1
|
Das S, Kulkarni S, Singh Y, Kumar P, Thareja S. Selective Estrogen Receptor Modulators (SERMs) for the Treatment of ER+ Breast Cancer: An Overview. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
2
|
Wei D, Zhang H, Broekman BFP, Chong YS, Shek LP, Yap F, Tan KH, Gluckman PD, Meaney MJ, Fortier MV, Qiu A. Cortical Development Mediates Association of Prenatal Maternal Depressive Symptoms and Child Reward Sensitivity: A Longitudinal Study. J Am Acad Child Adolesc Psychiatry 2022; 61:392-401. [PMID: 34146666 DOI: 10.1016/j.jaac.2021.05.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/01/2021] [Accepted: 06/09/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Maternal depression during pregnancy has long-term impacts on offspring. This study used neuroimaging and behavioral data from children aged 4 to 6 years and investigated whether prenatal maternal depressive symptoms (pre-MDS) associated with child cortical morphological development and subsequent reward-related behaviors in preschoolers. METHOD Pre-MDS was measured using the Edinburgh Postnatal Depression Scale at 26 weeks of pregnancy. Children (n = 130) underwent structural magnetic resonance imaging (MRI) at both 4 and 6 years of age. Child sensitivity to reward and punishment was reported by mothers when children were 6 years of age. Linear mixed-effect models examined pre-MDS associations with child cortical thickness and surface area. Mediation analysis examined whether cortical development mediated associations between pre-MDS and child sensitivity to reward and punishment. RESULTS The 3-way interactions of pre-MDS, age, and sex on cortical thickness and surface area were not statistically significant. We found a significant interaction of pre-MDS with sex on the cortical surface area but not on thickness or their growth from 4 to 6 years, adjusting for ethnicity, socioeconomic status, baseline age, and postnatal MDS as covariates. Higher pre-MDS scores were associated with larger surface areas in the prefrontal cortex, superior temporal gyrus, and superior parietal lobe (SPL) in boys, whereas the opposite pattern was seen in girls. The SPL surface area mediated the relationship between pre-MDS and sensitivity to reward in girls. CONCLUSION Prenatal maternal depression alters the cortical morphology of pre-schoolers in a sex-dependent manner.
Collapse
Affiliation(s)
- Dongtao Wei
- National University of Singapore, Singapore; Southwest University, China
| | - Han Zhang
- National University of Singapore, Singapore; Shanghai University, China
| | | | - Yap-Seng Chong
- National University of Singapore, Singapore; Singapore Institute for Clinical Sciences, Singapore
| | | | - Fabian Yap
- KK Women's and Children's Hospital, Singapore
| | | | | | | | | | - Anqi Qiu
- National University of Singapore, Singapore; Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
3
|
Current and emerging estrogen receptor-targeted therapies for the treatment of breast cancer. Essays Biochem 2021; 65:985-1001. [PMID: 34328178 DOI: 10.1042/ebc20200174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/18/2022]
Abstract
Nearly 80% of all breast cancers are estrogen receptor positive (ER+) and require the activity of this transcription factor for tumor growth and survival. Thus, endocrine therapies, which target the estrogen signaling axis, have and will continue to be the cornerstone of therapy for patients diagnosed with ER+ disease. Several inhibitors of ER activity exist, including aromatase inhibitors (AIs), selective estrogen receptor modulators (SERMs), selective estrogen receptor degraders/down-regulators (SERDs), and ER proteolysis-targeting chimeras (ER PROTACs); drugs which differ in the mechanism(s) by which they inhibit this signaling pathway. Notwithstanding their significant impact on the management of this disease, resistance to existing endocrine therapies remains a major impediment to durable clinical responses. Although the mechanisms of resistance are complex and varied, dependence on ER is typically retained after progression on SERMs and AIs, suggesting that ER remains a bona fide therapeutic target. The discovery and development of orally bioavailable drugs that eliminate ER expression (SERDs and ER PROTACs) will likely aid in treating this growing patient population. All of the existing endocrine therapies were developed with the intent of inhibiting the cancer cell intrinsic actions of ER and/or with the objective of achieving extreme estrogen deprivation and most achieve that goal. A longstanding question that remains to be addressed, however, is how actions of existing interventions extrinsic to the cancer cells influence tumor biology. We believe that these issues need to be addressed in the development of strategies to develop the next generation of ER-modulators optimized for positive activities in both cancer cells and other cells within the tumor microenvironment (TME).
Collapse
|
4
|
Okafor CD, Colucci JK, Ortlund EA. Ligand-Induced Allosteric Effects Governing SR Signaling. NUCLEAR RECEPTOR RESEARCH 2019. [DOI: 10.32527/2019/101382] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
5
|
Sigma-2 receptor: past, present and perspectives on multiple therapeutic exploitations. Future Med Chem 2018; 10:1997-2018. [DOI: 10.4155/fmc-2018-0072] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Identification of sigma-2 receptor (sig-2R) has been controversial. Nevertheless, interest in sig-2R is high for its overexpression in tumors and potentials in oncology. Additionally, sig-2R antagonists inhibit Aβ binding at neurons, blocking the cognitive impairments of Alzheimer's disease. The most representative classes of sig-2R ligands are herein treated with focus on compounds that served to study sig-2R biology and to produce sig-2R: fluorescent ligands; multifunctional anticancer agents; and targeting nanoparticles. Although fluorescent ligands serve as ‘green’ pharmacological tools, sig-2R-multifunctional conjugates and sig-2R-targeted nanoparticles show how sig-2R targeting increases the activity of anticancer drugs in tumors with reduced toxicity. Altogether, this review draws a picture of the multiple approaches of sig-2R ligands in cancer therapy and as Alzheimer's disease modifying disease agents.
Collapse
|
6
|
Patel HK, Bihani T. Selective estrogen receptor modulators (SERMs) and selective estrogen receptor degraders (SERDs) in cancer treatment. Pharmacol Ther 2018; 186:1-24. [DOI: 10.1016/j.pharmthera.2017.12.012] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Gorka AP, Yamamoto T, Zhu J, Schnermann MJ. Cyanine Photocages Enable Spatial Control of Inducible Cre-Mediated Recombination. Chembiochem 2018; 19:1239-1243. [PMID: 29473264 DOI: 10.1002/cbic.201800061] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Indexed: 12/14/2022]
Abstract
Optical control over protein expression could provide a means to interrogate a range of biological processes. One approach has employed caged ligands of the estrogen receptor (ER) in combination with broadly used ligand-dependent Cre recombinase proteins. Existing approaches use UV or blue wavelengths, which hinders their application in tissue settings. Additionally, issues of payload diffusion can impede fine spatial control over the recombination process. Here, we detail the chemical optimization of a near-infrared (NIR) light-activated variant of the ER antagonist cyclofen. These studies resulted in modification of both the caging group and payload with lipophilic n-butyl esters. The appendage of esters to the cyanine cage improved cellular uptake and retention. The installation of a 4-piperidyl ester enabled high spatial resolution of the light-initiated Cre-mediated recombination event. These studies described chemical modifications with potential general utility for improving spatial control of intracellular caging strategies. Additionally, these efforts will enable future applications to use these molecules in complex physiological settings.
Collapse
Affiliation(s)
- Alexander P Gorka
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD, 21702, USA.,Present Address: Department of Chemistry, University of Connecticut, 55 N. Eagleville Road, Storrs, CT, 06269, USA
| | - Tsuyoshi Yamamoto
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD, 21702, USA
| | - Jianjian Zhu
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD, 21702, USA
| | - Martin J Schnermann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD, 21702, USA
| |
Collapse
|
8
|
Nikolic I, Andjelkovic M, Zaric M, Zelen I, Canovic P, Milosavljevic Z, Mitrovic M. Induction of mitochondrial apoptotic pathway by raloxifene and estrogen in human endometrial stromal ThESC cell line. Arch Med Sci 2017; 13:293-301. [PMID: 28261281 PMCID: PMC5332444 DOI: 10.5114/aoms.2016.59874] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 05/16/2015] [Indexed: 12/04/2022] Open
Abstract
INTRODUCTION Endometrial hyperplasia is a condition that occurs as a result of hormonal imbalance between estrogen and progesterone. Morphological disturbance of endometrial cells occurs consequently leading towards endometrial cancer. In therapy of endometrial hyperplasia SERMs are used to supress effects of locally high estrogen level in uterus. There is strong evidence suggesting that estrogen could be involved in cell death - apoptosis. There are no experimental data demstrating the direct apoptotic effect of both raloxifene and estrogen on the ThESC cell line. The aim of our study wa sto investigate both cytotoxic and apototic mechanism of raloxifene and estrogen - induced death in the ThESC cell line. MATERIAL AND METHODS In order to determine their cytotoxic and apoptotic effects, various doses of raloxifene and estrogen were applied to the ThESC cell line for 24 h. After the treatment MTT assay, FACS analysis and immunofluoroscence method were conducted. RESULTS The results of this study for the first time demonstrated the cytotoxic and apoptotic effects of raloxifene and estrogen on human endometrial stromal cell line suggesting the involvement of the inner, mitochondrial apoptotic pathway. CONCLUSIONS Our results demonstrated apoptotic effects of investigated drugs in the ThESC cell line through increasing the Bax/Bcl-2 ratio and activation of caspase 3.
Collapse
Affiliation(s)
- Ivana Nikolic
- Department of Biochemistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Marija Andjelkovic
- Department of Biochemistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Milan Zaric
- Department of Biochemistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Ivanka Zelen
- Department of Biochemistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Petar Canovic
- Department of Biochemistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Zoran Milosavljevic
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, Serbia
| | - Marina Mitrovic
- Department of Biochemistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
9
|
Traboulsi T, El Ezzy M, Gleason JL, Mader S. Antiestrogens: structure-activity relationships and use in breast cancer treatment. J Mol Endocrinol 2017; 58:R15-R31. [PMID: 27729460 PMCID: PMC5148801 DOI: 10.1530/jme-16-0024] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 10/11/2016] [Indexed: 12/11/2022]
Abstract
About 70% of breast tumors express estrogen receptor alpha (ERα), which mediates the proliferative effects of estrogens on breast epithelial cells, and are candidates for treatment with antiestrogens, steroidal or non-steroidal molecules designed to compete with estrogens and antagonize ERs. The variable patterns of activity of antiestrogens (AEs) in estrogen target tissues and the lack of systematic cross-resistance between different types of molecules have provided evidence for different mechanisms of action. AEs are typically classified as selective estrogen receptor modulators (SERMs), which display tissue-specific partial agonist activity (e.g. tamoxifen and raloxifene), or as pure AEs (e.g. fulvestrant), which enhance ERα post-translational modification by ubiquitin-like molecules and accelerate its proteasomal degradation. Characterization of second- and third-generation AEs, however, suggests the induction of diverse ERα structural conformations, resulting in variable degrees of receptor downregulation and different patterns of systemic properties in animal models and in the clinic.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Hormonal/chemistry
- Antineoplastic Agents, Hormonal/pharmacology
- Antineoplastic Agents, Hormonal/therapeutic use
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/mortality
- Breast Neoplasms/pathology
- Clinical Trials as Topic
- Drug Evaluation, Preclinical
- Drug Resistance, Neoplasm
- Estrogen Antagonists/chemistry
- Estrogen Antagonists/pharmacology
- Estrogen Antagonists/therapeutic use
- Estrogen Receptor alpha/antagonists & inhibitors
- Estrogen Receptor alpha/chemistry
- Estrogen Receptor alpha/metabolism
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Models, Molecular
- Molecular Conformation
- Molecular Structure
- Mutation
- Protein Binding
- Protein Processing, Post-Translational
- Receptors, Estrogen/antagonists & inhibitors
- Receptors, Estrogen/chemistry
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Selective Estrogen Receptor Modulators/chemistry
- Selective Estrogen Receptor Modulators/pharmacology
- Selective Estrogen Receptor Modulators/therapeutic use
- Structure-Activity Relationship
- Treatment Outcome
Collapse
Affiliation(s)
- T Traboulsi
- Institute for Research in Immunology and CancerUniversité de Montréal, Montréal, Québec, Canada
- Department of Biochemistry and Molecular MedicineUniversité de Montréal, Montréal, Québec, Canada
| | - M El Ezzy
- Institute for Research in Immunology and CancerUniversité de Montréal, Montréal, Québec, Canada
| | - J L Gleason
- Department of ChemistryMcGill University, Montréal, Québec, Canada
| | - S Mader
- Institute for Research in Immunology and CancerUniversité de Montréal, Montréal, Québec, Canada
- Department of Biochemistry and Molecular MedicineUniversité de Montréal, Montréal, Québec, Canada
| |
Collapse
|
10
|
Arao Y, Coons LA, Zuercher WJ, Korach KS. Transactivation Function-2 of Estrogen Receptor α Contains Transactivation Function-1-regulating Element. J Biol Chem 2015; 290:17611-27. [PMID: 26028650 DOI: 10.1074/jbc.m115.638650] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Indexed: 01/29/2023] Open
Abstract
ERα has a ligand-dependent transactivation function in the ligand binding domain of ERα C terminus (AF-2) and a ligand-independent activation function in the N terminus (AF-1). It is still not fully understood how AF-1 and AF-2 activities are regulated cooperatively by ligands. To evaluate the AF-1 involvement in the estrogenic activities of various compounds, we analyzed these transactivation functions using AF-1-truncated and AF-2-mutated ERα mutants. AF-2 is composed of two domains with flexible and static regions. We used an AF-2 flexible region mutant and an AF-2 static region mutant. Both mutants have been reported as non-E2 responsive due to disruption of E2-mediated coactivator recruitment to the AF-2. The AF-2 mutants were not activated by agonists, but surprisingly antagonists and selective estrogen receptor modulators (SERMs) activated the AF-2 mutants. This antagonist reversal activity was derived from AF-1. Furthermore, we demonstrated that the AF-2 contains an AF-1 suppression function using C-terminal-truncated ERα mutants. From these findings we hypothesized that the mutation of AF-2 disrupted its ability to suppress AF-1, causing the antagonist reversal. To assess the AF-2-mediated AF-1 suppression, we analyzed the transcription activity of physically separated AF-1 and AF-2 using a novel hybrid reporter assay. We observed that the AF-1 activity was not suppressed by the physically separated AF-2. Furthermore, SERMs did not induce the AF-1-mediated activity from the separated mutant AF-2, which differed from the intact protein. These results imply that SERM activity is dependent on a conformational change of the full-length ERα molecule, which allows for AF-1 activation.
Collapse
Affiliation(s)
- Yukitomo Arao
- From the Receptor Biology Section, Reproductive and Developmental Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Laurel A Coons
- From the Receptor Biology Section, Reproductive and Developmental Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, Department of Pharmacology and Cancer Biology, Duke University, Medical Center, Durham, North Carolina 27710, and
| | - William J Zuercher
- Department of Chemical Biology, GlaxoSmithKline, Research Triangle Park, North Carolina 27709
| | - Kenneth S Korach
- From the Receptor Biology Section, Reproductive and Developmental Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709,
| |
Collapse
|
11
|
Ohta K, Chiba Y, Kaise A, Endo Y. Structure-activity relationship study of diphenylamine-based estrogen receptor (ER) antagonists. Bioorg Med Chem 2015; 23:861-7. [PMID: 25614118 DOI: 10.1016/j.bmc.2014.12.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 12/10/2014] [Accepted: 12/11/2014] [Indexed: 12/31/2022]
Abstract
We have reported the design and synthesis of novel estrogen receptor (ER) agonists with a diphenylamine skeleton, which has several advantages over the formerly used diphenylmethane skeleton for drug development. Here, we confirmed the versatility of the diphenylamine skeleton by designing and synthesizing ER antagonist candidates bearing a basic alkylamino side chain on one of the two phenol groups of the diphenylamine agonist core structure. Among the tested compounds, cyclic alkylamine-containing derivatives showed more potent ER-antagonistic activity than the corresponding acyclic derivatives in cell proliferation assay using the MCF-7 cell line. Compound 5e showed the most potent antiestrogenic activity (IC50: 1.3×10(-7)M), being 10times more potent than tamoxifen.
Collapse
Affiliation(s)
- Kiminori Ohta
- Faculty of Pharmaceutical Sciences, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Yuki Chiba
- Faculty of Pharmaceutical Sciences, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Asako Kaise
- Faculty of Pharmaceutical Sciences, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Yasuyuki Endo
- Faculty of Pharmaceutical Sciences, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan.
| |
Collapse
|
12
|
Radifar M, Yuniarti N, Istyastono EP. PyPLIF: Python-based Protein-Ligand Interaction Fingerprinting. Bioinformation 2013; 9:325-8. [PMID: 23559752 PMCID: PMC3607193 DOI: 10.6026/97320630009325] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 03/11/2013] [Indexed: 11/23/2022] Open
Abstract
Structure-based virtual screening (SBVS) methods often rely on docking score. The docking score is an over-simplification of the
actual ligand-target binding. Its capability to model and predict the actual binding reality is limited. Recently, interaction
fingerprinting (IFP) has come and offered us an alternative way to model reality. IFP provides us an alternate way to examine
protein-ligand interactions. The docking score indicates the approximate affinity and IFP shows the interaction specificity. IFP is a
method to convert three dimensional (3D) protein-ligand interactions into one dimensional (1D) bitstrings. The bitstrings are
subsequently employed to compare the protein-ligand interaction predicted by the docking tool against the reference ligand. These
comparisons produce scores that can be used to enhance the quality of SBVS campaigns. However, some IFP tools are either
proprietary or using a proprietary library, which limits the access to the tools and the development of customized IFP algorithm.
Therefore, we have developed PyPLIF, a Python-based open source tool to analyze IFP. In this article, we describe PyPLIF and its
application to enhance the quality of SBVS in order to identify antagonists for estrogen α receptor (ERα).
Collapse
|
13
|
Abstract
The selective estrogen receptor downregulator (SERD) fulvestrant can be used as second-line treatment for patients relapsing after treatment with tamoxifen, a selective estrogen receptor modulator (SERM). Unlike tamoxifen, SERDs are devoid of partial agonist activity. While the full antiestrogenicity of SERDs may result in part from their capacity to downregulate levels of estrogen receptor alpha (ERα) through proteasome-mediated degradation, SERDs are also fully antiestrogenic in the absence of increased receptor turnover in HepG2 cells. Here we report that SERDs induce the rapid and strong SUMOylation of ERα in ERα-positive and -negative cell lines, including HepG2 cells. Four sites of SUMOylation were identified by mass spectrometry analysis. In derivatives of the SERD ICI164,384, SUMOylation was dependent on the length of the side chain and correlated with full antiestrogenicity. Preventing SUMOylation by the overexpression of a SUMO-specific protease (SENP) deSUMOylase partially derepressed transcription in the presence of full antiestrogens in HepG2 cells without a corresponding increase in activity in the presence of agonists or of the SERM tamoxifen. Mutations increasing transcriptional activity in the presence of full antiestrogens reduced SUMOylation levels and suppressed stimulation by SENP1. Our results indicate that ERα SUMOylation contributes to full antiestrogenicity in the absence of accelerated receptor turnover.
Collapse
|
14
|
Lusher SJ, Raaijmakers HCA, Vu-Pham D, Kazemier B, Bosch R, McGuire R, Azevedo R, Hamersma H, Dechering K, Oubrie A, van Duin M, de Vlieg J. X-ray structures of progesterone receptor ligand binding domain in its agonist state reveal differing mechanisms for mixed profiles of 11β-substituted steroids. J Biol Chem 2012; 287:20333-43. [PMID: 22535964 DOI: 10.1074/jbc.m111.308403] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We present here the x-ray structures of the progesterone receptor (PR) in complex with two mixed profile PR modulators whose functional activity results from two differing molecular mechanisms. The structure of Asoprisnil bound to the agonist state of PR demonstrates the contribution of the ligand to increasing stability of the agonist conformation of helix-12 via a specific hydrogen-bond network including Glu(723). This interaction is absent when the full antagonist, RU486, binds to PR. Combined with a previously reported structure of Asoprisnil bound to the antagonist state of the receptor, this structure extends our understanding of the complex molecular interactions underlying the mixed agonist/antagonist profile of the compound. In addition, we present the structure of PR in its agonist conformation bound to the mixed profile compound Org3H whose reduced antagonistic activity and increased agonistic activity compared with reference antagonists is due to an induced fit around Trp(755), resulting in a decreased steric clash with Met(909) but inducing a new internal clash with Val(912) in helix-12. This structure also explains the previously published observation that 16α attachments to RU486 analogs induce mixed profiles by altering the binding of 11β substituents. Together these structures further our understanding of the steric and electrostatic factors that contribute to the function of steroid receptor modulators, providing valuable insight for future compound design.
Collapse
Affiliation(s)
- Scott J Lusher
- Departments of Molecular Design and Informatics, MSD, P. O. Box 20, 5340 BH, Oss, The
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Comparative Study of Tamoxifen and Raloxifene on Endometrial Cell Proliferation of Female Rats in Persistent Estrus. Int J Gynecol Cancer 2012; 22:30-4. [DOI: 10.1097/igc.0b013e31822d2c63] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
ObjectiveThe objective of the study was to compare the effect of tamoxifen and raloxifene on the endometrium of female rats in persistent estrus, by Ki-67 protein expression.MethodsThe study comprised 60 Wistar-Hannover female rats in persistent estrus, induced by a single subcutaneous dose of 1.25 mg of testosterone propionate on the second day of age. At 90 days of life, the animals were randomly divided into 3 groups of 20 animals each. Group 1 (control), received only placebo; group 2, the animals were treated with tamoxifen, 250 μg/d; and group 3, the rats were treated with 750 μg/d of raloxifene by gavage during 30 days. Then, the animals were killed, and the endometrium was removed for immunohistochemical analysis of Ki-67 antigen expression. Statistical analysis was performed by β regression model (P < 0.05).ResultsMean percentages of Ki-67 protein expression in the endometrium of rats in persistent estrus were 43.21% ± 3.39%, 7.36% ± 0.95%, and 7.20% ± 0.76% in groups 1, 2 and 3, respectively (P < 0.001). There was no statistical difference between groups 2 and 3 (P = 0.7159).ConclusionsThe present results indicate that, at the doses and during the time of treatment used, both tamoxifen and raloxifene induce atrophy in a similar way of endometrial epithelium of rats in persistent estrus.
Collapse
|
16
|
Hsu C, Hsieh CL, Kuo YH, Huang CJ. Isolation and identification of cucurbitane-type triterpenoids with partial agonist/antagonist potential for estrogen receptors from Momordica charantia. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:4553-4561. [PMID: 21456596 DOI: 10.1021/jf200418g] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
This study aims at investigating the estrogenic activity and active cucurbitane-type triterpenoid compounds of bitter gourd (Momordica charantia, MC) using a transactivation assay for estrogen receptors (ER) α and β. The lyophilized fruits of MC were exhaustively extracted with ethyl acetate (EA) and 95% ethanol (EtOH), sequentially. The nonsaponifiable fraction (NS) of the EA extract as well as the acid hydrolyzed EtOH extract (AH) was fractionated and isolated by repeated column chromatography and further purified by preparative HPLC or RP-HPLC. One known compound, 5β,19-epoxycucurbita-6,24-diene-3β,23ξ-diol (6), was isolated from the NS, and five new compounds (1-5) were isolated from AH and identified as cucurbita-6,22(E),24-trien-3β-ol-19,5β-olide (1), 5β,19-epoxycucurbita-6,22(E),24-triene-3β,19-diol (2), 3β-hydroxycucurbita-5(10),6,22(E),24-tetraen-19-al (3), 19-dimethoxycucurbita-5(10),6,22(E),24-tetraen-3β-ol (4), and 19-nor-cucurbita-5(10),6,8,22(E),24-pentaen-3β-ol (5). In the noncytotoxic concentration range, compounds 1, 2, 5 and 6 showed weak agonistic activity via ER α and β. Compounds 1, 2, 3 and 6 significantly antagonized the transactvation of 17β-estradiol (E(2)) via both ER α and β. In conclusion, this study demonstrates, for the first time as far as we know, the partial agonist/antagonist activity via ER of four new and one known cucurbitane-type triterpenoids from MC. Further studies are worthy to explore the selective estrogen receptor modulator (SERM) activity of MC.
Collapse
Affiliation(s)
- Chin Hsu
- Department of Biochemical Science and Technology, National Taiwan University, Tapei, Taiwan
| | | | | | | |
Collapse
|
17
|
Huang P, Chandra V, Rastinejad F. Structural overview of the nuclear receptor superfamily: insights into physiology and therapeutics. Annu Rev Physiol 2010; 72:247-72. [PMID: 20148675 DOI: 10.1146/annurev-physiol-021909-135917] [Citation(s) in RCA: 359] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
As ligand-regulated transcription factors, the nuclear hormone receptors are nearly ideal drug targets, with internal pockets that bind to hydrophobic, drug-like molecules and well-characterized ligand-induced conformational changes that recruit transcriptional coregulators to promoter elements. Yet, due to the multitude of genes under the control of a single receptor, the major challenge has been the identification of ligands with gene-selective actions, impacting disease outcomes through a narrow subset of target genes and not across their entire gene-regulatory repertoire. Here, we summarize the concepts and work to date underlying the development of steroidal and nonsteroidal receptor ligands, including the use of crystal structures, high-throughput screens, and rational design approaches for finding useful therapeutic molecules. Difficulties in finding selective receptor modulators require a more complete understanding of receptor interdomain communications, posttranslational modifications, and receptor-protein interactions that could be exploited for target gene selectivity.
Collapse
Affiliation(s)
- Pengxiang Huang
- Department of Pharmacology, and Center for Molecular Design, University of Virginia Health System, Charlottesville, VA 22908, USA.
| | | | | |
Collapse
|
18
|
Novel estrogen receptor (ER) modulators: Carbamate and thiocarbamate derivatives with m-carborane bisphenol structure. Bioorg Med Chem 2009; 17:7958-63. [DOI: 10.1016/j.bmc.2009.10.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 10/07/2009] [Accepted: 10/08/2009] [Indexed: 01/22/2023]
|
19
|
Punyadeera C, Kamps R, Defrère S, Dijcks F, de Goeij A, Ederveen A, Dunselman G, Groothuis P. Effects of selective oestrogen receptor modulators on proliferation in tissue cultures of pre- and postmenopausal human endometrium. J Steroid Biochem Mol Biol 2008; 112:102-9. [PMID: 18832036 DOI: 10.1016/j.jsbmb.2008.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 08/27/2008] [Accepted: 09/01/2008] [Indexed: 11/19/2022]
Abstract
We characterised the effects of selective oestrogen receptor modulators (SERM) in explant cultures of human endometrium tissue. Endometrium tissues were cultured for 24h in Millicell-CM culture inserts in serum-free medium in the presence of vehicle, 17beta-estradiol (17beta-E2, 1nM), oestrogen receptor (ER) antagonist ICI 164.384 (40nM), and 4-OH-tamoxifen (40nM), raloxifene (4nM), lasofoxifene (4nM) and acolbifene (4nM). Protein expression of ERalpha, ERbeta1 and Ki-67 were evaluated by immunohistochemistry (IHC). The proliferative fraction was assessed by counting the number of Ki-67 positive cells. Nuclear staining of ER( and ER(1 was observed in the glandular epithelium and stroma of pre- and postmenopausal endometrium. ER(1 protein was also localized in the endothelial cells of blood vessels. Treating premenopausal endometrium tissue with 17beta-E2 increased the fraction of Ki-67 positive cells (p<0.001) by 55% in glands compared to the control. Raloxifene (4nM) increased (p<0.05) the Ki-67 positive fraction. All other SERMS did not affect proliferation in this model. Treating postmenopausal endometrium with 17(-E2 increased (p<0.001) the fraction of Ki-67 positive cells by 250% in glands compared to the control. A similar effect was also seen for 4-OH-tamoxifen, whereas the rest of SERMs did not stimulate proliferation. We demonstrated that oestradiol increases the fraction of proliferating cells in short term explant cultures of postmenopausal endometrium. In addition, we were able to reveal the agonistic properties of 4-OH-tamoxifen and confirm that raloxifene and next-generation SERMs acolbifene and lasofoxifene were neutral on the human postmenopausal endometrium.
Collapse
|
20
|
Treatment with the specific estrogen receptor antagonist ICI 182,780 demasculinizes neuron soma size in the developing zebra finch brain. Brain Res 2008; 1246:47-53. [PMID: 18952068 DOI: 10.1016/j.brainres.2008.09.089] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 09/29/2008] [Accepted: 09/30/2008] [Indexed: 11/22/2022]
Abstract
In zebra finches, many features of the neural song system are more pronounced in males compared to females. The exact mechanism(s) responsible for these differences are unknown, but may involve steroid hormones. More specifically, estrogens are most effective in masculinizing the female brain. Attempts to prevent masculine development through various estrogen receptor antagonists have been relatively ineffective, possibly due to partial agonistic activity of the compounds tested. To further investigate the role of estrogens in dimorphic development we utilized a more potent estrogen receptor blocker, ICI 182,780. Animals were treated during the first 25 days post-hatching. Daily intracranial injections significantly decreased neuron soma size in RA and HVC of both sexes. A similar effect was noted in LMAN. Treatment also appeared to decrease the volume of several song control nuclei. Together, these data support the hypothesis that ICI is an effective estrogen receptor antagonist in the zebra finch brain and that estrogens may influence sexually dimorphic development of the zebra finch song circuit. However, reported inconsistencies about sex differences in estrogen exposure and/or utilization exist, suggesting that complete sexual differentiation and development likely involve additional factors.
Collapse
|
21
|
Synthesis and pharmacological evaluation of the novel pseudo-symmetrical tamoxifen derivatives as anti-tumor agents. Biochem Pharmacol 2007; 75:1014-26. [PMID: 18177630 DOI: 10.1016/j.bcp.2007.11.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Revised: 11/05/2007] [Accepted: 11/13/2007] [Indexed: 11/21/2022]
Abstract
Four pseudo-symmetrical tamoxifen derivatives, RID-B (13), RID-C (14), RID-D (15), and bis(dimethylaminophenetole) (16), were synthesized via the novel three-component coupling reaction, and the structure-activity relationships of these pseudo-symmetrical tamoxifen derivatives were examined. It was discovered that 13 and 16 strongly inhibit the viability of the HL-60 human acute promyelocytic leukemia cell line, whereas 14 possesses a medium activity against the same cell line and 15 has no effect on the cell viability. The global anti-tumor activity of 13-16 against a variety of human cancer cells was assessed using a panel of 39 human cancer cell lines (JFCR 39), and it was shown that RID-B (13) strongly inhibited the growth of several cancer cell lines at concentrations of less than 1 microM (at 0.38 microM for SF-539 [central nervous system], at 0.58 microM for HT-29 [colon], at 0.20 microM for DMS114 [lung], at 0.21 microM for LOX-IMVI [melanoma], and at 0.23 microM for MKN74 [stomach]).
Collapse
|
22
|
Bourdeau V, Deschênes J, Laperrière D, Aid M, White JH, Mader S. Mechanisms of primary and secondary estrogen target gene regulation in breast cancer cells. Nucleic Acids Res 2007; 36:76-93. [PMID: 17986456 PMCID: PMC2248750 DOI: 10.1093/nar/gkm945] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Estrogen receptors (ERs), which mediate the proliferative action of estrogens in breast cancer cells, are ligand-dependent transcription factors that regulate expression of their primary target genes through several mechanisms. In addition to direct binding to cognate DNA sequences, ERs can be recruited to DNA through other transcription factors (tethering), or affect gene transcription through modulation of signaling cascades by non-genomic mechanisms of action. To better characterize the mechanisms of gene regulation by estrogens, we have identified more than 700 putative primary and about 1300 putative secondary target genes of estradiol in MCF-7 cells through microarray analysis performed in the presence or absence of the translation inhibitor cycloheximide. Although siRNA-mediated inhibition of ERalpha expression antagonized the effects of estradiol on up- and down-regulated primary target genes, estrogen response elements (EREs) were enriched only in the vicinity of up-regulated genes. Binding sites for several other transcription factors, including proteins known to tether ERalpha, were enriched in up- and/or down-regulated primary targets. Secondary estrogen targets were particularly enriched in sites for E2F family members, several of which were transcriptionally regulated by estradiol, consistent with a major role of these factors in mediating the effects of estrogens on gene expression and cellular growth.
Collapse
Affiliation(s)
- Véronique Bourdeau
- Institute for Research in Immunology and Cancer and Biochemistry Department, Université de Montréal, C.P. 6128 Succursale Centre Ville, Montréal, QC H3C 3J7, Canada
| | | | | | | | | | | |
Collapse
|
23
|
Vajdos FF, Hoth LR, Geoghegan KF, Simons SP, LeMotte PK, Danley DE, Ammirati MJ, Pandit J. The 2.0 A crystal structure of the ERalpha ligand-binding domain complexed with lasofoxifene. Protein Sci 2007; 16:897-905. [PMID: 17456742 PMCID: PMC2206632 DOI: 10.1110/ps.062729207] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Lasofoxifene is a new and potent selective estrogen receptor modulator (SERM). The structural basis of its interaction with the estrogen receptor has been investigated by crystallographic analysis of its complex with the ligand-binding domain of estrogen receptor alpha at a resolution of 2.0 A. As with other SERMs, lasofoxifene diverts the receptor from its agonist-bound conformation by displacing the C-terminal AF-2 helix into the site at which the LXXLL motif of coactivator proteins would otherwise be able to bind. Lasofoxifene achieves this effect by occupying the space normally filled by residue Leu 540, as well as by modulating the conformation of residues of helix 11 (His 524, Leu 525). A well-defined salt bridge between lasofoxifene and Asp 351 suggests that charge neutralization in this region of the receptor may explain the some of the antiestrogenic effects of lasofoxifene. The results suggest general features of ERalpha/SERM recognition, and add a new dimension to efforts to rationalize differences between the biological activity profiles exhibited by these important pharmacological agents.
Collapse
Affiliation(s)
- Felix F Vajdos
- Department of Exploratory Medicinal Sciences, Pfizer Global Research and Development, Pfizer Inc., Groton, Connecticut 06340-8001, USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Skretas G, Meligova AK, Villalonga-Barber C, Mitsiou DJ, Alexis MN, Micha-Screttas M, Steele BR, Screttas CG, Wood DW. Engineered Chimeric Enzymes as Tools for Drug Discovery: Generating Reliable Bacterial Screens for the Detection, Discovery, and Assessment of Estrogen Receptor Modulators. J Am Chem Soc 2007; 129:8443-57. [PMID: 17569534 DOI: 10.1021/ja067754j] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Engineered protein-based sensors of ligand binding have emerged as attractive tools for the discovery of therapeutic compounds through simple screening systems. We have previously shown that engineered chimeric enzymes, which combine the ligand-binding domains of nuclear hormone receptors with a highly sensitive thymidylate synthase reporter, yield simple sensors that report the presence of hormone-like compounds through changes in bacterial growth. This work describes an optimized estrogen sensor in Escherichia coli with extraordinary reliability in identifying diverse estrogenic compounds and in differentiating between their agonistic/antagonistic pharmacological effects. The ability of this system to assist the discovery of new estrogen-mimicking compounds was validated by screening a small compound library, which led to the identification of two structurally novel estrogen receptor modulators and the accurate prediction of their agonistic/antagonistic biocharacter in human cells. Strong evidence is presented here that the ability of our sensor to detect ligand binding and recognize pharmacologically critical properties arises from allosteric communication between the artificially combined protein domains, where different ligand-induced conformational changes in the receptor are transmitted to the catalytic domain and translated to distinct levels of enzymic efficiency. To the best of our knowledge, this is one of the first examples of an engineered enzyme with the ability to sense multiple receptor conformations and to be either activated or inactivated depending on the nature of the bound effector molecule. Because the proposed mechanism of ligand dependence is not specific to nuclear hormone receptors, we anticipate that our protein engineering strategy will be applicable to the construction of simple sensors for different classes of (therapeutic) binding proteins.
Collapse
Affiliation(s)
- Georgios Skretas
- Department of Chemical Engineering, Princeton University, Princeton, New Jersey 08544, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Shiina I, Sano Y, Nakata K, Kikuchi T, Sasaki A, Ikekita M, Hasome Y. Synthesis of the new pseudo-symmetrical tamoxifen derivatives and their anti-tumor activity. Bioorg Med Chem Lett 2007; 17:2421-4. [PMID: 17346960 DOI: 10.1016/j.bmcl.2007.02.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 02/13/2007] [Accepted: 02/15/2007] [Indexed: 11/26/2022]
Abstract
Three new pseudo-symmetrical tamoxifen derivatives, RID-B (15), C (16), and D (17), were synthesized via the novel three-component coupling reaction, and the structure-activity relationships of the pseudo-symmetrical tamoxifen derivatives were examined. It was discovered that 15 strongly inhibits the viability of HL-60 human acute promyelocytic leukemia, whereas 16 possesses medium activity against the cell line and 17 has no effect on the cell viability. The agarose gel electrophoresis for DNA cleavage showed the cell death might be induced by apoptosis.
Collapse
Affiliation(s)
- Isamu Shiina
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | | | | | | | | | | | | |
Collapse
|
26
|
Salum LDB, Polikarpov I, Andricopulo AD. Structural and chemical basis for enhanced affinity and potency for a large series of estrogen receptor ligands: 2D and 3D QSAR studies. J Mol Graph Model 2007; 26:434-42. [PMID: 17349808 DOI: 10.1016/j.jmgm.2007.02.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 01/31/2007] [Accepted: 02/02/2007] [Indexed: 10/23/2022]
Abstract
The estrogen receptor (ER) is an important drug target for the development of novel therapeutic agents for the treatment of breast cancer. Progress towards the design of more potent and selective ER modulators requires the optimization of multiple ligand-receptor interactions. Comparative molecular field analyses (CoMFA) and hologram quantitative structure-activity relationships (HQSAR) were conducted on a large set of ERalpha modulators. Two training sets containing either 127 or 69 compounds were used to generate QSAR models for in vitro binding affinity and potency, respectively. Significant correlation coefficients (affinity models, CoMFA, r(2)=0.93 and q(2)=0.79; HQSAR, r(2)=0.92 and q(2)=0.71; potency models, CoMFA, r(2)=0.94 and q(2)=0.72; HQSAR, r(2)=0.92 and q(2)=0.74) were obtained, indicating the potential of the models for untested compounds. The generated models were validated using external test sets, and the predicted values were in good agreement with the experimental results. The final QSAR models as well as the information gathered from 3D contour maps should be useful for the design of novel ERalpha modulators having improved affinity and potency.
Collapse
Affiliation(s)
- Lívia de B Salum
- Laboratório de Química Medicinal e Computacional, Centro de Biotecnologia Molecular Estrutural, Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador São-Carlense 400, 13560-970 São Carlos, SP, Brazil
| | | | | |
Collapse
|