1
|
Yudkina AV, Kim DV, Zharkov TD, Zharkov DO, Endutkin AV. Probing the Conformational Restraints of DNA Damage Recognition with β-L-Nucleotides. Int J Mol Sci 2024; 25:6006. [PMID: 38892193 PMCID: PMC11172447 DOI: 10.3390/ijms25116006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
The DNA building blocks 2'-deoxynucleotides are enantiomeric, with their natural β-D-configuration dictated by the sugar moiety. Their synthetic β-L-enantiomers (βLdNs) can be used to obtain L-DNA, which, when fully substituted, is resistant to nucleases and is finding use in many biosensing and nanotechnology applications. However, much less is known about the enzymatic recognition and processing of individual βLdNs embedded in D-DNA. Here, we address the template properties of βLdNs for several DNA polymerases and the ability of base excision repair enzymes to remove these modifications from DNA. The Klenow fragment was fully blocked by βLdNs, whereas DNA polymerase κ bypassed them in an error-free manner. Phage RB69 DNA polymerase and DNA polymerase β treated βLdNs as non-instructive but the latter enzyme shifted towards error-free incorporation on a gapped DNA substrate. DNA glycosylases and AP endonucleases did not process βLdNs. DNA glycosylases sensitive to the base opposite their cognate lesions also did not recognize βLdNs as a correct pairing partner. Nevertheless, when placed in a reporter plasmid, pyrimidine βLdNs were resistant to repair in human cells, whereas purine βLdNs appear to be partly repaired. Overall, βLdNs are unique modifications that are mostly non-instructive but have dual non-instructive/instructive properties in special cases.
Collapse
Affiliation(s)
- Anna V. Yudkina
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (A.V.Y.); (D.V.K.); (T.D.Z.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
| | - Daria V. Kim
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (A.V.Y.); (D.V.K.); (T.D.Z.)
| | - Timofey D. Zharkov
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (A.V.Y.); (D.V.K.); (T.D.Z.)
| | - Dmitry O. Zharkov
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (A.V.Y.); (D.V.K.); (T.D.Z.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
| | - Anton V. Endutkin
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (A.V.Y.); (D.V.K.); (T.D.Z.)
| |
Collapse
|
2
|
Yuyukina SK, Zharkov DO. Mechanisms of Coronavirus Genome Stability As Potential Targets for Antiviral Drugs. HERALD OF THE RUSSIAN ACADEMY OF SCIENCES 2022; 92:470-478. [PMID: 36091852 PMCID: PMC9447942 DOI: 10.1134/s1019331622040256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/25/2022] [Accepted: 03/14/2022] [Indexed: 06/15/2023]
Abstract
The COVID-19 pandemic has made it necessary to create antivirals active against the SARS-CoV-2 coronavirus. One of the widely used strategies to fight off viral infections is the use of modified nucleoside analogues that inhibit viral replication by incorporating DNA or RNA into the growing chain, thus stopping its synthesis. The difficulty of using this method of treatment in the case of SARS-CoV-2 is that coronaviruses have an effective mechanism for maintaining genome stability. Its central element is the nsp14 protein, which is characterized by exonuclease activity, due to which incorrectly included and noncanonical nucleotides are removed from the 3' end of the growing RNA chain. Inhibitors of nsp14 exonuclease and nucleoside analogues resistant to its action are viewed as potential targets for anticoronavirus therapy.
Collapse
Affiliation(s)
- S. K. Yuyukina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - D. O. Zharkov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
3
|
Endutkin AV, Yatsenko DD, Zharkov DO. Effect of DNA Methylation on the 3'→5' Exonuclease Activity of Major Human Abasic Site Endonuclease APEX1. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:10-20. [PMID: 35491018 DOI: 10.1134/s0006297922010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
Apurinic/apyrimidinic (AP) endonucleases are the key enzymes in the DNA base excision repair, as they hydrolyze the phosphodiester bond in the AP site formed after removal of the damaged base. Major human AP endonuclease APEX1 also possesses the 3'-phosphodiesterase and 3'→5' exonuclease activities. The biological role of the latter has not been established yet; it is assumed that it corrects DNA synthesis errors during DNA repair. If DNA is damaged at the 3'-side of 5-methylcytosine (mC) residue, the 3'→5' exonuclease activity can change the epigenetic methylation status of the CpG dinucleotide. It remains unclear whether the 3'→5' exonuclease activity of APEX1 contributes to the active epigenetic demethylation or, on the contrary, is limited in the case of methylated CpG dinucleotides in order to preserve the epigenetic status upon repair of accidental DNA damage. Here, we report the results of the first systematic study on the efficiency of removal of 3'-terminal nucleotides from the substrates modeling DNA repair intermediates in the CpG dinucleotides. The best substrates for the 3'→5' exonuclease activity of APEX1 were oligonucleotides with the 3'-terminal bases non-complementary to the template, while the worst substrates contained mC. The presence of mC in the complementary strand significantly reduced the reaction rate even for the non-complementary 3'-ends. Therefore, the efficiency of the 3'→5' exonuclease reaction catalyzed by APEX1 is limited in the case of the methylated CpG dinucleotides, which likely reflects the need to preserve the epigenetic status during DNA repair.
Collapse
Affiliation(s)
- Anton V Endutkin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Darya D Yatsenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Dmitry O Zharkov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia
| |
Collapse
|
4
|
Abstract
Before a deleterious DNA lesion can be replaced with its undamaged counterpart, the lesion must first be removed from the genome. This process of removing and replacing DNA lesions is accomplished by the careful coordination of several protein factors during DNA repair. One such factor is the multifunctional enzyme human apurinic/apyrimidinic endonuclease 1 (APE1), known best for its DNA backbone cleavage activity at AP sites during base excision repair (BER). APE1 preforms AP site incision with surgical precision and skill, by sculpting the DNA to place the cleavage site in an optimal position for nucleophilic attack within its compact protein active site. APE1, however, has demonstrated broad surgical expertise, and applies its DNA cleavage activity to a wide variety of DNA and RNA substrates. Here, we discuss what is known and unknown about APE1 cleavage mechanisms, focusing on structural and mechanistic considerations. Importantly, disruptions in the biological functions associated with APE1 are linked to numerous human maladies, including cancer and neurodegenerative diseases. The continued elucidation of APE1 mechanisms is required for rational drug design towards novel and strategic ways to target its associated repair pathways.
Collapse
Affiliation(s)
- Amy M Whitaker
- Department of Biochemistry and Molecular Biology, Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
5
|
Abstract
SIGNIFICANCE Human apurinic/apyrimidinic endonuclease 1 (APE1, also known as REF-1) was isolated based on its ability to cleave at AP sites in DNA or activate the DNA binding activity of certain transcription factors. We review herein topics related to this multi-functional DNA repair and stress-response protein. RECENT ADVANCES APE1 displays homology to Escherichia coli exonuclease III and is a member of the divalent metal-dependent α/β fold-containing phosphoesterase superfamily of enzymes. APE1 has acquired distinct active site and loop elements that dictate substrate selectivity, and a unique N-terminus which at minimum imparts nuclear targeting and interaction specificity. Additional activities ascribed to APE1 include 3'-5' exonuclease, 3'-repair diesterase, nucleotide incision repair, damaged or site-specific RNA cleavage, and multiple transcription regulatory roles. CRITICAL ISSUES APE1 is essential for mouse embryogenesis and contributes to cell viability in a genetic background-dependent manner. Haploinsufficient APE1(+/-) mice exhibit reduced survival, increased cancer formation, and cellular/tissue hyper-sensitivity to oxidative stress, supporting the notion that impaired APE1 function associates with disease susceptibility. Although abnormal APE1 expression/localization has been seen in cancer and neuropathologies, and impaired-function variants have been described, a causal link between an APE1 defect and human disease remains elusive. FUTURE DIRECTIONS Ongoing efforts aim at delineating the biological role(s) of the different APE1 activities, as well as the regulatory mechanisms for its intra-cellular distribution and participation in diverse molecular pathways. The determination of whether APE1 defects contribute to human disease, particularly pathologies that involve oxidative stress, and whether APE1 small-molecule regulators have clinical utility, is central to future investigations.
Collapse
Affiliation(s)
- Mengxia Li
- Intramural Research Program, Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health , Baltimore, Maryland
| | | |
Collapse
|
6
|
Kim YJ, Wilson DM. Overview of base excision repair biochemistry. Curr Mol Pharmacol 2012; 5:3-13. [PMID: 22122461 DOI: 10.2174/1874467211205010003] [Citation(s) in RCA: 218] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 11/25/2010] [Indexed: 02/06/2023]
Abstract
Base excision repair (BER) is an evolutionarily conserved pathway, which could be considered the "workhorse" repair mechanism of the cell. In particular, BER corrects most forms of spontaneous hydrolytic decay products in DNA, as well as everyday oxidative and alkylative modifications to bases or the sugar phosphate backbone. The repair response involves five key enzymatic steps that aim to remove the initial DNA lesion and restore the genetic material back to its original state: (i) excision of a damaged or inappropriate base, (ii) incision of the phosphodiester backbone at the resulting abasic site, (iii) termini clean-up to permit unabated repair synthesis and/or nick ligation, (iv) gap-filling to replace the excised nucleotide, and (v) sealing of the final, remaining DNA nick. These repair steps are executed by a collection of enzymes that include DNA glycosylases, apurinic/apyrimidinic endonucleases, phosphatases, phosphodiesterases, kinases, polymerases and ligases. Defects in BER components lead to reduced cell survival, elevated mutation rates, and DNA-damaging agent hypersensitivities. In addition, the pathway plays a significant role in determining cellular responsiveness to relevant clinical anti-cancer agents, such as alkylators (e.g. temozolomide), nucleoside analogs (e.g. 5-fluorouracil), and ionizing radiation. The molecular details of BER and the contribution of the pathway to therapeutic agent resistance are reviewed herein.
Collapse
Affiliation(s)
- Yun-Jeong Kim
- Laboratory of Molecular Gerontology, Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | |
Collapse
|
7
|
Esqueda A, Mohammed MZ, Madhusudan S, Neamati N. Purification and specific assays for measuring APE-1 endonuclease activity. Methods Mol Biol 2012; 928:161-74. [PMID: 22956141 DOI: 10.1007/978-1-62703-008-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Human apurinic/apyrimidinic endonuclease-1 (APE-1) is essential for base excision repair and plays a major role in DNA repair and maintaining genomic stability. Cancer cells treated with conventional DNA-damaging agents develop resistance due in part to upregulation of enzymes involved in DNA repair. It is hypothesized that inhibiting DNA repair machinery should sensitize the cells to DNA-damaging agents. Previously, it has been shown that APE-1 is implicated in drug resistance and cancer progression. Therefore, APE-1 inhibitors are being sought after for their synergistic properties with various chemotherapeutics agents. Screening of several compound libraries and optimization of known inhibitors of APE-1 endonuclease activity have been accelerated by the use of high-throughput screening. Nevertheless, potential inhibitors must be tested in other counterscreens to validate their selectivity for APE-1. Here, we describe in-depth protocols for APE-1 purification and development of assays specific for APE-1 endonuclease activity.
Collapse
Affiliation(s)
- Adrian Esqueda
- Laboratory of Molecular Oncology, School of Molecular Medical Sciences, University of Nottingham, Nottingham, UK
| | | | | | | |
Collapse
|
8
|
Hu R, Lam W, Hsu CH, Cheng YC. UMP/CMPK is not the critical enzyme in the metabolism of pyrimidine ribonucleotide and activation of deoxycytidine analogs in human RKO cells. PLoS One 2011; 6:e19490. [PMID: 21559290 PMCID: PMC3086915 DOI: 10.1371/journal.pone.0019490] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 04/07/2011] [Indexed: 11/26/2022] Open
Abstract
Background Human UMP/CMP kinase was identified based on its enzymatic activity in vitro. The role of this protein is considered critical for the maintenance of pyrimidine nucleotide pool profile and for the metabolism of pyrimidine analogs in cells, based on the in vitro study of partially purified enzyme and recombinant protein. However, no detailed study has yet addressed the role of this protein in nucleotide metabolism in cells. Methodology/Principal Findings Two stable cell lines in which UMP/CMP kinase (mRNA: AF087865, EC 2.7.4.14) can be either up-regulated or down-regulated were developed using Tet-On Gene Expression Systems. The amount and enzymatic activity of UMP/CMP kinase extracted from these two cell lines can be induced up by 500% or down by 95–98%. The ribonucleotides of endogenous pyrimidine as well as the metabolism of exogenous natural pyrimidine nucleosides and their analogs were not susceptible to the altered amount of UMP/CMP kinase in these two stable RKO cell lines. The level of incorporation of pyrimidine nucleoside analogs, such as gemcitabine (dFdC) and troxacitabine (L-OddC), into cellular DNA and their potency in inhibiting cell growth were not significantly altered by up-regulation or down-regulation of UMP/CMP kinase expression in cells. Conclusions/Significance The UMP/CMP kinase (EC 2.7.4.14) expressed in RKO cells is not critical for the phosphorylation of (d)CMP and the maintenance of natural nucleotide pools. It also does not play an important role in the activation of dFdC and L-OddC. The increase by 500% or decrease by 95–98% in the levels of UMP/CMP kinase do not affect steady state levels of dFdC and L-OddC in RKO cells. Overall, the activity and possible mechanisms of recombinant UMP/CMP kinase expressed in the in vitro system can not be extended to that of UMP/CMP kinase expressed in a cell system or an in vivo system.
Collapse
Affiliation(s)
- Rong Hu
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Wing Lam
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Chih-Hung Hsu
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan, Republic of China
| | - Yung-Chi Cheng
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan, Republic of China
- * E-mail:
| |
Collapse
|
9
|
Wilson DM, Simeonov A. Small molecule inhibitors of DNA repair nuclease activities of APE1. Cell Mol Life Sci 2010; 67:3621-31. [PMID: 20809131 PMCID: PMC2956791 DOI: 10.1007/s00018-010-0488-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 07/28/2010] [Indexed: 10/19/2022]
Abstract
APE1 is a multifunctional protein that possesses several nuclease activities, including the ability to incise at apurinic/apyrimidinic (AP) sites in DNA or RNA, to excise 3'-blocking termini from DNA ends, and to cleave at certain oxidized base lesions in DNA. Pre-clinical and clinical data indicate a role for APE1 in the pathogenesis of cancer and in resistance to DNA-interactive drugs, particularly monofunctional alkylators and antimetabolites. In an effort to improve the efficacy of therapeutic compounds, such as temozolomide, groups have begun to develop high-throughput screening assays and to identify small molecule inhibitors against APE1 repair nuclease activities. It is envisioned that such inhibitors will be used in combinatorial treatment paradigms to enhance the efficacy of DNA-interactive drugs that introduce relevant cytotoxic DNA lesions. In this review, we summarize the current state of the efforts to design potent and selective inhibitors against APE1 AP site incision activity.
Collapse
Affiliation(s)
- David M Wilson
- Laboratory of Molecular Gerontology, Biomedical Research Center, National Institute on Aging, NIH, IRP, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | | |
Collapse
|
10
|
Seo Y, Kinsella TJ. Essential role of DNA base excision repair on survival in an acidic tumor microenvironment. Cancer Res 2009; 69:7285-93. [PMID: 19723658 DOI: 10.1158/0008-5472.can-09-0624] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The base excision repair (BER) pathway is required to repair endogenous and exogenous oxidative DNA damage. Multiple DNA repair pathways have been shown to be down-regulated in the tumor microenvironment, whereas APE1/Ref1, a central protein in BER, is overexpressed in many types of solid tumors. APE1/Ref1 has dual functions, participating both in BER and redox regulation of oxidized transcription factors. Here, we show that inhibition of the BER pathway in an acidic tumor microenvironment increases oxidative DNA damage temporally related to increased intracellular reactive oxygen species. Unrepaired oxidative DNA damage results in cell cycle arrests and increased DNA double-strand breaks, leading to cell death. Therefore, up-regulation of BER in solid cancers may represent an adaptive survival response. Consequently, BER inhibition may confer tumor microenvironment targeted cytotoxicity in human cancers. Our data suggest that BER inhibition is a rational basis for cancer therapy with or without other cytotoxic therapy. Additionally, our results offer insight as to why APE1/Ref1 retains its unique dual functionality, both of which counteract environmental oxidative stress.
Collapse
Affiliation(s)
- Yuji Seo
- Department of Radiation Oncology, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | | |
Collapse
|
11
|
McNeill DR, Lam W, DeWeese TL, Cheng YC, Wilson DM. Impairment of APE1 function enhances cellular sensitivity to clinically relevant alkylators and antimetabolites. Mol Cancer Res 2009; 7:897-906. [PMID: 19470598 DOI: 10.1158/1541-7786.mcr-08-0519] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Base excision repair (BER) is the major pathway for removing mutagenic and cytotoxic oxidative and alkylation DNA modifications. Using a catalytically inactive, dominant negative protein form of human APE1, termed ED, which binds with high affinity to substrate DNA and blocks subsequent repair steps, we assessed the role of BER in mediating cellular resistance to clinically relevant alkylating drugs and antimetabolites. Colony formation assays revealed that ED expression enhanced cellular sensitivity to melphalan not at all; to decarbazine, thiotepa, busulfan and carmustine moderately (1.2- to 2.4-fold); and to streptozotocin and temozolomide significantly (2.0- to 5.3-fold). The effectiveness of ED to promote enhanced cytotoxicity generally correlated with the agent's (a) monofunctional nature, (b) capacity to induce N(7)-guanine and N(3)-adenine modifications, and (c) inability to generate O(6)-guanine adducts or DNA cross-links. ED also enhanced the cell killing potency of the antimetabolite troxacitabine, apparently by blocking the processing of DNA strand breaks, yet had no effect on the cytotoxicity of gemcitabine, results that agree well with the known efficiency of APE1 to excise these nucleoside analogues from DNA. Most impressively, ED expression produced an approximately 5- and 25-fold augmentation of the cell killing effect of 5-fluorouracil and 5-fluorodeoxyuridine, respectively, implicating BER in the cellular response to such antimetabolites; the increased 5-fluorouracil sensitivity was associated with an accumulation of abasic sites and active caspase-positive staining. Our data suggest that APE1, and BER more broadly, is a potential target for inactivation in anticancer treatment paradigms that involve select alkylating agents or antimetabolites.
Collapse
Affiliation(s)
- Daniel R McNeill
- Biomedical Research Center, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | | | | | | | | |
Collapse
|
12
|
Lam W, Bussom S, Cheng YC. Effect of hypoxia on the expression of phosphoglycerate kinase and antitumor activity of troxacitabine and gemcitabine in non-small cell lung carcinoma. Mol Cancer Ther 2009; 8:415-23. [PMID: 19208827 DOI: 10.1158/1535-7163.mct-08-0692] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Beta-L-dioxolane-cytidine (L-OddC; BCH-4556; troxacitabine), a novel L-configuration deoxycytidine analogue, was under clinical trials for treating cancer. The cytotoxicity of L-OddC is dependent on its phosphorylation to L-OddCTP by phosphoglycerate kinase (PGK) and its subsequent addition into nuclear DNA. Because PGK is induced with hypoxia, the expression of hypoxia-inducible factor-1alpha and PGK of H460 cells (human non-small cell lung carcinoma) in vitro and in vivo was studied. In culture, hypoxic treatment induced the protein expression of PGK by 3-fold but had no effect on the protein expression of other L-OddC metabolism-associated enzymes such as apurinic/apyrimidinic endonuclease-1, deoxycytidine kinase, CMP kinase, and nM23 H1. Using a clonogenic assay, hypoxic treatment of H460 cells rendered cells 4-fold more susceptible to L-OddC but not to gemcitabine (dFdC) following exposure to drugs for one generation. Using hypoxia response element-luciferase reporter system, Western blotting, and immunohistochemistry, it was found that hypoxia-inducible factor-1alpha and PGK expression increased and could be correlated to tumor size. Despite dFdC being more toxic than L-OddC in cell culture, L-OddC (300 mg/kg i.p.) had a stronger antitumor activity than dFdC in H460 xenograft-bearing nude mice. Furthermore, L-OddC retained approximately 50% of its antitumor activity with oral gavage compared with i.p. delivery. Oral administration of L-OddC (600 mg/kg p.o.) had a similar area under the curve value compared with i.p. injection of dFdC (300 mg/kg i.p.). In conclusion, the hypoxia, which commonly exists in non-small cell lung carcinoma or other solid tumors resistant to radiotherapy or chemotherapy, is a favorable determinant to enhance the antitumor activity of L-OddC in vivo.
Collapse
Affiliation(s)
- Wing Lam
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | |
Collapse
|
13
|
Futagami S, Hiratsuka T, Shindo T, Horie A, Hamamoto T, Suzuki K, Kusunoki M, Miyake K, Gudis K, Crowe SE, Tsukui T, Sakamoto C. Expression of apurinic/apyrimidinic endonuclease-1 (APE-1) in H. pylori-associated gastritis, gastric adenoma, and gastric cancer. Helicobacter 2008; 13:209-18. [PMID: 18466396 DOI: 10.1111/j.1523-5378.2008.00605.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND AIM Apurinic/apyrimidinic endonuclease-1 (APE-1) is a key enzyme in DNA base excision repair (BER), linked to cancer chemosensitivity. However, little is known about the localization of APE-1 in Helicobacter pylori-infected gastric mucosa or its role in the development of gastric cancer. To investigate the role of APE-1 in the development of gastric cancer, we examined APE-1 expression and localization in cultured cells and gastric biopsies from patients with H. pylori-infected gastritis or gastric adenoma, and from surgically resected gastric cancer. METHODS APE-1 mRNA and protein expression were determined in H. pylori (CagA+) water-extract protein (HPWEP)-stimulated MKN-28 cells, gastric adenocarcinoma cell-line (AGS) cells, and human peripheral macrophages by real-time polymerase chain reaction and Western blot analysis. APE-1 expression and 8-OHdG as a measure of oxidative DNA damage were evaluated by immunostaining. Localization of APE-1 and IkappaBalpha phosphorylation in gastric adenoma and gastric cancer tissues were evaluated by single- and double-label immunohistochemistry. RESULTS In studies in vitro, HPWEP-stimulation significantly increased APE-1 mRNA expression levels in both MKN-28 cells and human peripheral macrophages. Hypo/reoxygenation treatment significantly increased APE-1 protein expression in HPWEP-stimulated MKN-28 cells. HPWEP stimulation significantly increased both APE-1 expression and IkappaBalpha phosphorylation levels in MKN-28 and AGS cells. In human tissues, APE-1 expression in H. pylori-infected gastritis without goblet cell metaplasia was significantly increased as compared to that in tissues from uninfected subjects. Eradication therapy significantly reduced both APE-1 and 8-OHdG expression levels in the gastric mucosa. APE-1 expression was mainly localized in epithelial cells within gastric adenoma and in mesenchymal cells of gastric cancer tissues. APE-1 expression in gastric cancer tissues was significantly reduced compared to that in H. pylori-infected gastric adenoma, while 8-OHdG index and IkappaBalpha phosphorylation levels did not differ between these two neoplastic tissue types. Co-localization of APE-1 and IkappaBalpha phosphorylation was observed not in gastric cancer cells but in gastric adenoma cells. CONCLUSION H. pylori infection is associated with increased APE-1 expression in human cell lines and in gastric tissues from subjects with gastritis and gastric adenomas. The observed distinct expression patterns of APE-1 and 8-OHdG in gastric adenoma and gastric cancer tissues may provide insight into the progression of these conditions and warrants further investigation.
Collapse
Affiliation(s)
- Seiji Futagami
- Division of Gastroenterology, Department of Internal Medicine, Nippon Medical School, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Wilson DM. Processing of nonconventional DNA strand break ends. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2007; 48:772-782. [PMID: 17948279 DOI: 10.1002/em.20346] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Single-strand breaks (SSBs) are one of the most common forms of genetic damage, arising from attack of DNA by reactive oxygen species or as intended or inadvertent products of normal cellular DNA metabolic events. Recent evidence linking defects in the enzymatic processing of nonconventional DNA SSBs, i.e., lesions incompatible with polymerase or ligase reactions, with inherited neurodegenerative disorders, reveals the importance of SSB repair in disease manifestation. I review herein the major eukaryotic enzymes (with an emphasis on the human proteins) responsible for the "clean-up" of DNA breaks harboring 3'- or 5'-blocking termini, and the cellular and disease ramifications of unrepaired SSB damage.
Collapse
Affiliation(s)
- David M Wilson
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD 21224, USA.
| |
Collapse
|
15
|
Lam W, Leung CH, Bussom S, Cheng YC. The Impact of Hypoxic Treatment on the Expression of Phosphoglycerate Kinase and the Cytotoxicity of Troxacitabine and Gemcitabine. Mol Pharmacol 2007; 72:536-44. [PMID: 17565005 DOI: 10.1124/mol.106.033472] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
beta-L-Dioxolane-cytidine (L-OddC, Troxacitabine, BCH-4556), a novel L-configuration deoxycytidine analog, is under clinical trials for treating cancer. The cytotoxicity of L-OddC is dependent on the amount of the triphosphate form (L-OddCTP) in nuclear DNA. Phosphoglycerate kinase (PGK), a downstream protein of hypoxia-inducible-factor-1alpha (HIF-1alpha), is responsible for the phosphorylation of the diphosphate to the triphosphate of L-OddC. In this study, we studied the impact of hypoxia on the metabolism and the cytotoxicity of L-OddC and beta-d-2',2'-difluorodeoxycytidine (dFdC) in several human tumor cell lines including HepG2, Hep3B, A673, Panc-1, and RKO. Hypoxic treatment induced the protein expression of PGK 3-fold but had no effect on the protein expression of APE-1, dCK, CMPK, and nM23 H1. Hypoxic treatment increased L-OddCTP formation and incorporation of L-OddC into DNA, but it decreased the uptake and incorporation of dFdC, which correlated with the reduction of hENT1, hENT2, and hCNT2 expression. Using a clonogenic assay, hypoxic treatment of cells made them 2- to 3-fold more susceptible to L-OddC but not to dFdC after exposure to drugs for one generation. Dimethyloxallyl glycine enhanced the cytotoxicity of L-OddC but not dFdC in Panc-1 cells under normoxic conditions. Overexpression or down-regulation of PGK using transient transfection of pcDNA5-PGK or inducible shRNA in RKO cells affected the cytotoxicity of L-OddC but not that of dFdC. The knockdown of HIF-1alpha in inducible shRNA in RKO cells reduced the cytotoxicity of L-OddC but not dFdC under hypoxic conditions. In conclusion, hypoxia is an important factor that may potentiate the activity of L-OddC.
Collapse
Affiliation(s)
- Wing Lam
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
16
|
Rodrigues MA, Gomes DA, Leite MF, Grant W, Zhang L, Lam W, Cheng YC, Bennett AM, Nathanson MH. Nucleoplasmic calcium is required for cell proliferation. J Biol Chem 2007; 282:17061-8. [PMID: 17420246 PMCID: PMC2825877 DOI: 10.1074/jbc.m700490200] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Ca(2+) signals regulate cell proliferation, but the spatial and temporal specificity of these signals is unknown. Here we use selective buffers of nucleoplasmic or cytoplasmic Ca(2+) to determine that cell proliferation depends upon Ca(2+) signals within the nucleus rather than in the cytoplasm. Nuclear Ca(2+) signals stimulate cell growth rather than inhibit apoptosis and specifically permit cells to advance through early prophase. Selective buffering of nuclear but not cytoplasmic Ca(2+) signals also impairs growth of tumors in vivo. These findings reveal a major physiological and potential pathophysiological role for nucleoplasmic Ca(2+) signals and suggest that this information can be used to design novel therapeutic strategies to regulate conditions of abnormal cell growth.
Collapse
Affiliation(s)
- Michele A. Rodrigues
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8019
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil 31270-901
| | - Dawidson A. Gomes
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8019
| | - M. Fatima Leite
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil 31270-901
| | - Wayne Grant
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520-8019
| | - Lei Zhang
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520-8019
| | - Wing Lam
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520-8019
| | - Yung-Chi Cheng
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520-8019
| | - Anton M. Bennett
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520-8019
| | - Michael H. Nathanson
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8019
- To whom correspondence should be addressed: Digestive Diseases, Rm. TAC S241D, Yale University School of Medicine, New Haven, CT 06520-8019. Tel.: 203-785-7312; Fax: 203-785-4306;
| |
Collapse
|
17
|
Quintás-Cardama A, Cortes J. Evaluation of thel-stereoisomeric nucleoside analog troxacitabine for the treatment of acute myeloid leukemia. Expert Opin Investig Drugs 2007; 16:547-57. [PMID: 17371201 DOI: 10.1517/13543784.16.4.547] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Troxacitabine (BCH-4556; [-]-2'-deoxy-3'-oxacytidine) is a synthetic dioxolane that represents the first nucleoside analog with an L-isomer configuration to have shown important cytotoxic activity. Troxacitabine was obtained by exchanging the sulfur endocyclic atom with oxygen in the structure of lamivudine (3TC). Its unnatural stereochemistry renders it insensitive to some mechanisms of resistance of tumor cells to D-nucleosides, such as deamination by deoxycytidine deaminase and decreased active uptake by nucleoside transporters. These characteristics make troxacitabine a suitable alternative for patients with acute myelogenous leukemia as a potential way for overcoming resistance to ara-C therapy, which is the mainstay of acute myelogenous leukemia therapy at present. Clinically significant activity has been reported in Phase I studies in patients with advanced hematologic malignancies and has prompted troxacitabine to enter a series of Phase II trials in patients with refractory and relapsed acute myelogenous leukemia.
Collapse
Affiliation(s)
- Alfonso Quintás-Cardama
- University of Texas MD Anderson Cancer Center, Department of Leukemia, Houston, TX 77030, USA
| | | |
Collapse
|
18
|
McNeill DR, Wilson DM. A dominant-negative form of the major human abasic endonuclease enhances cellular sensitivity to laboratory and clinical DNA-damaging agents. Mol Cancer Res 2007; 5:61-70. [PMID: 17259346 DOI: 10.1158/1541-7786.mcr-06-0329] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Apurinic/apyrimidinic (AP) endonuclease 1 (APE1) is the primary enzyme in mammals for the repair of abasic sites in DNA, as well as a variety of 3' damages that arise upon oxidation or as products of enzymatic processing. If left unrepaired, APE1 substrates can promote mutagenic and cytotoxic outcomes. We describe herein a dominant-negative form of APE1 that lacks detectable nuclease activity and binds substrate DNA with a 13-fold higher affinity than the wild-type protein. This mutant form of APE1, termed ED, possesses two amino acid substitutions at active site residues Glu(96) (changed to Gln) and Asp(210) (changed to Asn). In vitro biochemical assays reveal that ED impedes wild-type APE1 AP site incision function, presumably by binding AP-DNA and blocking normal lesion processing. Moreover, tetracycline-regulated (tet-on) expression of ED in Chinese hamster ovary cells enhances the cytotoxic effects of the laboratory DNA-damaging agents, methyl methanesulfonate (MMS; 5.4-fold) and hydrogen peroxide (1.5-fold). This MMS-induced, ED-dependent cell killing coincides with a hyperaccumulation of AP sites, implying that excessive DNA damage is the cause of cell death. Because an objective of the study was to identify a protein reagent that could be used in targeted gene therapy protocols, the effects of ED on cellular sensitivity to a number of chemotherapeutic compounds was tested. We show herein that ED expression sensitizes Chinese hamster ovary cells to the killing effects of the alkylating agent 1,3-bis(2-chloroethyl)-1-nitrosourea (also known as carmustine) and the chain terminating nucleoside analogue dideoxycytidine (also known as zalcitabine), but not to the radiomimetic bleomycin, the nucleoside analogue beta-D-arabinofuranosylcytosine (also known as cytarabine), the topoisomerase inhibitors camptothecin and etoposide, or the cross-linking agents mitomycin C and cisplatin. Transient expression of ED in the human cancer cell line NCI-H1299 enhanced cellular sensitivity to MMS, 1,3-bis(2-chloroethyl)-1-nitrosourea, and dideoxycytidine, demonstrating the potential usefulness of this strategy in the treatment of human tumors.
Collapse
Affiliation(s)
- Daniel R McNeill
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | | |
Collapse
|
19
|
Leung CH, Grill SP, Lam W, Gao W, Sun HD, Cheng YC. Eriocalyxin B inhibits nuclear factor-kappaB activation by interfering with the binding of both p65 and p50 to the response element in a noncompetitive manner. Mol Pharmacol 2006; 70:1946-55. [PMID: 16940413 DOI: 10.1124/mol.106.028480] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nuclear factor-kappaB (NF-kappaB) has been recognized to play a critical role in cell survival and inflammatory processes. It has become a target for intense drug development for the treatment of cancer, inflammatory, and autoimmune diseases. Here, we describe a potent NF-kappaB inhibitor, eriocalyxin B (Eri-B), an ent-kauranoid isolated from Isodon eriocalyx, an anti-inflammatory remedy. The presence of two alpha,beta-unsaturated ketones give this compound the uniqueness among the ent-kauranoids tested. Eri-B inhibited the NF-kappaB transcriptional activity but not that of cAMP response element-binding protein. It suppressed the transcription of NF-kappaB downstream gene products including cyclooxygenase-2 and inducible nitric-oxide synthase induced by tumor necrosis factor-alpha or lipopolysaccharide in macrophages and hepatocarcinoma cells. Chromatin immunoprecipitation assay indicated that Eri-B selectively blocked the binding between NF-kappaB and the response elements in vivo without affecting the nuclear translocation of the transcription factor. Down-regulation of the endogenous p65 protein sensitized the cells toward the action of the compound. Furthermore, in vitro binding assays suggested that Eri-B reversibly interfered with the binding of p65 and p50 subunits to the DNA in a noncompetitive manner. In summary, this study reveals the novel action of a potent NF-kappaB inhibitor that could be potentially used for the treatment of a variety of NF-kappaB-associated diseases. Modification of the structure of this class of compounds becomes the key to the control of the behavior of the compound against different cellular signaling pathways.
Collapse
Affiliation(s)
- Chung-Hang Leung
- Department of Pharmacology, School of Medicine, Yale University, 333 Cedar Street, New Haven, CT 06520-8066, USA
| | | | | | | | | | | |
Collapse
|