic AChR agonist, 3.0 µg/kg), and scopolamine (muscarinic AChR antagonist, 20 μg/kg). The task was to find a target among 15 identical objects by making eye movements within 6 s. The data were analyzed according to the foraging model that incorporated three parameters. RESULTS Nicotine and mecamylamine significantly increased the utility but not the capacity of short-term memory, while muscarinic AChR-related agents did not alter any WM parameters. Further regression analyses with a mixed-effect model showed that the beneficial effect of nicotine on memory utility remained after considering eye movement variability, but the beneficial effect of mecamylamine disappeared. CONCLUSIONS Nicotine improves visual search, mainly by increasing the utility of short-term memory, with minimal changes in oculomotor parameters.
Collapse
Affiliation(s)
- Ryo Sawagashira
- Department of Physiology, Hokkaido University School of Medicine, Sapporo, 060-8638, Japan. .,Department of Psychiatry, Hokkaido University School of Medicine, Sapporo, 060-8638, Japan.
| | - Masaki Tanaka
- Department of Physiology, Hokkaido University School of Medicine, Sapporo, 060-8638, Japan.
| |
Collapse
|
4
|
Anatabine, Nornicotine, and Anabasine Reduce Weight Gain and Body Fat through Decreases in Food Intake and Increases in Physical Activity. J Clin Med 2022; 11:jcm11030481. [PMID: 35159932 PMCID: PMC8837150 DOI: 10.3390/jcm11030481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/23/2022] Open
Abstract
Obesity is a leading cause of preventable death in the United States. Currently approved pharmacotherapies for the treatment of obesity are associated with rebound weight gain, negative side effects, and the potential for abuse. There is a need for new treatments with fewer side effects. Minor tobacco alkaloids (MTAs) are potential candidates for novel obesity pharmacotherapies. These alkaloids are structurally related to nicotine, which can help reduce body weight, but without the same addictive potential. The purpose of the current study was to examine the effects of three MTAs (nornicotine, anatabine, and anabasine) and nicotine on weight gain, body composition, chow intake, and physical activity. We hypothesized that the MTAs and nicotine would reduce weight gain through reductions in chow intake and increases in physical activity. To test this, male Sprague Dawley rats were housed in metabolic phenotyping chambers. Following acclimation to these chambers and to (subcutaneous (sc)) injections of saline, animals received daily injections (sc) of nornicotine, anabasine, anatabine, or nicotine for one week. Compared to saline-injected animals that gained body weight and body fat during the treatment phase, injections of nornicotine and anatabine prevented additional weight gain, alongside reductions in body fat. Rats receiving anabasine and nicotine gained body weight at a slower rate relative to rats receiving saline injections, and body fat remained unchanged. All compounds reduced the intake of chow pellets. Nornicotine and nicotine produced consistent increases in physical activity 6 h post-injection, whereas anabasine’s and anatabine’s effects on physical activity were more transient. These results show that short-term, daily administration of nornicotine, anabasine, and anatabine has positive effects on weight loss, through reductions in body fat and food intake and increases in physical activity. Together, these findings suggest that MTAs are worthy of further investigations as anti-obesity pharmacotherapies.
Collapse
|
5
|
Abstract
Despite the evidence that the muscarinic agonist arecoline is a drug of abuse throughout Southeast Asia, its stimulus characteristics have not been well studied. The goal of this work was to understand more about the mediation of discriminative stimulus effects of arecoline. Arecoline (1.0 mg/kg s.c.) was trained as a discriminative stimulus in a group of eight rats. The ability of various cholinergic agonists and antagonists to mimic or antagonize the discriminative stimulus effects of arecoline and to modify its rate-suppressing effects was evaluated. A muscarinic antagonist, but neither of two nicotinic antagonists, was able to modify the discriminative stimulus effects of arecoline, suggesting a predominant muscarinic basis of arecoline's discriminative stimulus effects in this assay. However, both nicotine itself and two nicotine agonists with selective affinity for the α4β2* receptor (ispronicline and metanicotine) produced full arecoline-like discriminative stimulus effects in these rats. The discriminative stimulus effects of the selective nicotine agonists were blocked by both the general nicotine antagonist mecamylamine and by the selective α4β2* antagonist, dihydro-beta-erythroidine (DHβE). Surprisingly, only DHβE antagonized the rate-suppressing effects of the selective nicotine agonists. These data indicate a selective α4β2* nicotine receptor component to the behavioral effects of arecoline. Although the nicotinic aspects of arecoline's behavior effects could suggest that abuse of arecoline-containing material (e.g. betel nut chewing) is mediated through nicotinic rather than muscarinic actions, further research, specifically on the reinforcing effects of arecoline, is necessary before this conclusion can be supported.
Collapse
Affiliation(s)
- Gail Winger
- Department of Pharmacology, University of Texas Health, San Antonio, Texas, USA
| |
Collapse
|
6
|
Upright NA, Baxter MG. Effects of nicotinic antagonists on working memory performance in young rhesus monkeys. Neurobiol Learn Mem 2021; 184:107505. [PMID: 34425219 DOI: 10.1016/j.nlm.2021.107505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/09/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022]
Abstract
Acetylcholine plays a pivotal neuromodulatory role in the brain, influencing neuronal activity and cognitive function. Nicotinic receptors, particularly α7 and α4β2 receptors, modulate firing of dorsolateral prefrontal (dlPFC) excitatory networks that underlie successful working memory function. Minimal work however has been done examining working memory following systemic blockade of nicotinic receptor systems in nonhuman primates, limiting the ability to explore interactions of other neuromodulatory influences with working memory impairment caused by nicotinic antagonism. In this study, we investigated working memory performance after administering three nicotinic antagonists, mecamylamine, methyllycaconitine, and dihydro-β-erythroidine, in rhesus macaques tested in a spatial delayed response task. Surprisingly, we found that no nicotinic antagonist significantly impaired delayed response performance compared to vehicle. In contrast, the muscarinic antagonist scopolamine reliably impaired delayed response performance in all monkeys tested. These findings suggest there are some limitations on using systemic nicotinic antagonists to probe the involvement of nicotinic receptors in aspects of dlPFC-dependent working memory function, necessitating alternative strategies to understand the role of this system in cognitive deficits seen in aging and neurodegenerative disease.
Collapse
Affiliation(s)
- Nicholas A Upright
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - Mark G Baxter
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
7
|
de Moura FB, Bergman J. Enhancement of Opioid Antinociception by Nicotinic Ligands. J Pharmacol Exp Ther 2021; 377:100-107. [PMID: 33441370 DOI: 10.1124/jpet.120.000423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/11/2021] [Indexed: 11/22/2022] Open
Abstract
Nicotine has previously been shown to augment the antinociceptive effects of μ-opioid agonists in squirrel monkeys without producing a concomitant increase in behavioral disruption. The present studies were conducted to extend these findings by determining the ability of the nicotinic acetylcholine receptor (nAChR) agonist epibatidine and partial α4β2 nAChR agonist varenicline to selectively augment the antinociceptive effects of the μ-opioid receptor (MOR) full agonist fentanyl, the MOR partial agonist nalbuphine, and the κ-opioid receptor (KOR) agonist U69,593 in male squirrel monkeys. Results indicate that both nAChR ligands selectively increased the antinociceptive effects of nalbuphine and that epibatidine increased the antinociceptive effects of U69,593 without altering effects on operant behavior. However, neither epibatidine nor varenicline enhanced the antinociceptive effects of fentanyl, perhaps due to its high efficacy. The enhancement of nalbuphine's antinociceptive effects by epibatidine, but not varenicline, could be antagonized by either mecamylamine or dihydro-β-erythroidine, consistent with α4β2 mediation of epibatidine's effects but suggesting the involvement of non-nAChR mechanisms in the effects of varenicline. The present results support previous findings showing that an nAChR agonist can serve as an adjuvant for MOR antinociception and, based on results with U69,593, further indicate that the adjuvant effects of nAChR drugs may also apply to antinociception produced by KOR. Our findings support the further evaluation of nAChR agonists as adjuvants of opioid pharmacotherapy for pain management and point out the need for further investigation into the mechanisms by which they produce opioid-adjuvant effects. SIGNIFICANCE STATEMENT: Nicotine has been shown to augment the antinociceptive effects of μ-opioid receptor analgesics without exacerbating their effects on operant performance. The present study demonstrates that the nicotinic acetylcholine receptor (nAChR) agonist epibatidine and partial α4β2 nAChR agonist varenicline can also augment the antinociceptive effects of nalbuphine, as well as those of a κ-opioid receptor agonist, without concomitantly exacerbating their behaviorally disruptive effects. These findings support the view that nAChR agonists and partial agonists may have potential as adjuvant therapies for opioid-based analgesics.
Collapse
Affiliation(s)
- Fernando B de Moura
- Behavioral Biology Program, McLean Hospital, Belmont, Massachusetts and Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Jack Bergman
- Behavioral Biology Program, McLean Hospital, Belmont, Massachusetts and Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
8
|
The discriminative stimulus effects of epibatidine in C57BL/6J mice. Behav Pharmacol 2020; 31:565-573. [PMID: 32209809 DOI: 10.1097/fbp.0000000000000555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The α4β2* nicotinic acetylcholine receptor (nAChR) subtypes are targeted for the development of smoking cessation aids, and the use of drug discrimination in mice provides a robust screening tool for the identification of drugs acting through nAChRs. Here, we established that the α4β2* nAChR agonist epibatidine can function as a discriminative stimulus in mice. Male C57BL/6J mice discriminated epibatidine (0.0032 mg/kg, subcutaneously) and were tested with agonists varying in selectivity and efficacy for α4β2* nAChRs. The discriminative stimulus effects of epibatidine were characterized with the nonselective, noncompetitive nicotinic antagonist mecamylamine, with the selective β2-substype-containing nAChR antagonist dihydro-β-erythroidine hydrobromide (DHβE), and the α7 antagonist methyllycaconitine (MLA). Nicotine (0.32-1.0 mg/kg, subcutaneously), the partial nAChR agonist cytisine (1.0-5.6 mg/kg, subcutaneously), and the α7 nAChR agonist N-[(3R)-1-azabicyclo[2.2.2]oct-3-yl]-4-chlorobenzamide (10-56 mg/kg, intraperitoneally) produced no more than 33% epibatidine-appropriate responding. The partial α4β2* nAChR agonists varenicline and 2'-fluoro-3'-(4-nitro-phenyl)deschloroepibatidine produced 61 and 69% epibatidine-appropriate responding, respectively. DHβE and mecamylamine, but not MLA, significantly antagonized the discriminative stimulus effects of epibatidine. These results show that epibatidine may be trained as a discriminative stimulus in mice and has utility in elucidating the in-vivo pharmacology of α4β2* nAChR ligands.
Collapse
|
9
|
Barreto de Moura F, Withey SL, Bergman J. Enhancement of Opioid Antinociception by Nicotine. J Pharmacol Exp Ther 2019; 371:624-632. [PMID: 31527281 PMCID: PMC6863460 DOI: 10.1124/jpet.119.261438] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/13/2019] [Indexed: 01/21/2023] Open
Abstract
Nicotine can produce antinociception in preclinical pain models; however, the ability of nicotine to augment the antinociceptive effects of opioid agonists has not been investigated. The present experiments were conducted to determine how nicotine modifies the effects of opioid agonists differing in efficacy. Male squirrel monkeys responded for the delivery of milk under a fixed ratio 10 schedule of reinforcement. During the 30-second timeout period following each milk delivery, the subject's tail was immersed in 35, 50, 52, or 55°C water, and the latency to remove the tail was recorded. Dose-response functions for tail-withdrawal latency and operant performance were determined for fentanyl, oxycodone, buprenorphine, and nalbuphine alone and after treatment with nicotine. Excepting nalbuphine, all opioids produced dose-related disruptions in food-maintained responding and increases in tail-withdrawal latency at each water temperature. Nicotine did not exacerbate the behaviorally disruptive effects of the μ-opioids on operant performance but produced a significant mecamylamine-sensitive enhancement of the antinociceptive potency of each opioid. Failure of arecoline to augment the antinociceptive effects of oxycodone and antagonism by mecamylamine suggests this nicotine-induced augmentation of prescription opioid antinociception was nicotinic acetylcholine receptor (nAChR) mediated. This was reflected in leftward shifts in the antinociceptive dose-response curve of each opioid, ranging from 2- to 7-fold increases in the potency of oxycodone across all water temperatures to an approximately 70-fold leftward shift in the antinociceptive dose-response curve of nalbuphine at the lower and intermediate water temperatures. These results suggest that nicotine may enhance μ-opioid antinociceptive effects without concomitantly exacerbating their behaviorally disruptive effects. SIGNIFICANCE STATEMENT: Prescription opioids remain the most effective pain-management pharmacotherapeutics but are limited by their adverse effects. The present results indicate that nicotine enhances antinociceptive effects of various opioid agonists in nonhuman primates without increasing their disruptive effects on operant performance. These results suggest that nicotine might function as an opioid adjuvant for pain management by enabling decreased clinically effective analgesic doses of prescription opioids without exacerbating their adverse behavioral effects.
Collapse
Affiliation(s)
- Fernando Barreto de Moura
- Behavioral Biology Program, McLean Hospital, Belmont, Massachusetts (F.B.d.M., S.L.W., J.B.) and Department of Psychiatry, Harvard Medical School, Boston, Massachusetts (F.B.d.M., S.L.W., J.B.)
| | - Sarah Louise Withey
- Behavioral Biology Program, McLean Hospital, Belmont, Massachusetts (F.B.d.M., S.L.W., J.B.) and Department of Psychiatry, Harvard Medical School, Boston, Massachusetts (F.B.d.M., S.L.W., J.B.)
| | - Jack Bergman
- Behavioral Biology Program, McLean Hospital, Belmont, Massachusetts (F.B.d.M., S.L.W., J.B.) and Department of Psychiatry, Harvard Medical School, Boston, Massachusetts (F.B.d.M., S.L.W., J.B.)
| |
Collapse
|