1
|
Corner TP, Salah E, Tumber A, Kaur S, Nakashima Y, Allen MD, Schnaubelt LI, Fiorini G, Brewitz L, Schofield CJ. Crystallographic and Selectivity Studies on the Approved HIF Prolyl Hydroxylase Inhibitors Desidustat and Enarodustat. ChemMedChem 2024; 19:e202400504. [PMID: 39291299 DOI: 10.1002/cmdc.202400504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/19/2024]
Abstract
Prolyl hydroxylase domain-containing proteins 1-3 (PHD1-3) are 2-oxoglutarate (2OG)-dependent oxygenases catalysing C-4 hydroxylation of prolyl residues in α-subunits of the heterodimeric transcription factor hypoxia-inducible factor (HIF), modifications that promote HIF-α degradation via the ubiquitin-proteasome pathway. Pharmacological inhibition of the PHDs induces HIF-α stabilisation, so promoting HIF target gene transcription. PHD inhibitors are used to treat anaemia caused by chronic kidney disease (CKD) due to their ability to stimulate erythropoietin (EPO) production. We report studies on the effects of the approved PHD inhibitors Desidustat and Enarodustat, and the clinical candidate TP0463518, on activities of a representative set of isolated recombinant human 2OG oxygenases. The three molecules manifest selectivity for PHD inhibition over that of the other 2OG oxygenases evaluated. We obtained crystal structures of Desidustat and Enarodustat in complex with the human 2OG oxygenase factor inhibiting hypoxia-inducible factor-α (FIH), which, together with modelling studies, inform on the binding modes of Desidustat and Enarodustat to active site Fe(II) in 2OG oxygenases, including PHD1-3. The results will help in the design of selective inhibitors of both the PHDs and other 2OG oxygenases, which are of medicinal interest due to their involvement inter alia in metabolic regulation, epigenetic signalling, DNA-damage repair, and agrochemical resistance.
Collapse
Affiliation(s)
- Thomas P Corner
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
- Present Address: Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, 06511, United States of America
| | - Eidarus Salah
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Anthony Tumber
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Samanpreet Kaur
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Yu Nakashima
- Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama, 930-0194, Japan
| | - Mark D Allen
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Lara I Schnaubelt
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Giorgia Fiorini
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Lennart Brewitz
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| |
Collapse
|
2
|
Sayaf AM, Kousar K, Suleman M, Albekairi NA, Alshammari A, Mohammad A, Khan A, Agouni A, Yeoh KK. Molecular exploration of natural and synthetic compounds databases for promising hypoxia inducible factor (HIF) Prolyl-4- hydroxylase domain (PHD) inhibitors using molecular simulation and free energy calculations. BMC Chem 2024; 18:236. [PMID: 39593151 PMCID: PMC11590322 DOI: 10.1186/s13065-024-01347-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Hypoxia-inducible factors (HIFs) are transcription factors that regulate erythropoietin (EPO) synthesis and red blood cell (RBC) production. Prolyl-4-hydroxylase domain (PHD) enzymes are key regulators of HIF's stability and activity. Inhibiting PHD enzymes can enhance HIF-mediated responses and have therapeutic potential for diseases such as anemia, cancer, stroke, ischemia, neurodegeneration, and inflammation. In this study, we searched for novel PHD inhibitors from four databases of natural products and synthetic compounds: AfroDb Natural Products, AnalytiCon Discovery Natural Product (NP), HIM-Herbal Ingredients In-Vivo Metabolism, and Herbal Ingredients' Targets, with a total number of 13,597 compounds. We screened the candidate compounds by molecular docking and validated them by molecular dynamics simulations and free energy calculations. We identified four target hits (ZINC36378940, ZINC2005305, ZINC31164438, and ZINC67910437) that showed stronger binding affinity to PHD2 compared to the positive control, Vadadustat (AKB-6548), with docking scores of - 13.34 kcal/mol, - 12.76 kcal/mol, - 11.96 kcal/mol, - 11.41 kcal/mol, and - 9.04 kcal/mol, respectively. The target ligands chelated the active site iron and interacted with key residues (Arg 383, Tyr329, Tyr303) of PHD2, in a similar manner as Vadadustat. Moreover, the dynamic stability-based assessment revealed that they also exhibited stable dynamics and compact trajectories. Then the total binding free energy was calculated for each complex which revealed that the control has a TBE of - 31.26 ± 0.30 kcal/mol, ZINC36378940 reported a TBE of - 38.65 ± 0.51 kcal/mol, for the ZINC31164438 the TBE was - 26.16 ± 0.30 kcal/mol while the ZINC2005305 complex reported electrostatic energy of - 32.75 ± 0.58 kcal/mol. This shows that ZINC36378940 is the best hit than the other and therefore further investigation should be performed for the clinical usage. Our results suggest that these target hits are promising candidates that reserve further in vitro and in vivo validations as potential PHD inhibitors for the treatment of renal anemia, cancer, stroke, ischemia, neurodegeneration, and inflammation.
Collapse
Affiliation(s)
| | - Kafila Kousar
- Department of Healthcare Biotechnology, Atta Ur Rahman School of Applied Biosciences, National University of Science and Technology Islamabad, Islamabad, Pakistan
| | - Muhammad Suleman
- Centre for Biotechnology and Microbiology, University of Swat, Swat, KPK, Pakistan
| | - Norah A Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, 11451, Riyadh, Saudi Arabia
| | | | - Anwar Mohammad
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Abbas Khan
- Department of Pharmacology, College of Pharmacy, Qatar University, Doha, Qatar.
- Department of Biological Sciences, School of Medical and Life Sciences (SMLS), Sunway University, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Abdelali Agouni
- Department of Pharmacology, College of Pharmacy, Qatar University, Doha, Qatar.
| | - Kar Kheng Yeoh
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| |
Collapse
|
3
|
Joharapurkar A, Pandya V, Patel H, Jain M, Desai R. Desidustat: a novel PHD inhibitor for the treatment of CKD-induced anemia. FRONTIERS IN NEPHROLOGY 2024; 4:1459425. [PMID: 39502472 PMCID: PMC11534831 DOI: 10.3389/fneph.2024.1459425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/02/2024] [Indexed: 11/08/2024]
Abstract
Desidustat is a small molecule inhibitor of hypoxia-inducible factor-prolyl hydroxylase (HIF-PH) discovered and developed by Zydus Lifesciences for the treatment of anemia associated with chronic kidney disease (CKD). This review summarizes the preclinical and clinical profile of desidustat which led to its approval and clinical use in India.
Collapse
Affiliation(s)
- Amit Joharapurkar
- Zydus Research Centre, Zydus Lifesciences Limited, Ahmedabad, Gujarat, India
| | | | | | | | | |
Collapse
|
4
|
Navarro-Gonzales P, Ganz T, Pergola PE, Zuk A, Dykstra K. Pharmacokinetics, Pharmacodynamics, and Safety of Vadadustat in Healthy Volunteers and Patients with Chronic Kidney Disease. Clin Pharmacol Ther 2024; 116:1052-1061. [PMID: 38924087 DOI: 10.1002/cpt.3342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/24/2024] [Indexed: 06/28/2024]
Abstract
Vadadustat is an oral hypoxia-inducible factor prolyl hydroxylase inhibitor for treating anemia in chronic kidney disease (CKD). Single ascending dose (SAD) and multiple ascending dose (MAD) studies assessed pharmacokinetics (PK), pharmacodynamics (PD), and safety of vadadustat in healthy volunteers. A single-dose, open-label study was conducted in patients with CKD stages 3 and 4 not on dialysis. In the SAD study, 48 healthy adult men (n = 8/cohort) received single doses of vadadustat (80-1,200 mg) or placebo. In the MAD study, 34 healthy adult men (n = 8-9/cohort) received daily vadadustat (500-900 mg) or placebo for 10 days. In the single-dose CKD study, 22 male and female patients with CKD (stage 3: n = 10; stage 4: n = 12) received single doses of vadadustat (500 mg). PK parameters included plasma vadadustat; PD biomarkers were measured, including erythropoietin (EPO) levels, reticulocytes, and others. Plasma vadadustat peaked 3-4 hours after single or multiple dosing in healthy volunteers, with a mean t 1/2 of approximately 4.5 hours. In patients with CKD, plasma vadadustat peaked at 5-6 hours, with a mean t 1/2 of 7.2 (stage 3) and 8.5 (stage 4) hours. Vadadustat AUC∞ and C max increased dose proportionally in SAD and MAD trials. In all trials, EPO concentrations increased in a dose-related manner and returned approximately to baseline by 24 hours. Adverse events were mild and considered not study drug related. The PK and PD results of these studies were utilized for further clinical development of vadadustat for treatment of anemia in CKD patients.
Collapse
Affiliation(s)
| | - Tomas Ganz
- Department of Medicine and Pathology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | | | - Anna Zuk
- Akebia Therapeutics, Inc., Cambridge, Massachusetts, USA
| | - Kevin Dykstra
- Akebia Therapeutics, Inc., Cambridge, Massachusetts, USA
| |
Collapse
|
5
|
Bartnicki P. Hypoxia-Inducible Factor Prolyl Hydroxylase Inhibitors as a New Treatment Option for Anemia in Chronic Kidney Disease. Biomedicines 2024; 12:1884. [PMID: 39200348 PMCID: PMC11351863 DOI: 10.3390/biomedicines12081884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
Anemia plays an important role in chronic kidney disease (CKD) progression because it worsens the quality of life and increases the risk of cardiovascular complications in CKD patients. In such cases, anemia is mainly caused by endogenous erythropoietin (EPO) and iron deficiencies. Therefore, KDIGO and ERBP guidelines for anemia treatment in CKD patients focus on recombinant EPO and iron supplementation. A recent new treatment option for anemia in CKD patients involves blocking the hypoxia-inducible factor (HIF) system with prolyl hydroxylase inhibitors (PHIs), what causes increasing endogenous EPO production and optimizing the use of iron. Clinical studies have shown that the hypoxia-inducible factor prolyl hydroxylase inhibitors (HIF-PHIs) covered in this manuscript-roxadustat, vadadustat, daprodustat, and molidustat-effectively increase hemoglobin (Hb) levels in both non-dialyzed and dialyzed CKD patients. Moreover, these medicines reduce blood lipid levels and do not accelerate CKD progression. However, blockage of the HIF system by HIF-PHIs may be associated with adverse effects such as cardiovascular complications, tumorogenesis, hyperkalemia. and retinopathy. More extensive and long-term clinical trials of HIF-PHIs-based anemia treatment in CKD patients are needed, and their results will indicate whether HIF-PHIs represent an effective and safe alternative to EPO and iron supplementation for anemia treatment in CKD patients.
Collapse
Affiliation(s)
- Piotr Bartnicki
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland
| |
Collapse
|
6
|
Yokoyama S, Nakagawa J, Shimada M, Ueno K, Ishiyama M, Nakamura N, Tomita H, Niioka T. Quantification of the Plasma Concentration of Vadadustat by High-Performance Liquid Chromatography with Ultraviolet Detection and Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry. Ther Drug Monit 2024:00007691-990000000-00247. [PMID: 38953704 DOI: 10.1097/ftd.0000000000001238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/22/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND An inexpensive, simple, and accurate plasma concentration measurement system is needed to actively conduct pharmacokinetic and pharmacodynamic analyses of vadadustat, hypoxia-inducible factor-prolyl hydroxylase inhibitor, in clinical settings. In this study, the authors aimed to develop a method for measuring vadadustat in human plasma that could be applied for therapeutic drug monitoring using high-performance liquid chromatography with ultraviolet detection (HPLC-UV) in a clinical setting. METHODS Plasma samples (100 μL) were pretreated with acetonitrile using butyl paraoxybenzoate as an internal standard. Chromatographic separation was performed on a SunShell PFP C18 column (2.6 μm, 4.6 mm × 150 mm). The mobile phase consisted of (A) 20 mM of phosphate buffer (pH 2.4) and (B) acetonitrile (60:40, v/v), delivered isocratically at a flow rate of 1 mL/min. The analytes were detected by UV absorbance at a wavelength of 220 nm, and the column temperature was 40°C. To evaluate the applicability of HPLC-UV in a clinical setting, blood samples were collected at 19 time points from 7 patients who had been taking vadadustat. RESULTS The calibration curve was linear over the concentration range of 0.2-150 mcg/mL (R2 > 0.99). Intra-assay and interassay accuracy, precision, and stability met the Food and Drug Administration recommendations. The vadadustat plasma concentrations of patients analyzed using the current HPLC-UV method were almost equal to those measured using ultra-performance liquid chromatography-tandem mass spectrometry (mean difference: 0.13 mcg/mL). Large variability in the dose-adjusted plasma concentrations of vadadustat at 12 hours after administration was observed between patients (coefficient of variation = 57.6%). CONCLUSIONS This HPLC-UV method is a simple, accurate quantification method for evaluating plasma concentrations in patients taking vadadustat in a clinical setting.
Collapse
Affiliation(s)
- Satoshi Yokoyama
- Department of Pharmacy, Hirosaki University Hospital, Hirosaki, Aomori, Japan
- Department of Pharmaceutical Science, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Junichi Nakagawa
- Department of Pharmacy, Hirosaki University Hospital, Hirosaki, Aomori, Japan
| | - Michiko Shimada
- Community Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Kayo Ueno
- Department of Pharmacy, Hirosaki University Hospital, Hirosaki, Aomori, Japan
| | - Masahiro Ishiyama
- Department of Clinical Laboratory, Hirosaki University Hospital, Hirosaki, Aomori, Japan
| | - Norio Nakamura
- Department of Nursing Science, Hirosaki University Graduate School of Health Sciences, Hirosaki, Aomori, Japan; and
| | - Hirofumi Tomita
- Department of Cardiology and Nephrology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Takenori Niioka
- Department of Pharmacy, Hirosaki University Hospital, Hirosaki, Aomori, Japan
- Department of Pharmaceutical Science, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| |
Collapse
|
7
|
Nakai T, Saigusa D, Kato K, Fukuuchi T, Koshiba S, Yamamoto M, Suzuki N. The drug-specific properties of hypoxia-inducible factor-prolyl hydroxylase inhibitors in mice reveal a significant contribution of the kidney compared to the liver to erythropoietin induction. Life Sci 2024; 346:122641. [PMID: 38614299 DOI: 10.1016/j.lfs.2024.122641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/13/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
AIMS Kidney disease often leads to anemia due to a defect in the renal production of the erythroid growth factor erythropoietin (EPO), which is produced under the positive regulation of hypoxia-inducible transcription factors (HIFs). Chemical compounds that inhibit HIF-prolyl hydroxylases (HIF-PHs), which suppress HIFs, have been developed to reactivate renal EPO production in renal anemia patients. Currently, multiple HIF-PH inhibitors, in addition to conventional recombinant EPO reagents, are used for renal anemia treatment. This study aimed to elucidate the therapeutic mechanisms and drug-specific properties of HIF-PH inhibitors. METHODS AND KEY FINDINGS Gene expression analyses and mass spectrometry revealed that HIF-PH inhibitors (daprodustat, enarodustat, molidustat, and vadadustat) alter Epo gene expression levels in the kidney and liver in a drug-specific manner, with different pharmacokinetics in the plasma and urine after oral administration to mice. The drug specificity revealed the dominant contribution of EPO induction in the kidneys rather than in the liver to plasma EPO levels after HIF-PH inhibitor administration. We also found that several HIF-PH inhibitors directly induce duodenal gene expression related to iron intake, while these drugs indirectly suppress hepatic hepcidin expression to mobilize stored iron for hemoglobin synthesis through induction of the EPO-erythroferrone axis. SIGNIFICANCE Renal EPO induction is the major target of HIF-PH inhibitors for their therapeutic effects on erythropoiesis. Additionally, the drug-specific properties of HIF-PH inhibitors in EPO induction and iron metabolism have been shown in mice, providing useful information for selecting the proper HIF-PH inhibitor for each renal anemia patient.
Collapse
Affiliation(s)
- Taku Nakai
- Applied Oxygen Physiology Project, New Industry Creation Hatchery Center, Tohoku University, Seiryo-machi 2-1, Aoba-ku, Sendai, Miyagi 980-8575, Japan; Division of Oxygen Biology, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Daisuke Saigusa
- Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma-Science, Teikyo University, Kaga 2-11-1, Itabashi-ku, Tokyo 173-8605, Japan
| | - Koichiro Kato
- Applied Oxygen Physiology Project, New Industry Creation Hatchery Center, Tohoku University, Seiryo-machi 2-1, Aoba-ku, Sendai, Miyagi 980-8575, Japan; Division of Oxygen Biology, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Tomoko Fukuuchi
- Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma-Science, Teikyo University, Kaga 2-11-1, Itabashi-ku, Tokyo 173-8605, Japan
| | - Seizo Koshiba
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Seiryo-machi 2-1, Aoba-ku, Sendai, Miyagi 980-8575, Japan; The Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan
| | - Masayuki Yamamoto
- Department of Biochemistry and Molecular Biology, Tohoku Medical Megabank Organization, Tohoku University, Seiryo-machi 2-1, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Norio Suzuki
- Applied Oxygen Physiology Project, New Industry Creation Hatchery Center, Tohoku University, Seiryo-machi 2-1, Aoba-ku, Sendai, Miyagi 980-8575, Japan; Division of Oxygen Biology, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Aoba-ku, Sendai, Miyagi 980-8575, Japan.
| |
Collapse
|
8
|
Yuan X, Ruan W, Bobrow B, Carmeliet P, Eltzschig HK. Targeting hypoxia-inducible factors: therapeutic opportunities and challenges. Nat Rev Drug Discov 2024; 23:175-200. [PMID: 38123660 DOI: 10.1038/s41573-023-00848-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 12/23/2023]
Abstract
Hypoxia-inducible factors (HIFs) are highly conserved transcription factors that are crucial for adaptation of metazoans to limited oxygen availability. Recently, HIF activation and inhibition have emerged as therapeutic targets in various human diseases. Pharmacologically desirable effects of HIF activation include erythropoiesis stimulation, cellular metabolism optimization during hypoxia and adaptive responses during ischaemia and inflammation. By contrast, HIF inhibition has been explored as a therapy for various cancers, retinal neovascularization and pulmonary hypertension. This Review discusses the biochemical mechanisms that control HIF stabilization and the molecular strategies that can be exploited pharmacologically to activate or inhibit HIFs. In addition, we examine medical conditions that benefit from targeting HIFs, the potential side effects of HIF activation or inhibition and future challenges in this field.
Collapse
Affiliation(s)
- Xiaoyi Yuan
- Department of Anaesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Wei Ruan
- Department of Anaesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Anaesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bentley Bobrow
- Department of Emergency Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Peter Carmeliet
- Laboratory of Angiogenesis & Vascular Metabolism, Center for Cancer Biology, VIB, Department of Oncology, KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis & Vascular Heterogeneity, Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Holger K Eltzschig
- Department of Anaesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Outcomes Research Consortium, Cleveland, OH, USA.
| |
Collapse
|
9
|
Acharya A, Yadav M, Nagpure M, Kumaresan S, Guchhait SK. Molecular medicinal insights into scaffold hopping-based drug discovery success. Drug Discov Today 2024; 29:103845. [PMID: 38013043 DOI: 10.1016/j.drudis.2023.103845] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 11/29/2023]
Abstract
In both academia and the pharmaceutical industry, innovative hypotheses, methodologies and technologies that can shorten the drug research and development, leading to higher success rates, are vital. In this review, we demonstrate how innovative variations of the scaffold-hopping strategy have been used to create new druggable molecular spaces, drugs, clinical candidates, preclinical candidates, and bioactive agents. We also analyze molecular modulations that enabled improvements of the pharmacodynamic (PD), physiochemical, and pharmacokinetic (PK) properties (P3 properties) of the drugs resulting from these scaffold-hopping strategies.
Collapse
Affiliation(s)
- Ayan Acharya
- National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab 160062, India
| | - Mukul Yadav
- National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab 160062, India
| | - Mithilesh Nagpure
- National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab 160062, India
| | - Sanathanalaxmi Kumaresan
- National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab 160062, India; National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab 160062, India
| | - Sankar K Guchhait
- National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab 160062, India.
| |
Collapse
|
10
|
Packer M. Mechanistic and Clinical Comparison of the Erythropoietic Effects of SGLT2 Inhibitors and Prolyl Hydroxylase Inhibitors in Patients with Chronic Kidney Disease and Renal Anemia. Am J Nephrol 2023; 55:255-259. [PMID: 37231827 DOI: 10.1159/000531084] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/02/2023] [Indexed: 05/27/2023]
Abstract
Renal anemia is treated with erythropoiesis-stimulating agents (ESAs), even though epoetin alfa and darbepoetin increase the risk of cardiovascular death and thromboembolic events, including stroke. Hypoxia-inducible factor prolyl hydroxylase domain (HIF-PHD) inhibitors have been developed as an alternative to ESAs, producing comparable increases in hemoglobin. However, in advanced chronic kidney disease, HIF-PHD inhibitors can increase the risk of cardiovascular death, heart failure, and thrombotic events to a greater extent than that with ESAs, indicating that there is a compelling need for safer alternatives. Sodium-glucose cotransporter 2 (SGLT2) inhibitors reduce the risk of major cardiovascular events, and they increase hemoglobin, an effect that is related to an increase in erythropoietin and an expansion in red blood cell mass. SGLT2 inhibitors increase hemoglobin by ≈0.6-0.7 g/dL, resulting in the alleviation of anemia in many patients. The magnitude of this effect is comparable to that seen with low-to-medium doses of HIF-PHD inhibitors, and it is apparent even in advanced chronic kidney disease. Interestingly, HIF-PHD inhibitors act by interfering with the prolyl hydroxylases that degrade both HIF-1α and HIF-2α, thus enhancing both isoforms. However, HIF-2α is the physiological stimulus to the production of erythropoietin, and upregulation of HIF-1α may be an unnecessary ancillary property of HIF-PHD inhibitors, which may have adverse cardiac and vascular consequences. In contrast, SGLT2 inhibitors act to selectively increase HIF-2α, while downregulating HIF-1α, a distinctive profile that may contribute to their cardiorenal benefits. Intriguingly, for both HIF-PHD and SGLT2 inhibitors, the liver is likely to be an important site of increased erythropoietin production, recapitulating the fetal phenotype. These observations suggest that the use of SGLT2 inhibitors should be seriously evaluated as a therapeutic approach to treat renal anemia, yielding less cardiovascular risk than other therapeutic options.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Dallas, Texas, USA
- Imperial College, London, UK
| |
Collapse
|
11
|
Kowalski H, Hoivik D, Rabinowitz M. Assessing the Carcinogenicity of Vadadustat, an Oral Hypoxia-Inducible Factor Prolyl-4-Hydroxylase Inhibitor, in Rodents. Toxicol Pathol 2023; 51:56-60. [PMID: 37158494 PMCID: PMC10278385 DOI: 10.1177/01926233231168836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Vadadustat is an investigational oral hypoxia-inducible factor (HIF) prolyl-4-hydroxylase inhibitor to treat anemia due to chronic kidney disease (CKD). Some studies suggest that HIF activation promotes tumorigenesis by activating angiogenesis downstream of vascular endothelial growth factor, while other studies suggest that elevated HIF activity may produce an antitumor phenotype. To evaluate the potential carcinogenicity of vadadustat in mice and rats, we dosed CByB6F1/Tg.rasH2 hemizygous (transgenic) mice orally by gavage with 5 to 50 mg/kg/d of vadadustat for 6 months and dosed Sprague-Dawley rats orally by gavage with 2 to 20 mg/kg/d for approximately 85 weeks. Doses were selected based on the maximally tolerated dose established for each species in previous studies. The tumors that were identified in the studies were not considered to be treatment-related for statistical reasons or within the historical control range. There was no carcinogenic effect attributed to vadadustat in mice or rats.
Collapse
Affiliation(s)
| | - Debie Hoivik
- Akebia Therapeutics, Inc., Cambridge, Massachusetts, USA
| | | |
Collapse
|