1
|
Iliadis S, Papanikolaou NA. Reactive Oxygen Species Mechanisms that Regulate Protein-Protein Interactions in Cancer. Int J Mol Sci 2024; 25:9255. [PMID: 39273204 PMCID: PMC11395503 DOI: 10.3390/ijms25179255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Reactive oxygen species (ROS) are produced during cellular metabolism and in response to environmental stress. While low levels of ROS play essential physiological roles, excess ROS can damage cellular components, leading to cell death or transformation. ROS can also regulate protein interactions in cancer cells, thereby affecting processes such as cell growth, migration, and angiogenesis. Dysregulated interactions occur via various mechanisms, including amino acid modifications, conformational changes, and alterations in complex stability. Understanding ROS-mediated changes in protein interactions is crucial for targeted cancer therapies. In this review, we examine the role that ROS mechanisms in regulating pathways through protein-protein interactions.
Collapse
Affiliation(s)
- Stavros Iliadis
- Laboratory of Biological Chemistry, Department of Medicine, Section of Biological Sciences and Preventive Medicine, Aristotle University of Thessaloniki School of Medicine, 54124 Thessaloniki, Macedonia, Greece
| | - Nikolaos A Papanikolaou
- Laboratory of Biological Chemistry, Department of Medicine, Section of Biological Sciences and Preventive Medicine, Aristotle University of Thessaloniki School of Medicine, 54124 Thessaloniki, Macedonia, Greece
| |
Collapse
|
2
|
Duangrat R, Parichatikanond W, Likitnukul S, Mangmool S. Endothelin-1 Induces Cell Proliferation and Myofibroblast Differentiation through the ET AR/G αq/ERK Signaling Pathway in Human Cardiac Fibroblasts. Int J Mol Sci 2023; 24:ijms24054475. [PMID: 36901906 PMCID: PMC10002923 DOI: 10.3390/ijms24054475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
Endothelin-1 (ET-1) has been implicated in the pathogenesis of cardiac fibrosis. Stimulation of endothelin receptors (ETR) with ET-1 leads to fibroblast activation and myofibroblast differentiation, which is mainly characterized by an overexpression of α-smooth muscle actin (α-SMA) and collagens. Although ET-1 is a potent profibrotic mediator, the signal transductions and subtype specificity of ETR contributing to cell proliferation, as well as α-SMA and collagen I synthesis in human cardiac fibroblasts are not well clarified. This study aimed to evaluate the subtype specificity and signal transduction of ETR on fibroblast activation and myofibroblast differentiation. Treatment with ET-1 induced fibroblast proliferation, and synthesis of myofibroblast markers, α-SMA, and collagen I through the ETAR subtype. Inhibition of Gαq protein, not Gαi or Gβγ, inhibited these effects of ET-1, indicating the essential role of Gαq protein-mediated ETAR signaling. In addition, ERK1/2 was required for ETAR/Gαq axis-induced proliferative capacity and overexpression of these myofibroblast markers. Antagonism of ETR with ETR antagonists (ERAs), ambrisentan and bosentan, inhibited ET-1-induced cell proliferation and synthesis of α-SMA and collagen I. Furthermore, ambrisentan and bosentan promoted the reversal of myofibroblasts after day 3 of treatment, with loss of proliferative ability and a reduction in α-SMA synthesis, confirming the restorative effects of ERAs. This novel work reports on the ETAR/Gαq/ERK signaling pathway for ET-1 actions and blockade of ETR signaling with ERAs, representing a promising therapeutic strategy for prevention and restoration of ET-1-induced cardiac fibrosis.
Collapse
Affiliation(s)
- Ratchanee Duangrat
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Molecular Medicine Graduate Program, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Warisara Parichatikanond
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Centre of Biopharmaceutical Science for Healthy Ageing (BSHA), Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Sutharinee Likitnukul
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Supachoke Mangmool
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Correspondence:
| |
Collapse
|
3
|
Acosta-Casique A, Montes-Alvarado JB, Barragán M, Larrauri-Rodríguez KA, Perez-Gonzalez A, Delgado-Magallón A, Millán-Perez-Peña L, Rosas-Murrieta NH, Maycotte P. ERK activation modulates invasiveness and Reactive Oxygen Species (ROS) production in triple negative breast cancer cell lines. Cell Signal 2023; 101:110487. [PMID: 36216165 DOI: 10.1016/j.cellsig.2022.110487] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/22/2022] [Accepted: 09/30/2022] [Indexed: 11/30/2022]
Abstract
Triple negative breast cancer (TNBC) is the breast cancer subtype with the worst prognosis and still lacks a targeted therapy. In this study, we found increased ERK phosphorylation in TNBC cell lines and an important role for ERK in sustaining the migration of TNBC cells. Although ROS have been suggested to have an important role in sustaining MAPK signaling, antioxidant treatment increased ERK phosphorylation, probably suggesting increased invasive potential. Interestingly, treatment with PD0325901 (PD), a MEK inhibitor, decreased ROS levels in TNBC cells and decreased mitochondrial fragmentation in the MDAMB231 cell line. Our data supports an important role for MEK/ERK in TNBC, sustaining cellular migration, regulating mitochondrial dynamics and ROS production in this breast cancer subtype.
Collapse
Affiliation(s)
- Adilene Acosta-Casique
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Km 4.5 Carretera Atlixco-Metepec HGZ5, Puebla 74360, Mexico; Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), Ciudad Universitaria, Puebla 72570, Mexico
| | - José B Montes-Alvarado
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Km 4.5 Carretera Atlixco-Metepec HGZ5, Puebla 74360, Mexico
| | - Minuet Barragán
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Km 4.5 Carretera Atlixco-Metepec HGZ5, Puebla 74360, Mexico; Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), Ciudad Universitaria, Puebla 72570, Mexico
| | - Karen A Larrauri-Rodríguez
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Km 4.5 Carretera Atlixco-Metepec HGZ5, Puebla 74360, Mexico; Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), Ciudad Universitaria, Puebla 72570, Mexico
| | - Andrea Perez-Gonzalez
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Km 4.5 Carretera Atlixco-Metepec HGZ5, Puebla 74360, Mexico; Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), Ciudad Universitaria, Puebla 72570, Mexico
| | - Alam Delgado-Magallón
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Km 4.5 Carretera Atlixco-Metepec HGZ5, Puebla 74360, Mexico
| | - Lourdes Millán-Perez-Peña
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), Ciudad Universitaria, Puebla 72570, Mexico
| | - Nora H Rosas-Murrieta
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), Ciudad Universitaria, Puebla 72570, Mexico
| | - Paola Maycotte
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Km 4.5 Carretera Atlixco-Metepec HGZ5, Puebla 74360, Mexico.
| |
Collapse
|
4
|
Mao Y, Zhao K, Li P, Sheng Y. The emerging role of leptin in obesity-associated cardiac fibrosis: evidence and mechanism. Mol Cell Biochem 2022; 478:991-1011. [PMID: 36214893 DOI: 10.1007/s11010-022-04562-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 09/15/2022] [Indexed: 11/24/2022]
Abstract
Cardiac fibrosis is a hallmark of various cardiovascular diseases, which is quite commonly found in obesity, and may contribute to the increased incidence of heart failure arrhythmias, and sudden cardiac death in obese populations. As an endogenous regulator of adiposity metabolism, body mass, and energy balance, obesity, characterized by increased circulating levels of the adipocyte-derived hormone leptin, is a critical contributor to the pathogenesis of cardiac fibrosis. Although there are some gaps in our knowledge linking leptin and cardiac fibrosis, this review will focus on the interplay between leptin and major effectors involved in the pathogenesis underlying cardiac fibrosis at both cellular and molecular levels based on the current reports. The profibrotic effect of leptin is predominantly mediated by activated cardiac fibroblasts but may also involve cardiomyocytes, endothelial cells, and immune cells. Moreover, a series of molecular signals with a known profibrotic property is closely involved in leptin-induced fibrotic events. A more comprehensive understanding of the underlying mechanisms through which leptin contributes to the pathogenesis of cardiac fibrosis may open up a new avenue for the rapid emergence of a novel therapy for preventing or even reversing obesity-associated cardiac fibrosis.
Collapse
Affiliation(s)
- Yukang Mao
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, People's Republic of China.,Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Kun Zhao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Peng Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China.
| | - Yanhui Sheng
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, People's Republic of China. .,Department of Cardiology, Jiangsu Province Hospital, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
5
|
Can EGFR be a therapeutic target in breast cancer? Biochim Biophys Acta Rev Cancer 2022; 1877:188789. [PMID: 36064121 DOI: 10.1016/j.bbcan.2022.188789] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/20/2022]
Abstract
Epidermal growth factor receptor (EGFR) is highly expressed in certain cancer types and is involved in regulating the biological characteristics of cancer progression, including proliferation, metastasis, and drug resistance. Various medicines targeting EGFR have been developed and approved for several cancer types, such as lung and colon cancer. To date, however, EGFR inhibitors have not achieved satisfactory clinical results in breast cancer, which continues to be the most serious malignant tumor type in females. Therefore, clarifying the underlying mechanisms related to the ineffectiveness of EGFR inhibitors in breast cancer and developing new EGFR-targeted strategies (e.g., combination therapy) remain critical challenges. Various studies have demonstrated aberrant expression and maintenance of EGFR levels in breast cancer. In this review, we summarize the regulatory mechanisms underlying EGFR protein expression in breast cancer cells, including EGFR mutations, amplification, endocytic dysfunction, recycling acceleration, and degradation disorders. We also discuss potential therapeutic strategies that act directly or indirectly on EGFR, including reducing EGFR protein expression, treating the target protein to mediate precise clearance, and inhibiting non-EGFR signaling pathways. This review should provide new therapeutic perspectives for breast cancer patients with high EGFR expression.
Collapse
|
6
|
Babaahmadi-Rezaei H, Little PJ, Mohamed R, Zadeh GM, Kheirollah A, Mehr RN, Kamato D, Dayati P. Endothelin-1 mediated glycosaminoglycan synthesizing gene expression involves NOX-dependent transactivation of the transforming growth factor-β receptor. Mol Cell Biochem 2022; 477:981-988. [PMID: 34982346 DOI: 10.1007/s11010-021-04342-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/22/2021] [Indexed: 10/19/2022]
Abstract
G protein-coupled receptor (GPCR) agonist endothelin-1 (ET-1) through transactivation of the transforming growth factor (TGF) β receptor (TGFBR1) stimulates glycosaminoglycan (GAG) elongation on proteoglycans. GPCR agonists thrombin and lysophosphatidic acid (LPA) via respective receptors transactivate the TGFBR1 via Rho/ROCK dependent pathways however mechanistic insight for ET-1 transactivation of the TGFBR1 remains unknown. NADPH oxidase (NOX) generates reactive oxygen species (ROS) and is a signalling entity implicated in the pathogenesis of many diseases including atherosclerosis. If implicated in this pathway, NOX/ROS would be a potential therapeutic target. In this study, we investigated the involvement of NOX in ET-1/ET receptor-mediated transactivation of TGFBR1 to stimulate mRNA expression of GAG chain synthesizing enzymes chondroitin 4-O-sulfotransferase 1 (C4ST-1) and chondroitin sulfate synthase 1 (ChSy-1). The invitro model used vascular smooth muscle cells that were treated with pharmacological antagonists in the presence and absence of ET-1 or TGF-β. Proteins and phosphoproteins isolated from treated cells were quantified by western blotting and quantitative real-time PCR was used to assess mRNA expression of GAG synthesizing enzymes. In the presence of diphenyliodonium (DPI) (NOX inhibitor), ET-1 stimulated phospho-Smad2C levels were inhibited. ET-1 mediated mRNA expression of GAG synthesizing enzymes C4ST-1 and ChSy-1 was also blocked by TGBFR1 antagonists, SB431542, broad spectrum ET receptor antagonist bosentan, DPI and ROS scavenger N-acetyl-L-cysteine. This work shows that NOX and ROS play an important role in ET-1 mediated transactivation of the TGFBR1 and downstream gene targets associated with GAG chain elongation. As ROS is involved in GPCR to protein tyrosine kinase receptor transactivation, the NOX/ROS axis presents as the first common biochemical target in all GPCR to kinase receptor transactivation signalling.
Collapse
Affiliation(s)
- Hossein Babaahmadi-Rezaei
- Department of Clinical Biochemistry, Faculty of Medicine, Hyperlipidemia Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Peter J Little
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, 20 Cornwall St, Woolloongabba, QLD, 4102, Australia.,Department of Pharmacy, Xinhua College of Sun Yat-Sen University, Tianhe District, Guangzhou, 510520, Guangdong, China
| | - Raafat Mohamed
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, 20 Cornwall St, Woolloongabba, QLD, 4102, Australia
| | - Ghorban Mohammad Zadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Hyperlipidemia Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Kheirollah
- Department of Clinical Biochemistry, Faculty of Medicine, Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reyhaneh Niayesh Mehr
- Department of Clinical Biochemistry, Faculty of Medicine, Hyperlipidemia Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Danielle Kamato
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, 20 Cornwall St, Woolloongabba, QLD, 4102, Australia.
| | - Parisa Dayati
- Department of Clinical Biochemistry, Faculty of Medicine, Hyperlipidemia Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. .,Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
7
|
Sarmiento-Salinas FL, Perez-Gonzalez A, Acosta-Casique A, Ix-Ballote A, Diaz A, Treviño S, Rosas-Murrieta NH, Millán-Perez-Peña L, Maycotte P. Reactive oxygen species: Role in carcinogenesis, cancer cell signaling and tumor progression. Life Sci 2021; 284:119942. [PMID: 34506835 DOI: 10.1016/j.lfs.2021.119942] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/27/2021] [Accepted: 09/01/2021] [Indexed: 02/07/2023]
Abstract
Cancer is one of the major causes of death in the world and its global burden is expected to continue increasing. In several types of cancers, reactive oxygen species (ROS) have been extensively linked to carcinogenesis and cancer progression. However, studies have reported conflicting evidence regarding the role of ROS in cancer, mostly dependent on the cancer type or the step of the tumorigenic process. We review recent studies describing diverse aspects of the interplay of ROS with cancer in the different stages of cancer progression, with a special focus on their role in carcinogenesis, their importance for cancer cell signaling and their relationship to the most prevalent cancer risk factors.
Collapse
Affiliation(s)
- Fabiola Lilí Sarmiento-Salinas
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Atlixco, Puebla, Mexico; Posgrado en Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Andrea Perez-Gonzalez
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Atlixco, Puebla, Mexico; Posgrado en Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Adilene Acosta-Casique
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Atlixco, Puebla, Mexico; Posgrado en Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Adrián Ix-Ballote
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Atlixco, Puebla, Mexico; Posgrado en Ciencias y Tecnologías Biomédicas, Instituto Nacional de Astrofísica, Óptica y Electrónica, Puebla, Mexico
| | - Alfonso Diaz
- Posgrado en Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Samuel Treviño
- Posgrado en Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | | | | | - Paola Maycotte
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Atlixco, Puebla, Mexico.
| |
Collapse
|
8
|
Mushtaq U, Bashir M, Nabi S, Khanday FA. Epidermal growth factor receptor and integrins meet redox signaling through P66shc and Rac1. Cytokine 2021; 146:155625. [PMID: 34157521 DOI: 10.1016/j.cyto.2021.155625] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 05/23/2021] [Accepted: 06/08/2021] [Indexed: 12/24/2022]
Abstract
This review examines the concerted role of Epidermal Growth Factor Receptor (EGFR) and integrins in regulating Reactive oxygen species (ROS) production through different signaling pathways. ROS as such are not always deleterious to the cells but they also act as signaling molecules, that regulates numerous indespensible physiological fuctions of life. Many adaptor proteins, particularly Shc and Grb2, are involved in mediating the downstream signaling pathways stimulated by EGFR and integrins. Integrin-induced activation of EGFR and subsequent tyrosine phosphorylation of a class of acceptor sites on EGFR leads to alignment and tyrosine phosphorylation of Shc, PLCγ, the p85 subunit of PI-3 K, and Cbl, followed by activation of the downstream targets Erk and Akt/PKB. Functional interactions between these receptors result in the activation of Rac1 via these adaptor proteins, thereby leading to Reactive Oxygen Species. Both GF and integrin activation can produce oxidants independently, however synergistically there is increased ROS generation, suggesting a mutual cooperation between integrins and GFRs for redox signalling. The ROS produced further promotes feed-forward stimulation of redox signaling events such as MAPK activation and gene expression. This relationship has not been reviewed previously. The literature presented here can have multiple implications, ranging from looking at synergistic effects of integrin and EGFR mediated signaling mechanisms of different proteins to possible therapeutic interventions operated by these two receptors. Furthermore, such mutual redox regulation of crosstalk between EGFR and integrins not only add to the established models of pathological oxidative stress, but also can impart new avenues and opportunities for targeted antioxidant based therapeutics.
Collapse
Affiliation(s)
- Umar Mushtaq
- Department of Biotechnology, University of Kashmir, Srinagar, JK 190006, India; Department of Biotechnology, Central University of Kashmir, Ganderbal, JK 191201, India
| | - Muneesa Bashir
- Department of Biotechnology, University of Kashmir, Srinagar, JK 190006, India; Department of Higher Education, Government of Jammu & Kashmir, 190001, India
| | - Sumaiya Nabi
- Department of Biochemistry, University of Kashmir, Srinagar, JK 190006, India
| | - Firdous A Khanday
- Department of Biotechnology, University of Kashmir, Srinagar, JK 190006, India.
| |
Collapse
|
9
|
You KS, Yi YW, Cho J, Park JS, Seong YS. Potentiating Therapeutic Effects of Epidermal Growth Factor Receptor Inhibition in Triple-Negative Breast Cancer. Pharmaceuticals (Basel) 2021; 14:589. [PMID: 34207383 PMCID: PMC8233743 DOI: 10.3390/ph14060589] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a subset of breast cancer with aggressive characteristics and few therapeutic options. The lack of an appropriate therapeutic target is a challenging issue in treating TNBC. Although a high level expression of epidermal growth factor receptor (EGFR) has been associated with a poor prognosis among patients with TNBC, targeted anti-EGFR therapies have demonstrated limited efficacy for TNBC treatment in both clinical and preclinical settings. However, with the advantage of a number of clinically approved EGFR inhibitors (EGFRis), combination strategies have been explored as a promising approach to overcome the intrinsic resistance of TNBC to EGFRis. In this review, we analyzed the literature on the combination of EGFRis with other molecularly targeted therapeutics or conventional chemotherapeutics to understand the current knowledge and to provide potential therapeutic options for TNBC treatment.
Collapse
Affiliation(s)
- Kyu Sic You
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea;
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 3116, Chungcheongnam-do, Korea
| | - Yong Weon Yi
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (J.C.)
| | - Jeonghee Cho
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (J.C.)
| | - Jeong-Soo Park
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea;
| | - Yeon-Sun Seong
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea;
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 3116, Chungcheongnam-do, Korea
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (J.C.)
| |
Collapse
|
10
|
Endothelin-1 Downregulates Sulfur Dioxide/Aspartate Aminotransferase Pathway via Reactive Oxygen Species to Promote the Proliferation and Migration of Vascular Smooth Muscle Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9367673. [PMID: 32089786 PMCID: PMC7008293 DOI: 10.1155/2020/9367673] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 01/06/2020] [Indexed: 01/08/2023]
Abstract
The regulatory mechanisms for proliferation and migration of vascular smooth muscle cells have not yet been clear. The present study was designed to investigate whether and how endothelin-1 (ET-1) impacted the generation of endogenous sulfur dioxide (SO2) in rat vascular smooth muscle cell (VSMC) proliferation and migration. Primary VSMCs and purified aspartate aminotransferase (AAT) protein were used in this study. We found that in the presence of ET-1, the expression of PCNA and Ki-67 was upregulated and the migration of VSMCs was promoted, while the AAT activity and SO2 levels in VSMCs were reduced without any changes in AAT1 and AAT2 expression. SO2 supplementation successfully prevented the ET-1-facilitated expression of PCNA and Ki-67 and the migration of VSMCs. Interestingly, ET-1 significantly increased reactive oxygen species (ROS) production in association with SO2/AAT pathway downregulation in VSMCs compared with controls, while the ROS scavenger N-acetyl-L-cysteine (NAC) and the antioxidant glutathione (GSH) significantly abolished the ET-1-stimulated downregulation of the SO2/AAT pathway. Moreover, the AAT activity was reduced in purified protein after the treatment for 2 h. However, NAC and GSH blocked the hydrogen peroxide-induced AAT activity reduction. In conclusion, our results suggest that ET-1 results in the downregulation of the endogenous SO2/AAT pathway via ROS generation to enhance the proliferation and migration of VSMCs.
Collapse
|
11
|
Kim S, Subramanian V, Abdel-Latif A, Lee S. Role of Heparin-Binding Epidermal Growth Factor-Like Growth Factor in Oxidative Stress-Associated Metabolic Diseases. Metab Syndr Relat Disord 2020; 18:186-196. [PMID: 32077785 DOI: 10.1089/met.2019.0120] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Heparin-binding EGF-like growth factor (HB-EGF) is an EGF family member that interacts with epidermal growth factor receptor (EGFR) and ERBB4. Since HB-EGF was first identified as a novel growth factor secreted from a human macrophage cell line, numerous pathological and physiological functions related to cell proliferation, migration, and inflammation have been reported. Notably, the expression of HB-EGF is sensitively upregulated by oxidative stress in the endothelial cells and functions for auto- and paracrine-EGFR signaling. Overnutrition and obesity cause elevation of HB-EGF expression and EGFR signaling in the hepatic and vascular systems. Modulations of HB-EGF signaling showed a series of protections against phenotypes related to metabolic syndrome and advanced metabolic diseases, suggesting HB-EGF as a potential target against metabolic diseases.
Collapse
Affiliation(s)
- Seonwook Kim
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Venkateswaran Subramanian
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA.,Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Ahmed Abdel-Latif
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA.,Department of Medicine-Cardiology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Sangderk Lee
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA.,Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
12
|
Pulakazhi Venu VK, El-Daly M, Saifeddine M, Hirota SA, Ding H, Triggle CR, Hollenberg MD. Minimizing Hyperglycemia-Induced Vascular Endothelial Dysfunction by Inhibiting Endothelial Sodium-Glucose Cotransporter 2 and Attenuating Oxidative Stress: Implications for Treating Individuals With Type 2 Diabetes. Can J Diabetes 2019; 43:510-514. [PMID: 30930073 DOI: 10.1016/j.jcjd.2019.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 01/07/2019] [Accepted: 01/16/2019] [Indexed: 01/14/2023]
Abstract
This overview deals with mechanisms whereby hyperglycemia-induced oxidative stress compromises vascular endothelial function and provides a background for a recently published study illustrating the beneficial impact of endothelial sodium-glucose cotransporter 2 (SGLT2) inhibitors in attenuating hyperglycemia-induced vascular dysfunction in vitro. The data provide new insight that can possibly lead to improved drug therapy for people with type 2 diabetes. The working hypotheses that underpinned the experiments performed are provided, along with the findings of the study. For the causes of hyperglycemia-induced vascular endothelial dysfunction, the findings point to the key roles of: 1) functional endothelial SGLT2; 2) oxidative stress-induced signalling pathways including mammalian sarcoma virus kinase, the EGF receptor-kinase and protein kinase C; and 3) mitochondrial dysfunction triggered by hyperglycemia was mitigated by an SGLT2 inhibitor in the hyperglycemic mouse aorta vascular organ cultures. The overview sums up the approaches implicated by the study that can potentially counteract the detrimental impact of hyperglycemia on vascular function in people with diabetes, including the clinical use of SGLT2 inhibitors for those with type 2 diabetes already being treated, for example, with metformin, along with dietary supplementation with broccoli-derived sulforaphane and tetrahydrobiopterin. The caveats associated with the study for extending the findings from mice to humans are summarized, pointing to the need to validate the work using vascular tissues from humans. Suggestions for future clinical studies are made, including the assessment of the impact of the therapeutic strategies proposed on measurements of blood flow in subjects with diabetes.
Collapse
Affiliation(s)
- Vivek Krishna Pulakazhi Venu
- Inflammation Research Network, University of Calgary, Cumming School of Medicine, Calgary, Alberta, Canada; Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada; Department of Physiology & Pharmacology, University of Calgary, Cumming School of Medicine, Calgary, Alberta, Canada
| | - Mahmoud El-Daly
- Inflammation Research Network, University of Calgary, Cumming School of Medicine, Calgary, Alberta, Canada; Department of Pharmacology & Toxicology, Faculty of Pharmacy, Minia University, Minya, Egypt
| | - Mahmoud Saifeddine
- Inflammation Research Network, University of Calgary, Cumming School of Medicine, Calgary, Alberta, Canada; Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada; Department of Physiology & Pharmacology, University of Calgary, Cumming School of Medicine, Calgary, Alberta, Canada
| | - Simon A Hirota
- Inflammation Research Network, University of Calgary, Cumming School of Medicine, Calgary, Alberta, Canada; Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada; Department of Physiology & Pharmacology, University of Calgary, Cumming School of Medicine, Calgary, Alberta, Canada
| | - Hong Ding
- Departments of Pharmacology and Medical Education, Weill Cornell Medicine in Qatar, Ar-Rayyan, Qatar
| | - Chris R Triggle
- Departments of Pharmacology and Medical Education, Weill Cornell Medicine in Qatar, Ar-Rayyan, Qatar
| | - Morley D Hollenberg
- Inflammation Research Network, University of Calgary, Cumming School of Medicine, Calgary, Alberta, Canada; Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada; Department of Physiology & Pharmacology, University of Calgary, Cumming School of Medicine, Calgary, Alberta, Canada; Libin Cardiovascular Institute of Alberta, Alberta Health Service and University of Calgary, Calgary, Alberta, Canada; Department of Medicine, University of Calgary, Cumming School of Medicine, Calgary, Alberta, Canada.
| |
Collapse
|
13
|
Agrahari G, Sah SK, Nguyen CT, Choi SS, Kim HY, Kim TY. Superoxide Dismutase 3 Inhibits LL-37/KLK-5-Mediated Skin Inflammation through Modulation of EGFR and Associated Inflammatory Cascades. J Invest Dermatol 2019; 140:656-665.e8. [PMID: 31465746 DOI: 10.1016/j.jid.2019.08.434] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/13/2019] [Accepted: 08/13/2019] [Indexed: 11/29/2022]
Abstract
The expressions of LL-37 and KLK-5 were found to be altered in various dermatoses, including atopic dermatitis, psoriasis, and rosacea. However, the downstream inflammatory effect of LL-37 and KLK-5 is not as well studied. In addition, there is little high-quality evidence for the treatment of LL-37- and KLK-5-mediated inflammation. In this study, we investigated the effect of superoxide dismutase 3 (SOD3) on LL-37- or KLK-5-induced skin inflammation in vitro and in vivo and its underlying anti-inflammatory mechanisms. Our data showed that SOD3 significantly reduced both LL-37- and KLK-5-induced expression of pro-inflammatory mediators and suppressed the activation of EGFR, protease-activated receptor 2, nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3, and p38/extracellular signal-regulated kinase signaling pathways in human keratinocytes. Moreover, SOD3 suppressed LL-37-induced expression of inflammatory mediators, reactive oxygen species production, and p38/extracellular signal-regulated kinase activation in mast cells. In addition, subcutaneous injection of KLK-5 in SOD3 knockout mice exhibited erythema with increased epidermal thickness, mast cell and neutrophil infiltration, expression of inflammatory mediators, and activation of EGFR, protease-activated receptor 2, nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3, and downstream mitogen-activated protein kinase pathways. However, treatment with SOD3 in SOD3 knockout mice rescued KLK-5-induced inflammatory cascades. Similarly, KLK-5-induced inflammation in wild-type mice was also ameliorated when treated with SOD3. Taken together, our data suggest that SOD3 is a potentially effective therapy for both LL-37-and KLK-5-induced skin inflammation.
Collapse
Affiliation(s)
- Gaurav Agrahari
- Laboratory of Dermato-Immunology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Shyam Kishor Sah
- Department of Reconstructive Sciences, Center for Regenerative Medicine and Skeletal Development, Institute for Systems Genomics, University of Connecticut, Farmington, Connecticut, USA
| | - Cuong Thach Nguyen
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Sung Sik Choi
- Laboratory of Dermato-Immunology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hae-Young Kim
- Laboratory of Dermato-Immunology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Tae-Yoon Kim
- Laboratory of Dermato-Immunology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
14
|
Lee M, Nam TG, Lee I, Shin EJ, Han A, Lee P, Lee S, Lim T. Skin anti-inflammatory activity of rose petal extract ( Rosa gallica) through reduction of MAPK signaling pathway. Food Sci Nutr 2018; 6:2560-2567. [PMID: 30510758 PMCID: PMC6261181 DOI: 10.1002/fsn3.870] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/01/2018] [Accepted: 10/04/2018] [Indexed: 11/08/2022] Open
Abstract
The aim of this study was to investigate the skin anti-inflammatory activity of rose petal extract (RPE) and the mechanisms underlying this phenomenon. Recently, flowers have been considered as dietary resources owing to their biological activities, such as inhibition of nephritis and hemorrhoids. The Rosa plant exerts various biological functions, including antioxidant and anti-microbiological activities. Herein, we confirmed the skin anti-inflammatory activity of RPE upon solar UV (sUV) exposure. RPE reduced sUV-induced COX-2 expression as well as expressions of several cytokines. Activation of MKK4-JNK, MEK-ERK, and MKK3-p38 signaling pathways, which are associated with cytokine production, was also attenuated by RPE treatment. We hypothesized these RPE-induced changes are because of its antioxidant activity, because RPE displayed drastic radical scavenging and oxygen radical absorbance capacity (ORAC). Furthermore, high anthocyanins, polyphenols, and flavonoids contents were found in RPE. Hence, these results indicated the skin anti-inflammatory activity of RPE is because of antioxidant activity.
Collapse
Affiliation(s)
| | | | - Inil Lee
- Department of Food Science and BiotechnologyKyung Hee UniversityYonginKorea
| | | | - Ah‐ram Han
- Korea Food Research InstituteWanju‐gunKorea
| | - Pomjoo Lee
- RAFIQ Cosmetics Co., Ltd. 14Jung‐guKorea
| | - Sung‐Young Lee
- Department of Agricultural BiotechnologySeoul National UniversityGwanak‐guKorea
| | | |
Collapse
|
15
|
Liu Q, Lei Z, Zhou K, Yu H, Liu S, Sun Q, Wang X, Dai M, Yuan Z. N-O Reduction and ROS-Mediated AKT/FOXO1 and AKT/P53 Pathways Are Involved in Growth Promotion and Cytotoxicity of Cyadox. Chem Res Toxicol 2018; 31:1219-1229. [PMID: 30265530 DOI: 10.1021/acs.chemrestox.8b00194] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cyadox is a novel derivative of quinoxaline-1,4-dioxides (QdNOs) with the potential to be developed as a feed additive. However, the pharmacological and toxicological bioactive molecules of cyadox and the molecular mechanism of its pharmacological and toxic actions remain unclear. In the present study, cyadox and its main metabolites of cy1, cy4, cy6, and cy12 were selected; the growth promotion characteristic was indicated by the mRNA level of EGF; and the cytotoxicity of cyadox was determined by methylthiazol tetrazolium bromide (MTT) assay, lactate dehydrogenase (LDH) release, and Annexin V-FITC/PI apoptosis detection kit with flow cytometry. The intracellular ROS, cyclin D1, and Akt/P53/FOXO1 signaling pathway were also investigated. Our data suggested that cyadox showed relatively higher activity than its metabolites, and the ROS was generated from N-O reduction of cyadox. Moreover, cyadox (2 μM) activated the Akt and increased the EGF, cyclin D1, and FOXO1 expression levels. Cyadox (100 μM) induced cytotoxicity in L02 cells in a concentration- and time-dependent manner. Additionally, the activated P53 pathway, hyperactivated Akt, and apoptosis were found in L02 cells after incubation with 100 μM cyadox. Our data demonstrated that Akt promoted cell survival when it was mildly activated by cyadox at 2 μM, and Akt leads to apoptosis when it was severely activated by cyadox at 100 μM. Thus, the present study revealed that N-O reduction of cyadox and ROS-mediated AKT/FOXO1 and AKT/P53 pathways were involved in growth promotion and cytotoxicity of cyadox.
Collapse
Affiliation(s)
| | | | - Kaixiang Zhou
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety , Wuhan , Hubei 430070 , China
| | - Huiru Yu
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety , Wuhan , Hubei 430070 , China
| | - Shenhe Liu
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety , Wuhan , Hubei 430070 , China
| | - Qiliang Sun
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety , Wuhan , Hubei 430070 , China
| | - Xu Wang
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety , Wuhan , Hubei 430070 , China
| | - Menghong Dai
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety , Wuhan , Hubei 430070 , China
| | - Zonghui Yuan
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety , Wuhan , Hubei 430070 , China
| |
Collapse
|
16
|
El-Daly M, Pulakazhi Venu VK, Saifeddine M, Mihara K, Kang S, Fedak PW, Alston LA, Hirota SA, Ding H, Triggle CR, Hollenberg MD. Hyperglycaemic impairment of PAR2-mediated vasodilation: Prevention by inhibition of aortic endothelial sodium-glucose-co-Transporter-2 and minimizing oxidative stress. Vascul Pharmacol 2018; 109:56-71. [DOI: 10.1016/j.vph.2018.06.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 05/05/2018] [Accepted: 06/09/2018] [Indexed: 01/16/2023]
|
17
|
Mechanical stresses induce paracrine β-2 microglobulin from cardiomyocytes to activate cardiac fibroblasts through epidermal growth factor receptor. Clin Sci (Lond) 2018; 132:1855-1874. [PMID: 30072448 DOI: 10.1042/cs20180486] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 11/17/2022]
Abstract
By employing a proteomic analysis on supernatant of mechanically stretched cardiomyocytes, we found that stretch induced a significantly high level of β-2 microglobulin (β2M), a non-glycosylated protein, which is related to inflammatory diseases but rarely known in cardiovascular diseases. The present data showed that serum β2M level was increased in patients with hypertension and further increased in patients with chronic heart failure (HF) as compared with control group, and the high level of serum β2M level correlated to cardiac dysfunction in these patients. In pressure overload mice model by transverse aortic constriction (TAC), β2M levels in serum and heart tissue increased progressively in a time-dependent manner. Exogenous β2M showed pro-fibrotic effects in cultured cardiac fibroblasts but few effects in cardiomyocytes. Adeno-associated virus 9 (AAV9)-mediated knockdown of β2M significantly reduced cardiac β2M level and inhibited myocardial fibrosis and cardiac dysfunction but not cardiac hypertrophy at 4 weeks after TAC. In vitro, mechanical stretch induced the rapid secretion of β2M mainly from cardiomyocytes by activation of extracellular-regulated protein kinase (ERK). Conditional medium (CM) from mechanically stretched cardiomyocytes activated cultured cardiac fibroblasts, and the effect was partly abolished by CM from β2M-knockdown cardiomyocytes. In vivo, knockdown of β2M inhibited the increase in phosphorylation of epidermal growth factor receptor (EGFR) induced by TAC. In cultured cardiac fibroblasts, inhibition of EGFR significantly attenuated the β2M-induced the activation of EGFR and pro-fibrotic responses. The present study suggests that β2M is a paracrine pro-fibrotic mediator and associated with cardiac dysfunction in response to pressure overload.
Collapse
|
18
|
Ryzhov S, Robich MP, Roberts DJ, Favreau-Lessard AJ, Peterson SM, Jachimowicz E, Rath R, Vary CPH, Quinn R, Kramer RS, Sawyer DB. ErbB2 promotes endothelial phenotype of human left ventricular epicardial highly proliferative cells (eHiPC). J Mol Cell Cardiol 2018; 115:39-50. [PMID: 29291395 PMCID: PMC5926239 DOI: 10.1016/j.yjmcc.2017.12.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/20/2017] [Accepted: 12/28/2017] [Indexed: 12/13/2022]
Abstract
The adult human heart contains a subpopulation of highly proliferative cells. The role of ErbB receptors in these cells has not been studied. From human left ventricular (LV) epicardial biopsies, we isolated highly proliferative cells (eHiPC) to characterize the cell surface expression and function of ErbB receptors in the regulation of cell proliferation and phenotype. We found that human LV eHiPC express all four ErbB receptor subtypes. However, the expression of ErbB receptors varied widely among eHiPC isolated from different subjects. eHiPC with higher cell surface expression of ErbB2 reproduced the phenotype of endothelial cells and were characterized by endothelial cell-like functional properties. We also found that EGF/ErbB1 induces VEGFR2 expression, while ligands for both ErbB1 and ErbB3/4 induce expression of Tie2. The number of CD31posCD45neg endothelial cells is higher in LV biopsies from subjects with high ErbB2 (ErbB2high) eHiPC compared to low ErbB2 (ErbB2low) eHiPC. These findings have important implications for potential strategies to increase the efficacy of cell-based revascularization of the injured heart, through promotion of an endothelial phenotype in cardiac highly proliferative cells.
Collapse
Affiliation(s)
- Sergey Ryzhov
- Maine Medical Center Research Institute, Scarborough, ME, United States
| | - Michael P Robich
- Maine Medical Center Research Institute, Scarborough, ME, United States; Maine Medical Center, Portland, ME, United States
| | - Daniel J Roberts
- Maine Medical Center Research Institute, Scarborough, ME, United States; Maine Medical Center, Portland, ME, United States
| | | | - Sarah M Peterson
- Maine Medical Center Research Institute, Scarborough, ME, United States
| | | | - Rutwik Rath
- Maine Medical Center Research Institute, Scarborough, ME, United States
| | - Calvin P H Vary
- Maine Medical Center Research Institute, Scarborough, ME, United States
| | - Reed Quinn
- Maine Medical Center, Portland, ME, United States
| | | | - Douglas B Sawyer
- Maine Medical Center Research Institute, Scarborough, ME, United States; Maine Medical Center, Portland, ME, United States.
| |
Collapse
|
19
|
Oliva J. Proteasome and Organs Ischemia-Reperfusion Injury. Int J Mol Sci 2017; 19:ijms19010106. [PMID: 29301204 PMCID: PMC5796056 DOI: 10.3390/ijms19010106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/12/2017] [Accepted: 12/27/2017] [Indexed: 12/17/2022] Open
Abstract
The treatment of organ failure on patients requires the transplantation of functional organs, from donors. Over time, the methodology of transplantation was improved by the development of organ preservation solutions. The storage of organs in preservation solutions is followed by the ischemia of the organ, resulting in a shortage of oxygen and nutrients, which damage the tissues. When the organ is ready for the transplantation, the reperfusion of the organ induces an increase of the oxidative stress, endoplasmic reticulum stress, and inflammation which causes tissue damage, resulting in a decrease of the transplantation success. However, the addition of proteasome inhibitor in the preservation solution alleviated the injuries due to the ischemia-reperfusion process. The proteasome is a protein structure involved in the regulation the inflammation and the clearance of damaged proteins. The goal of this review is to summarize the role of the proteasome and pharmacological compounds that regulate the proteasome in protecting the organs from the ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Joan Oliva
- Department of Medicine, LA BioMed at Harbor UCLA Medical Center, Torrance, CA 90502, USA.
| |
Collapse
|
20
|
Sacchetti C, Bottini N. Protein Tyrosine Phosphatases in Systemic Sclerosis: Potential Pathogenic Players and Therapeutic Targets. Curr Rheumatol Rep 2017; 19:28. [PMID: 28397126 DOI: 10.1007/s11926-017-0655-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE OF REVIEW The pathogenesis of systemic sclerosis depends on a complex interplay between autoimmunity, vasculopathy, and fibrosis. Reversible phosphorylation on tyrosine residues, in response to growth factors and other stimuli, critically regulates each one of these three key pathogenic processes. Protein tyrosine kinases, the enzymes that catalyze addition of phosphate to tyrosine residues, are known players in systemic sclerosis, and tyrosine kinase inhibitors are undergoing clinical trials for treatment of this disease. Until recently, the role of tyrosine phosphatases-the enzymes that counteract the action of tyrosine kinases by removing phosphate from tyrosine residues-in systemic sclerosis has remained largely unknown. Here, we review the function of tyrosine phosphatases in pathways relevant to the pathogenesis of systemic sclerosis and their potential promise as therapeutic targets to halt progression of this debilitating rheumatic disease. RECENT FINDINGS Protein tyrosine phosphatases are emerging as important regulators of a multitude of signaling pathways and undergoing validation as molecular targets for cancer and other common diseases. Recent advances in drug discovery are paving the ways to develop new classes of tyrosine phosphatase modulators to treat human diseases. Although so far only few reports have focused on tyrosine phosphatases in systemic sclerosis, these enzymes play a role in multiple pathways relevant to disease pathogenesis. Further studies in this field are warranted to explore the potential of tyrosine phosphatases as drug targets for systemic sclerosis.
Collapse
Affiliation(s)
- Cristiano Sacchetti
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of California, San Diego, 9500 Gilman Drive MC #0656, La Jolla, CA, 92093, USA
| | - Nunzio Bottini
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of California, San Diego, 9500 Gilman Drive MC #0656, La Jolla, CA, 92093, USA.
| |
Collapse
|
21
|
Transactivation of the epidermal growth factor receptor in responses to myocardial stress and cardioprotection. Int J Biochem Cell Biol 2017; 83:97-110. [PMID: 28049018 DOI: 10.1016/j.biocel.2016.12.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/25/2016] [Accepted: 12/26/2016] [Indexed: 12/20/2022]
|
22
|
Abdesselem M, Ramodiharilafy R, Devys L, Gacoin T, Alexandrou A, Bouzigues CI. Fast quantitative ROS detection based on dual-color single rare-earth nanoparticle imaging reveals signaling pathway kinetics in living cells. NANOSCALE 2017; 9:656-665. [PMID: 27942670 DOI: 10.1039/c6nr07413h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Reactive oxygen species (ROS), and notably hydrogen peroxide H2O2, are cellular second messengers that are known to control a variety of signaling processes. They can finely regulate the dynamics of signal transduction, cell response and ultimately tissue function. However, there are very few local, quantitative and time-resolved descriptions of their cellular organization at the scale of molecular reactions, due to the lack of efficient sensors. We thus developed a novel nanoprobe-based ROS detection system using the simultaneous imaging of single lanthanide nanoparticles (YAG:Ce and chemically reduced Gd0.6Eu0.4VO4). We reveal that both particle luminescence signals are controlled by their H2O2 local environment. By simultaneously tracking their luminescence, we devised a new approach providing a quantitative (0.5 μM accuracy in the 1-10 μM range) H2O2 measurement with a 500 ms time resolution, surpassing all existing methods by two orders of magnitude, and revealing previously inaccessible molecular events controlling ROS concentration. We used this nanoprobe in living cells to track fast signaling pathways, by measuring the dynamics of H2O2 intracellular concentrations, induced by endothelin-1 (ET-1) stimulation. We thus revealed the mechanisms controlling ROS production, notably the activity modulation of the ROS-producing enzyme NADPH oxidase by fast (<10 s) EGFR transactivation, and measured quantitatively their kinetic parameters through a minimal analytical model. Altogether, these results illustrate how lanthanide nanoparticle-based sensors are a powerful tool to dynamically probe molecular mechanisms shaping the oxidative cell response.
Collapse
Affiliation(s)
- M Abdesselem
- Laboratory for Optics and Biosciences, Ecole Polytechnique, INSERM U1182 - CNRS UMR7645. and Universite Paris-Saclay, 91120 Palaiseau, France.
| | - R Ramodiharilafy
- Laboratory for Optics and Biosciences, Ecole Polytechnique, INSERM U1182 - CNRS UMR7645. and Universite Paris-Saclay, 91120 Palaiseau, France.
| | - L Devys
- Laboratory of Condensed Matter Physics, Ecole Polytechnique, CNRS UMR7643 and Universite Paris-Saclay, 91120 Palaiseau, France
| | - T Gacoin
- Laboratory of Condensed Matter Physics, Ecole Polytechnique, CNRS UMR7643 and Universite Paris-Saclay, 91120 Palaiseau, France
| | - A Alexandrou
- Laboratory for Optics and Biosciences, Ecole Polytechnique, INSERM U1182 - CNRS UMR7645. and Universite Paris-Saclay, 91120 Palaiseau, France.
| | - C I Bouzigues
- Laboratory for Optics and Biosciences, Ecole Polytechnique, INSERM U1182 - CNRS UMR7645. and Universite Paris-Saclay, 91120 Palaiseau, France.
| |
Collapse
|
23
|
Wadley AJ, Aldred S, Coles SJ. An unexplored role for Peroxiredoxin in exercise-induced redox signalling? Redox Biol 2016; 8:51-8. [PMID: 26748042 PMCID: PMC4712319 DOI: 10.1016/j.redox.2015.10.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 10/13/2015] [Accepted: 10/19/2015] [Indexed: 02/08/2023] Open
Abstract
Peroxiredoxin (PRDX) is a ubiquitous oxidoreductase protein with a conserved ionised thiol that permits catalysis of hydrogen peroxide (H2O2) up to a million times faster than any thiol-containing signalling protein. The increased production of H2O2 within active tissues during exercise is thought to oxidise conserved cysteine thiols, which may in turn facilitate a wide variety of physiological adaptations. The precise mechanisms linking H2O2 with the oxidation of signalling thiol proteins (phosphates, kinases and transcription factors) are unclear due to these proteins' low reactivity with H2O2 relative to abundant thiol peroxidases such as PRDX. Recent work has shown that following exposure to H2O2 in vitro, the sulfenic acid of the PRDX cysteine can form mixed disulphides with transcription factors associated with cell survival. This implicates PRDX as an 'active' redox relay in transmitting the oxidising equivalent of H2O2 to downstream proteins. Furthermore, under oxidative stress, PRDX can form stable oxidised dimers that can be secreted into the extracellular space, potentially acting as an extracellular 'stress' signal. There is extensive literature assessing non-specific markers of oxidative stress in response to exercise, however the PRDX catalytic cycle may offer a more robust approach for measuring changes in redox balance following exercise. This review discusses studies assessing PRDX-mediated cellular signalling and integrates the recent advances in redox biology with investigations that have examined the role of PRDX during exercise in humans and animals. Future studies should explore the role of PRDX as a key regulator of peroxide mediated-signal transduction during exercise in humans.
Collapse
Affiliation(s)
- Alex J Wadley
- Institute of Science and the Environment, University of Worcester, Worcestershire WR2 6AJ, United Kingdom.
| | - Sarah Aldred
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, B15 2TT, United Kingdom
| | - Steven J Coles
- Institute of Science and the Environment, University of Worcester, Worcestershire WR2 6AJ, United Kingdom
| |
Collapse
|
24
|
Chen J, Zeng F, Forrester SJ, Eguchi S, Zhang MZ, Harris RC. Expression and Function of the Epidermal Growth Factor Receptor in Physiology and Disease. Physiol Rev 2016; 96:1025-1069. [DOI: 10.1152/physrev.00030.2015] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) is the prototypical member of a family of membrane-associated intrinsic tyrosine kinase receptors, the ErbB family. EGFR is activated by multiple ligands, including EGF, transforming growth factor (TGF)-α, HB-EGF, betacellulin, amphiregulin, epiregulin, and epigen. EGFR is expressed in multiple organs and plays important roles in proliferation, survival, and differentiation in both development and normal physiology, as well as in pathophysiological conditions. In addition, EGFR transactivation underlies some important biologic consequences in response to many G protein-coupled receptor (GPCR) agonists. Aberrant EGFR activation is a significant factor in development and progression of multiple cancers, which has led to development of mechanism-based therapies with specific receptor antibodies and tyrosine kinase inhibitors. This review highlights the current knowledge about mechanisms and roles of EGFR in physiology and disease.
Collapse
Affiliation(s)
- Jianchun Chen
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Fenghua Zeng
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Steven J. Forrester
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Satoru Eguchi
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Ming-Zhi Zhang
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Raymond C. Harris
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
25
|
Forrester SJ, Kawai T, O'Brien S, Thomas W, Harris RC, Eguchi S. Epidermal Growth Factor Receptor Transactivation: Mechanisms, Pathophysiology, and Potential Therapies in the Cardiovascular System. Annu Rev Pharmacol Toxicol 2015; 56:627-53. [PMID: 26566153 DOI: 10.1146/annurev-pharmtox-070115-095427] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epidermal growth factor receptor (EGFR) activation impacts the physiology and pathophysiology of the cardiovascular system, and inhibition of EGFR activity is emerging as a potential therapeutic strategy to treat diseases including hypertension, cardiac hypertrophy, renal fibrosis, and abdominal aortic aneurysm. The capacity of G protein-coupled receptor (GPCR) agonists, such as angiotensin II (AngII), to promote EGFR signaling is called transactivation and is well described, yet delineating the molecular processes and functional relevance of this crosstalk has been challenging. Moreover, these critical findings are dispersed among many different fields. The aim of our review is to highlight recent advancements in defining the signaling cascades and downstream consequences of EGFR transactivation in the cardiovascular renal system. We also focus on studies that link EGFR transactivation to animal models of the disease, and we discuss potential therapeutic applications.
Collapse
Affiliation(s)
- Steven J Forrester
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19140;
| | - Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19140;
| | - Shannon O'Brien
- The School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Walter Thomas
- The School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Raymond C Harris
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19140;
| |
Collapse
|
26
|
Perkins A, Nelson KJ, Parsonage D, Poole LB, Karplus PA. Peroxiredoxins: guardians against oxidative stress and modulators of peroxide signaling. Trends Biochem Sci 2015; 40:435-45. [PMID: 26067716 DOI: 10.1016/j.tibs.2015.05.001] [Citation(s) in RCA: 435] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 04/27/2015] [Accepted: 05/01/2015] [Indexed: 02/08/2023]
Abstract
Peroxiredoxins (Prxs) are a ubiquitous family of cysteine-dependent peroxidase enzymes that play dominant roles in regulating peroxide levels within cells. These enzymes, often present at high levels and capable of rapidly clearing peroxides, display a remarkable array of variations in their oligomeric states and susceptibility to regulation by hyperoxidative inactivation and other post-translational modifications. Key conserved residues within the active site promote catalysis by stabilizing the transition state required for transferring the terminal oxygen of hydroperoxides to the active site (peroxidatic) cysteine residue. Extensive investigations continue to expand our understanding of the scope of their importance as well as the structures and forces at play within these critical defense and regulatory enzymes.
Collapse
Affiliation(s)
- Arden Perkins
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97333, USA
| | - Kimberly J Nelson
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Derek Parsonage
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Leslie B Poole
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - P Andrew Karplus
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97333, USA.
| |
Collapse
|
27
|
Kassan M, Ait-Aissa K, Ali M, Trebak M, Matrougui K. Augmented EGF receptor tyrosine kinase activity impairs vascular function by NADPH oxidase-dependent mechanism in type 2 diabetic mouse. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2404-10. [PMID: 26036345 DOI: 10.1016/j.bbamcr.2015.05.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 05/28/2015] [Indexed: 12/22/2022]
Abstract
We previously determined that augmented EGFR tyrosine kinase (EGFRtk) impairs vascular function in type 2 diabetic mouse (TD2). Here we determined that EGFRtk causes vascular dysfunction through NADPH oxidase activity in TD2. Mesenteric resistance arteries (MRA) from C57/BL6 and db-/db- mice were mounted in a wired myograph and pre-incubated for 1h with either EGFRtk inhibitor (AG1478) or exogenous EGF. The inhibition of EGFRtk did not affect the contractile response to phenylephrine-(PE) and thromboxane-(U46619) or endothelium-dependent relaxation (EDR) to acetylcholine in MRA from control group. However, in TD2 mice, AG1478 reduced the contractile response to U46619, improved vasodilatation and reduced p22phox-NADPH expression, but had no effect on the contractile response to PE. The incubation of MRA with exogenous EGF potentiated the contractile response to PE in MRA from control and diabetic mice. However, EGF impaired the EDR and potentiated the vasoconstriction to U46619 only in the control group. Interestingly, NADPH oxidase inhibition in the presence of EGF restored the normal contraction to PE and improved the EDR but had no effect on the potentiated contraction to U46619. Vascular function improvement was associated with the rescue of eNOS and Akt and reduction in phosphorylated Rho-kinase, NOX4 mRNA levels, and NADPH oxidase activity. MRA from p47phox-/- mice incubated with EGF potentiated the contraction to U46619 but had no effect to PE or ACh responses. The present study provides evidence that augmented EGFRtk impairs vascular function by NADPH oxidase-dependent mechanism. Therefore, EGFRtk and oxidative stress should be potential targets to treat vascular dysfunction in TD2.
Collapse
Affiliation(s)
- Modar Kassan
- Department of Physiological Sciences, Eastern Virginia School of Medicine, Norfolk, VA 23501, USA
| | - Karima Ait-Aissa
- Department of Physiological Sciences, Eastern Virginia School of Medicine, Norfolk, VA 23501, USA
| | - Maha Ali
- Department of Physiological Sciences, Eastern Virginia School of Medicine, Norfolk, VA 23501, USA; College of Nanoscale Science and Engineering, SUNY, Albany, NY 12203, USA
| | - Mohamed Trebak
- Assiut University, Department of Medical Biochemistry, Faculty of Medicine, Assiut, Egypt
| | - Khalid Matrougui
- Department of Physiological Sciences, Eastern Virginia School of Medicine, Norfolk, VA 23501, USA.
| |
Collapse
|
28
|
Kim D, Dai J, Fai LY, Yao H, Son YO, Wang L, Pratheeshkumar P, Kondo K, Shi X, Zhang Z. Constitutive activation of epidermal growth factor receptor promotes tumorigenesis of Cr(VI)-transformed cells through decreased reactive oxygen species and apoptosis resistance development. J Biol Chem 2014; 290:2213-24. [PMID: 25477514 DOI: 10.1074/jbc.m114.619783] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Hexavalent chromium (Cr(VI)) compounds are well-established lung carcinogens. Epidermal growth factor receptor (EGFR) is a tyrosine kinase transmembrane receptor that regulates cell survival, tumor invasion, and angiogenesis. Our results show that chronic exposure of human bronchial epithelial (BEAS-2B) cells to Cr(VI) is able to cause malignant cell transformation. These transformed cells exhibit apoptosis resistance with reduced poly ADP-ribose polymerase cleavage (C-PARP) and Bax expression and enhanced expressions of Bcl-2 and Bcl-xL. These transformed cells also exhibit reduced capacity of reactive oxygen species (ROS) generation along with elevated expression of antioxidant manganese superoxide dismutase 2 (SOD2). The expression of this antioxidant was also elevated in lung tumor tissue from a worker exposed to Cr(VI) for 19 years. EGFR was activated in Cr(VI)-transformed BEAS-2B cells, lung tissue from animals exposed to Cr(VI) particles, and human lung tumor tissue. Further study indicates that constitutive activation of EGFR in Cr(VI)-transformed cells was due to increased binding to its ligand amphiregulin (AREG). Inhibition of EGFR or AREG increased Bax expression and reduced Bcl-2 expression, resulting in reduced apoptosis resistance. Furthermore, inhibition of AREG or EGFR restored capacity of ROS generation and decreased SOD2 expression. PI3K/AKT was activated, which depended on EGFR in Cr(VI)-transformed BEAS-2B cells. Inhibition of PI3K/AKT increased ROS generation and reduced SOD2 expression, resulting in reduced apoptosis resistance with commitment increase in Bax expression and reduction of Bcl-2 expression. Xenograft mouse tumor study further demonstrates the essential role of EGFR in tumorigenesis of Cr(VI)-transformed cells. In summary, the present study suggests that ligand-dependent constitutive activation of EGFR causes reduced ROS generation and increased antioxidant expression, leading to development of apoptosis resistance, contributing to Cr(VI)-induced tumorigenesis.
Collapse
Affiliation(s)
| | - Jin Dai
- From the Graduate Center for Toxicology and
| | | | - Hua Yao
- Department of Stomatology, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310003, China, and
| | - Young-Ok Son
- Center for Research on Environmental Disease, University of Kentucky, Lexington, Kentucky 40536
| | - Lei Wang
- Center for Research on Environmental Disease, University of Kentucky, Lexington, Kentucky 40536
| | - Poyil Pratheeshkumar
- Center for Research on Environmental Disease, University of Kentucky, Lexington, Kentucky 40536
| | - Kazuya Kondo
- Department of Oncological Medical Services, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8509, Japan
| | - Xianglin Shi
- Center for Research on Environmental Disease, University of Kentucky, Lexington, Kentucky 40536
| | - Zhuo Zhang
- From the Graduate Center for Toxicology and
| |
Collapse
|
29
|
MacKay CE, Knock GA. Control of vascular smooth muscle function by Src-family kinases and reactive oxygen species in health and disease. J Physiol 2014; 593:3815-28. [PMID: 25384773 DOI: 10.1113/jphysiol.2014.285304] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 10/22/2014] [Indexed: 12/13/2022] Open
Abstract
Reactive oxygen species (ROS) are now recognised as second messenger molecules that regulate cellular function by reversibly oxidising specific amino acid residues of key target proteins. Amongst these are the Src-family kinases (SrcFKs), a multi-functional group of non-receptor tyrosine kinases highly expressed in vascular smooth muscle (VSM). In this review we examine the evidence supporting a role for ROS-induced SrcFK activity in normal VSM contractile function and in vascular remodelling in cardiovascular disease. VSM contractile responses to G-protein-coupled receptor stimulation, as well as hypoxia in pulmonary artery, are shown to be dependent on both ROS and SrcFK activity. Specific phosphorylation targets are identified amongst those that alter intracellular Ca(2+) concentration, including transient receptor potential channels, voltage-gated Ca(2+) channels and various types of K(+) channels, as well as amongst those that regulate actin cytoskeleton dynamics and myosin phosphatase activity, including focal adhesion kinase, protein tyrosine kinase-2, Janus kinase, other focal adhesion-associated proteins, and Rho guanine nucleotide exchange factors. We also examine a growing weight of evidence in favour of a key role for SrcFKs in multiple pro-proliferative and anti-apoptotic signalling pathways relating to oxidative stress and vascular remodelling, with a particular focus on pulmonary hypertension, including growth-factor receptor transactivation and downstream signalling, hypoxia-inducible factors, positive feedback between SrcFK and STAT3 signalling and positive feedback between SrcFK and NADPH oxidase dependent ROS production. We also discuss evidence for and against the potential therapeutic targeting of SrcFKs in the treatment of pulmonary hypertension.
Collapse
Affiliation(s)
- Charles E MacKay
- Asthma, Allergy and Lung Biology, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Greg A Knock
- Asthma, Allergy and Lung Biology, Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
30
|
Mullick Chowdhury S, Manepalli P, Sitharaman B. Graphene nanoribbons elicit cell specific uptake and delivery via activation of epidermal growth factor receptor enhanced by human papillomavirus E5 protein. Acta Biomater 2014; 10:4494-504. [PMID: 24980059 DOI: 10.1016/j.actbio.2014.06.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 06/18/2014] [Accepted: 06/20/2014] [Indexed: 12/29/2022]
Abstract
Ligands such as peptides, antibodies or other epitopes bind and activate specific cell receptors, and are employed for targeted cellular delivery of pharmaceuticals such as drugs, genes and imaging agents. Herein, we show that oxidized graphene nanoribbons, non-covalently functionalized with PEG-DSPE (1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N[amino(polyethyleneglycol)]) (O-GNR-PEG-DSPE) activate epidermal growth factor receptors (EGFRs). This activation generates a predominantly dynamin-dependent macropinocytosis-like response, and results in significant O-GNR-PEG-DSPE uptake into cells with high EGFR expression. Cells with an integrated human papillomavirus (HPV) genome also show increased uptake due to the modulation of the activated EGFR by the viral protein E5. We demonstrate that this cell specific uptake of O-GNR-PEG-DSPE can be exploited to achieve significantly enhanced drug efficacies even in drug resistant cells. These results have implications for the development of active targeting and delivery agents without ligand functionalization for use in the diagnosis and treatment of pathologies that overexpress EGFR or mediated by HPV.
Collapse
Affiliation(s)
- Sayan Mullick Chowdhury
- Department of Biomedical Engineering, Bioengineering Building, Room 115, Stony Brook University, Stony Brook, NY 11794-5281, USA
| | - Prady Manepalli
- Department of Biomedical Engineering, Bioengineering Building, Room 115, Stony Brook University, Stony Brook, NY 11794-5281, USA
| | - Balaji Sitharaman
- Department of Biomedical Engineering, Bioengineering Building, Room 115, Stony Brook University, Stony Brook, NY 11794-5281, USA.
| |
Collapse
|
31
|
Koritzinsky M, Wouters BG. The roles of reactive oxygen species and autophagy in mediating the tolerance of tumor cells to cycling hypoxia. Semin Radiat Oncol 2014; 23:252-61. [PMID: 24012339 DOI: 10.1016/j.semradonc.2013.05.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tumor hypoxia (low oxygenation) causes treatment resistance and poor patient outcome. A substantial fraction of tumor cells experience cycling hypoxia, characterized by transient episodes of hypoxia and reoxygenation. These cells are under a unique burden of stress, mediated by excessive production of reactive oxygen species (ROS). Cellular components damaged by ROS can be cleared by autophagy, rendering cycling hypoxic tumor cells particularly vulnerable to inhibition of autophagy and its upstream regulatory pathways. Activation of the PERK-mediated signaling arm of the unfolded protein response during hypoxia plays a critical role in the defense against ROS, both by stimulating glutathione synthesis pathways and through promoting autophagy.
Collapse
Affiliation(s)
- Marianne Koritzinsky
- Ontario Cancer Institute and Campbell Family Institute for Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Canada; Institute of Medical Science, University of Toronto, Canada.
| | | |
Collapse
|
32
|
Genetic Interactions of STAT3 and Anticancer Drug Development. Cancers (Basel) 2014; 6:494-525. [PMID: 24662938 PMCID: PMC3980611 DOI: 10.3390/cancers6010494] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 02/18/2014] [Accepted: 02/20/2014] [Indexed: 12/18/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) plays critical roles in tumorigenesis and malignant evolution and has been intensively studied as a therapeutic target for cancer. A number of STAT3 inhibitors have been evaluated for their antitumor activity in vitro and in vivo in experimental tumor models and several approved therapeutic agents have been reported to function as STAT3 inhibitors. Nevertheless, most STAT3 inhibitors have yet to be translated to clinical evaluation for cancer treatment, presumably because of pharmacokinetic, efficacy, and safety issues. In fact, a major cause of failure of anticancer drug development is lack of efficacy. Genetic interactions among various cancer-related pathways often provide redundant input from parallel and/or cooperative pathways that drives and maintains survival environments for cancer cells, leading to low efficacy of single-target agents. Exploiting genetic interactions of STAT3 with other cancer-related pathways may provide molecular insight into mechanisms of cancer resistance to pathway-targeted therapies and strategies for development of more effective anticancer agents and treatment regimens. This review focuses on functional regulation of STAT3 activity; possible interactions of the STAT3, RAS, epidermal growth factor receptor, and reduction-oxidation pathways; and molecular mechanisms that modulate therapeutic efficacies of STAT3 inhibitors.
Collapse
|
33
|
Brandes RP, Weissmann N, Schröder K. Redox-mediated signal transduction by cardiovascular Nox NADPH oxidases. J Mol Cell Cardiol 2014; 73:70-9. [PMID: 24560815 DOI: 10.1016/j.yjmcc.2014.02.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 02/06/2014] [Accepted: 02/07/2014] [Indexed: 11/30/2022]
Abstract
The only known function of the Nox family of NADPH oxidases is the production of reactive oxygen species (ROS). Some Nox enzymes show high tissue-specific expression and the ROS locally produced are required for synthesis of hormones or tissue components. In the cardiovascular system, Nox enzymes are low abundant and function as redox-modulators. By reacting with thiols, nitric oxide (NO) or trace metals, Nox-derived ROS elicit a plethora of cellular responses required for physiological growth factor signaling and the induction and adaptation to pathological processes. The interactions of Nox-derived ROS with signaling elements in the cardiovascular system are highly diverse and will be detailed in this article, which is part of a Special Issue entitled "Redox Signalling in the Cardiovascular System".
Collapse
Affiliation(s)
- Ralf P Brandes
- Institut für Kardiovaskuläre Physiologie, Goethe-Universität Frankfurt, Germany.
| | - Norbert Weissmann
- Giessen University Lung Center, Justus-Liebig-Universität, Gießen, Germany
| | - Katrin Schröder
- Institut für Kardiovaskuläre Physiologie, Goethe-Universität Frankfurt, Germany
| |
Collapse
|
34
|
The epidermal growth factor receptor and its ligands in cardiovascular disease. Int J Mol Sci 2013; 14:20597-613. [PMID: 24132149 PMCID: PMC3821633 DOI: 10.3390/ijms141020597] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/20/2013] [Accepted: 10/08/2013] [Indexed: 12/11/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) family and its ligands serve as a switchboard for the regulation of multiple cellular processes. While it is clear that EGFR activity is essential for normal cardiac development, its function in the vasculature and its role in cardiovascular disease are only beginning to be elucidated. In the blood vessel, endothelial cells and smooth muscle cells are both a source and a target of EGF-like ligands. Activation of EGFR has been implicated in blood pressure regulation, endothelial dysfunction, neointimal hyperplasia, atherogenesis, and cardiac remodeling. Furthermore, increased circulating EGF-like ligands may mediate accelerated vascular disease associated with chronic inflammation. Although EGFR inhibitors are currently being used clinically for the treatment of cancer, additional studies are necessary to determine whether abrogation of EGFR signaling is a potential strategy for the treatment of cardiovascular disease.
Collapse
|
35
|
Reactive oxygen species are required for 5-HT-induced transactivation of neuronal platelet-derived growth factor and TrkB receptors, but not for ERK1/2 activation. PLoS One 2013; 8:e77027. [PMID: 24086766 PMCID: PMC3785432 DOI: 10.1371/journal.pone.0077027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 09/05/2013] [Indexed: 02/05/2023] Open
Abstract
High concentrations of reactive oxygen species (ROS) induce cellular damage, however at lower concentrations ROS act as intracellular second messengers. In this study, we demonstrate that serotonin (5-HT) transactivates the platelet-derived growth factor (PDGF) type β receptor as well as the TrkB receptor in neuronal cultures and SH-SY5Y cells, and that the transactivation of both receptors is ROS-dependent. Exogenous application of H2O2 induced the phosphorylation of these receptors in a dose-dependent fashion, similar to that observed with 5-HT. However the same concentrations of H2O2 failed to increase ERK1/2 phosphorylation. Yet, the NADPH oxidase inhibitors diphenyleneiodonium chloride and apocynin blocked both 5-HT-induced PDGFβ receptor phosphorylation and ERK1/2 phosphorylation. The increases in PDGFβ receptor and ERK1/2 phosphorylation were also dependent on protein kinase C activity, likely acting upstream of NADPH oxidase. Additionally, although the ROS scavenger N-acetyl-l-cysteine abrogated 5-HT-induced PDGFβ and TrkB receptor transactivation, it was unable to prevent 5-HT-induced ERK1/2 phosphorylation. Thus, the divergence point for 5-HT-induced receptor tyrosine kinase (RTK) transactivation and ERK1/2 phosphorylation occurs at the level of NADPH oxidase in this system. The ability of 5-HT to induce the production of ROS resulting in transactivation of both PDGFβ and TrkB receptors may suggest that instead of a single GPCR to single RTK pathway, a less selective, more global RTK response to GPCR activation is occurring.
Collapse
|
36
|
Peng H, Carretero OA, Peterson EL, Yang XP, Santra K, Rhaleb NE. N-Acetyl-seryl-aspartyl-lysyl-proline inhibits ET-1-induced collagen production by preserving Src homology 2-containing protein tyrosine phosphatase-2 activity in cardiac fibroblasts. Pflugers Arch 2012; 464:415-23. [PMID: 22968858 DOI: 10.1007/s00424-012-1150-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 08/10/2012] [Accepted: 08/29/2012] [Indexed: 11/24/2022]
Abstract
N-Acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) inhibits endothelin-1 (ET-1)-induced activation of p44/42 mitogen-activated protein kinase (p44/42 MAPK) and collagen production in cultured rat cardiac fibroblasts (RCFs). However, we do not know whether its inhibitory effect on p44/42 MAPK is due to the altered activity of protein tyrosine phosphatases (PTPs), which in turn downregulate the p44/42 MAPK signaling pathway. The activity of Src homology 2-containing protein tyrosine phosphatase-2 (SHP-2) is downregulated by ET-1 in RCFs; thus, we hypothesized that Ac-SDKP inhibits ET-1-stimulated collagen production in part by preserving SHP-2 activity and thereby inhibiting p44/42 MAPK phosphorylation. When we stimulated RCFs with ET-1 in the presence or absence of Ac-SDKP, we found that (a) PTP activity was reduced by ET-1 and (b) this effect was counteracted by Ac-SDKP in a dose-dependent fashion. Next, we extracted SHP-2 from RCF lysates by immunoprecipitation and determined that (a) ET-1 inhibited SHP-2 by 40 % and (b) this effect was prevented by Ac-SDKP. However, Ac-SDKP failed to inhibit ET-1-induced p44/42 MAPK phosphorylation in RCFs treated with SHP-2 short hairpin RNA (shRNA); in contrast, in cells transfected with control shRNA, Ac-SDKP's inhibitory effect on ET-1-induced p44/42 MAPK activation remained intact. Moreover, the inhibitory effect of Ac-SDKP on ET-1-stimulated collagen production was blunted in cells treated with the SHP-1/2 inhibitor NSC-87877. Thus, we concluded that the inhibitory effect of Ac-SDKP on ET-1-stimulated collagen production by RCFs is mediated in part by preserving SHP-2 activity and thereby preventing p44/42 MAPK activation. Ac-SDKP or its analogs could represent a new therapeutic tool to treat fibrotic diseases in the cardiovascular system.
Collapse
Affiliation(s)
- Hongmei Peng
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, E & R Bldg 7121, 2799 West Grand Blvd, Detroit, MI, USA
| | | | | | | | | | | |
Collapse
|
37
|
Hsieh HL, Lin CC, Chan HJ, Yang CM, Yang CM. c-Src-dependent EGF receptor transactivation contributes to ET-1-induced COX-2 expression in brain microvascular endothelial cells. J Neuroinflammation 2012; 9:152. [PMID: 22747786 PMCID: PMC3410791 DOI: 10.1186/1742-2094-9-152] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 07/02/2012] [Indexed: 02/02/2023] Open
Abstract
Background Endothelin-1 (ET-1) is elevated and participates in the regulation of several brain inflammatory disorders. The deleterious effects of ET-1 on endothelial cells may aggravate brain inflammation mediated through the upregulation of cyclooxygenase-2 (COX-2) gene expression. However, the signaling mechanisms underlying ET-1-induced COX-2 expression in brain microvascular endothelial cells remain unclear. Objective The goal of this study was to examine whether ET-1-induced COX-2 expression and prostaglandin E2 (PGE2) release were mediated through a c-Src-dependent transactivation of epidermal growth factor receptor (EGFR) pathway in brain microvascular endothelial cells (bEnd.3 cells). Methods The expression of COX-2 induced by ET-1 was evaluated by Western blotting and RT-PCR analysis. The COX-2 regulatory signaling pathways were investigated by pretreatment with pharmacological inhibitors, short hairpin RNA (shRNA) or small interfering RNA (siRNA) transfection, chromatin immunoprecipitation (ChIP), and promoter activity reporter assays. Finally, we determined the PGE2 level as a marker of functional activity of COX-2 expression. Results First, the data showed that ET-1-induced COX-2 expression was mediated through a c-Src-dependent transactivation of EGFR/PI3K/Akt cascade. Next, we demonstrated that ET-1 stimulated activation (phosphorylation) of c-Src/EGFR/Akt/MAPKs (ERK1/2, p38 MAPK, and JNK1/2) and then activated the c-Jun/activator protein 1 (AP-1) via Gq/i protein-coupled ETB receptors. The activated c-Jun/AP-1 bound to its corresponding binding sites within COX-2 promoter, thereby turning on COX-2 gene transcription. Ultimately, upregulation of COX-2 by ET-1 promoted PGE2 biosynthesis and release in bEnd.3 cells. Conclusions These results demonstrate that in bEnd.3 cells, c-Src-dependent transactivation of EGFR/PI3K/Akt and MAPKs linking to c-Jun/AP-1 cascade is essential for ET-1-induced COX-2 upregulation. Understanding the mechanisms of COX-2 expression and PGE2 release regulated by ET-1/ETB system on brain microvascular endothelial cells may provide rational therapeutic interventions for brain injury and inflammatory diseases.
Collapse
Affiliation(s)
- Hsi-Lung Hsieh
- Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Tao-Yuan, Taiwan
| | | | | | | | | |
Collapse
|
38
|
Giordano CR, Mueller KL, Terlecky LJ, Krentz KA, Bollig-Fischer A, Terlecky SR, Boerner JL. A targeted enzyme approach to sensitization of tyrosine kinase inhibitor-resistant breast cancer cells. Exp Cell Res 2012; 318:2014-21. [PMID: 22687878 DOI: 10.1016/j.yexcr.2012.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 05/22/2012] [Accepted: 06/01/2012] [Indexed: 12/17/2022]
Abstract
Gefitinib is an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) of potential use in patients with breast cancer. Unfortunately, in clinical studies, gefitinib is often ineffective indicating that resistance to EGFR inhibitors may be a common occurrence in cancer of the breast. EGFR has been shown to be overexpressed in breast cancer, and in particular remains hyperphosphorylated in cell lines such as MDA-MB-468 that are resistant to EGFR inhibitors. Here, we investigate the cause of this sustained phosphorylation and the molecular basis for the ineffectiveness of gefitinib. We show that reactive oxygen species (ROS), known to damage cellular macromolecules and to modulate signaling cascades in a variety of human diseases including cancers, appear to play a critical role in mediating EGFR TKI-resistance. Furthermore, elimination of these ROS through use of a cell-penetrating catalase derivative sensitizes the cells to gefitinib. These results suggest a new approach for the treatment of TKI-resistant breast cancer patients specifically, the targeting of ROS and attendant downstream oxidative stress and their effects on signaling cascades.
Collapse
Affiliation(s)
- Courtney R Giordano
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Wang CH, Huang CD, Lin HC, Huang TT, Lee KY, Lo YL, Lin SM, Chung KF, Kuo HP. Increased activation of fibrocytes in patients with chronic obstructive asthma through an epidermal growth factor receptor–dependent pathway. J Allergy Clin Immunol 2012; 129:1367-76. [DOI: 10.1016/j.jaci.2012.01.038] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Revised: 01/07/2012] [Accepted: 01/10/2012] [Indexed: 10/14/2022]
|
40
|
Flamant M, Bollee G, Henique C, Tharaux PL. Epidermal growth factor: a new therapeutic target in glomerular disease. Nephrol Dial Transplant 2012; 27:1297-304. [DOI: 10.1093/ndt/gfs030] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
41
|
Ostman A, Frijhoff J, Sandin A, Böhmer FD. Regulation of protein tyrosine phosphatases by reversible oxidation. J Biochem 2011; 150:345-56. [PMID: 21856739 DOI: 10.1093/jb/mvr104] [Citation(s) in RCA: 218] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Oxidation of the catalytic cysteine of protein-tyrosine phosphatases (PTP), which leads to their reversible inactivation, has emerged as an important regulatory mechanism linking cellular tyrosine phosphorylation and signalling by reactive-oxygen or -nitrogen species (ROS, RNS). This review focuses on recent findings about the involved pathways, enzymes and biochemical mechanisms. Both the general cellular redox state and extracellular ligand-stimulated ROS production can cause PTP oxidation. Members of the PTP family differ in their intrinsic susceptibility to oxidation, and different types of oxidative modification of the PTP catalytic cysteine can occur. The role of PTP oxidation for physiological signalling processes as well as in different pathologies is described on the basis of well-investigated examples. Criteria to establish the causal involvement of PTP oxidation in a given process are proposed. A better understanding of mechanisms leading to selective PTP oxidation in a cellular context, and finding ways to pharmacologically modulate these pathways are important topics for future research.
Collapse
Affiliation(s)
- Arne Ostman
- Cancer Center Karolinska, Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | |
Collapse
|
42
|
Sardina JL, López-Ruano G, Sánchez-Sánchez B, Llanillo M, Hernández-Hernández A. Reactive oxygen species: are they important for haematopoiesis? Crit Rev Oncol Hematol 2011; 81:257-74. [PMID: 21507675 DOI: 10.1016/j.critrevonc.2011.03.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 03/15/2011] [Accepted: 03/22/2011] [Indexed: 02/07/2023] Open
Abstract
The production of reactive oxygen species (ROS) has traditionally been related to deleterious effects for cells. However, it is now widely accepted that ROS can play an important role in regulating cellular signalling and gene expression. NADPH oxidase ROS production seems to be especially important in this regard. Some lines of evidence suggest that ROS may be important modulators of cell differentiation, including haematopoietic differentiation, in both physiologic and pathologic conditions. Here we shall review how ROS can regulate cell signalling and gene expression. We shall also focus on the importance of ROS for haematopoietic stem cell (HSC) biology and for haematopoietic differentiation. We shall review the involvement of ROS and NADPH oxidases in cancer, and in particular what is known about the relationship between ROS and haematological malignancies. Finally, we shall discuss the use of ROS as cancer therapeutic targets.
Collapse
Affiliation(s)
- José L Sardina
- Department of Biochemistry and Molecular Biology, University of Salamanca, Salamanca, Spain
| | | | | | | | | |
Collapse
|
43
|
Jiang F, Zhang Y, Dusting GJ. NADPH oxidase-mediated redox signaling: roles in cellular stress response, stress tolerance, and tissue repair. Pharmacol Rev 2011; 63:218-42. [PMID: 21228261 DOI: 10.1124/pr.110.002980] [Citation(s) in RCA: 447] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
NADPH oxidase (Nox) has a dedicated function of generating reactive oxygen species (ROS). Accumulating evidence suggests that Nox has an important role in signal transduction in cellular stress responses. We have reviewed the current evidence showing that the Nox system can be activated by a collection of chemical, physical, and biological cellular stresses. In many circumstances, Nox activation fits to the cellular stress response paradigm, in that (1) the response can be initiated by various forms of cellular stresses; (2) Nox-derived ROS may activate mitogen-activated protein kinases (extracellular signal-regulated kinase, p38) and c-Jun NH(2)-terminal kinase, which are the core of the cell stress-response signaling network; and (3) Nox is involved in the development of stress cross-tolerance. Activation of the cell survival pathway by Nox may promote cell adaptation to stresses, whereas Nox may also convey signals toward apoptosis in irreversibly injured cells. At later stage after injury, Nox is involved in tissue repair by modulating cell proliferation, angiogenesis, and fibrosis. We suggest that Nox may have an integral role in cell stress responses and the subsequent tissue repair process. Understanding Nox-mediated redox signaling mechanisms may be of prominent significance at the crossroads of directing cellular responses to stress, aiming at either enhancing the stress resistance (in such situations as preventing ischemia-reperfusion injuries and accelerating wound healing) or sensitizing the stress-induced cytotoxicity for proliferative diseases such as cancer. Therefore, an optimal outcome of interventions on Nox will only be achieved when this is dealt with in a timely and disease-and stage-specific manner.
Collapse
Affiliation(s)
- Fan Jiang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Qilu Hospital, Shandong University, 107 Wen Hua Xi Road, Jinan, Shandong 250012, China.
| | | | | |
Collapse
|
44
|
Abstract
Forkhead box O (FOXO) transcription factors are at the center of an emerging paradigm that links longevity, cell fate, and tumor development. Key to these processes is the ability of FOXO to regulate, and be regulated by, oxidative stress. Perturbation of the mechanisms that tightly couple reactive oxygen species (ROS) production, oxidative stress signaling, and FOXO activity to the subsequent cellular response is a pivotal step in cancer development and progression. Consequently, the ROS-FOXO pathway is a major therapeutic target in cancer, not only as it mediates the cellular response to chemotherapy, but also because it underpins drug resistance. As the intimate and reciprocal relation between FOXO and ROS is being unravelled, new opportunities arise to develop more-effective cancer treatments that circumvent resistance to the conventional cytotoxic drugs.
Collapse
Affiliation(s)
- Stephen S Myatt
- Cancer Research-UK Labs, Department of Surgery and Cancer, Imperial College London, Hammersmith Campus, London, England, United Kingdom
| | | | | |
Collapse
|
45
|
Aqueous extract of the medicinal plant Patrinia villosa Juss. Induces angiogenesis via activation of focal adhesion kinase. Microvasc Res 2010; 80:303-9. [DOI: 10.1016/j.mvr.2010.05.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 05/23/2010] [Accepted: 05/25/2010] [Indexed: 11/30/2022]
|
46
|
Connelly SF, Isley BA, Baker CH, Gallick GE, Summy JM. Loss of tyrosine phosphatase-dependent inhibition promotes activation of tyrosine kinase c-Src in detached pancreatic cells. Mol Carcinog 2010; 49:1007-21. [PMID: 20945416 PMCID: PMC2991619 DOI: 10.1002/mc.20684] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Despite an intense focus on novel therapeutic strategies, pancreatic adenocarcinoma remains one of the deadliest human malignancies. The frequent and rapid mortality associated with pancreatic cancer may be attributed to several factors, including late diagnosis, rapid tumor invasion into surrounding tissues, and formation of distant metastases. Both local invasion and metastasis require disruption of tumor cell contacts with the extracellular matrix. Detachment of normal cells from the extracellular matrix leads to a form of programmed cell death termed anoikis. Pancreatic cancer cells avert anoikis by activation of signaling pathways that allow for adhesion-independent survival. In the present studies, cellular signaling pathways activated in detached pancreatic cancer cells were examined. We demonstrate a rapid and robust activation of Src kinase in detached pancreatic cancer cells, relative to adherent. Src autophosphorylation rapidly returned to baseline levels upon reattachment to tissue culture plastic, in the presence or absence of specific extracellular matrix proteins. Treatment of pancreatic cancer cells with tyrosine phosphatase inhibitors increased steady-state Src autophosphorylation in adherent cells and abrogated the detachment-induced increase in Src autophosphorylation. Src was found to co-immunoprecipitate with the Src homology 2 (SH2) domain containing protein tyrosine phosphatase (SHP-2) in pancreatic cancer cells, suggesting that SHP-2 may participate in regulation of Src autophosphorylation in adherent cells. Src family kinase (SFK) dependent increases in Akt and Jun N-terminal kinase (JNK) phosphorylation were observed in detached cells, indicating the potential for Src-dependent activation of survival and stress pathways in pancreatic cancer cells that have detached from the extracellular matrix.
Collapse
Affiliation(s)
| | - Beth A. Isley
- Cancer Research Institute, M. D. Anderson Cancer Center Orlando
| | - Cheryl H. Baker
- Cancer Research Institute, M. D. Anderson Cancer Center Orlando
| | - Gary E. Gallick
- Department of Genitourinary Medical Oncology, University of Texas M. D. Anderson Cancer Center
| | - Justin M. Summy
- Cancer Research Institute, M. D. Anderson Cancer Center Orlando
| |
Collapse
|
47
|
El Zein N, D'Hondt S, Sariban E. Crosstalks between the receptors tyrosine kinase EGFR and TrkA and the GPCR, FPR, in human monocytes are essential for receptors-mediated cell activation. Cell Signal 2010; 22:1437-47. [PMID: 20566383 DOI: 10.1016/j.cellsig.2010.05.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 05/18/2010] [Indexed: 12/22/2022]
Abstract
The G-protein coupled receptor (GPCR) fMLP receptor (FPR) and the two receptors tyrosine kinase (RTK), the nerve growth factor (NGF) receptor TrkA and the epidermal growth factor (EGF) receptor (EGFR) are involved in reactive oxygen species (ROS), matrix metalloproteinase-9 (MMP-9) production and CD11b membrane integrin upregulation. We show that in monocytes the three receptors crosstalk each other to modulate these pro-inflammatory mediators. Tyrphostin AG1478, the EGFR inhibitor, inhibits fMLP and NGF-associated ROS production, fMLP-associated CD11b upregulation and NGF-induced TrkA phosphorylation; K252a, the NGF receptor inhibitor, inhibits fMLP or EGF-associated ROS production, CD11b expression and EGF-induced EGFR phosphorylation; cyclosporine H, the FPR inhibitor inhibits EGF or NGF-associated ROS production, EGF-associated CD11b upregulation and prevents EGFR and TrkA phosphorylation by their respective ligand EGF and NGF. In response to fMLP, TrkA phosphorylation is inhibited by the EGFR inhibitor while EGFR phosphorylation is inhibited by the TrkA inhibitor. Receptor crosstalks are Src and ERK dependent. Down-regulation of each receptor by specific siRNA suppresses the ability of the two other receptors to promote ligand-mediated ERK phosphorylation and pro-inflammatory activities including ROS, MMP-9 production and CD11b upregulation. Thus, in monocytes GPCR ligands' activity involves activation of RTK while RTK-ligands activity engages GPCR-signalling molecules.
Collapse
Affiliation(s)
- Nabil El Zein
- Pediatric Oncology Laboratory, 1020 Brussels, Belgium.
| | | | | |
Collapse
|
48
|
Ahmed IS, Rohe HJ, Twist KE, Mattingly MN, Craven RJ. Progesterone receptor membrane component 1 (Pgrmc1): a heme-1 domain protein that promotes tumorigenesis and is inhibited by a small molecule. J Pharmacol Exp Ther 2010; 333:564-73. [PMID: 20164297 DOI: 10.1124/jpet.109.164210] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Tumorigenesis requires the concerted action of multiple pathways, including pathways that stimulate proliferation and increase metabolism. Progesterone receptor membrane component 1 (Pgrmc1) is related to cytochrome b5, binds to heme, and is associated with DNA damage resistance and apoptotic suppression. Pgrmc1 is induced by carcinogens, including dioxin, and is up-regulated in multiple types of cancer. In the present study, we found that Pgrmc1 increased in vivo tumor growth, anchorage-independent growth, and migration. Pgrmc1 also promoted proliferation in the absence of serum in A549 non-small cell lung cancer cells but enhanced proliferation regardless of serum concentration in MDA-MB-468 breast cancer cells. Pgrmc1 promotes cholesterol synthesis and binds to Insig (insulin-induced gene), Scap (sterol regulatory element binding protein cleavage activating protein), and P450 proteins, but Pgrmc1 did not affect cholesterol synthesis in lung cancer cells. Pgrmc1 is also associated with progesterone signaling and plasminogen activator inhibitor (PAI1) RNA binding protein, but neither progesterone activity nor PAI1 transcript levels were altered in Pgrmc1-knockdown lung cancer cells. Pgrmc1 homologues bind to aryl ligands identified in an in silico screen, and we have found that a Pgrmc1 ligand induced cell death in a Pgrmc1-specific manner in multiple breast and lung tumor cell lines. Our data support a role for Pgrmc1 in promoting cancer-associated phenotypes and provide a therapeutic approach for targeting Pgrmc1 with a small molecule in lung and breast cancer.
Collapse
Affiliation(s)
- Ikhlas S Ahmed
- Department of Molecular and Biomedical Pharmacology, Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | | | |
Collapse
|
49
|
Bouallegue A, Vardatsikos G, Srivastava AK. Involvement of insulin-like growth factor 1 receptor transactivation in endothelin-1-induced signaling in vascular smooth muscle cells. Can J Physiol Pharmacol 2010; 88:501-9. [DOI: 10.1139/y10-030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Endothelin-1 (ET-1) is a potent vasoactive peptide that exerts hypertrophic, migratory, and mitogenic effects in vascular smooth muscle cells. ET-1-induced activation of several signaling events has been shown to mediate the cellular effects of ET-1. In the past several years, transactivation of growth factor receptor has gained much recognition in transducing the signaling responses of ET-1. Among various growth factor receptors studied, the involvement of epidermal growth factor receptor transactivation in triggering ET-1-induced responses has been studied in some detail. However, recent studies have implicated insulin-like growth factor 1 receptor transactivation in this process. There are also some suggestions for a role of the Src family of nonreceptor protein tyrosine kinases, such as c-Src, in transducing the signaling responses of vasoactive peptides. In this review, we will examine the contribution of both insulin-like growth factor 1 receptor and c-Src in mediating ET-1-induced signaling responses in vascular smooth muscle cells.
Collapse
Affiliation(s)
- Ali Bouallegue
- Laboratory of Cell Signaling, Montreal Diabetes Research Centre, Centre de Recherche, Centre hospitalier de l’Université de Montréal (CRCHUM) – Technopole Angus Campus, and Department of Medicine, Université de Montréal, Montreal, QC H1W 4A4, Canada
| | - George Vardatsikos
- Laboratory of Cell Signaling, Montreal Diabetes Research Centre, Centre de Recherche, Centre hospitalier de l’Université de Montréal (CRCHUM) – Technopole Angus Campus, and Department of Medicine, Université de Montréal, Montreal, QC H1W 4A4, Canada
| | - Ashok K. Srivastava
- Laboratory of Cell Signaling, Montreal Diabetes Research Centre, Centre de Recherche, Centre hospitalier de l’Université de Montréal (CRCHUM) – Technopole Angus Campus, and Department of Medicine, Université de Montréal, Montreal, QC H1W 4A4, Canada
| |
Collapse
|
50
|
Wei X, Guo W, Wu S, Wang L, Huang P, Liu J, Fang B. Oxidative stress in NSC-741909-induced apoptosis of cancer cells. J Transl Med 2010; 8:37. [PMID: 20398386 PMCID: PMC2873373 DOI: 10.1186/1479-5876-8-37] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 04/16/2010] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND NSC-741909 is a novel anticancer agent that can effectively suppress the growth of several cell lines derived from lung, colon, breast, ovarian, and kidney cancers. We recently showed that NSC-741909-induced antitumor activity is associated with sustained Jun N-terminal kinase (JNK) activation, resulting from suppression of JNK dephosphorylation associated with decreased protein levels of MAPK phosphatase-1. However, the mechanisms of NSC-741909-induced antitumor activity remain unclear. Because JNK is frequently activated by oxidative stress in cells, we hypothesized that reactive oxygen species (ROS) may be involved in the suppression of JNK dephosphorylation and the cytotoxicity of NSC-741909. METHODS The generation of ROS was measured by using the cell-permeable nonfluorescent compound H2DCF-DA and flow cytometry analysis. Cell viability was determined by sulforhodamine B assay. Western blot analysis, immunofluorescent staining and flow cytometry assays were used to determine apoptosis and molecular changes induced by NSC-741909. RESULTS Treatment with NSC-741909 induced robust ROS generation and marked MAPK phosphatase-1 and -7 clustering in NSC-741909-sensitive, but not resistant cell lines, in a dose- and time-dependent manner. The generation of ROS was detectable as early as 30 min and ROS levels were as high as 6- to 8-fold above basal levels after treatment. Moreover, the NSC-741909-induced ROS generation could be blocked by pretreatment with antioxidants, such as nordihydroguaiaretic acid, aesculetin, baicalein, and caffeic acid, which in turn, inhibited the NSC-741909-induced JNK activation and apoptosis. CONCLUSION Our results demonstrate that the increased ROS production was associated with NSC-741909-induced antitumor activity and that ROS generation and subsequent JNK activation is one of the primary mechanisms of NSC-741909-mediated antitumor cell activity.
Collapse
Affiliation(s)
- Xiaoli Wei
- Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Wei Guo
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Shuhong Wu
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Li Wang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Peng Huang
- Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jinsong Liu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Bingliang Fang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|