1
|
Liang LP, Sri Hari A, Day BJ, Patel M. Pharmacological elevation of glutathione inhibits status epilepticus-induced neuroinflammation and oxidative injury. Redox Biol 2024; 73:103168. [PMID: 38714094 PMCID: PMC11087235 DOI: 10.1016/j.redox.2024.103168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 05/09/2024] Open
Abstract
Glutathione (GSH) is a major endogenous antioxidant, and its depletion has been observed in several brain diseases including epilepsy. Previous studies in our laboratory have shown that dimercaprol (DMP) can elevate GSH via post-translational activation of glutamate cysteine ligase (GCL), the rate limiting GSH biosynthetic enzyme and inhibit neuroinflammation in vitro. Here we determined 1) the role of cysteamine as a new mechanism by which DMP increases GSH biosynthesis and 2) its ability to inhibit neuroinflammation and neuronal injury in the rat kainate model of epilepsy. DMP depleted cysteamine in a time- and concentration-dependent manner in a cell free system. To guide the in vivo administration of DMP, its pharmacokinetic profile was determined in the plasma, liver, and brain. The results confirmed DMP's ability to cross the blood-brain-barrier. Treatment of rats with DMP (30 mg/kg) depleted cysteamine in the liver and hippocampus that was associated with increased GCL activity in these tissues. GSH levels were significantly increased (20 %) in the hippocampus 1 h after 30 mg/kg DMP administration. Following DMP (30 mg/kg) administration once daily, a marked attenuation of GSH depletion was seen in the SE model. SE-induced inflammatory markers including cytokine release, microglial activation, and neuronal death were significantly attenuated in the hippocampus with DMP treatment. Taken together, these results highlight the importance of restoring redox status with rescue of GSH depletion by DMP in post epileptogenic insults.
Collapse
Affiliation(s)
- Li-Ping Liang
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Ashwini Sri Hari
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Brian J Day
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA; Department of Medicine, National Jewish Health, Denver, CO, 80202, USA
| | - Manisha Patel
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
2
|
Sun Y, Song X, Geng Z, Xu Y, Xiao L, Chen Y, Li B, Shi J, Wang L, Wang Y, Zhang X, Zuo L, Li J, Lü H, Hu J. IL-11 ameliorates oxidative stress damage in neurons after spinal cord injury by activating the JAK/STAT signaling pathway. Int Immunopharmacol 2024; 127:111367. [PMID: 38160564 DOI: 10.1016/j.intimp.2023.111367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVE Excess reactive oxygen species (ROS) generated by oxidative stress is a crucial factor affecting neuronal dysfunction after spinal cord injury (SCI). IL-11 has been reported to have antioxidative stress capacity. In the present study, we investigated the protective effect and mechanism of IL-11 against neuronal cell damage caused by oxidative imbalance. METHODS We established a H2O2-induced oxidative stress injury model in PC12 cells and observed the effects of IL-11 on cellular activity, morphology, oxidase and antioxidant enzymes, and ROS release. Furthermore, the effect of IL-11 on apoptosis of PC12 cells was assessed by flow cytometry, a TUNEL assay and Western blotting. Transcriptome analysis and rescue experiments revealed the mechanism by which IL-11 protects neurons from oxidative stress damage. For the in vivo investigation, an adenovirus-mediated IL-11 overexpression SCI rat model was constructed to validate the beneficial effect of IL-11 against SCI. RESULTS IL-11 significantly improved the viability and enhanced the antioxidant activity of H2O2-treated PC12 cells while reducing ROS release. In addition, IL-11 reduced H2O2-induced PC12 cell apoptosis. Transcriptome analysis revealed that the JAK/STAT pathway may be related to the antioxidant activity of IL-11. Treatment with a JAK/STAT inhibitor (Stattic) exacerbated the oxidative damage induced by H2O2 and attenuated the protective effects of IL-11. The results of in vivo studies showed that IL-11 prevented neuronal apoptosis due to oxidative imbalance and promoted the restoration of motor function in SCI rats by activating the JAK/STAT signaling pathway. CONCLUSION IL-11 inhibited oxidative stress-induced neuronal apoptosis at least in part by activating the JAK/STAT signaling pathway and further promoted the recovery of motor function. These findings suggest that IL-11 may be an effective target for the treatment for SCI.
Collapse
Affiliation(s)
- Yang Sun
- Department of rehabilitation medicine, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Xue Song
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, China; Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical University, Bengbu, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China
| | - Zhijun Geng
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, China; Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical University, Bengbu, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China
| | - Yibo Xu
- Bengbu Medical University, Bengbu, China
| | - Linyu Xiao
- Department of rehabilitation medicine, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China; Bengbu Medical University, Bengbu, China
| | - Yue Chen
- Department of rehabilitation medicine, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China; Bengbu Medical University, Bengbu, China
| | - Bohan Li
- Bengbu Medical University, Bengbu, China
| | - Jinran Shi
- Bengbu Medical University, Bengbu, China
| | - Lian Wang
- Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical University, Bengbu, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China; Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Yueyue Wang
- Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical University, Bengbu, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China; Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Xiaofeng Zhang
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, China; Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical University, Bengbu, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China
| | - Lugen Zuo
- Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical University, Bengbu, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China; Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Jing Li
- Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical University, Bengbu, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China; Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Hezuo Lü
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China; Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China.
| | - Jianguo Hu
- Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical University, Bengbu, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, China; Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, China.
| |
Collapse
|
4
|
Reddy DS. Progress and Challenges in Developing Medical Countermeasures for Chemical, Biological, Radiological, and Nuclear Threat Agents. J Pharmacol Exp Ther 2024; 388:260-267. [PMID: 38233227 PMCID: PMC10801730 DOI: 10.1124/jpet.123.002040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024] Open
Abstract
This Commentary delves into the current progress and challenges on ongoing research on medical countermeasures (MCs) for chemical, biologic, radiologic, and nuclear (CBRN) threats. CBRN agents pose a serious risk to human health and safety, with the potential for mass casualties in both military and civilian settings. Chemical threats are toxic compounds that could be used in a terrorist attack, an accidental release, or chemical warfare. They include nerve agents, organophosphates, pulmonary agents, metabolic/cellular agents, vesicants, ocular toxicants, and opioid agents. Developing effective MCs is crucial for mitigating the acute and chronic effects of exposure to CBRN agents. The papers in this special issue of JPET highlights the latest advancements in MC research, showcasing insightful outcomes on experimental models, mechanisms, and translational research on MCs for CBRN threats. They portray several notable contributions, including the development of neurosteroid and combination anticonvulsant therapies for nerve agent poisoning, the exploration of chronic impacts and diagnostic tracers for OP neurotoxicity, the establishment of innovative pediatric OP models, the identification of novel molecules for ocular, pulmonary and vesicant injuries, and the repurposing of existing drugs for the treatment of botulism, cyanide, and OP poisoning. These crucial outcomes underscore the breadth of current research covering a variety of chemical threats. Overall, this collection of articles highlights the importance of ongoing research and development in the field of MCs, emphasizing the potential of these countermeasures to effectively treat and mitigate the effects of toxicant exposures and thereby enhance our preparedness for mass casualty incidents. SIGNIFICANCE STATEMENT: CBRN agents pose a significant threat to public health. Effective MCs exist for certain chemical threats, but there is a need for new and improved MCs for many others. The research presented in this special issue of JPET highlights the latest advancements in MCs for CBRN threats. This research has the potential to lead to the development of new and repurposed MCs that are more effective, broad-spectrum, and easier to administer to mitigate acute and long-term consequences of chemical exposures.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine and Institute of Pharmacology and Neurotherapeutics, Texas A&M University Health Science Center, Bryan, Texas
| |
Collapse
|