1
|
Roointan A, Xu R, Corrie S, Hagemeyer CE, Alt K. Nanotherapeutics in Kidney Disease: Innovations, Challenges, and Future Directions. J Am Soc Nephrol 2025; 36:500-518. [PMID: 39705082 DOI: 10.1681/asn.0000000608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/17/2024] [Indexed: 12/22/2024] Open
Abstract
The treatment and management of kidney diseases present a significant global challenge, affecting over 800 million individuals and necessitating innovative therapeutic strategies that transcend symptomatic relief. The application of nanotechnology to therapies for kidney diseases, while still in its early stages, holds transformative potential for improving treatment outcomes. Recent advancements in nanoparticle-based drug delivery leverage the unique physicochemical properties of nanoparticles for targeted and controlled therapeutic delivery to the kidneys. Current research is focused on understanding the functional and phenotypic changes in kidney cells during both acute and chronic conditions, allowing for the identification of optimal target cells. In addition, the development of tailored nanomedicines enhances their retention and binding to key renal membranes and cell populations, ultimately improving localization, tolerability, and efficacy. However, significant barriers remain, including inconsistent nanoparticle synthesis and the complexity of kidney-specific targeting. To overcome these challenges, the field requires advanced synthesis techniques, refined targeting strategies, and the establishment of animal models that accurately reflect human kidney diseases. These efforts are critical for the clinical application of nanotherapeutics, which promise novel solutions for kidney disease management. This review evaluates a substantial body of in vivo research, highlighting the prospects, challenges, and opportunities presented by nanotechnology-mediated therapies and their potential to transform kidney disease treatment.
Collapse
Affiliation(s)
- Amir Roointan
- NanoBiotechnology Laboratory, Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
- NanoTheranostics Laboratory, Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Rong Xu
- NanoBiotechnology Laboratory, Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Simon Corrie
- Department of Chemical and Biological Engineering, Monash University, Melbourne, Victoria, Australia
| | - Christoph E Hagemeyer
- NanoBiotechnology Laboratory, Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Karen Alt
- NanoTheranostics Laboratory, Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Chen C, Wang W, Poklis JL, Li PL, Lichtman AH, Gewirtz DA, Li N. Mitigation of cisplatin-induced acute kidney injury through oral administration of fatty acid amide hydrolase inhibitor PF-04457845. J Pharmacol Exp Ther 2025; 392:100032. [PMID: 40023608 DOI: 10.1124/jpet.124.002282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/18/2024] [Accepted: 07/08/2024] [Indexed: 08/23/2024] Open
Abstract
Fatty acid amide hydrolase (FAAH) serves as the primary enzyme responsible for degrading the endocannabinoid anandamide. Inhibition of FAAH, either through pharmacological means or genetic manipulation, can effectively reduce inflammation in various organs, including the brain, colon, heart, and kidneys. Infusion of a FAAH inhibitor into the kidney medulla induces diuretic and natriuretic effects. Moreover, FAAH knockout mice show protection against both post renal ischemia/reperfusion injury and cisplatin-induced acute kidney injury (AKI), although through distinct mechanisms. This study tested the hypothesis that pharmacological inhibition of FAAH activity mitigates cisplatin-induced AKI, thus, exploring potential renoprotective mechanism. Male wild-type C57BL/6J were administered an oral gavage of a FAAH inhibitor (PF-04457845, 5 mg/kg) or vehicle (10% PEG200+5% Tween 80+normal saline) at 72, 48, 24, and 2 hours before and 24 and 48 hours after a single intraperitoneal injection of cisplatin (25 mg/kg). Mice were euthanized 72 hours after cisplatin treatment. Compared with vehicle-treated mice, PF-04457845-treated mice showed a decrease of cisplatin-induced plasma creatinine, blood urea nitrogen levels, kidney injury biomarkers (neutrophil gelatinase-associated lipocalin and kidney injury molecule-1) and renal tubular damage. The renal protection from oral gavage of PF-04457845 against cisplatin-induced nephrotoxicity was associated with an enhanced endocannabinoid anandamide tone and reduced levels of DNA damage response biomarkers p53 and p21. Our work demonstrated that PF-04457845 effectively alleviates cisplatin-induced nephrotoxicity in mice, underscoring the potential of oral administration of a FAAH inhibitor as a novel strategy to prevent cisplatin nephrotoxicity. SIGNIFICANCE STATEMENT: Oral administration of the fatty acid amide hydrolase (FAAH) inhibitor, PF-04457845, reduced cisplatin-induced DNA damage response, tubular damage, and kidney dysfunction. Inhibition of FAAH represents a promising approach to prevent cisplatin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Chaoling Chen
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Weili Wang
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Justin L Poklis
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Aron H Lichtman
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - David A Gewirtz
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Ningjun Li
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia.
| |
Collapse
|
3
|
Guo Q, Geng K, Wan J, Lan T, Lu X, Tao L, Duan K, Zhou W, Guo H, Shen X. Lysozyme-targeted liposomes for enhanced tubular targeting in the treatment of acute kidney injury. Acta Biomater 2025; 192:394-408. [PMID: 39674240 DOI: 10.1016/j.actbio.2024.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 12/16/2024]
Abstract
Acute kidney injury (AKI) is defined by the release of pro-inflammatory factors, leading to structural damage in renal tubules and subsequent tubular cell injury and death. Delivering drugs specifically to renal tubules to mitigate tubular cell damage holds potential for AKI treatment. In this work, we developed functional liposomes (LZM-PLNPs-TP) designed to bypass the glomerular filtration barrier and target tubules by leveraging the unique structural and pathological characteristics of glomeruli and tubules. LZM-PLNPs-TP, incorporating lysozyme (LZM) and cationic liposome, and carrying the anti-inflammatory and antioxidant drug Triptolide (TP), demonstrated favorable stability, efficient drug release, and good cytocompatibility in wide TP concentrations (0-100 ng/mL). These liposomes exhibited the enhanced renal accumulation, tubular retention, and cellular targeting through endocytosis by peritubular capillary endothelial cells. The administration of LZM-PLNPs-TP at a minimal TP dosage (0.01 mg/kg) demonstrated significant protection through the mitigation of oxidative stress and inflammation in ischemia/reperfusion injury (IRI) mice, while the naked TP (0.01 mg/kg) exhibited lower efficacy. Following treatment with LZM-PLNPs-TP, levels of serum creatine, blood urea nitrogen, superoxide dismutase, malondialdehyde, as well as the inflammatory cytokines IL-1β and IL-6 in renal IRI mice were found to be significantly reduced by factors of 2.9, 1.7, 0.7, 1.3, 2.1, and 1.9, respectively, compared to mice treated with TP alone. In summary, this study presents an LZM-targeted drug delivery system that synergistically enhances tubular reabsorption and cellular uptake, offering a promising strategy for AKI treatment. STATEMENT OF SIGNIFICANCE: We have designed specialized liposomes (LZM-PLNPs-TP) with targeting capabilities towards renal tubules to enhance cellular internalization, offering a promising therapeutic strategy for AKI treatment. Our research confirms that the increased accumulation of LZM-PLNPs-TP in renal tubules is facilitated by peritubular capillary endothelial cells rather than glomerular filtration. LZM-PLNPs-TP demonstrated effective mitigation of oxidative stress, inflammation suppression, and significant improvement in kidney injury, ultimately leading to the restoration of renal function in murine models of AKI induced by ischemia/reperfusion. This study introduces LZM-targeted liposomes that enhance tubular reabsorption and cellular uptake synergistically, providing a promising therapeutic approach for AKI management.
Collapse
Affiliation(s)
- Qianqian Guo
- The State Key Laboratory of Functions and Applications of MediEucal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, Guizhou Province, China; The Guizhou Provincial Scientific and Technologic Innovation Base ([2023]003), Guizhou Medical University, Guiyang 550025, Guizhou Province, China.
| | - Kedui Geng
- The State Key Laboratory of Functions and Applications of MediEucal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, Guizhou Province, China; The Guizhou Provincial Scientific and Technologic Innovation Base ([2023]003), Guizhou Medical University, Guiyang 550025, Guizhou Province, China
| | - Jiangmin Wan
- Department of nephrology, Chongqing Hospital of Jiangsu Province Hospital, Chongqing 401420, China
| | - Tianyu Lan
- College of Ethnic Medicine, Guizhou Minzu University, Guiyang 550025, Guizhou Province, China
| | - Xin Lu
- The State Key Laboratory of Functions and Applications of MediEucal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, Guizhou Province, China; The Guizhou Provincial Scientific and Technologic Innovation Base ([2023]003), Guizhou Medical University, Guiyang 550025, Guizhou Province, China
| | - Ling Tao
- The State Key Laboratory of Functions and Applications of MediEucal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, Guizhou Province, China; The Guizhou Provincial Scientific and Technologic Innovation Base ([2023]003), Guizhou Medical University, Guiyang 550025, Guizhou Province, China
| | - Kunyuan Duan
- The State Key Laboratory of Functions and Applications of MediEucal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, Guizhou Province, China
| | - Wen Zhou
- The State Key Laboratory of Functions and Applications of MediEucal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, Guizhou Province, China
| | - Honglei Guo
- Department of nephrology, Chongqing Hospital of Jiangsu Province Hospital, Chongqing 401420, China.
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of MediEucal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, Guizhou Province, China; The Guizhou Provincial Scientific and Technologic Innovation Base ([2023]003), Guizhou Medical University, Guiyang 550025, Guizhou Province, China.
| |
Collapse
|
4
|
Qin W, Huang J, Zhang M, Xu M, He J, Liu Q. Nanotechnology-Based Drug Delivery Systems for Treating Acute Kidney Injury. ACS Biomater Sci Eng 2024; 10:6078-6096. [PMID: 39226188 PMCID: PMC11480945 DOI: 10.1021/acsbiomaterials.4c01385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
Acute kidney injury (AKI) is a disease that is characterized by a rapid decline in renal function and has a relatively high incidence in hospitalized patients. Sepsis, renal hypoperfusion, and nephrotoxic drug exposure are the main causes of AKI. The major therapy measures currently include supportive treatment, symptomatic treatment, and kidney transplantation. These methods are supportive treatments, and their results are not satisfactory. Fortunately, many new treatments that markedly improve the AKI therapy efficiency are emerging. These include antioxidant therapy, ferroptosis therapy, anti-inflammatory therapy, autophagy therapy, and antiapoptotic therapy. In addition, the development of nanotechnology has further promoted therapeutic effects on AKI. In this review, we highlight recent advances in the development of nanocarriers for AKI drug delivery. Emphasis has been placed on the latest developments in nanocarrier modification and design. We also summarize the applications of different nanocarriers in AKI treatment. Finally, the advantages and challenges of nanocarrier applications in AKI are summarized, and several nanomedicines that have been approved for clinical trials to treat diverse kidney diseases are listed.
Collapse
Affiliation(s)
- Wanbing Qin
- Jieyang Medical
Research Center, Jieyang People’s
Hospital, Jieyang, 522000 Guangdong, China
| | - Jiaqi Huang
- Jieyang Medical
Research Center, Jieyang People’s
Hospital, Jieyang, 522000 Guangdong, China
| | - Manting Zhang
- Jieyang Medical
Research Center, Jieyang People’s
Hospital, Jieyang, 522000 Guangdong, China
| | - Mingwei Xu
- Jieyang Medical
Research Center, Jieyang People’s
Hospital, Jieyang, 522000 Guangdong, China
| | - Junbing He
- Jieyang Medical
Research Center, Jieyang People’s
Hospital, Jieyang, 522000 Guangdong, China
| | - Qinghua Liu
- Jieyang Medical
Research Center, Jieyang People’s
Hospital, Jieyang, 522000 Guangdong, China
- Department
of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 Guangdong, China
- NHC Key
Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong
Provincial Key Laboratory of Nephrology, Guangzhou, 510080 Guangdong, China
| |
Collapse
|
5
|
Huang Y, Ning X, Ahrari S, Cai Q, Rajora N, Saxena R, Yu M, Zheng J. Physiological principles underlying the kidney targeting of renal nanomedicines. Nat Rev Nephrol 2024; 20:354-370. [PMID: 38409369 DOI: 10.1038/s41581-024-00819-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2024] [Indexed: 02/28/2024]
Abstract
Kidney disease affects more than 10% of the global population and is associated with considerable morbidity and mortality, highlighting a need for new therapeutic options. Engineered nanoparticles for the treatment of kidney diseases (renal nanomedicines) represent one such option, enabling the delivery of targeted therapeutics to specific regions of the kidney. Although they are underdeveloped compared with nanomedicines for diseases such as cancer, findings from preclinical studies suggest that renal nanomedicines may hold promise. However, the physiological principles that govern the in vivo transport and interactions of renal nanomedicines differ from those of cancer nanomedicines, and thus a comprehensive understanding of these principles is needed to design nanomedicines that effectively and specifically target the kidney while ensuring biosafety in their future clinical translation. Herein, we summarize the current understanding of factors that influence the glomerular filtration, tubular uptake, tubular secretion and extrusion of nanoparticles, including size and charge dependency, and the role of specific transporters and processes such as endocytosis. We also describe how the transport and uptake of nanoparticles is altered by kidney disease and discuss strategic approaches by which nanoparticles may be harnessed for the detection and treatment of a variety of kidney diseases.
Collapse
Affiliation(s)
- Yingyu Huang
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | - Xuhui Ning
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | - Samira Ahrari
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | - Qi Cai
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nilum Rajora
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ramesh Saxena
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mengxiao Yu
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA.
| | - Jie Zheng
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA.
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
6
|
Ba X, Ye T, Shang H, Tong Y, Huang Q, He Y, Wu J, Deng W, Zhong Z, Yang X, Wang K, Xie Y, Zhang Y, Guo X, Tang K. Recent Advances in Nanomaterials for the Treatment of Acute Kidney Injury. ACS APPLIED MATERIALS & INTERFACES 2024; 16:12117-12148. [PMID: 38421602 DOI: 10.1021/acsami.3c19308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Acute kidney injury (AKI) is a serious clinical syndrome with high morbidity, elevated mortality, and poor prognosis, commonly considered a "sword of Damocles" for hospitalized patients, especially those in intensive care units. Oxidative stress, inflammation, and apoptosis, caused by the excessive production of reactive oxygen species (ROS), play a key role in AKI progression. Hence, the investigation of effective and safe antioxidants and inflammatory regulators to scavenge overexpressed ROS and regulate excessive inflammation has become a promising therapeutic option. However, the unique physiological structure and complex pathological alterations in the kidneys render traditional therapies ineffective, impeding the residence and efficacy of most antioxidant and anti-inflammatory small molecule drugs within the renal milieu. Recently, nanotherapeutic interventions have emerged as a promising and prospective strategy for AKI, overcoming traditional treatment dilemmas through alterations in size, shape, charge, and surface modifications. This Review succinctly summarizes the latest advancements in nanotherapeutic approaches for AKI, encompassing nanozymes, ROS scavenger nanomaterials, MSC-EVs, and nanomaterials loaded with antioxidants and inflammatory regulator. Following this, strategies aimed at enhancing biocompatibility and kidney targeting are introduced. Furthermore, a brief discussion on the current challenges and future prospects in this research field is presented, providing a comprehensive overview of the evolving landscape of nanotherapeutic interventions for AKI.
Collapse
Affiliation(s)
- Xiaozhuo Ba
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tao Ye
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Haojie Shang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yonghua Tong
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qiu Huang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu He
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jian Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wen Deng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zichen Zhong
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoqi Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kangyang Wang
- Department of Urology, Wenchang People's Hospital, Wenchang 571300, Hainan Province, China
| | - Yabin Xie
- Department of Urology, Wenchang People's Hospital, Wenchang 571300, Hainan Province, China
| | - Yanlong Zhang
- GuiZhou University Medical College, Guiyang 550025, Guizhou Province, China
| | - Xiaolin Guo
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kun Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
7
|
Yuan X, Ruan W, Bobrow B, Carmeliet P, Eltzschig HK. Targeting hypoxia-inducible factors: therapeutic opportunities and challenges. Nat Rev Drug Discov 2024; 23:175-200. [PMID: 38123660 DOI: 10.1038/s41573-023-00848-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 12/23/2023]
Abstract
Hypoxia-inducible factors (HIFs) are highly conserved transcription factors that are crucial for adaptation of metazoans to limited oxygen availability. Recently, HIF activation and inhibition have emerged as therapeutic targets in various human diseases. Pharmacologically desirable effects of HIF activation include erythropoiesis stimulation, cellular metabolism optimization during hypoxia and adaptive responses during ischaemia and inflammation. By contrast, HIF inhibition has been explored as a therapy for various cancers, retinal neovascularization and pulmonary hypertension. This Review discusses the biochemical mechanisms that control HIF stabilization and the molecular strategies that can be exploited pharmacologically to activate or inhibit HIFs. In addition, we examine medical conditions that benefit from targeting HIFs, the potential side effects of HIF activation or inhibition and future challenges in this field.
Collapse
Affiliation(s)
- Xiaoyi Yuan
- Department of Anaesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Wei Ruan
- Department of Anaesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Anaesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bentley Bobrow
- Department of Emergency Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Peter Carmeliet
- Laboratory of Angiogenesis & Vascular Metabolism, Center for Cancer Biology, VIB, Department of Oncology, KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis & Vascular Heterogeneity, Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Holger K Eltzschig
- Department of Anaesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Outcomes Research Consortium, Cleveland, OH, USA.
| |
Collapse
|
8
|
Li S, Chen Y, Cao X, Yang C, Li W, Shen B. The application of nanotechnology in kidney transplantation. Nanomedicine (Lond) 2024; 19:413-429. [PMID: 38275168 DOI: 10.2217/nnm-2023-0286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024] Open
Abstract
Kidney transplantation is a crucial treatment option for end-stage renal disease patients, but challenges related to graft function, rejection and immunosuppressant side effects persist. This review highlights the potential of nanotechnology in addressing these challenges. Nanotechnology offers innovative solutions to enhance organ preservation, evaluate graft function, mitigate ischemia-reperfusion injury and improve drug delivery for immunosuppressants. The integration of nanotechnology holds promise for improving outcomes in kidney transplantation.
Collapse
Affiliation(s)
- Shengzhou Li
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 200080, Shanghai, China
| | - Yiming Chen
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 200080, Shanghai, China
| | - Xiangqian Cao
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 200080, Shanghai, China
| | - Chenkai Yang
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 200080, Shanghai, China
| | - Wei Li
- Department of Nanomedicine & Shanghai Key Lab of Cell Engineering, Naval Medical University, 200433, Shanghai, China
| | - Bing Shen
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 200080, Shanghai, China
- Shanghai Tenth People's Hospital of Tongji University, 200072, Shanghai, China
| |
Collapse
|
9
|
Palmer TC, Hunter RW. Using RNA-based therapies to target the kidney in cardiovascular disease. Front Cardiovasc Med 2023; 10:1250073. [PMID: 37868774 PMCID: PMC10587590 DOI: 10.3389/fcvm.2023.1250073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023] Open
Abstract
RNA-based therapies are currently used for immunisation against infections and to treat metabolic diseases. They can modulate gene expression in immune cells and hepatocytes, but their use in other cell types has been limited by an inability to selectively target specific tissues. Potential solutions to this targeting problem involve packaging therapeutic RNA molecules into delivery vehicles that are preferentially delivered to cells of interest. In this review, we consider why the kidney is a desirable target for RNA-based therapies in cardiovascular disease and discuss how such therapy could be delivered. Because the kidney plays a central role in maintaining cardiovascular homeostasis, many extant drugs used for preventing cardiovascular disease act predominantly on renal tubular cells. Moreover, kidney disease is a major independent risk factor for cardiovascular disease and a global health problem. Chronic kidney disease is projected to become the fifth leading cause of death by 2040, with around half of affected individuals dying from cardiovascular disease. The most promising strategies for delivering therapeutic RNA selectively to kidney cells make use of synthetic polymers and engineered extracellular vesicles to deliver an RNA cargo. Future research should focus on establishing the safety of these novel delivery platforms in humans, on developing palatable routes of administration and on prioritising the gene targets that are likely to have the biggest impact in cardiovascular disease.
Collapse
Affiliation(s)
- Trecia C. Palmer
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Robert W. Hunter
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Department of Renal Medicine, Royal Infirmary ofEdinburgh, Edinburgh, United Kingdom
| |
Collapse
|
10
|
Chen C, Wang W, Raymond M, Ahmadinejad F, Poklis JL, Em B, Gewirtz DA, Lichtman AH, Li N. Genetic Knockout of Fatty Acid Amide Hydrolase Ameliorates Cisplatin-Induced Nephropathy in Mice. Mol Pharmacol 2023; 103:230-240. [PMID: 36702548 PMCID: PMC10029825 DOI: 10.1124/molpharm.122.000618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/09/2022] [Accepted: 12/21/2022] [Indexed: 01/27/2023] Open
Abstract
Cisplatin is a potent first-line therapy for many solid malignancies, such as breast, ovarian, lung, testicular, and head and neck cancer. However, acute kidney injury (AKI) is a major dose-limiting toxicity in cisplatin therapy, which often hampers the continuation of cisplatin treatment. The endocannabinoid system, consisting of anandamide (AEA) and 2-arachidonoylglycerol and cannabinoid receptors, participates in different kidney diseases. Inhibition of fatty acid amide hydrolase (FAAH), the primary enzyme for the degradation of AEA and AEA-related N-acylethanolamines, elicits anti-inflammatory effects; however, little is known about its role in cisplatin nephrotoxicity. The current study tested the hypothesis that genetic deletion of Faah mitigates cisplatin-induced AKI. Male wild-type C57BL6 (WT) and Faah-/- mice were administered a single dose of intraperitoneal injection of cisplatin (30 mg/kg) and euthanatized 72 hours later. Faah-/- mice showed a reduction of cisplatin-induced blood urea nitrogen, plasma creatinine levels, kidney injury markers, and tubular damage in comparison with WT mice. The renal protection from Faah deletion was associated with enhanced tone of AEA-related N-acylethanolamines (palmitoylethanolamide and oleoylethanolamide), attenuated nuclear factor-κB/p65 activity, DNA damage markers p53 and p21, and decreased expression of the inflammatory cytokine interleukin-1β, as well as infiltration of macrophages and leukocytes in the kidneys. Notably, a selective FAAH inhibitor (PF-04457845) did not interfere with or perturb the antitumor effects of cisplatin in two head and neck squamous cell carcinoma cell lines, HN30 and HN12. Our work highlights that FAAH inactivation prevents cisplatin-induced nephrotoxicity in mice and that targeting FAAH could provide a novel strategy to mitigate cisplatin-induced nephrotoxicity. SIGNIFICANCE STATEMENT: Mice lacking the Faah gene are protected from cisplatin-induced inflammation, DNA damage response, tubular damage, and kidney dysfunction. Inactivation of FAAH could be a potential strategy to mitigate cisplatin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Chaoling Chen
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Weili Wang
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Marissa Raymond
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Fereshteh Ahmadinejad
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Justin L Poklis
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Brandon Em
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - David A Gewirtz
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Aron H Lichtman
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Ningjun Li
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
11
|
Chen C, Wang W, Poklis JL, Lichtman AH, Ritter JK, Hu G, Xie D, Li N. Inactivation of fatty acid amide hydrolase protects against ischemic reperfusion injury-induced renal fibrogenesis. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166456. [PMID: 35710061 PMCID: PMC10215004 DOI: 10.1016/j.bbadis.2022.166456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/26/2022] [Accepted: 06/06/2022] [Indexed: 11/26/2022]
Abstract
Although cannabinoid receptors (CB) are recognized as targets for renal fibrosis, the roles of endogenous cannabinoid anandamide (AEA) and its primary hydrolytic enzyme, fatty acid amide hydrolase (FAAH), in renal fibrogenesis remain unclear. The present study used a mouse model of post-ischemia-reperfusion renal injury (PIR) to test the hypothesis that FAAH participates in the renal fibrogenesis. Our results demonstrated that PIR showed upregulated expression of FAAH in renal proximal tubules, accompanied with decreased AEA levels in kidneys. Faah knockout mice recovered the reduced AEA levels and ameliorated PIR-triggered increases in blood urea nitrogen, plasma creatinine as well as renal profibrogenic markers and injuries. Correspondingly, a selective FAAH inhibitor, PF-04457845, inhibited the transforming growth factor-beta 1 (TGF-β1)-induced profibrogenic markers in human proximal tubular cell line (HK-2 cells) and mouse primary cultured tubular cells. Knockdown of FAAH by siRNA in HK-2 cells had similar effects as PF-04457845. Tubular cells isolated from Faah-/- mice further validated the protection against TGF-β1-induced damages. The CB 1 or CB2 receptor antagonist and exogenous FAAH metabolite arachidonic acid failed to reverse the protective effects of FAAH inactivation in HK-2 cells. However, a substrate-selective inhibitor of AEA-cyclooxygenase-2 (COX-2) pathway significantly suppressed the anti-profibrogenic actions of FAAH inhibition. Further, the AEA-COX-2 metabolite, prostamide E2 exerted anti-fibrogenesis effect. These findings suggest that FAAH activation and the consequent reduction of AEA contribute to the renal fibrogenesis, and that FAAH inhibition protects against fibrogenesis in renal cells independently of CB receptors via the AEA-COX-2 pathway by the recovery of reduced AEA.
Collapse
Affiliation(s)
- Chaoling Chen
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Weili Wang
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Justin L Poklis
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Aron H Lichtman
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Joseph K Ritter
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Gaizun Hu
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Dengpiao Xie
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Ningjun Li
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
12
|
Jian CB, Yu XE, Gao HD, Chen HA, Jheng RH, Chen CY, Lee HM. Liposomal PHD2 Inhibitors and the Enhanced Efficacy in Stabilizing HIF-1α. NANOMATERIALS 2022; 12:nano12010163. [PMID: 35010112 PMCID: PMC8746909 DOI: 10.3390/nano12010163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 12/10/2022]
Abstract
Prolyl hydroxylase domain-containing protein 2 (PHD2) inhibition, which stabilizes hypoxia-inducible factor (HIF)-1α and thus triggers adaptation responses to hypoxia in cells, has become an important therapeutic target. Despite the proven high potency, small-molecule PHD2 inhibitors such as IOX2 may require a nanoformulation for favorable biodistribution to reduce off-target toxicity. A liposome formulation for improving the pharmacokinetics of an encapsulated drug while allowing a targeted delivery is a viable option. This study aimed to develop an efficient loading method that can encapsulate IOX2 and other PHD2 inhibitors with similar pharmacophore features in nanosized liposomes. Driven by a transmembrane calcium acetate gradient, a nearly 100% remote loading efficiency of IOX2 into liposomes was achieved with an optimized extraliposomal solution. The electron microscopy imaging revealed that IOX2 formed nanoprecipitates inside the liposome’s interior compartments after loading. For drug efficacy, liposomal IOX2 outperformed the free drug in inducing the HIF-1α levels in cell experiments, especially when using a targeting ligand. This method also enabled two clinically used inhibitors—vadadustat and roxadustat—to be loaded into liposomes with a high encapsulation efficiency, indicating its generality to load other heterocyclic glycinamide PHD2 inhibitors. We believe that the liposome formulation of PHD2 inhibitors, particularly in conjunction with active targeting, would have therapeutic potential for treating more specifically localized disease lesions.
Collapse
Affiliation(s)
- Cheng-Bang Jian
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan; (C.-B.J.); (X.-E.Y.); (H.-D.G.); (H.-A.C.); (R.-H.J.); (C.-Y.C.)
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan University, Taipei 11529, Taiwan
| | - Xu-En Yu
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan; (C.-B.J.); (X.-E.Y.); (H.-D.G.); (H.-A.C.); (R.-H.J.); (C.-Y.C.)
- Department of Chemistry, National Central University, Taoyuan City 320317, Taiwan
| | - Hua-De Gao
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan; (C.-B.J.); (X.-E.Y.); (H.-D.G.); (H.-A.C.); (R.-H.J.); (C.-Y.C.)
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Huai-An Chen
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan; (C.-B.J.); (X.-E.Y.); (H.-D.G.); (H.-A.C.); (R.-H.J.); (C.-Y.C.)
| | - Ren-Hua Jheng
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan; (C.-B.J.); (X.-E.Y.); (H.-D.G.); (H.-A.C.); (R.-H.J.); (C.-Y.C.)
- Department of Chemistry, National Central University, Taoyuan City 320317, Taiwan
| | - Chong-Yan Chen
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan; (C.-B.J.); (X.-E.Y.); (H.-D.G.); (H.-A.C.); (R.-H.J.); (C.-Y.C.)
| | - Hsien-Ming Lee
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan; (C.-B.J.); (X.-E.Y.); (H.-D.G.); (H.-A.C.); (R.-H.J.); (C.-Y.C.)
- Correspondence: ; Tel.: +886-2-5572-8620
| |
Collapse
|