1
|
Wong J, Gu BJ, Teoh H, Krupa M, Monif M, Slee M, Wiley JS. Flow Cytometry Identifies an Early Stage of Platelet Apoptosis Produced by Agonists of the P2X1 and P2X7 Receptors. Platelets 2022; 33:621-631. [PMID: 35042433 DOI: 10.1080/09537104.2021.1981844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Platelets express P2X1 receptors and our data also show the expression of P2X7 receptors. We studied the role of both receptors in platelet apoptosis by incubation of PRP with P2X agonists, then centrifuged to remove viable platelets, and analyzed the supernatant by flow cytometry to identify a sparse platelet-derived population that stained with MitoTracker dyes and CD41. BzATP, a potent agonist of P2X receptors, and ABT737, an activator of intrinsic apoptosis, produced altered platelets that stained moderately for annexin V and corresponded to an early stage apoptotic platelet (ESAP). Over a range of BzATP concentrations, we observed a dose-dependent formation of ESAPs between 5 and 500 uM BzATP, together with a variable formation of ESAPs at nanomolar ATP or BzATP (50-200 nM). Production of ESAPs occurred with αβ-meATP, while responses with either BzATP or αβ-meATP showed desensitization at a higher agonist concentration. Formation of ESAPs by either 100 nM or 0.5 mM BzATP was inhibited by preincubation of platelets with latrunculin A, an inhibitor of the actin cytoskeleton that prevents apoptosis. ESAP production was totally inhibited by preincubation of platelets with methyl-beta-cyclodextrin, which removes cholesterol from lipid rafts. Our data show that both P2X1 and P2X7 receptors are localized in platelet lipid rafts where P2X-agonists act to produce early stage apoptotic platelets.
Collapse
Affiliation(s)
- Joelyn Wong
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Ben J Gu
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Harry Teoh
- College of Medicine and Public Health, Flinders University of South Australia, Bedford Park, Australia
| | - Malgorzata Krupa
- College of Medicine and Public Health, Flinders University of South Australia, Bedford Park, Australia
| | - Mastura Monif
- Department of Neurology, Royal Melbourne Hospital, Parkville, Australia.,Department of Neuroscience, Monash University, Clayton, Australia
| | - Mark Slee
- College of Medicine and Public Health, Flinders University of South Australia, Bedford Park, Australia
| | - James S Wiley
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia.,Haematology Department, Box Hill Hospital, Australia
| |
Collapse
|
2
|
Abstract
The P2X7 receptor has been proposed as a novel drug target for different types of diseases associated with inflammation, including brain diseases, peripheral inflammation, and cancers. Structurally diverse P2X7 receptor antagonists, mainly negative allosteric modulators (NAMs), have been developed in recent years, and several P2X7 receptor antagonists are currently evaluated in clinical trials. The P2X7 receptor requires high micro- to even millimolar ATP concentrations to be activated. Selective agonists for the P2X7 receptor are not available. Positive allosteric modulators (PAMs) have been described, but PAMs with high potency and selectivity are still lacking. This chapter discusses medicinal chemistry approaches toward the development of P2X7 receptor modulators and presents a selection of recommended tool compounds for studying P2X7 receptors in humans and rodents.
Collapse
Affiliation(s)
- Christa E Müller
- Pharmaceutical & Medicinal Chemistry, PharmaCenter Bonn, Pharmaceutical Institute, University of Bonn, Bonn, Germany.
| | - Vigneshwaran Namasivayam
- Pharmaceutical & Medicinal Chemistry, PharmaCenter Bonn, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
3
|
P2X7 Receptors Mediate CO-Induced Alterations in Gene Expression in Cultured Cortical Astrocytes—Transcriptomic Study. Mol Neurobiol 2018; 56:3159-3174. [DOI: 10.1007/s12035-018-1302-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 08/06/2018] [Indexed: 01/31/2023]
|
4
|
Murrell-Lagnado RD. Regulation of P2X Purinergic Receptor Signaling by Cholesterol. CURRENT TOPICS IN MEMBRANES 2017; 80:211-232. [PMID: 28863817 DOI: 10.1016/bs.ctm.2017.05.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
P2X receptors are cation-selective channels that are activated by the binding of extracellular ATP. They have a high permeability to Ca2+, Na+, and K+ and are expressed widely throughout the nervous, immune, cardiovascular, skeletal, gastrointestinal, respiratory, and endocrine systems. Seven mammalian subtypes of P2X receptor subunits have been identified, P2X1-7, and those that function as homotrimeric receptors (P2X1, 2, 3, 4, and 7) are targeted to lipid rafts, although they show limited resistance to solubilization by Triton X-100. Recent crystal structures of P2X3 and P2X4 receptors have provided considerable high-resolution information about the architecture of this family of receptors and yet the molecular details of how they are regulated by cholesterol are unknown. Currents mediated by the P2X1-4 receptors are either inhibited or relatively insensitive to cholesterol depletion, but there is no clear evidence to support the direct binding of cholesterol to these receptors. In contrast, the activity of the low-affinity, proinflammatory P2X7 receptor is potentiated by cholesterol depletion and regions within the proximal C-terminus play an important role in coupling changes in cholesterol to the gating of the pore. Based upon our understanding of the lipid signaling events that are triggered downstream of P2X7 receptor activation, a change in the levels of cholesterol may contribute to the sensitization of receptor currents and the dilation of the pore that occurs following prolonged, high-level stimulation. This chapter focuses on the regulation of P2X7 receptor signaling by cholesterol and our current understanding of the mechanisms that underlie this.
Collapse
Affiliation(s)
- Ruth D Murrell-Lagnado
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom.
| |
Collapse
|
5
|
Hempel C, Nörenberg W, Sobottka H, Urban N, Nicke A, Fischer W, Schaefer M. The phenothiazine-class antipsychotic drugs prochlorperazine and trifluoperazine are potent allosteric modulators of the human P2X7 receptor. Neuropharmacology 2013; 75:365-79. [PMID: 23954492 DOI: 10.1016/j.neuropharm.2013.07.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 07/19/2013] [Accepted: 07/22/2013] [Indexed: 01/31/2023]
Abstract
P2X7, an ATP-gated cation channel, is involved in immune cell activation, hyperalgesia and neuropathic pain. By regulating cytokine release in the brain, P2X7 has been linked to the pathophysiology of mood disorders and schizophrenia. We here assess the impact of 123 drugs that act in the central nervous system on human P2X7. Most prominently, the tricyclic antipsychotics prochlorperazine (PCP) and trifluoperazine (TFP) potently inhibited P2X7-mediated Ca2+ entry, dye permeation and ionic currents. In divalent cation-containing bath solutions or after prolonged incubation, ATP-evoked P2X7 currents were inhibited by 10 μM PCP. This effect was not related to dopamine receptor antagonism. Surprisingly, PCP co-applied with ATP enhanced inward currents in bath solutions with low divalent cation concentrations. Intracellular perfusion with PCP did not substitute for the extracellularly applied drug, indicating that its binding sites are accessible from the extracellular space. Since P2X7 current potentiation by PCP was voltage-dependent, at least one site may be located within the electrical field of the membrane. While the channel opening and closure kinetic was altered by PCP, the apparent affinity of ATP remained unchanged (potentiation) or changed slightly (inhibition). Measurements in human monocyte-derived macrophages confirmed the PCP-induced inhibition of ATP-evoked Ca2+ influx, Yo-Pro-1 permeability, and whole cell currents. Interestingly, neither heterologously expressed rat or mouse P2X7 nor native P2X7 in rat astrocyte cultures or in mouse bone marrow-derived macrophages were inhibited by perazines with a similar potency. We conclude that perazine-type neuroleptics are potent, but species-selective allosteric modulators of human but not murine P2X7 receptors.
Collapse
Affiliation(s)
- Christoph Hempel
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, Medical Faculty, University of Leipzig, Härtelstrasse 16-18, 04107 Leipzig, Germany
| | - Wolfgang Nörenberg
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, Medical Faculty, University of Leipzig, Härtelstrasse 16-18, 04107 Leipzig, Germany
| | - Helga Sobottka
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, Medical Faculty, University of Leipzig, Härtelstrasse 16-18, 04107 Leipzig, Germany
| | - Nicole Urban
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, Medical Faculty, University of Leipzig, Härtelstrasse 16-18, 04107 Leipzig, Germany
| | - Annette Nicke
- Max-Planck-Institute for Experimental Medicine, Hermann Rein-Str. 3, 37075 Göttingen, Germany
| | - Wolfgang Fischer
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, Medical Faculty, University of Leipzig, Härtelstrasse 16-18, 04107 Leipzig, Germany
| | - Michael Schaefer
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, Medical Faculty, University of Leipzig, Härtelstrasse 16-18, 04107 Leipzig, Germany.
| |
Collapse
|
6
|
Cervetto C, Alloisio S, Frattaroli D, Mazzotta MC, Milanese M, Gavazzo P, Passalacqua M, Nobile M, Maura G, Marcoli M. The P2X7 receptor as a route for non-exocytotic glutamate release: dependence on the carboxyl tail. J Neurochem 2013; 124:821-31. [PMID: 23293841 DOI: 10.1111/jnc.12143] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 12/24/2012] [Accepted: 01/03/2013] [Indexed: 11/28/2022]
Abstract
P2X7 receptors trigger Ca(2+) -dependent exocytotic glutamate release, but also function as a route for non-exocytotic glutamate release from neurons or astrocytes. To gain an insight into the mechanisms involving the P2X7 receptor as a direct pathway for glutamate release, we compared the behavior of a full-length rat P2X7 receptor, a truncated rat P2X7 receptor in which the carboxyl tail had been deleted, a rat P2X7 receptor with the 18-amino acid cysteine-rich motif of the carboxyl tail deleted, and a rat P2X2 receptor, all of which are expressed in HEK293 cells. We found that the P2X7 receptor function as a route for glutamate release was antagonized in a non-competitive way by extracellular Mg(2+) , did not require the recruitment of pore-forming molecules, and was dependent on the carboxyl tail. Indeed, the truncated P2X7 receptor and the P2X7 receptor with the deleted cysteine-rich motif both lost their function as a pathway for glutamate release, while still evoking intracellular Ca(2+) elevation. No glutamate efflux was observed through the P2X2 receptor. Notably, HEK293 cells (lacking the machinery for Ca(2+) -dependent exocytosis), when transfected with P2X7 receptors, appear to be a suitable model for investigating the P2X7 receptor as a route for non-exocytotic glutamate efflux.
Collapse
|
7
|
Nörenberg W, Sobottka H, Hempel C, Plötz T, Fischer W, Schmalzing G, Schaefer M. Positive allosteric modulation by ivermectin of human but not murine P2X7 receptors. Br J Pharmacol 2013; 167:48-66. [PMID: 22506590 DOI: 10.1111/j.1476-5381.2012.01987.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE In mammalian cells, the anti-parasitic drug ivermectin is known as a positive allosteric modulator of the ATP-activated ion channel P2X4 and is used to discriminate between P2X4- and P2X7-mediated cellular responses. In this paper we provide evidence that the reported isoform selectivity of ivermectin is a species-specific phenomenon. EXPERIMENTAL APPROACH Complementary electrophysiological and fluorometric methods were applied to evaluate the effect of ivermectin on recombinantly expressed and on native P2X7 receptors. A biophysical characterization of ionic currents and of the pore dilation properties is provided. KEY RESULTS Unexpectedly, ivermectin potentiated currents in human monocyte-derived macrophages that endogenously express hP2X7 receptors. Likewise, currents and [Ca(2+) ](i) influx through recombinant human (hP2X7) receptors were potently enhanced by ivermectin at submaximal or saturating ATP concentrations. Since intracellular ivermectin did not mimic or prevent its activity when applied to the bath solution, the binding site of ivermectin on hP2X7 receptors appears to be accessible from the extracellular side. In contrast to currents through P2X4 receptors, ivermectin did not cause a delay in hP2X7 current decay upon ATP removal. Interestingly, NMDG(+) permeability and Yo-Pro-1 uptake were not affected by ivermectin. On rat or mouse P2X7 receptors, ivermectin was only poorly effective, suggesting a species-specific mode of action. CONCLUSIONS AND IMPLICATIONS The data indicate a previously unrecognized species-specific modulation of human P2X7 receptors by ivermectin that should be considered when using this cell-biological tool in human cells and tissues.
Collapse
Affiliation(s)
- W Nörenberg
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
8
|
Di Garbo A, Alloisio S, Nobile M. P2X7 receptor-mediated calcium dynamics in HEK293 cells: experimental characterization and modelling approach. Phys Biol 2012; 9:026001. [PMID: 22473129 DOI: 10.1088/1478-3975/9/2/026001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The P2X7 receptor (P2X7R) induces ionotropic Ca²⁺ signalling in different cell types. It plays an important role in the immune response and in the nervous system. Here, the mechanisms underlying intracellular Ca²⁺ variations evoked by 3'-O-(4-benzoyl)benzoyl-ATP (BzATP), a potent agonist of the P2X7R, in transfected HEK293 cells, are investigated both experimentally and theoretically. We propose a minimal model of P2X7R that is capable of reproducing, qualitatively and quantitatively, the experimental data. This approach was also adopted for the P2X7R variant, which lacks the entire C-terminus tail (trP2X7R). Then we introduce a biophysical model describing the Ca²⁺ dynamics in HEK293. Our model gives an account of the ionotropic Ca²⁺ influx evoked by BzATP on the basis of the kinetics model of P2X7R. To explain the complex Ca²⁺ responses evoked by BzATP, the model predicted that an impairment in Ca²⁺ extrusion flux through the plasma membrane is a key factor for Ca²⁺ homeostasis in HEK293 cells.
Collapse
Affiliation(s)
- A Di Garbo
- CNR-Institute of Biophysics, via G Moruzzi 1, 56124 Pisa, Italy.
| | | | | |
Collapse
|
9
|
Lemaire I, Falzoni S, Zhang B, Pellegatti P, Di Virgilio F. The P2X7 receptor and Pannexin-1 are both required for the promotion of multinucleated macrophages by the inflammatory cytokine GM-CSF. THE JOURNAL OF IMMUNOLOGY 2011; 187:3878-87. [PMID: 21865551 DOI: 10.4049/jimmunol.1002780] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The P2X(7) receptor (P2X(7)R), an ATP-gated ion channel, has been implicated in the process of cell-to-cell fusion into multinucleated macrophages (MA), but its contribution to MA fusion driven by physiological/pathological stimuli is not clearly established. Based on several lines of evidence, we demonstrate that P2X(7)R is critical for the induction of multinucleated MA by the inflammatory cytokine GM-CSF: 1) pharmacological inhibition of P2X(7)R with oxidized ATP (oATP), KN-62, and the selective antagonist A740003 abrogated GM-CSF action on rat alveolar MA and murine peritoneal MA; 2) a murine J774 P2X(7) low MA clone, selected for defective P2X(7)R function, was unresponsive; 3) MA from mice lacking P2X(7)R failed to respond to GM-CSF, in contrast to wild-type. GM-CSF also stimulated ATP-induced membrane permeabilization in J774 P2X(7) high MA and rat alveolar MA, an effect absent in the P2X(7) low MA clone and inhibited by the P2X(7) blockers oATP and KN-62. Notably, the stimulatory effects of GM-CSF on pore formation and MA fusion were both inhibited by blocking functional Pannexin-1 (Panx-1), and GM-CSF failed to stimulate MA fusion in cells from Panx-1 knockout mice. We provide further evidence that extracellular ATP release from peritoneal MA is dependent on P2X(7) but not on Panx-1 expression and that its metabolism to adenosine mediates P2X(7)-dependent MA fusion. These data demonstrate that both P2X(7) and Panx-1 are required for GM-CSF promotion of MA fusion but likely act independently through different signaling pathway(s).
Collapse
Affiliation(s)
- Irma Lemaire
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.
| | | | | | | | | |
Collapse
|
10
|
Nörenberg W, Hempel C, Urban N, Sobottka H, Illes P, Schaefer M. Clemastine potentiates the human P2X7 receptor by sensitizing it to lower ATP concentrations. J Biol Chem 2011; 286:11067-81. [PMID: 21262970 PMCID: PMC3064161 DOI: 10.1074/jbc.m110.198879] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 01/10/2011] [Indexed: 01/08/2023] Open
Abstract
P2X7 receptors have emerged as potential drug targets for the treatment of medical conditions such as e.g. rheumatoid arthritis and neuropathic pain. To assess the impact of pharmaceuticals on P2X7, we screened a compound library comprising approved or clinically tested drugs and identified several compounds that augment the ATP-triggered P2X7 activity in a stably transfected HEK293 cell line. Of these, clemastine markedly sensitized Ca(2+) entry through P2X7 to lower ATP concentrations. Extracellularly but not intracellularly applied clemastine rapidly and reversibly augmented P2X7-mediated whole-cell currents evoked by non-saturating ATP concentrations. Clemastine also accelerated the ATP-induced pore formation and Yo-Pro-1 uptake, increased the fractional NMDG(+) permeability, and stabilized the open channel conformation of P2X7. Thus, clemastine is an extracellularly binding allosteric modulator of P2X7 that sensitizes P2X7 to lower ATP concentrations and facilitates its pore dilation. The activity of clemastine on native P2X7 receptors, Ca(2+) entry, and whole-cell currents was confirmed in human monocyte-derived macrophages. Similar effects were observed in murine bone marrow-derived macrophages. Consistent with the data on recombinant P2X7, clemastine augmented the ATP-induced cation entry and Yo-Pro-1 uptake. In accordance with the observation that P2X7 controls the cytokine release from LPS-primed macrophages, we found that clemastine augmented the IL-1β release from LPS-primed human macrophages. Collectively, these data point to a sensitization of the recombinantly or natively expressed human P2X7 receptor toward its physiological activator, ATP, possibly leading to a modulation of macrophage-dependent immune responses.
Collapse
Affiliation(s)
- Wolfgang Nörenberg
- From the Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, 04107 Leipzig, Germany
| | - Christoph Hempel
- From the Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, 04107 Leipzig, Germany
| | - Nicole Urban
- From the Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, 04107 Leipzig, Germany
| | - Helga Sobottka
- From the Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, 04107 Leipzig, Germany
| | - Peter Illes
- From the Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, 04107 Leipzig, Germany
| | - Michael Schaefer
- From the Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, 04107 Leipzig, Germany
| |
Collapse
|
11
|
Abstract
Astrocytes constitute a major group of glial cells which were long regarded as passive elements, fulfilling nutritive and structural functions for neurons. Calcium rise in astrocytes propagating to neurons was the first demonstration of direct interaction between the two cell types. Since then, calcium has been widely used, not only as an indicator of astrocytic activity but also as a stimulator switch to control astrocyte physiology. As a result, astrocytes have been elevated from auxiliaries to neurons, to cells involved in processing synaptic information. Curiously, while there is evidence that astrocytes play an important role in synaptic plasticity, the data relating to calcium's pivotal role are inconsistent. In this review, we will detail the various mechanisms of calcium flux in astrocytes, then briefly present the calcium-dependent mechanisms of gliotransmitter release. Finally, we will discuss the role of calcium in plasticity and present alternative explanations that could reconcile the conflicting results published recently.
Collapse
|
12
|
Marcoli M, Cervetto C, Paluzzi P, Guarnieri S, Alloisio S, Thellung S, Nobile M, Maura G. P2X7 pre-synaptic receptors in adult rat cerebrocortical nerve terminals: a role in ATP-induced glutamate release. J Neurochem 2010; 105:2330-42. [PMID: 18315565 DOI: 10.1111/j.1471-4159.2008.05322.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although growing evidence suggests that extracellular ATP might play roles in the control of astrocyte/neuron crosstalk in the CNS by acting on P2X(7) receptors, it is still unclear whether neuronal functions can be attributed to P2X(7) receptors. In the present paper, we investigate the location, pharmacological profile, and function of P2X(7) receptors on cerebrocortical nerve terminals freshly prepared from adult rats, by measuring glutamate release and calcium accumulation. The preparation chosen (purified synaptosomes) ensures negligible contamination of non-neuronal cells and allows exposure of 'nude' release-regulating pre-synaptic receptors. To confirm the results obtained, we also carried out specific experiments on human embryonic kidney 293 cells which had been stably transfected with rat P2X(7) receptors. Together, our findings suggest that (i) P2X(7) receptors are present in a subpopulation of adult rat cerebrocortical nerve terminals; (ii) P2X(7) receptors are localized on glutamatergic nerve terminals; (iii) P2X(7) receptors play a significant role in ATP-evoked glutamate efflux, which involves Ca(2+)-dependent vesicular release; and (iv) the P2X(7) receptor itself constitutes a significant Ca(2+)-independent mode of exit for glutamate.
Collapse
Affiliation(s)
- Manuela Marcoli
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Alloisio S, Di Garbo A, Barbieri R, Bozzo L, Ferroni S, Nobile M. Evidence for two conductive pathways in P2X receptor: differences in modulation and selectivity. J Neurochem 2010; 113:796-806. [PMID: 20180885 DOI: 10.1111/j.1471-4159.2010.06649.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The P2X(7) receptor (P2X(7)R) is an ATP-gated cation channel whose biophysical properties remain to be unravelled unequivocally. Its activity is modulated by divalent cations and organic messengers such as arachidonic acid (AA). In this study, we analysed the differential modulation of magnesium (Mg(2+)) and AA on P2X(7)R by measuring whole-cell currents and intracellular Ca(2+) ([Ca(2+)](i)) and Na(+) ([Na(+)](i)) dynamics in HEK293 cells stably expressing full-length P2X(7)R and in cells endowed with the P2X(7)R variant lacking the entire C-terminus tail (trP2X(7)R), which is thought to control the pore activation. AA induced a robust potentiation of the P2X(7)R- and trP2X(7)R-mediated [Ca(2+)](i) rise but did not affect the ionic currents in both conditions. Extracellular Mg(2+) reduced the P2X7R- and trP2X(7)R-mediated [Ca(2+)](i) rise in a dose-dependent manner through a competitive mechanism. The modulation of the magnitude of the P2X(7)R-mediated ionic current and [Na(+)](i) rise were strongly dependent on Mg(2+) concentration but occurred in a non-competitive manner. In contrast, in cells expressing the trP2X(7)R, the small ionic currents and [Na(+)](i) signals were totally insensitive to Mg(2+). Collectively, these results support the tenet of a functional structure of P2X(7)R possessing at least two distinct conductive pathways one for Ca(2+) and another for monovalent ions, with the latter which depends on the presence of the receptor C-terminus.
Collapse
Affiliation(s)
- Susanna Alloisio
- Institute of Biophysics, National Research Council, Genoa, Italy
| | | | | | | | | | | |
Collapse
|
14
|
Nagasawa K, Miyaki J, Kido Y, Higashi Y, Nishida K, Fujimoto S. Possible involvement of PPAR gamma in the regulation of basal channel opening of P2X7 receptor in cultured mouse astrocytes. Life Sci 2009; 84:825-31. [PMID: 19348833 DOI: 10.1016/j.lfs.2009.03.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 03/16/2009] [Accepted: 03/25/2009] [Indexed: 10/20/2022]
Abstract
AIMS Recently, we demonstrated that cultured mouse astrocytes exhibited basal channel opening of P2X7 receptor (P2X7R) in the absence of any exogenous ligand, but the regulatory mechanism involved was not elucidated. Since our preliminary experiments suggested possible involvement of peroxisome proliferator-activated receptor (PPAR) gamma in the regulation, we examined whether PPAR gamma regulated P2X7R basal channel opening in mouse astrocytes. MAIN METHODS P2X7R channel opening was assessed as to the uptake of a marker dye, YO-PRO-1 (YP), in the presence or absence of agonists and antagonists for PPAR gamma under a fluorescence microscope. Expression of PPAR gamma was evaluated by Western blotting and immunocytochemistry. KEY FINDINGS NSAIDs such as flufenamic acid (FFA) and indomethacin, which are a cyclooxygenase inhibitor and a PPAR gamma agonist, showed enhancing and inhibiting effects on YP uptake at low and high concentrations, respectively, and the enhanced uptake was abolished by periodate-oxidized ATP (oxATP), a selective P2X7R antagonist. The PPAR gamma agonists 15-deoxy-Delta(12,14)-prostaglandin J(2) and ciglitazone decreased the basal and FFA-enhanced YP uptake, while the antagonist GW9662 increased YP uptake, this effect being blocked by the agonists and also by oxATP. PPAR gamma was distributed in the nucleus and cytosolic/membrane fraction of cultured mouse astrocytes. SIGNIFICANCE These findings indicate that basal channel opening of P2X7R in mouse astrocytes is at least in part regulated by PPAR gamma.
Collapse
Affiliation(s)
- Kazuki Nagasawa
- Department of Environmental Biochemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan.
| | | | | | | | | | | |
Collapse
|
15
|
Functional evidence for presynaptic P2X7 receptors in adult rat cerebrocortical nerve terminals. FEBS Lett 2008; 582:3948-53. [PMID: 18977353 DOI: 10.1016/j.febslet.2008.10.041] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 10/13/2008] [Accepted: 10/17/2008] [Indexed: 01/10/2023]
Abstract
The presynaptic P2X7 receptor (P2X7R) plays an important role in the modulation of transmitter release. We recently demonstrated that, in nerve terminals of the adult rat cerebral cortex, P2X7R activation induced Ca2+-dependent vesicular glutamate release and significant Ca2+-independent glutamate efflux through the P2X7R itself. In the present study, we investigated the effect of the new selective P2X(7)R competitive antagonist 3-(5-(2,3-dichlorophenyl)-1H-tetrazol-1-yl)methyl pyridine (A-438079) on cerebrocortical terminal intracellular calcium (intrasynaptosomal calcium concentration;[Ca2+](i) signals and glutamate release, and evaluated whether P2X7R immunoreactivity was consistent with these functional tests. A-438079 inhibited functional responses. P2X7R immunoreactivity was found in about 45% of cerebrocortical terminals, including glutamatergic and non-glutamatergic terminals. This percentage was similar to that of synaptosomes showing P2X7R-mediated [Ca2+]i signals. These findings provide compelling evidence of functional presynaptic P2X7R in cortical nerve terminals.
Collapse
|
16
|
Barbieri R, Alloisio S, Ferroni S, Nobile M. Differential crosstalk between P2X7 and arachidonic acid in activation of mitogen-activated protein kinases. Neurochem Int 2008; 53:255-62. [PMID: 18804898 DOI: 10.1016/j.neuint.2008.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 05/27/2008] [Indexed: 11/27/2022]
Abstract
Accumulating evidence indicates that astroglial syncytium plays key role in normal and pathological brain functions. Astrocytes both in vitro and in situ respond to extracellular adenine-based nucleotides via the activation of P2 receptors. Massive release of ATP from neurons and glial cells occurs as a result of pathological conditions of the brain leading to neuroinflammation and involving P2X7 receptors. In this study, we investigated whether P2X7 stimulation on cultured cortical astrocytes promoted a differential activation of mitogen-activated protein kinases (MAPKs), and whether the second messenger arachidonic acid (AA), which is also a key modulator of neuroinflammation, affected the P2X7-mediated MAPK phosphorylation. The results show that the synthetic P2X7 receptor agonist 2',3'-O-(4-benzoyl)benzoyl-ATP (BzATP), induced a concentration-dependent phosphorylation of MAPK ERK1/2, JNK and p38. Stimulation of ERK1/2, JNK and p38 phosphorylation was also obtained by pathophysiological levels of extracellularly applied AA. Interestingly, a robust potentiation of ERK1/2 phosphorylation was elicited by co-application of BzATP and AA, whereas no differences were observed in JNK or p38 phosphosignals. The kinases activation showed a differential dependence on the presence of extracellular Ca(2+). The potentiation of BzATP-mediated ERK1/2 phosphorylation was also observed in human embryonic kidney cells (HEK293) stably transfected with rat P2X7, but not in HEK cells expressing truncated P2X7 receptor lacking the full cytoplasmic carboxy-terminal or in those carrying the structurally related rat P2X2. AA and BzATP synergism in ERK1/2 activation was abolished by cyclo-oxygenase and lipoxygenase pathway inhibitors. The result that ERK1/2-mediated transduction pathway is synergistically modulated by ATP and AA signalling depicts possible novel pharmacological targets for interfering with pathological activation of astroglial cells.
Collapse
|
17
|
Tomasinsig L, Pizzirani C, Skerlavaj B, Pellegatti P, Gulinelli S, Tossi A, Di Virgilio F, Zanetti M. The human cathelicidin LL-37 modulates the activities of the P2X7 receptor in a structure-dependent manner. J Biol Chem 2008; 283:30471-81. [PMID: 18765670 DOI: 10.1074/jbc.m802185200] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Extracellular ATP, released at sites of inflammation or tissue damage, activates the P2X(7) receptor, which in turn triggers a range of responses also including cell proliferation. In this study the ability of the human cathelicidin LL-37 to stimulate fibroblast growth was inhibited by commonly used P2X(7) blockers. We investigated the structural requirements of the growth-promoting activity of LL-37 and found that it did not depend on helix sense (the all-d analog was active) but did require a strong helix-forming propensity in aqueous solution (a scrambled analog and primate LL-37 orthologs devoid of this property were inactive). The involvement of P2X(7) was analyzed using P2X(7)-expressing HEK293 cells. LL-37 induced proliferation of these cells, triggered Ca(2+) influx, promoted ethidium bromide uptake, and synergized with benzoyl ATP to enhance the pore and channel functions of P2X(7). The activity of LL-37 had an absolute requirement for P2X(7) expression as it was blocked by the P2X(7) inhibitor KN-62, was absent in cells lacking P2X(7), and was restored by P2X(7) transfection. Of particular interest, LL-37 led to pore-forming activity in cells expressing a truncated P2X(7) receptor unable to generate the non-selective pore typical of the full-length receptor. Our results indicate that P2X(7) is involved in the proliferative cell response to LL-37 and that the structural/aggregational properties of LL-37 determine its capacity to modulate the activation state of P2X(7).
Collapse
Affiliation(s)
- Linda Tomasinsig
- Department of Biomedical Sciences and Technology, University of Udine, 33100 Udine, Italy
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Arachidonic acid (AA), a polyunsaturated fatty acid with four double bonds, has multiple actions on living cells. Many of these effects are mediated by an action of AA or its metabolites on ion channels. During the last 10 years, new types of ion channels, transient receptor potential (TRP) channels, store-operated calcium entry (SOCE) channels and non-SOCE channels have been studied. This review summarizes our current knowledge about the effects of AA on TRP and non-SOCE channels as well as classical ion channels. It aims to distinguish between effects of AA itself and effects of AA metabolites. Lipid mediators are of clinical interest because some of them (for example, leukotrienes) play a role in various diseases, others (such as prostaglandins) are targets for pharmacological therapeutic intervention.
Collapse
|
19
|
Doengi M, Deitmer JW, Lohr C. New evidence for purinergic signaling in the olfactory bulb: A2A and P2Y1 receptors mediate intracellular calcium release in astrocytes. FASEB J 2008; 22:2368-78. [PMID: 18310463 DOI: 10.1096/fj.07-101782] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Purinergic receptors play a key role in neuron-glia and glia-neuron interactions. In the present study, we have recorded cytosolic Ca(2+) responses using confocal imaging in astrocytes of acute olfactory bulb slices from mice (postnatal days 3-8). By application of agonists and antagonists, we identified two types of receptors, P2Y(1) and A(2A), that mediated Ca(2+) responses attributable to Ca(2+) release from intracellular stores in the astrocytes. Both receptor types were activated by application of ATP and ADP; however, when enzymatic ATP degradation was suppressed by the alkaline phosphatase inhibitor levamisole, ATP only activated MRS2179-sensitive P2Y(1) but not ZM241385-sensitive A(2A) receptors. The dose-response curve for A(2A) receptors activated by adenosine revealed an EC(50) of 0.3 microM, one order of magnitude smaller than the EC(50) of 5 microM determined for P2Y(1) receptors activated by ADP. Electrical stimulation of the olfactory nerve in the presence of glutamate receptor blockers to suppress excitation of postsynaptic neurons evoked Ca(2+) responses in most of the astrocytes, which were inhibited by blocking both P2Y(1) and A(2A) receptors. Our results indicate that olfactory nerve terminals release not only glutamate, but also ATP, which activates P2Y(1) receptors and, after degradation of ATP to adenosine, A(2A) receptors in astrocytes.
Collapse
Affiliation(s)
- Michael Doengi
- Abteilung für Allgemeine Zoologie, University of Kaiserslautern, POB 3049, D-67653 Kaiserslautern, Germany
| | | | | |
Collapse
|
20
|
Jabs R, Matthias K, Grote A, Grauer M, Seifert G, Steinhäuser C. Lack of P2X receptor mediated currents in astrocytes and GluR type glial cells of the hippocampal CA1 region. Glia 2007; 55:1648-55. [PMID: 17849469 DOI: 10.1002/glia.20580] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Purinergic signalling plays a major role in intercellular communication between neurons and glial cells. Glial cells express metabotropic receptors for ATP and adenosine, the latter being activated after ATP cleavage through extracellular ecto-ATPase activity. Ionotropic receptors for extracellular ATP, so called P2X receptors, might contribute to neuron-glia signalling. However, experimental evidence for the presence of these receptors in glial cells is less convincing so far. In a previous study, immunohistochemistry was used to identify P2X(1-4,6,7) receptor protein in S100beta-positive hippocampal glial cells. Applying patch clamp and fast application techniques, here we challenged the question of the functional expression of these receptors. Time correlated membrane currents served as test criterion for receptor function, since P2X receptor activation leads to the opening of unspecific cation channels in a millisecond time scale. Agonists were applied via short pressure puffs, with a fast concentration clamp method and through UV flash triggered photolysis of caged ATP. Two types of murine hippocampal macroglial cells, both labelled by the expression of green fluorescence protein driven by the human glial fibrillary acid protein promoter, were analysed in acute brain slices and in freshly dissociated cell suspensions. Surprisingly, ATP or related agonists completely failed to activate currents. Additionally, changes in spontaneously occurring glial postsynaptic currents were never observed. These results have been verified using rat and human hippocampal tissue as well as investigating cells from P2X7 knock out mice. It is concluded that in acute preparations, astroglial cells of the hippocampal CA1 subfield do not express functional P2X receptors.
Collapse
Affiliation(s)
- Ronald Jabs
- Institute of Cellular Neurosciences, Medical School, University of Bonn, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany.
| | | | | | | | | | | |
Collapse
|
21
|
Michel AD, Chambers LJ, Walter DS. Negative and positive allosteric modulators of the P2X(7) receptor. Br J Pharmacol 2007; 153:737-50. [PMID: 18071294 DOI: 10.1038/sj.bjp.0707625] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND AND PURPOSE Antagonist effects at the P2X(7) receptor are complex with many behaving in a non-competitive manner. In this study, the effects of N-[2-({2-[(2-hydroxyethyl)amino]ethyl}amino)-5-quinolinyl]-2-tricyclo[3.3.1.1(3,7)]dec-1-ylacetamide (compound-17) and N (2)-(3,4-difluorophenyl)-N (1)-[2-methyl-5-(1-piperazinylmethyl)phenyl]glycinamide dihydrochloride (GW791343) on P2X(7) receptors were examined and their mechanism of action explored. EXPERIMENTAL APPROACH Antagonist effects were studied by measuring agonist-stimulated ethidium accumulation in cells expressing human or rat recombinant P2X(7) receptors and in radioligand binding studies. KEY RESULTS Compound-17 and GW791343 were non-competitive inhibitors of human P2X(7) receptors. Receptor protection studies using decavanadate and pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS) showed that neither compound-17 nor GW791343 competitively interacted at the ATP binding site and so were probably negative allosteric modulators of the P2X(7) receptor. GW791343 prevented the slowly reversible blockade of the human P2X(7) receptor produced by compound-17 and inhibited [(3)H]-compound-17 binding to the P2X(7) receptor suggesting they may bind to similar or interacting sites. At rat P2X(7) receptors, compound-17 was a negative allosteric modulator but the predominant effect of GW791343 was to increase agonist responses. Antagonist interaction and radioligand binding studies revealed that GW791343 did not interact at the ATP binding site but did interact with the compound-17 binding site suggesting that GW791343 is a positive allosteric modulator of the rat P2X(7) receptor. CONCLUSIONS Compound-17 was a negative allosteric modulator of human and rat P2X(7) receptors. GW791343 was a negative allosteric modulator of the human P2X(7) receptor but at the rat P2X(7) receptor its predominant effect was positive allosteric modulation. These compounds should provide valuable tools for mechanistic studies on P2X(7) receptors.
Collapse
Affiliation(s)
- A D Michel
- Neurology Centre of Excellence for Drug Discovery, GlaxoSmithKline Research & Development Limited, Harlow, Essex, UK.
| | | | | |
Collapse
|
22
|
Li B, Gu L, Zhang H, Huang J, Chen Y, Hertz L, Peng L. Up-regulation of cPLA(2) gene expression in astrocytes by all three conventional anti-bipolar drugs is drug-specific and enzyme-specific. Psychopharmacology (Berl) 2007; 194:333-45. [PMID: 17594078 DOI: 10.1007/s00213-007-0853-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Accepted: 06/04/2007] [Indexed: 01/23/2023]
Abstract
RATIONALE Common biological effects by all three conventional anti-bipolar drugs, the lithium ion (Li(+)), carbamazepine, and valproic acid, are important because identical effects may provide information about the pathophysiology of affective disorders. It has been reported that chronic treatment with either drug in vivo down-regulates the turnover of arachidonic acid in brain. This reaction is catalyzed by Ca(2+)-dependent phospholipase A(2) (cPLA(2)), the expression of which was down-regulated by Li(+) or carbamazepine but not by valproic acid; expression of two other PLA subtypes, iPLA(2) and sPLA(2) was unaffected. cPLA(2) is amply expressed in astrocytes, and in the present study, effects of 1-4 weeks of treatment with clinically relevant concentrations of each of the three anti-bipolar drugs on cPLA(2), iPLA(2), and sPLA(2) mRNA and protein expression were determined in primary cultures of mouse astrocytes by reverse transcription polymerase chain reaction (RT-PCR) and immunoblotting. RESULTS Two or more weeks treatment with Li(+) concentrations below 2 mM, carbamazepine or valproic acid up-regulated mRNA and protein expression of cPLA(2), but had no effect on iPLA(2) and sPLA(2), showing enzyme specificity. The effect occurred more rapidly at higher than lower concentrations but also tended to end after 4 weeks at the higher concentrations. Two millimolar Li(+) caused an initial increase of cPLA(2) followed by a decrease after 3 and 4 weeks. Topiramate had no effect, indicating specificity for anti-bipolar drugs. CONCLUSIONS Both up- and down-regulation of cPLA(2) gene expression are involved in the mechanisms of action of anti-bipolar drugs; astrocytes are a target for these drugs.
Collapse
Affiliation(s)
- Baoman Li
- Department of Clinical Pharmacology, College of Basic Medical Sciences, China Medical University, Shenyang, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
23
|
Michel AD, Fonfria E. Agonist potency at P2X7 receptors is modulated by structurally diverse lipids. Br J Pharmacol 2007; 152:523-37. [PMID: 17700717 PMCID: PMC2050815 DOI: 10.1038/sj.bjp.0707417] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE The P2X(7) receptor exhibits a high degree of plasticity with agonist potency increasing after prolonged receptor activation. In this study we investigated the ability of lipids to modulate agonist potency at P2X(7) receptors. EXPERIMENTAL APPROACH A variety of lipids, including lysophosphatidylcholine, sphingosylphosphorylcholine and hexadecylphosphorylcholine were studied for their effect on P2X(7) receptor-stimulated ethidium bromide accumulation in cells expressing human recombinant P2X(7) receptors and on P2X(7) receptor-stimulated interleukin-1 beta (IL1 beta) release from THP-1 cells. The effects of the lipids were also assessed in radioligand binding studies on human P2X(7) receptors. KEY RESULTS At concentrations (3-30 microM) below the threshold to cause cell lysis, the lipids increased agonist potency and/or maximal effects at P2X(7) receptors in both ethidium accumulation and IL1 beta release studies. There was little structure activity relationship (SAR) for this effect and sub-lytic concentrations of Triton X-100 partially mimicked the effects of the lipids. The lipids caused cell lysis and increased intracellular calcium at higher concentrations (30-100 microM) which complicated interpretation of their effects in functional studies. However, the lipids (3-100 microM) also increased agonist potency 30-100 fold in radioligand binding studies. CONCLUSIONS AND IMPLICATIONS This study demonstrates that a diverse range of lipids increase agonist potency at the P2X(7) receptor in functional and binding studies. The broad SAR, including the effect of Triton X-100, suggests this may reflect changes in membrane properties rather than a direct effect on the P2X(7) receptor. Since many of the lipids studied accumulate in disease states they may enhance P2X(7) receptor function under pathophysiological conditions.
Collapse
Affiliation(s)
- A D Michel
- Neurology & GI Centre of Excellence for Drug Discovery, GlaxoSmithKline Research & Development Limited, New Frontiers Science Park, Harlow, Essex, UK.
| | | |
Collapse
|
24
|
Abstract
This review is focused on purinergic neurotransmission, i.e., ATP released from nerves as a transmitter or cotransmitter to act as an extracellular signaling molecule on both pre- and postjunctional membranes at neuroeffector junctions and synapses, as well as acting as a trophic factor during development and regeneration. Emphasis is placed on the physiology and pathophysiology of ATP, but extracellular roles of its breakdown product, adenosine, are also considered because of their intimate interactions. The early history of the involvement of ATP in autonomic and skeletal neuromuscular transmission and in activities in the central nervous system and ganglia is reviewed. Brief background information is given about the identification of receptor subtypes for purines and pyrimidines and about ATP storage, release, and ectoenzymatic breakdown. Evidence that ATP is a cotransmitter in most, if not all, peripheral and central neurons is presented, as well as full accounts of neurotransmission and neuromodulation in autonomic and sensory ganglia and in the brain and spinal cord. There is coverage of neuron-glia interactions and of purinergic neuroeffector transmission to nonmuscular cells. To establish the primitive and widespread nature of purinergic neurotransmission, both the ontogeny and phylogeny of purinergic signaling are considered. Finally, the pathophysiology of purinergic neurotransmission in both peripheral and central nervous systems is reviewed, and speculations are made about future developments.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neurscience Centre, Royal Free and University College Medical School, London, UK.
| |
Collapse
|
25
|
Takenouchi T, Sato M, Kitani H. Lysophosphatidylcholine potentiates Ca2+ influx, pore formation and p44/42 MAP kinase phosphorylation mediated by P2X7 receptor activation in mouse microglial cells. J Neurochem 2007; 102:1518-1532. [PMID: 17437542 DOI: 10.1111/j.1471-4159.2007.04570.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The P2X7 receptor (P2X7R) is an ATP-gated ion channel highly expressed in microglia. P2X7R plays important roles in inflammatory responses in the brain. However, little is known about the mechanisms regulating its functions in microglia. Lysophosphatidylcholine (LPC), an inflammatory phospholipid that promotes microglial activation, may have some relevance to P2X7R signaling in terms of microglial function. In this study, we examined its effects on P2X7R signaling in a mouse microglial cell line (MG6) and primary microglia. LPC facilitated the sustained increase in the intracellular Ca(2+) concentration ([Ca(2+)](i)) through P2X7R channels activated by ATP or BzATP. The potentiated increase in [Ca(2+)](i) was actually inhibited by P2X7R antagonists, brilliant blue G and oxidized ATP. The potentiating effect of LPC was not observed with P2Y receptor systems, which are also expressed in MG6 cells. G2A, a receptor for LPC, was expressed in MG6 cells, but not involved in the facilitating effect of LPC on the P2X7R-mediated change in [Ca(2+)](i). Furthermore, LPC enhanced the P2X7R-associated formation of membrane pores and the activation of p44/42 mitogen-activated protein kinase. These results suggest that LPC may regulate microglial functions in the brain by enhancing the sensitivity of P2X7R.
Collapse
Affiliation(s)
- Takato Takenouchi
- Transgenic Animal Research Center, National Institute of Agrobiological Sciences, Ohwashi, Tsukuba, Ibaraki, Japan
| | - Mitsuru Sato
- Transgenic Animal Research Center, National Institute of Agrobiological Sciences, Ohwashi, Tsukuba, Ibaraki, Japan
| | - Hiroshi Kitani
- Transgenic Animal Research Center, National Institute of Agrobiological Sciences, Ohwashi, Tsukuba, Ibaraki, Japan
| |
Collapse
|
26
|
Garcia-Marcos M, Pochet S, Marino A, Dehaye JP. P2X7 and phospholipid signalling: The search of the “missing link” in epithelial cells. Cell Signal 2006; 18:2098-104. [PMID: 16815675 DOI: 10.1016/j.cellsig.2006.05.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Accepted: 05/11/2006] [Indexed: 11/22/2022]
Abstract
The purinergic receptor P2X(7) is widely expressed in epithelial cells. This receptor shares in common with the other P2X receptors the ability to form a non-selective cation channel. On the other hand, the COOH terminus of P2X(7) seems to allow this receptor to couple to a spectrum of downstream effectors responsible for the regulation of cell death and pore formation among other functions. However, the coupling of P2X(7) to these downstream effectors, as well as the identity of possible adapters directly interacting with the receptor, remains poorly understood. Here we review the ability of P2X(7) to activate phospholipid signalling pathways in epithelial cells and propose this step as a possible link between the receptor and other downstream effectors. The P2X(7) ability to control the cellular levels of several lipid messengers (PA, AA, DAG, ceramide, etc.) through the modulation of phospholipases (C, A(2), D) and neutral sphingomyelinase is described. These pathways are sometimes regulated independently of the channel function of the receptor. Recent data concerning P2X(7) localization in lipid rafts is also discussed in relation to the coupling to these pathways and dissociation from channel function.
Collapse
Affiliation(s)
- Mikel Garcia-Marcos
- Departamento de Bioquimica y Biologia Molecular, Facultad de Ciencias, Universidad del Pais Vasco, Barrio Sarriena S/N, Leioa, 48080 Bilbao, Spain
| | | | | | | |
Collapse
|