1
|
Pall AE, Bond S, Bailey DK, Stoj CS, Deschamps I, Huggins P, Parsons J, Bradbury MJ, Kosman DJ, Stemmler TL. ATH434, a promising iron-targeting compound for treating iron regulation disorders. Metallomics 2024; 16:mfae044. [PMID: 39317669 DOI: 10.1093/mtomcs/mfae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/22/2024] [Indexed: 09/26/2024]
Abstract
Cytotoxic accumulation of loosely bound mitochondrial Fe2+ is a hallmark of Friedreich's Ataxia (FA), a rare and fatal neuromuscular disorder with limited therapeutic options. There are no clinically approved medications targeting excess Fe2+ associated with FA or the neurological disorders Parkinson's disease and Multiple System Atrophy. Traditional iron-chelating drugs clinically approved for systemic iron overload that target ferritin-stored Fe3+ for urinary excretion demonstrated limited efficacy in FA and exacerbated ataxia. Poor treatment outcomes reflect inadequate binding to excess toxic Fe2+ or exceptionally high affinities (i.e. ≤10-31) for non-pathologic Fe3+ that disrupts intrinsic iron homeostasis. To understand previous treatment failures and identify beneficial factors for Fe2+-targeted therapeutics, we compared traditional Fe3+ chelators deferiprone (DFP) and deferasirox (DFX) with additional iron-binding compounds including ATH434, DMOG, and IOX3. ATH434 and DFX had moderate Fe2+ binding affinities (Kd's of 1-4 µM), similar to endogenous iron chaperones, while the remaining had weaker divalent metal interactions. These compounds had low/moderate affinities for Fe3+(0.46-9.59 µM) relative to DFX and DFP. While all compounds coordinated iron using molecular oxygen and/or nitrogen ligands, thermodynamic analyses suggest ATH434 completes Fe2+ coordination using H2O. ATH434 significantly stabilized bound Fe2+ from ligand-induced autooxidation, reducing reactive oxygen species (ROS) production, whereas DFP and DFX promoted production. The comparable affinity of ATH434 for Fe2+ and Fe3+ position it to sequester excess Fe2+ and facilitate drug-to-protein iron metal exchange, mimicking natural endogenous iron binding proteins, at a reduced risk of autooxidation-induced ROS generation or perturbation of cellular iron stores.
Collapse
Affiliation(s)
- Ashley E Pall
- De partment of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Silas Bond
- Alterity Therapeutics Limited, Melbourne, 3000, Australia
| | - Danielle K Bailey
- Department of Biochemistry, University of Buffalo, Buffalo, NY14203, USA
| | - Christopher S Stoj
- Department of Biochemistry, Chemistry and Physics, Niagara University, Lewiston, NY 14109, USA
| | - Isabel Deschamps
- Department of Biochemistry, Chemistry and Physics, Niagara University, Lewiston, NY 14109, USA
| | - Penny Huggins
- Alterity Therapeutics Limited, Melbourne, 3000, Australia
| | - Jack Parsons
- Alterity Therapeutics Limited, Melbourne, 3000, Australia
| | | | - Daniel J Kosman
- Department of Biochemistry, University of Buffalo, Buffalo, NY14203, USA
| | - Timothy L Stemmler
- De partment of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
2
|
Ouyang C, Xu G, Xie J, Xie Y, Zhou Y. Silencing of KIAA1429, a N6-methyladenine methyltransferase, inhibits the progression of colon adenocarcinoma via blocking the hypoxia-inducible factor 1 signalling pathway. J Biochem Mol Toxicol 2024; 38:e23829. [PMID: 39215765 DOI: 10.1002/jbt.23829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 08/09/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
KIAA1429 is an important 'writer' of the N6-methyladenine (m6A) modification, which is involved in tumour progression. This study was conducted to explore the mechanism of action of KIAA1429 in colon adenocarcinoma (COAD). KIAA1429-silenced COAD cell and xenograft tumour models were constructed, and the function of KIAA1429 was explored through a series of in vivo and in vitro assays. The downstream mechanisms of KIAA1429 were explored using transcriptome sequencing. Dimethyloxalylglycine (DMOG), an activator of HIF-1α, was used for feedback verification. The expression of KIAA1429 in COAD tumour tissues and cells was elevated, and KIAA1429 exhibited differential expression at different stages of the tumour. Silencing of KIAA1429 inhibited the proliferation, migration, and invasion of HT29 and HCT116 cells. The expression levels of NLRP3, GSDMD and Caspase-1 were decreased in KIAA1429-silenced HT29 cells, indicating the pyroptotic activity was inhibited. Additionally, KIAA1429 silencing inhibited the growth of tumour xenograft. Transcriptome sequencing and reverse transcription quantitative polymerase chain reaction revealed that after KIAA1429 silencing, the expression of AKR1C1, AKR1C2, AKR1C3 and RDH8 was elevated, and the expression of VIRMA, GINS1, VBP1 and ARF3 was decreased. In HT29 cells, KIAA1429 silencing blocked the HIF-1 signalling pathway, accompanied by the decrease in AKT1 and HIF-1α protein levels. The activation of HIF-1 signalling pathway, mediated by DMOG, reversed the antitumour role of KIAA1429 silencing. KIAA1429 silencing inhibits COAD development by blocking the HIF-1 signalling pathway.
Collapse
Affiliation(s)
- Canhui Ouyang
- Department of Gastroenterology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Guofeng Xu
- Department of Gastroenterology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jun Xie
- Department of Gastroenterology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yun Xie
- Department of Gastroenterology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yun Zhou
- Department of Gastroenterology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
3
|
Janssen Daalen JM, Koopman WJH, Saris CGJ, Meinders MJ, Thijssen DHJ, Bloem BR. The Hypoxia Response Pathway: A Potential Intervention Target in Parkinson's Disease? Mov Disord 2024; 39:273-293. [PMID: 38140810 DOI: 10.1002/mds.29688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder for which only symptomatic treatments are available. Both preclinical and clinical studies suggest that moderate hypoxia induces evolutionarily conserved adaptive mechanisms that enhance neuronal viability and survival. Therefore, targeting the hypoxia response pathway might provide neuroprotection by ameliorating the deleterious effects of mitochondrial dysfunction and oxidative stress, which underlie neurodegeneration in PD. Here, we review experimental studies regarding the link between PD pathophysiology and neurophysiological adaptations to hypoxia. We highlight the mechanistic differences between the rescuing effects of chronic hypoxia in neurodegeneration and short-term moderate hypoxia to improve neuronal resilience, termed "hypoxic conditioning". Moreover, we interpret these preclinical observations regarding the pharmacological targeting of the hypoxia response pathway. Finally, we discuss controversies with respect to the differential effects of hypoxia response pathway activation across the PD spectrum, as well as intervention dosing in hypoxic conditioning and potential harmful effects of such interventions. We recommend that initial clinical studies in PD should focus on the safety, physiological responses, and mechanisms of hypoxic conditioning, as well as on repurposing of existing pharmacological compounds. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jules M Janssen Daalen
- Center of Expertise for Parkinson and Movement Disorders, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands, Nijmegen, The Netherlands
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Werner J H Koopman
- Department of Pediatrics, Amalia Children's Hospital, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Christiaan G J Saris
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marjan J Meinders
- Center of Expertise for Parkinson and Movement Disorders, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands, Nijmegen, The Netherlands
| | - Dick H J Thijssen
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bastiaan R Bloem
- Center of Expertise for Parkinson and Movement Disorders, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands, Nijmegen, The Netherlands
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
| |
Collapse
|
4
|
Naas S, Schiffer M, Schödel J. Hypoxia and renal fibrosis. Am J Physiol Cell Physiol 2023; 325:C999-C1016. [PMID: 37661918 DOI: 10.1152/ajpcell.00201.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/05/2023]
Abstract
Renal fibrosis is the final stage of most progressive kidney diseases. Chronic kidney disease (CKD) is associated with high comorbidity and mortality. Thus, preventing fibrosis and thereby preserving kidney function increases the quality of life and prolongs the survival of patients with CKD. Many processes such as inflammation or metabolic stress modulate the progression of kidney fibrosis. Hypoxia has also been implicated in the pathogenesis of renal fibrosis, and oxygen sensing in the kidney is of outstanding importance for the body. The dysregulation of oxygen sensing in the diseased kidney is best exemplified by the loss of stimulation of erythropoietin production from interstitial cells in the fibrotic kidney despite anemia. Furthermore, hypoxia is present in acute or chronic kidney diseases and may affect all cell types present in the kidney including tubular and glomerular cells as well as resident immune cells. Pro- and antifibrotic effects of the transcription factors hypoxia-inducible factors 1 and 2 have been described in a plethora of animal models of acute and chronic kidney diseases, but recent advances in sequencing technologies now allow for novel and deeper insights into the role of hypoxia and its cell type-specific effects on the progression of renal fibrosis, especially in humans. Here, we review existing literature on how hypoxia impacts the development and progression of renal fibrosis.
Collapse
Affiliation(s)
- Stephanie Naas
- Department of Nephrology and Hypertension, Uniklinikum Erlangen und Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Mario Schiffer
- Department of Nephrology and Hypertension, Uniklinikum Erlangen und Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Johannes Schödel
- Department of Nephrology and Hypertension, Uniklinikum Erlangen und Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
5
|
Dery KJ, Kojima H, Kageyama S, Kadono K, Hirao H, Cheng B, Zhai Y, Farmer DG, Kaldas FM, Yuan X, Eltzschiasg HK, Kupiec-Weglinski JW. Alternative splicing of CEACAM1 by hypoxia-inducible factor-1α enhances tolerance to hepatic ischemia in mice and humans. Sci Transl Med 2023; 15:eadf2059. [PMID: 37531413 PMCID: PMC11164245 DOI: 10.1126/scitranslmed.adf2059] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 07/13/2023] [Indexed: 08/04/2023]
Abstract
Although alternative splicing (AS) drives transcriptional responses and cellular adaptation to environmental stresses, its contributions in organ transplantation have not been appreciated. We have shown that carcinoembryonic antigen-related cell adhesion molecule (Ceacam1; CD66a), a transmembrane biliary glycoprotein expressed in epithelial, endothelial, and immune cells, determines donor liver transplant quality. Here, we studied how AS of Ceacam1 affects ischemia-reperfusion injury (IRI) in mouse and human livers. We found that the short cytoplasmic isoform Ceacam1-S increased during early acute and late resolution phases of warm IRI injury in mice. Transfection of Ceacam1-deficient mouse hepatocytes with adenoviral Ceacam1-S mitigated hypoxia-induced loss of cellular adhesion by repressing the Ask1/p-p38 cell death pathway. Nucleic acid-blocking morpholinos, designed to selectively induce Ceacam1-S, protected hepatocyte cultures against temperature-induced stress in vitro. Luciferase and chromatin immunoprecipitation assays identified direct binding of hypoxia-inducible factor-1α (Hif-1α) to the mouse polypyrimidine tract binding protein 1 (Ptbp1) promoter region. Dimethyloxalylglycine protected mouse livers from warm IR stress and hepatocellular damage by inhibiting prolyl hydroxylase domain-containing protein 1 and promoting AS of Ceacam1-S. Last, analysis of 46 human donor liver grafts revealed that CEACAM1-S positively correlated with pretransplant HIF1A expression. This also correlated with better transplant outcomes, including reduced TIMP1, total bilirubin, proinflammatory MCP1, CXCL10 cytokines, immune activation markers IL17A, and incidence of delayed complications from biliary anastomosis. This translational study identified mouse Hif-1α-controlled AS of Ceacam1, through transcriptional regulation of Ptbp1 promoter region, as a functional underpinning of hepatoprotection against IR stress and tissue damage in liver transplantation.
Collapse
Affiliation(s)
- Kenneth J. Dery
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation; David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095 USA
| | - Hidenobu Kojima
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation; David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095 USA
| | - Shoichi Kageyama
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation; David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095 USA
| | - Kentaro Kadono
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation; David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095 USA
| | - Hirofumi Hirao
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation; David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095 USA
| | - Brian Cheng
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation; David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095 USA
| | - Yuan Zhai
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation; David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095 USA
| | - Douglas G. Farmer
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation; David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095 USA
| | - Fady M. Kaldas
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation; David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095 USA
| | - Xiaoyi Yuan
- Department of Anesthesiology, McGovern Medical School at UTHealth; Houston, TX, 77030 USA
| | - Holger K. Eltzschiasg
- Department of Anesthesiology, McGovern Medical School at UTHealth; Houston, TX, 77030 USA
| | - Jerzy W. Kupiec-Weglinski
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation; David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095 USA
| |
Collapse
|
6
|
Hartner A, Dambietz T, Cordasic N, Willam C, Burzlaff N, Brötsch M, Daniel C, Schiffer M, Amann K, Veelken R, Schley G, Hilgers KF. No benefit of HIF prolyl hydroxylase inhibition for hypertensive renal damage in renovascular hypertensive rats. Front Physiol 2023; 14:1208105. [PMID: 37435301 PMCID: PMC10331609 DOI: 10.3389/fphys.2023.1208105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/15/2023] [Indexed: 07/13/2023] Open
Abstract
Introduction: We previously reported that malignant hypertension is associated with impaired capillary density of target organs. Here, we tested the hypothesis that stabilization of hypoxia-inducible factor (HIF) in a modified "preconditioning" approach prevents the development of malignant hypertension. To stabilize HIF, we employed pharmacological inhibition of HIF prolyl hydroxylases (PHD), that profoundly affect HIF metabolism. Methods: Two-kidney, one-clip renovascular hypertension (2K1C) was induced in rats; controls were sham operated. 2K1C rats received either intermittent injections of the PHD inhibitor ICA (2-(1-chloro-4-hydroxyisoquinoline-3-carboxamido) acetate) or placebo. Thirty-five days after clipping, the frequency of malignant hypertension was assessed (based on weight loss and the occurrence of characteristic vascular lesions). In addition, kidney injury was compared between all ICA treated versus all placebo treated 2K1C, regardless of the occurrence of malignant hypertension. HIF stabilization was evaluated by immunohistochemistry, and HIF target gene expression by RT-PCR. Results: Blood pressure was elevated to the same degree in ICA- and placebo-treated 2K1C compared to control rats. ICA treatment did not affect the frequency of malignant hypertension or the extent of kidney tissue fibrosis, inflammation, or capillary density. There was a trend towards higher mortality and worse kidney function in ICA-treated 2K1C rats. ICA increased the number of HIF-1α-positive renal tubular cell nuclei and induced several HIF-1 target genes. In contrast, expression of HIF-2α protein as well as HIF-2 target genes were markedly enhanced by 2K1C hypertension, irrespective of ICA treatment. Discussion: We conclude that intermittent PHD inhibition did not ameliorate severe renovascular hypertension in rats. We speculate that the unexpected strong renal accumulation of HIF-2α in renovascular hypertension, which could not be further augmented by ICA, may contribute to the lack of a benefit from PHD inhibition.
Collapse
Affiliation(s)
- Andrea Hartner
- Department of Pediatrics and Adolescent Medicine, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Dambietz
- Department of Nephrology and Hypertension, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Nada Cordasic
- Department of Nephrology and Hypertension, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Carsten Willam
- Department of Nephrology and Hypertension, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Nicolai Burzlaff
- Department of Chemistry and Pharmacy, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Brötsch
- Department of Chemistry and Pharmacy, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Daniel
- Department of Nephropathology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Mario Schiffer
- Department of Nephrology and Hypertension, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Kerstin Amann
- Department of Nephropathology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Roland Veelken
- Department of Nephrology and Hypertension, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Gunnar Schley
- Department of Nephrology and Hypertension, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Karl F. Hilgers
- Department of Nephrology and Hypertension, University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
7
|
Afsar B, Afsar RE. Hypoxia-inducible factors and essential hypertension: narrative review of experimental and clinical data. Pharmacol Rep 2023:10.1007/s43440-023-00497-x. [PMID: 37210694 DOI: 10.1007/s43440-023-00497-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023]
Abstract
Hypoxia-inducible factor (HIFs) is a new class of drug developed for the management of anemia in chronic kidney disease (CKD) patients. HIFs increase the production of erythropoietin in the kidney and liver, enhance the absorption and utilization of iron, and stimulate the maturation and proliferation of erythroid progenitor cells. Besides, HIFs regulate many physiologic processes by orchestrating the transcription of hundreds of genes. Essential hypertension (HT) is an epidemic worldwide. HIFs play a role in many biological processes involved in the regulation of blood pressure (BP). In the current review, we summarize pre-clinical and clinical studies investigating the relationship between HIFs and BP regulation in patients with CKD, conflicting issues, and discuss future potential strategies.
Collapse
Affiliation(s)
- Baris Afsar
- Department of Nephrology, School of Medicine, Suleyman Demirel University, Isparta, Turkey.
| | - Rengin Elsurer Afsar
- Department of Nephrology, School of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
8
|
Zhang K, Du X, Gao Y, Liu S, Xu Y. Mesenchymal Stem Cells for Treating Alzheimer's Disease: Cell Therapy and Chemical Reagent Pretreatment. J Alzheimers Dis 2023:JAD221253. [PMID: 37125553 DOI: 10.3233/jad-221253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
As the size of the population aged 65 and older continues to grow, the incidence and mortality rates of Alzheimer's disease (AD) are increasing annually. Unfortunately, current treatments only treat symptoms temporarily and do not alter the patients' life expectancy or course of AD. Mesenchymal stem cells (MSCs) have shown a certain therapeutic potential in neurodegenerative diseases including AD due to their neuroinflammatory regulation and neuroprotective effects. However, the low survival and homing rates of MSCs after transplantation seriously affect their therapeutic effectiveness. Therefore, appropriate in vitro preconditioning is necessary to increase the survival and homing rates of MSCs to improve their effectiveness in treating AD. Here we summarize the therapeutic mechanisms of MSCs in AD and the chemical reagents used for the pretreatment of MSCs.
Collapse
Affiliation(s)
- Kexin Zhang
- Department of Psychiatry, First Hospital/FirstClinical Medical College of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xinzhe Du
- Department of Psychiatry, First Hospital/FirstClinical Medical College of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yao Gao
- Department of Psychiatry, First Hospital/FirstClinical Medical College of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Sha Liu
- Department of Psychiatry, First Hospital/FirstClinical Medical College of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yong Xu
- Department of Psychiatry, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
- Department of Mental Health, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
9
|
Fets L, Bevan N, Nunes PM, Campos S, Dos Santos MS, Sherriff E, MacRae JI, House D, Anastasiou D. MOG analogues to explore the MCT2 pharmacophore, α-ketoglutarate biology and cellular effects of N-oxalylglycine. Commun Biol 2022; 5:877. [PMID: 36028752 PMCID: PMC9418262 DOI: 10.1038/s42003-022-03805-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 08/05/2022] [Indexed: 11/09/2022] Open
Abstract
α-ketoglutarate (αKG) is a central metabolic node with a broad influence on cellular physiology. The αKG analogue N-oxalylglycine (NOG) and its membrane-permeable pro-drug derivative dimethyl-oxalylglycine (DMOG) have been extensively used as tools to study prolyl hydroxylases (PHDs) and other αKG-dependent processes. In cell culture media, DMOG is rapidly converted to MOG, which enters cells through monocarboxylate transporter MCT2, leading to intracellular NOG concentrations that are sufficiently high to inhibit glutaminolysis enzymes and cause cytotoxicity. Therefore, the degree of (D)MOG instability together with MCT2 expression levels determine the intracellular targets NOG engages with and, ultimately, its effects on cell viability. Here we designed and characterised a series of MOG analogues with the aims of improving compound stability and exploring the functional requirements for interaction with MCT2, a relatively understudied member of the SLC16 family. We report MOG analogues that maintain ability to enter cells via MCT2, and identify compounds that do not inhibit glutaminolysis or cause cytotoxicity but can still inhibit PHDs. We use these analogues to show that, under our experimental conditions, glutaminolysis-induced activation of mTORC1 can be uncoupled from PHD activity. Therefore, these new compounds can help deconvolute cellular effects that result from the polypharmacological action of NOG.
Collapse
Affiliation(s)
- Louise Fets
- Cancer Metabolism Laboratory, The Francis Crick Institute, London, UK
- Drug Transport and Tumour Metabolism Lab, MRC London Institute of Medical Sciences, London, UK
| | - Natalie Bevan
- Cancer Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Patrícia M Nunes
- Cancer Metabolism Laboratory, The Francis Crick Institute, London, UK
| | | | | | | | - James I MacRae
- Metabolomics Science Technology Platform, The Francis Crick Institute, London, UK
| | | | | |
Collapse
|
10
|
Dahl SL, Bapst AM, Khodo SN, Scholz CC, Wenger RH. Fount, fate, features, and function of renal erythropoietin-producing cells. Pflugers Arch 2022; 474:783-797. [PMID: 35750861 PMCID: PMC9338912 DOI: 10.1007/s00424-022-02714-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/18/2022] [Accepted: 05/27/2022] [Indexed: 12/19/2022]
Abstract
Renal erythropoietin (Epo)-producing (REP) cells represent a rare and incompletely understood cell type. REP cells are fibroblast-like cells located in close proximity to blood vessels and tubules of the corticomedullary border region. Epo mRNA in REP cells is produced in a pronounced "on-off" mode, showing transient transcriptional bursts upon exposure to hypoxia. In contrast to "ordinary" fibroblasts, REP cells do not proliferate ex vivo, cease to produce Epo, and lose their identity following immortalization and prolonged in vitro culture, consistent with the loss of Epo production following REP cell proliferation during tissue remodelling in chronic kidney disease. Because Epo protein is usually not detectable in kidney tissue, and Epo mRNA is only transiently induced under hypoxic conditions, transgenic mouse models have been developed to permanently label REP cell precursors, active Epo producers, and inactive descendants. Future single-cell analyses of the renal stromal compartment will identify novel characteristic markers of tagged REP cells, which will provide novel insights into the regulation of Epo expression in this unique cell type.
Collapse
Affiliation(s)
- Sophie L Dahl
- Institute of Physiology and National Centre of Competence in Research "Kidney.CH", University of Zürich, CH-8057, Zurich, Switzerland
| | - Andreas M Bapst
- Institute of Physiology and National Centre of Competence in Research "Kidney.CH", University of Zürich, CH-8057, Zurich, Switzerland
| | - Stellor Nlandu Khodo
- Institute of Physiology and National Centre of Competence in Research "Kidney.CH", University of Zürich, CH-8057, Zurich, Switzerland
| | - Carsten C Scholz
- Institute of Physiology and National Centre of Competence in Research "Kidney.CH", University of Zürich, CH-8057, Zurich, Switzerland
- Institute of Physiology, University Medicine Greifswald, D-17475, Greifswald, Germany
| | - Roland H Wenger
- Institute of Physiology and National Centre of Competence in Research "Kidney.CH", University of Zürich, CH-8057, Zurich, Switzerland.
| |
Collapse
|
11
|
Meireles GS, Aires R, Côco LZ, Kampke EH, Barroso ME, Vasquez EC, Pereira TM, Meyrelles SS, Campagnaro BP. DNA damage and repair on hematopoietic stem cells: impact of oxidative stress in renovascular hypertension. Clin Exp Hypertens 2022; 44:627-633. [PMID: 35844144 DOI: 10.1080/10641963.2022.2101658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND This study investigated oxidative damage to bone marrow cells in the pathogenesis of renovascular hypertension (RH). METHODS Male C57BL/6 J mice (10-week-old and ~23 g) were divided into two groups: Sham-operated and 2K1C, which has a stainless-steel clip placed around the left renal artery. After twenty-eight days, the animals were anesthetized for hemodynamic measurements and bone marrow cells isolation. The intracellular production of ROS, DNA damage, and DNA repair kinetics were evaluated. RESULTS Our results show that RH increases HSCs ROS production and that the 2K1C group showed a significant reduction of HSCs in the G0/G1 phase, increased p53 expression, DNA fragmentation, low DNA repair capacity, and a higher percentage of apoptotic cells when compared with the Sham group. CONCLUSIONS Our data imply that RH can compromise the hematopoiesis by increased oxidative stress leading to impaired DNA repair activity. Furthermore, this study provides new insights into the influence of hypertension on bone marrow homeostasis. This study showed for the first time that RH leads to oxidative damage, including genotoxic, to bone marrow cells. Thus, these findings provide new insights into the consequences of RH on bone marrow cells.
Collapse
Affiliation(s)
- Giselle S Meireles
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, Brazil
| | - Rafaela Aires
- Laboratory of Translational Physiology, Health Sciences Center, Federal University of Espirito Santo (UFES), Vitoria, Brazil
| | - Larissa Z Côco
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, Brazil
| | - Edgar H Kampke
- Laboratory of Translational Physiology, Health Sciences Center, Federal University of Espirito Santo (UFES), Vitoria, Brazil
| | - Maria Es Barroso
- Laboratory of Translational Physiology, Health Sciences Center, Federal University of Espirito Santo (UFES), Vitoria, Brazil
| | - Elisardo C Vasquez
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, Brazil
| | - Thiago Mc Pereira
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, Brazil.,Federal Institute of Education, Science and Technology (IFES), Vila Velha, Brazil
| | - Silvana S Meyrelles
- Laboratory of Translational Physiology, Health Sciences Center, Federal University of Espirito Santo (UFES), Vitoria, Brazil
| | - Bianca P Campagnaro
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, Brazil
| |
Collapse
|
12
|
Kato S, Yamamoto K, Uchida S, Takahashi T. TP0463518 (TS-143) Ameliorates Peptidoglycan-Polysaccharide Induced Anemia of Inflammation in Rats. Biol Pharm Bull 2021; 44:1653-1661. [PMID: 34719642 DOI: 10.1248/bpb.b21-00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
TP0463518 (TS-143) is a competitive prolyl hydroxylase 1/2/3 pan-inhibitor, and has been shown to specifically stabilize hypoxia-inducible factor-2 alpha in the liver to increase erythropoietin production. While TP0463518 has been shown to improve renal anemia, its effect on anemia of inflammation is still unknown. In this study, we created a rat model of anemia of inflammation by administering peptidoglycan-polysaccharide (PG-PS) to Lewis rats; the PG-PS-treated rats developed anemia within 2 weeks after the PG-PS challenge. The hematopoietic effects of oral TP0463518 administration at 10 mg/kg once daily for 6 weeks were examined in this rat model. The hematocrit values in the TP0463518-treated group increased significantly from 32.8 ± 0.8 to 44.5 ± 2.1% after the treatment, which was comparable to that in the healthy control group. The change of the mean corpuscular volume following TP0463518 treatment was similar to that in the healthy control group up to week 4, and significantly higher than that in the vehicle-treated group. TP0463518 increased divalent metal transporter 1 and duodenal cytochrome b expressions in the intestine. Conversely, TP0465318 did not exert any effects on the expressions of genes involved in iron metabolism in the liver, even though TP0463518 dramatically increased erythropoietin expression. Furthermore, TP0463518 had no effect on the expressions of inflammation markers in the liver. These results suggest that TP0463518 increased iron absorption and improved anemia of inflammation without exacerbating liver inflammation. TP0463518 appears to have an acceptable safety profile and could become a useful new therapeutic option for anemia of inflammation.
Collapse
Affiliation(s)
- Sota Kato
- Discovery Research Laboratories, Taisho Pharmaceutical Co., Ltd
| | - Koji Yamamoto
- Discovery Research Laboratories, Taisho Pharmaceutical Co., Ltd
| | - Saeko Uchida
- Discovery Research Laboratories, Taisho Pharmaceutical Co., Ltd
| | | |
Collapse
|
13
|
Chen MH, Wang YH, Sun BJ, Yu LM, Chen QQ, Han XX, Liu YH. HIF-1α activator DMOG inhibits alveolar bone resorption in murine periodontitis by regulating macrophage polarization. Int Immunopharmacol 2021; 99:107901. [PMID: 34273637 DOI: 10.1016/j.intimp.2021.107901] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/10/2021] [Accepted: 06/16/2021] [Indexed: 11/24/2022]
Abstract
Periodontitis is initiated by serious and sustained bacterial infection and ultimately results in chronic immune-mediated inflammation, tissue destruction, and bone loss. The pathogenesis of periodontitis remains unclear. Host immunological responses to periodontal bacteria ultimately determine the severity and mechanisms governing periodontitis progression. This study aimed to clarify the effect of the hypoxia-inducible factor-1α (HIF-1α) activator dimethyloxalylglycine (DMOG) on a mouse periodontitis model and its underlying role in macrophage polarization. qRT-PCR analysis showed that DMOG inhibited the M1-like polarization of both RAW264.7 macrophages and murine bone marrow macrophages (BMMs) and downregulated TNF-α, IL-6, CD86, and MCP-1 expression in vitro. Immunofluorescence staining and flow cytometry also confirmed the less percentage of F4/80 + CD86 + cells after DMOG treatment. The phosphorylation of NF-κB pathway was also inhibited by DMOG with higher level of HIF-1α expression. Furthermore, mice treated with DMOG showed decreased alveolar bone resorption in the experimental periodontitis model, with significant increases in alveolar bone volume/tissue volume (BV/TV) and bone mineral density (BMD). DMOG treatment of mice decreased the ratio of M1/M2 (CD86+/CD206+) macrophages in periodontal tissues, resulting in the downregulation of proinflammatory cytokines such as TNF-α and IL-6 and increased levels of anti-inflammatory factors such as IL-4 and IL-10. DMOG treatment promoted the number of HIF-1α-positive cells in periodontal tissues. This study demonstrated the cell-specific roles of DMOG in macrophage polarization in vitro and provided insight into the mechanism underlying the protective effect of DMOG in a model of periodontitis.
Collapse
Affiliation(s)
- Mei-Hua Chen
- Department of Periodontology, Shanghai Stomatological Hospital, Fudan University, Shanghai, China; Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Yu-Hui Wang
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, China; Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Bing-Jing Sun
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, China; Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Li-Ming Yu
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, China; Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Qing-Qing Chen
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, China; Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Xin-Xin Han
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Yue-Hua Liu
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, China; Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
14
|
Faivre A, Scholz CC, de Seigneux S. Hypoxia in chronic kidney disease: towards a paradigm shift? Nephrol Dial Transplant 2020; 36:1782-1790. [PMID: 33895835 DOI: 10.1093/ndt/gfaa091] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Indexed: 11/15/2022] Open
Abstract
Chronic kidney disease (CKD) is defined as an alteration of kidney structure and/or function lasting for >3 months [1]. CKD affects 10% of the general adult population and is responsible for large healthcare costs [2]. Since the end of the last century, the role of hypoxia in CKD progression has controversially been discussed. To date, there is evidence of the presence of hypoxia in late-stage renal disease, but we lack time-course evidence, stage correlation and also spatial co-localization with fibrotic lesions to ensure its causative role. The classical view of hypoxia in CKD progression is that it is caused by peritubular capillary alterations, renal anaemia and increased oxygen consumption regardless of the primary injury. In this classical view, hypoxia is assumed to further induce pro-fibrotic and pro-inflammatory responses, as well as oxidative stress, leading to CKD worsening as part of a vicious circle. However, recent investigations tend to question this paradigm, and both the presence of hypoxia and its role in CKD progression are still not clearly demonstrated. Hypoxia-inducible factor (HIF) is the main transcriptional regulator of the hypoxia response. Genetic HIF modulation leads to variable effects on CKD progression in different murine models. In contrast, pharmacological modulation of the HIF pathway [i.e. by HIF hydroxylase inhibitors (HIs)] appears to be generally protective against fibrosis progression experimentally. We here review the existing literature on the role of hypoxia, the HIF pathway and HIF HIs in CKD progression and summarize the evidence that supports or rejects the hypoxia hypothesis, respectively.
Collapse
Affiliation(s)
- Anna Faivre
- Department of Cell physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Carsten C Scholz
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,National Centre of Competence in Research "Kidney.CH", Zurich, Switzerland
| | - Sophie de Seigneux
- Department of Cell physiology and Metabolism, University of Geneva, Geneva, Switzerland.,National Centre of Competence in Research "Kidney.CH", Zurich, Switzerland.,Department of Medicine, Service of Nephrology, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|