1
|
Benita BA, Koss KM. Peptide discovery across the spectrum of neuroinflammation; microglia and astrocyte phenotypical targeting, mediation, and mechanistic understanding. Front Mol Neurosci 2024; 17:1443985. [PMID: 39634607 PMCID: PMC11616451 DOI: 10.3389/fnmol.2024.1443985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/24/2024] [Indexed: 12/07/2024] Open
Abstract
Uncontrolled and chronic inflammatory states in the Central Nervous System (CNS) are the hallmark of neurodegenerative pathology and every injury or stroke-related insult. The key mediators of these neuroinflammatory states are glial cells known as microglia, the resident immune cell at the core of the inflammatory event, and astroglia, which encapsulate inflammatory insults in proteoglycan-rich scar tissue. Since the majority of neuroinflammation is exclusively based on the responses of said glia, their phenotypes have been identified to be on an inflammatory spectrum encompassing developmental, homeostatic, and reparative behaviors as opposed to their ability to affect devastating cell death cascades and scar tissue formation. Recently, research groups have focused on peptide discovery to identify these phenotypes, find novel mechanisms, and mediate or re-engineer their actions. Peptides retain the diverse function of proteins but significantly reduce the activity dependence on delicate 3D structures. Several peptides targeting unique phenotypes of microglia and astroglia have been identified, along with several capable of mediating deleterious behaviors or promoting beneficial outcomes in the context of neuroinflammation. A comprehensive review of the peptides unique to microglia and astroglia will be provided along with their primary discovery methodologies, including top-down approaches using known biomolecules and naïve strategies using peptide and phage libraries.
Collapse
Affiliation(s)
| | - Kyle M. Koss
- Department of Surgery, University of Arizona, Tucson, AZ, United States
- Department of Neurobiology, University of Texas Medical Branch (UTMB) at Galvestion, Galvestion, TX, United States
- Sealy Institute for Drug Discovery (SIDD), University of Texas Medical Branch (UTMB) at Galvestion, Galvestion, TX, United States
| |
Collapse
|
2
|
Landini L, Marini M, Souza Monteiro de Araujo D, Romitelli A, Montini M, Albanese V, Titiz M, Innocenti A, Bianchini F, Geppetti P, Nassini R, De Logu F. Schwann Cell Insulin-like Growth Factor Receptor Type-1 Mediates Metastatic Bone Cancer Pain in Mice. Brain Behav Immun 2023; 110:348-364. [PMID: 36940752 DOI: 10.1016/j.bbi.2023.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/27/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023] Open
Abstract
Insulin growth factor-1 (IGF-1), an osteoclast-dependent osteolysis biomarker, contributes to metastatic bone cancer pain (MBCP), but the underlying mechanism is poorly understood. In mice, the femur metastasis caused by intramammary inoculation of breast cancer cells resulted in IGF-1 increase in femur and sciatic nerve, and IGF-1-dependent stimulus/non-stimulus-evoked pain-like behaviors. Adeno-associated virus-based shRNA selective silencing of IGF-1 receptor (IGF-1R) in Schwann cells, but not in dorsal root ganglion (DRG) neurons, attenuated pain-like behaviors. Intraplantar IGF-1 evoked acute nociception and mechanical/cold allodynia, which were reduced by selective IGF-1R silencing in DRG neurons and Schwann cells, respectively. Schwann cell IGF-1R signaling promoted an endothelial nitric oxide synthase-mediated transient receptor potential ankyrin 1 (TRPA1) activation and release of reactive oxygen species that, via macrophage-colony stimulating factor-dependent endoneurial macrophage expansion, sustained pain-like behaviors. Osteoclast derived IGF-1 initiates a Schwann cell-dependent neuroinflammatory response that sustains a proalgesic pathway that provides new options for MBCP treatment.
Collapse
Affiliation(s)
- Lorenzo Landini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy
| | - Matilde Marini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy
| | | | - Antonia Romitelli
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy
| | - Marco Montini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Medical Genetics Unit, University of Florence, 50141, Florence, Italy
| | - Valentina Albanese
- Department of Environmental and Prevention Sciences - DEPS, University of Ferrara, Ferrara, 44121, Italy
| | - Mustafa Titiz
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy
| | - Alessandro Innocenti
- Plastic and Reconstructive Microsurgery - Careggi University Hospital, Florence, 50139, Italy
| | - Francesca Bianchini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Section of Experimental Pathology and Oncology, University of Florence, 50141, Florence, Italy
| | - Pierangelo Geppetti
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy
| | - Romina Nassini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy.
| | - Francesco De Logu
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy
| |
Collapse
|
3
|
Mallet C, Desmeules J, Pegahi R, Eschalier A. An Updated Review on the Metabolite (AM404)-Mediated Central Mechanism of Action of Paracetamol (Acetaminophen): Experimental Evidence and Potential Clinical Impact. J Pain Res 2023; 16:1081-1094. [PMID: 37016715 PMCID: PMC10066900 DOI: 10.2147/jpr.s393809] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Paracetamol remains the recommended first-line option for mild-to-moderate acute pain in general population and particularly in vulnerable populations. Despite its wide use, debate exists regarding the analgesic mechanism of action (MoA) of paracetamol. A growing body of evidence challenged the notion that paracetamol exerts its analgesic effect through cyclooxygenase (COX)-dependent inhibitory effect. It is now more evident that paracetamol analgesia has multiple pathways and is mediated by the formation of the bioactive AM404 metabolite in the central nervous system (CNS). AM404 is a potent activator of TRPV1, a major contributor to neuronal response to pain in the brain and dorsal horn. In the periaqueductal grey, the bioactive metabolite AM404 activated the TRPV1 channel-mGlu5 receptor-PLC-DAGL-CB1 receptor signaling cascade. The present article provides a comprehensive literature review of the centrally located, COX-independent, analgesic MoA of paracetamol and relates how the current experimental evidence can be translated into clinical practice. The evidence discussed in this review established paracetamol as a central, COX-independent, antinociceptive medication that has a distinct MoA from non-steroidal anti-inflammatory drugs (NSAIDs) and a more tolerable safety profile. With the establishment of the central MoA of paracetamol, we believe that paracetamol remains the preferred first-line option for mild-to-moderate acute pain for healthy adults, children, and patients with health concerns. However, safety concerns remain with the high dose of paracetamol due to the NAPQI-mediated liver necrosis. Centrally acting paracetamol/p-aminophenol derivatives could potentiate the analgesic effect of paracetamol without increasing the risk of hepatoxicity. Moreover, the specific central MoA of paracetamol allows its combination with other analgesics, including NSAIDs, with a different MoA. Future experiments to better explain the central actions of paracetamol could pave the way for discovering new central analgesics with a better benefit-to-risk ratio.
Collapse
Affiliation(s)
- Christophe Mallet
- Université Clermont Auvergne, INSERM, NEURO-DOL Basics & Clinical Pharmacology of Pain, Clermont-Ferrand, France
| | - Jules Desmeules
- Faculty of Medicine and The School of Pharmaceutical Sciences, Faculty of Sciences, Geneva University, Geneva, Switzerland
| | | | - Alain Eschalier
- Université Clermont Auvergne, INSERM, NEURO-DOL Basics & Clinical Pharmacology of Pain, Clermont-Ferrand, France
- Correspondence: Alain Eschalier, Faculté de Médecine, UMR Neuro-Dol, 49 Bd François Mitterrand, Clermont-Ferrand, 63000, France, Email
| |
Collapse
|
4
|
Juri T, Fujimoto Y, Suehiro K, Nishikawa K, Mori T. Participation of the descending noradrenergic inhibitory system in the anti-hyperalgesic effect of acetaminophen in a rat model of inflammation. Life Sci 2021; 286:120030. [PMID: 34627774 DOI: 10.1016/j.lfs.2021.120030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/25/2021] [Accepted: 10/01/2021] [Indexed: 11/18/2022]
Abstract
AIMS This study investigated the relationship between the analgesic efficacy of acetaminophen and the descending noradrenergic systems using rodent models of inflammatory pain. MAIN METHODS Inflammatory pain models were established by carrageenan injection into rats' paws. The models were defined as acute (4 h after carrageenan injection), subacute (24 h after carrageenan injection), and late (1 week after carrageenan injection) phase. To evaluate intravenous acetaminophen treatment, the withdrawal threshold to mechanical stimuli was assessed simultaneously with in vivo microdialysis assay of noradrenaline levels in the locus coeruleus (LC). Further analyses were performed to observe the effect of yohimbine on the treatment and the impact of AM404 treatment, a metabolite of acetaminophen, on noradrenaline levels in the LC. KEY FINDINGS In all phases, intravenous acetaminophen had a significant anti-hyperalgesic effect (p < 0.05). There was a significant time-dependent increase in the noradrenaline concentration within the LC (acetaminophen versus saline treatment; at 30 min, p < 0.001; 60 min, p < 0.01) in the subacute pain model, but not in the acute and late phase pain models. Intrathecal pre-injection of yohimbine attenuated the anti-hyperalgesic effect after acetaminophen injection only in the subacute model (p < 0.05). In the subacute pain model, intracerebroventricular administration of AM404 showed the same trend in noradrenaline levels as acetaminophen administration (AM404 versus vehicle group at 30 min, p < 0.001). SIGNIFICANCE We found the descending noradrenergic inhibitory system is involved in the antinociceptive action of acetaminophen in the subacute phase of inflammatory pain.
Collapse
Affiliation(s)
- Takashi Juri
- Department of Anesthesiology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yohei Fujimoto
- Department of Anesthesiology, Osaka City University Graduate School of Medicine, Osaka, Japan.
| | - Koichi Suehiro
- Department of Anesthesiology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kiyonobu Nishikawa
- Department of Anesthesiology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Takashi Mori
- Department of Anesthesiology, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
5
|
De Coster O, Forget P, De Mey J, Van Schuerbeek P, Poelaert J. Identification of the cerebral effects of paracetamol in healthy subjects: an fMRI study. Br J Pain 2020; 14:23-30. [PMID: 32110395 DOI: 10.1177/2049463719854483] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Introduction Paracetamol is commonly used for its antipyretic properties and analgesic effects, but the central mechanism remains elusive. We designed a study in healthy volunteers to detect the central functional working mechanism of paracetamol. Subjects material and methods A total of 20 subjects had a baseline functional magnetic resonance imaging (fMRI) before the intake of 1000 mg paracetamol orally; 60 minutes later, a second fMRI was made aiming detection of regional blood flow differences. Results A decreased connectivity was observed in the ventral volume of interest (VOI), with the posterior cingulate (with both the left anterior cingulate cortex (ACC) and right ACC: respectively, Ke = 576; t = -6.8894 and Ke = 185; t = -4.8178) and the inferior temporal left (Ke = 103; t = -5.0993); in the combined ventral and dorsal VOIs, the posterior cingulate (with the left ACC; Ke = 149; t = -4.5658) and, both with the right ACC, the inferior temporal left (Ke = 88; t = -3.8456) and the inferior frontal gyrus (Ke = 86; t = -4.3937) had a decrease in connectivity. An increase was seen in other regions, including, among others, the middle frontal and temporal gyri (respectively, Ke = 85; t = 4.4256 and Ke = 85; t = 5.6851), the inferior frontal (with the left ACC: Ke = 165; t = 4.4998) and the superior frontal gyrus (with the right ACC; Ke = 281; t = 4.5992), and the post/precentral gyrus (with the right ACC, respectively, Ke = 102; t = 6.0582 and Ke = 105; t = 4.0776). Conclusions On fMRIs in healthy volunteers, the ingestion of paracetamol affects connections with the ACC. This suggests a central effect of paracetamol in cerebral areas known to be associated with pain. Further studies are needed to demonstrate the same effects in acute and chronic pain states.
Collapse
Affiliation(s)
- Olivier De Coster
- Pain Clinic, Algemeen Ziekenhuis Delta (AZ Delta), Roeselare, Belgium.,Pain Clinic, Department of Anesthesiology and Perioperative Medicine, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Patrice Forget
- Pain Clinic, Department of Anesthesiology and Perioperative Medicine, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Johan De Mey
- Department of Radiology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Peter Van Schuerbeek
- Department of Radiology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Jan Poelaert
- Pain Clinic, Department of Anesthesiology and Perioperative Medicine, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| |
Collapse
|
6
|
Li Q, Zhuang Q, Gu Y, Dai C, Gao X, Wang X, Wen H, Li X, Zhang Y. Enhanced analgesic effects of nefopam in combination with acetaminophen in rodents. Biomed Rep 2017; 8:176-183. [DOI: 10.3892/br.2017.1032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 12/12/2017] [Indexed: 11/06/2022] Open
Affiliation(s)
- Qian Li
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Quankun Zhuang
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Yaru Gu
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Cailing Dai
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Xiaoxiao Gao
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Xiaomin Wang
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Huimin Wen
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Xin Li
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Yuyang Zhang
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| |
Collapse
|
7
|
Pickering G, Macian N, Dubray C, Pereira B. Paracetamol sharpens reflection and spatial memory: a double-blind randomized controlled study in healthy volunteers. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:3969-3976. [PMID: 27980393 PMCID: PMC5147402 DOI: 10.2147/dddt.s111590] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Background Acetaminophen (APAP, paracetamol) mechanism for analgesic and antipyretic outcomes has been largely addressed, but APAP action on cognitive function has not been studied in humans. Animal studies have suggested an improved cognitive performance but the link with analgesic and antipyretic modes of action is incomplete. This study aims at exploring cognitive tests in healthy volunteers in the context of antinociception and temperature regulation. A double-blind randomized controlled study (NCT01390467) was carried out from May 30, 2011 to July 12, 2011. Methods Forty healthy volunteers were included and analyzed. Nociceptive thresholds, core temperature (body temperature), and a battery of cognitive tests were recorded before and after oral APAP (2 g) or placebo: Information sampling task for predecisional processing, Stockings of Cambridge for spatial memory, reaction time, delayed matching of sample, and pattern recognition memory tests. Analysis of variance for repeated measures adapted to crossover design was performed and a two-tailed type I error was fixed at 5%. Results APAP improved information sampling task (diminution of the number of errors, latency to open boxes, and increased number of opened boxes; all P<0.05). Spatial planning and working memory initial thinking time were decreased (P=0.04). All other tests were not modified by APAP. APAP had an antinociceptive effect (P<0.01) and body temperature did not change. Conclusion This study shows for the first time that APAP sharpens decision making and planning strategy in healthy volunteers and that cognitive performance and antinociception are independent of APAP effect on thermogenesis. We suggest that cognitive performance mirrors the analgesic rather than thermic cascade of events, with possibly a central role for serotonergic and cannabinoid systems that need to be explored further in the context of pain and cognition.
Collapse
Affiliation(s)
- Gisèle Pickering
- University Hospital, CHU Clermont-Ferrand, Centre de Pharmacologie Clinique; Inserm, CIC 1405, UMR Neurodol 1107; Clermont Université, Laboratoire de Pharmacologie, Faculté de médicine
| | - Nicolas Macian
- University Hospital, CHU Clermont-Ferrand, Centre de Pharmacologie Clinique; Inserm, CIC 1405, UMR Neurodol 1107
| | - Claude Dubray
- University Hospital, CHU Clermont-Ferrand, Centre de Pharmacologie Clinique; Inserm, CIC 1405, UMR Neurodol 1107; Clermont Université, Laboratoire de Pharmacologie, Faculté de médicine
| | - Bruno Pereira
- CHU de Clermont-Ferrand, Délégation Recherche Clinique Innovation, Clermont-Ferrand, France
| |
Collapse
|
8
|
Pickering G, Kastler A, Macian N, Pereira B, Valabrègue R, Lehericy S, Boyer L, Dubray C, Jean B. The brain signature of paracetamol in healthy volunteers: a double-blind randomized trial. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:3853-62. [PMID: 26229445 PMCID: PMC4517518 DOI: 10.2147/dddt.s81004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Paracetamol's (APAP) mechanism of action suggests the implication of supraspinal structures but no neuroimaging study has been performed in humans. METHODS AND RESULTS This randomized, double-blind, crossover, placebo-controlled trial in 17 healthy volunteers (NCT01562704) aimed to evaluate how APAP modulates pain-evoked functional magnetic resonance imaging signals. We used behavioral measures and functional magnetic resonance imaging to investigate the response to experimental thermal stimuli with APAP or placebo administration. Region-of-interest analysis revealed that activity in response to noxious stimulation diminished with APAP compared to placebo in prefrontal cortices, insula, thalami, anterior cingulate cortex, and periaqueductal gray matter. CONCLUSION These findings suggest an inhibitory effect of APAP on spinothalamic tracts leading to a decreased activation of higher structures, and a top-down influence on descending inhibition. Further binding and connectivity studies are needed to evaluate how APAP modulates pain, especially in the context of repeated administration to patients with pain.
Collapse
Affiliation(s)
- Gisèle Pickering
- CHU Clermont-Ferrand, Centre de Pharmacologie Clinique, Faculté de medicine, France ; Centre d'Investigation Clinique - Inserm 1405, Faculté de medicine, France ; Clermont Université, Laboratoire de Pharmacologie, Faculté de medicine, France
| | - Adrian Kastler
- CHU Gabriel Montpied, Clermont-Ferrand, Service d'Imagerie Ostéo-articulaire thoracique et neurologique, Clermont-Ferrand, France
| | - Nicolas Macian
- CHU Clermont-Ferrand, Centre de Pharmacologie Clinique, Faculté de medicine, France ; Centre d'Investigation Clinique - Inserm 1405, Faculté de medicine, France
| | - Bruno Pereira
- CHU Clermont-Ferrand, Délégation Recherche Clinique et à l'Innovation, Clermont-Ferrand, France
| | - Romain Valabrègue
- Institut du Cerveau et de la Moelle epiniere - ICM, Centre de NeuroImagerie de Recherche CENIR, Inserm U1127, CNRS UMR 7225, Sorbonne Universités, UPMC University Paris, Paris, France, Department of Neuroradiology, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Stéphane Lehericy
- Institut du Cerveau et de la Moelle epiniere - ICM, Centre de NeuroImagerie de Recherche CENIR, Inserm U1127, CNRS UMR 7225, Sorbonne Universités, UPMC University Paris, Paris, France, Department of Neuroradiology, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Louis Boyer
- CHU Gabriel Montpied, Clermont-Ferrand, Service d'Imagerie Ostéo-articulaire thoracique et neurologique, Clermont-Ferrand, France ; UMR CNRS UdA 6284, Clemont-Ferrand, France
| | - Claude Dubray
- CHU Clermont-Ferrand, Centre de Pharmacologie Clinique, Faculté de medicine, France ; Centre d'Investigation Clinique - Inserm 1405, Faculté de medicine, France ; Clermont Université, Laboratoire de Pharmacologie, Faculté de medicine, France
| | - Betty Jean
- CHU Gabriel Montpied, Clermont-Ferrand, Service d'Imagerie Ostéo-articulaire thoracique et neurologique, Clermont-Ferrand, France
| |
Collapse
|
9
|
Jetten MJA, Ruiz-Aracama A, Coonen MLJ, Claessen SM, van Herwijnen MHM, Lommen A, van Delft JHM, Peijnenburg AACM, Kleinjans JCS. Interindividual variation in gene expression responses and metabolite formation in acetaminophen-exposed primary human hepatocytes. Arch Toxicol 2015; 90:1103-15. [PMID: 26104854 PMCID: PMC4830893 DOI: 10.1007/s00204-015-1545-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 06/03/2015] [Indexed: 12/14/2022]
Abstract
Acetaminophen (APAP) is a readily available over-the-counter drug and is one of the most commonly used analgesics/antipyretics worldwide. Large interindividual variation in susceptibility toward APAP-induced liver failure has been reported. However, the exact underlying factors causing this variability in susceptibility are still largely unknown. The aim of this study was to better understand this variability in response to APAP by evaluating interindividual differences in gene expression changes and APAP metabolite formation in primary human hepatocytes (PHH) from several donors (n = 5) exposed in vitro to a non-toxic to toxic APAP dose range. To evaluate interindividual variation, gene expression data/levels of metabolites were plotted against APAP dose/donor. The correlation in APAP dose response between donors was calculated by comparing data points from one donor to the data points of all other donors using a Pearson-based correlation analysis. From that, a correlation score/donor for each gene/metabolite was defined, representing the similarity of the omics response to APAP in PHH of a particular donor to all other donors. The top 1 % highest variable genes were selected for further evaluation using gene set overrepresentation analysis. The biological processes in which the genes with high interindividual variation in expression were involved include liver regeneration, inflammatory responses, mitochondrial stress responses, hepatocarcinogenesis, cell cycle, and drug efficacy. Additionally, the interindividual variation in the expression of these genes could be associated with the variability in expression levels of hydroxyl/methoxy-APAP and C8H13O5N-APAP-glucuronide. The before-mentioned metabolites or their derivatives have also been reported in blood of humans exposed to therapeutic APAP doses. Possibly these findings can contribute to elucidating the causative factors of interindividual susceptibility toward APAP.
Collapse
Affiliation(s)
- Marlon J A Jetten
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, Room 4.112 UNS 50, 6229 ER, Maastricht, The Netherlands.
| | - Ainhoa Ruiz-Aracama
- RIKILT, Institute of Food Safety, Wageningen UR, PO Box 230, 6700 AE, Wageningen, The Netherlands
| | - Maarten L J Coonen
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, Room 4.112 UNS 50, 6229 ER, Maastricht, The Netherlands
| | - Sandra M Claessen
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, Room 4.112 UNS 50, 6229 ER, Maastricht, The Netherlands
| | - Marcel H M van Herwijnen
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, Room 4.112 UNS 50, 6229 ER, Maastricht, The Netherlands
| | - Arjen Lommen
- RIKILT, Institute of Food Safety, Wageningen UR, PO Box 230, 6700 AE, Wageningen, The Netherlands
| | - Joost H M van Delft
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, Room 4.112 UNS 50, 6229 ER, Maastricht, The Netherlands
| | - Ad A C M Peijnenburg
- RIKILT, Institute of Food Safety, Wageningen UR, PO Box 230, 6700 AE, Wageningen, The Netherlands
| | - Jos C S Kleinjans
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, Room 4.112 UNS 50, 6229 ER, Maastricht, The Netherlands
| |
Collapse
|
10
|
Dalmann R, Daulhac L, Antri M, Eschalier A, Mallet C. Supra-spinal FAAH is required for the analgesic action of paracetamol in an inflammatory context. Neuropharmacology 2014; 91:63-70. [PMID: 25448494 DOI: 10.1016/j.neuropharm.2014.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/06/2014] [Accepted: 11/13/2014] [Indexed: 12/19/2022]
Abstract
Paracetamol (acetaminophen) is the most commonly used analgesic in the world. Recently, a new view of its action has emerged: that paracetamol would be a pro-drug that should be metabolized by the FAAH enzyme into AM404, its active metabolite. However, this hypothesis has been demonstrated only in naive animals, a far cry from the clinical pathologic context of paracetamol use. Moreover, FAAH is a ubiquitous enzyme expressed both in the central nervous system and in the periphery. Thus, we explored: (i) the involvement of FAAH in the analgesic action of paracetamol in a mouse model of inflammatory pain; and (ii) the contributions of central versus peripheral FAAH in this action. The analgesic effect of paracetamol was evaluated in thermal hyperalgesia, mechanical allodynia and hyperalgesia induced by an intra-plantar injection of carrageenan (3%) in FAAH knock-out mice or their littermates. Moreover, the contribution of the central and peripheral enzymes was explored by comparing the effect of a global FAAH inhibitor (URB597) to that of a peripherally restricted FAAH inhibitor (URB937) on paracetamol action. Here, we show that in a model of inflammatory pain submitted to different stimuli, the analgesic action of paracetamol was abolished when FAAH was genetically or pharmacologically inhibited. Whereas a global FAAH inhibitor, URB597 (0.3 mg/kg), reduced the anti-hyperalgesic action of paracetamol, a brain-impermeant FAAH inhibitor, URB937 (0.3 mg/kg), had no influence. However, administered intracerebroventricularly, URB937 (5 μg/mouse) reduced the action of paracetamol. These results demonstrate that the supra-spinally-located FAAH enzyme is necessary for the analgesic action of paracetamol.
Collapse
Affiliation(s)
- Romain Dalmann
- Clermont Université, Université d'Auvergne, Pharmacologie Fondamentale et Clinique de la Douleur, BP 10448, F-63000 Clermont-Ferrand, France; Inserm, U 1107, Neuro-Dol, F-63000 Clermont-Ferrand, France
| | - Laurence Daulhac
- Clermont Université, Université d'Auvergne, Pharmacologie Fondamentale et Clinique de la Douleur, BP 10448, F-63000 Clermont-Ferrand, France; Inserm, U 1107, Neuro-Dol, F-63000 Clermont-Ferrand, France
| | - Myriam Antri
- Inserm, U 1107, Neuro-Dol, F-63000 Clermont-Ferrand, France; Clermont Université, Université d'Auvergne, Douleur Trigéminale et Migraine, BP 10448, F-63000 Clermont-Ferrand, France
| | - Alain Eschalier
- Clermont Université, Université d'Auvergne, Pharmacologie Fondamentale et Clinique de la Douleur, BP 10448, F-63000 Clermont-Ferrand, France; Inserm, U 1107, Neuro-Dol, F-63000 Clermont-Ferrand, France; CHU Clermont-Ferrand, Service de Pharmacologie, F-63003 Clermont-Ferrand, France
| | - Christophe Mallet
- Clermont Université, Université d'Auvergne, Pharmacologie Fondamentale et Clinique de la Douleur, BP 10448, F-63000 Clermont-Ferrand, France; Inserm, U 1107, Neuro-Dol, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
11
|
Vijayakaran K, Kesavan M, Kannan K, Sankar P, Tandan SK, Sarkar SN. Arsenic decreases antinociceptive activity of paracetamol: possible involvement of serotonergic and endocannabinoid receptors. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 38:397-405. [PMID: 25128769 DOI: 10.1016/j.etap.2014.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 06/30/2014] [Accepted: 07/02/2014] [Indexed: 06/03/2023]
Abstract
We assessed whether repeated arsenic exposure can decrease paracetamol-mediated antinociception by modulating serotonergic and endocannabinoid pathways. Rats were preexposed to elemental arsenic (4ppm) as sodium arsenite through drinking water for 28 days. Next day paracetamol's (400mg/kg, oral) antinociceptive activity was assessed through formalin-induced nociception. Serotonin content and gene expression of 5-HT1A, 5-HT2A and CB1 receptors were evaluated in brainstem and frontal cortex. Arsenic decreased paracetamol-mediated analgesia. Paracetamol, but not arsenic, increased serotonin content in these regions. Arsenic attenuated paracetamol-mediated increase in serotonin level. Paracetamol did not alter 5-HT1A expression, but caused down-regulation of 5-HT2A and up-regulation of CB1 receptors. Arsenic down-regulated these receptors. However, paracetamol-mediated down-regulation of 5-HT2A was more pronounced. Arsenic did not modify paracetamol's effect on 5-HT1A expression, but reduced paracetamol-mediated down-regulation of 5-HT2A and reversed up-regulation of CB1 receptors. Results suggest arsenic reduced paracetamol-induced analgesia possibly by interfering with pronociceptive 5-HT2A and antinociceptive CB1 receptors.
Collapse
Affiliation(s)
- Karunakaran Vijayakaran
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122 Bareilly, Uttar Pradesh, India
| | - Manickam Kesavan
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122 Bareilly, Uttar Pradesh, India
| | - Kandasamy Kannan
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122 Bareilly, Uttar Pradesh, India
| | - Palanisamy Sankar
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122 Bareilly, Uttar Pradesh, India
| | - Surendra Kumar Tandan
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122 Bareilly, Uttar Pradesh, India
| | - Souvendra Nath Sarkar
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122 Bareilly, Uttar Pradesh, India.
| |
Collapse
|
12
|
Engström Ruud L, Wilhelms DB, Eskilsson A, Vasilache AM, Elander L, Engblom D, Blomqvist A. Acetaminophen reduces lipopolysaccharide-induced fever by inhibiting cyclooxygenase-2. Neuropharmacology 2013; 71:124-9. [DOI: 10.1016/j.neuropharm.2013.03.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 03/11/2013] [Accepted: 03/17/2013] [Indexed: 02/02/2023]
|
13
|
Graham GG, Davies MJ, Day RO, Mohamudally A, Scott KF. The modern pharmacology of paracetamol: therapeutic actions, mechanism of action, metabolism, toxicity and recent pharmacological findings. Inflammopharmacology 2013; 21:201-32. [PMID: 23719833 DOI: 10.1007/s10787-013-0172-x] [Citation(s) in RCA: 346] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 04/18/2013] [Indexed: 02/06/2023]
Abstract
Paracetamol is used worldwide for its analgesic and antipyretic actions. It has a spectrum of action similar to that of NSAIDs and resembles particularly the COX-2 selective inhibitors. Paracetamol is, on average, a weaker analgesic than NSAIDs or COX-2 selective inhibitors but is often preferred because of its better tolerance. Despite the similarities to NSAIDs, the mode of action of paracetamol has been uncertain, but it is now generally accepted that it inhibits COX-1 and COX-2 through metabolism by the peroxidase function of these isoenzymes. This results in inhibition of phenoxyl radical formation from a critical tyrosine residue essential for the cyclooxygenase activity of COX-1 and COX-2 and prostaglandin (PG) synthesis. Paracetamol shows selectivity for inhibition of the synthesis of PGs and related factors when low levels of arachidonic acid and peroxides are available but conversely, it has little activity at substantial levels of arachidonic acid and peroxides. The result is that paracetamol does not suppress the severe inflammation of rheumatoid arthritis and acute gout but does inhibit the lesser inflammation resulting from extraction of teeth and is also active in a variety of inflammatory tests in experimental animals. Paracetamol often appears to have COX-2 selectivity. The apparent COX-2 selectivity of action of paracetamol is shown by its poor anti-platelet activity and good gastrointestinal tolerance. Unlike both non-selective NSAIDs and selective COX-2 inhibitors, paracetamol inhibits other peroxidase enzymes including myeloperoxidase. Inhibition of myeloperoxidase involves paracetamol oxidation and concomitant decreased formation of halogenating oxidants (e.g. hypochlorous acid, hypobromous acid) that may be associated with multiple inflammatory pathologies including atherosclerosis and rheumatic diseases. Paracetamol may, therefore, slow the development of these diseases. Paracetamol, NSAIDs and selective COX-2 inhibitors all have central and peripheral effects. As is the case with the NSAIDs, including the selective COX-2 inhibitors, the analgesic effects of paracetamol are reduced by inhibitors of many endogenous neurotransmitter systems including serotonergic, opioid and cannabinoid systems. There is considerable debate about the hepatotoxicity of therapeutic doses of paracetamol. Much of the toxicity may result from overuse of combinations of paracetamol with opioids which are widely used, particularly in USA.
Collapse
Affiliation(s)
- Garry G Graham
- Department of Clinical Pharmacology and Toxicology, St Vincent's Hospital, University of New South Wales, Sydney, Australia.
| | | | | | | | | |
Collapse
|
14
|
Dogrul A, Seyrek M, Akgul EO, Cayci T, Kahraman S, Bolay H. Systemic paracetamol-induced analgesic and antihyperalgesic effects through activation of descending serotonergic pathways involving spinal 5-HT₇ receptors. Eur J Pharmacol 2011; 677:93-101. [PMID: 22206817 DOI: 10.1016/j.ejphar.2011.12.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Revised: 12/01/2011] [Accepted: 12/09/2011] [Indexed: 01/23/2023]
Abstract
Although some studies have shown the essential role of descending serotonergic pathways and spinal 5-HT(1A), 5-HT(2A), or 5-HT(3) receptors in the antinociceptive effects of paracetamol, other studies have presented conflicting results, and the particular subtype of spinal 5-HT receptors involved in paracetamol-induced analgesia remains to be clarified. Recent studies have demonstrated the importance of spinal 5-HT(7) receptors in descending serotonergic pain inhibitory pathways. In this study, we investigated the role of descending serotonergic pathways and spinal 5-HT(7) receptors compared with 5-HT(3) and 5-HT(2A) receptors in the antinociceptive and antihyperalgesic effects of paracetamol. Tail-flick, hot plate and plantar incision tests were used to determine nociception in male BALB/c mice. Lesion of serotonergic bulbospinal pathways was performed by intrathecal (i.th.) injection of 5,7-dihydroxytryptamine (5,7-DHT), and spinal 5-HT levels were measured by HPLC. To evaluate the particular subtypes of the spinal 5-HT receptors, the selective 5-HT(7), 5-HT(3) and 5-HT(2A) receptor antagonists SB 269970, ondansetron and ketanserin, respectively, were given i.th. after oral administration of paracetamol. Oral paracetamol (200, 400 and 600 mg/kg) elicits dose-dependent antinociceptive and antihyperalgesic effects. I.th. pretreatment with 5,7-DHT (50 μg) sharply reduced 5-HT levels in the spinal cord. Depletion of spinal 5-HT totally abolished the antinociceptive and antihyperalgesic effects of paracetamol. I.th. injection of SB 2669970 (10 μg) blocked the antinociceptive and antihyperalgesic effects of paracetamol, but ondansetron and ketanserin (10 μg) did not. Our findings suggest that systemic administration of paracetamol may activate descending serotonergic pathways and spinal 5-HT(7) receptors to produce a central antinociceptive and antihyperalgesic effects.
Collapse
Affiliation(s)
- Ahmet Dogrul
- Department of Pharmacology, Gulhane Academy of Medicine, 06010, Ankara, Turkey.
| | | | | | | | | | | |
Collapse
|
15
|
Pickering G, Moustafa F, Desbrandes S, Cardot JM, Roux D, Dubray C. Paracetamol and opioid pathways: a pilot randomized clinical trial. Fundam Clin Pharmacol 2011; 27:339-45. [PMID: 22092536 DOI: 10.1111/j.1472-8206.2011.01010.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Previous studies suggest that the antinociceptive action of paracetamol (acetaminophen, APAP) might involve descending inhibitory pain pathways and the opioidergic system: this study explores this issue in humans with naloxone, the opioid antagonist. After ethical approval, 12 healthy male volunteers were included in this randomized, controlled, double-blind, crossover, four-arm study. They were administered intravenous paracetamol (APAP 1 g) or saline (placebo, pl) followed at 100 min with IV naloxone (Nal 8 mg) or saline, every week for 4 weeks. The amplitude of cerebral potentials evoked by thermal/painful stimuli applied on the arm was recorded nine times over 150 min, witnessing of pain integration at central level. Amplitude changes as well as areas under the curve (AUCs) over 150 min were compared for the four treatments by repeated measures ANOVA (significance 0.05). Amplitude changes were significant for APAP/pl vs. pl/pl at t150: -44% (95%CI -58 to -30) vs. -27% (95%CI -37 to -17; P < 0.05) but not vs. APAP/Nal. AUC (0-150) of APAP/pl is significantly different from pl/pl (-3452%.min (95%CI -4705 to -2199) vs. -933% min (95%CI -2273 to 407; P = 0.015) but not from APAP/Nal (-1731% min (95%CI -3676 to 214; P = 0.08) and other treatments. AUC (90-150) is not significantly different. This pilot study shows for the first time in human volunteers that naloxone does not inhibit paracetamol antinociception, suggesting no significant implication of the opioid system in paracetamol mechanism of action: this needs be confirmed on a larger number of subjects.
Collapse
Affiliation(s)
- Gisèle Pickering
- CHU Clermont-Ferrand, Centre de Pharmacologie Clinique, F-63003 Clermont-Ferrand, France.
| | | | | | | | | | | |
Collapse
|
16
|
Pergolizzi JV, Raffa RB, Tallarida R, Taylor R, Labhsetwar SA. Continuous multimechanistic postoperative analgesia: a rationale for transitioning from intravenous acetaminophen and opioids to oral formulations. Pain Pract 2011; 12:159-73. [PMID: 21676161 DOI: 10.1111/j.1533-2500.2011.00476.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Good surgical outcomes depend in part on good pain relief, allowing for early mobilization, optimal recovery, and patient satisfaction. Postsurgical pain has multiple mechanisms, and multimechanistic approaches to postoperative analgesia are recommended and may be associated with improved pain relief, lowered opioid doses, and sometimes a lower rate of opioid-associated side effects. Acetaminophen (paracetamol) is a familiar agent for treating many types of pain, including postsurgical pain. Oral acetaminophen has been shown to be safe and effective in a variety of acute pain models. Combination products using a fixed-dose of acetaminophen and an opioid have also been effective in treating postsurgical pain. Combination products with acetaminophen have demonstrated an opioid-sparing effect, which inconsistently results in a reduced rate of opioid-associated side effects. Intravenous (IV) acetaminophen and an opioid analgesic administered in the perioperative period may be followed by an oral acetaminophen and opioid combination in the postoperative period. Transitioning from an IV acetaminophen and opioid formulation to a similar but oral formulation of the same drugs appears to be a reasonable step in that both analgesic therapies are known to be safe and effective. For postsurgical analgesia with any acetaminophen product, patient education is necessary to be sure that the patient does not concurrently take any over-the-counter products containing acetaminophen and accidentally exceed dose limits.
Collapse
Affiliation(s)
- Joseph V Pergolizzi
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | | | | | | | | |
Collapse
|
17
|
Straube A, Aicher B, Fiebich BL, Haag G. Combined analgesics in (headache) pain therapy: shotgun approach or precise multi-target therapeutics? BMC Neurol 2011; 11:43. [PMID: 21453539 PMCID: PMC3080296 DOI: 10.1186/1471-2377-11-43] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 03/31/2011] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Pain in general and headache in particular are characterized by a change in activity in brain areas involved in pain processing. The therapeutic challenge is to identify drugs with molecular targets that restore the healthy state, resulting in meaningful pain relief or even freedom from pain. Different aspects of pain perception, i.e. sensory and affective components, also explain why there is not just one single target structure for therapeutic approaches to pain. A network of brain areas ("pain matrix") are involved in pain perception and pain control. This diversification of the pain system explains why a wide range of molecularly different substances can be used in the treatment of different pain states and why in recent years more and more studies have described a superior efficacy of a precise multi-target combination therapy compared to therapy with monotherapeutics. DISCUSSION In this article, we discuss the available literature on the effects of several fixed-dose combinations in the treatment of headaches and discuss the evidence in support of the role of combination therapy in the pharmacotherapy of pain, particularly of headaches. The scientific rationale behind multi-target combinations is the therapeutic benefit that could not be achieved by the individual constituents and that the single substances of the combinations act together additively or even multiplicatively and cooperate to achieve a completeness of the desired therapeutic effect.As an example the fixed-dose combination of acetylsalicylic acid (ASA), paracetamol (acetaminophen) and caffeine is reviewed in detail. The major advantage of using such a fixed combination is that the active ingredients act on different but distinct molecular targets and thus are able to act on more signalling cascades involved in pain than most single analgesics without adding more side effects to the therapy. SUMMARY Multitarget therapeutics like combined analgesics broaden the array of therapeutic options, enable the completeness of the therapeutic effect, and allow doctors (and, in self-medication with OTC medications, the patients themselves) to customize treatment to the patient's specific needs. There is substantial clinical evidence that such a multi-component therapy is more effective than mono-component therapies.
Collapse
Affiliation(s)
- Andreas Straube
- Department of Neurology, Klinikum Großhadern, Ludwig-Maximilians-University, D-81377 Munich, Germany
| | - Bernhard Aicher
- Boehringer Ingelheim Pharma GmbH&Co. KG, Binger-Str. 173, D-55216 Ingelheim am Rhein, Germany
| | - Bernd L Fiebich
- Dept. of Psychiatry and Psychotherapy, Universitätsklinikum Freiburg, Hauptstr. 5, D-79104 Freiburg, Germany
| | - Gunther Haag
- Michael-Balint Klinik, Hermann-Voland Str. 10, D-78126 Königsfeld im Schwarzwald, Germany
| |
Collapse
|
18
|
Bonnefont J, Laforge T, Plastre O, Beck B, Sorce S, Dehay C, Krause KH. Primate-specific RFPL1 gene controls cell-cycle progression through cyclin B1/Cdc2 degradation. Cell Death Differ 2010; 18:293-303. [PMID: 20725088 DOI: 10.1038/cdd.2010.102] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ret finger protein-like 1 (RFPL1) is a primate-specific target gene of Pax6, a key transcription factor for pancreas, eye and neocortex development. However, its cellular activity remains elusive. In this article, we report that Pax6-elicited expression of the human (h)RFPL1 gene in HeLa cells can be enhanced by in vivo p53 binding to its promoter and therefore investigated the hypothesis that hRFPL1 regulates cell-cycle progression. Upon expression in these cells, hRFPL1 decreased cell number through a kinase-dependent mechanism as PKC activates and Cdc2 inhibits hRFPL1 activity. hRFPL1 antiproliferative activity led to an increased cell population in G(2)/M phase and specific cyclin B1 and Cdc2 downregulations, which were precluded by a proteasome inhibitor. Specifically, cytoplasm-localized hRFPL1 prevented cyclin B1 and Cdc2 accumulation during interphase. Consequently, cells showed a delayed entry into mitosis and cell-cycle lengthening resulting from a threefold increase in G(2) phase duration. Given previous reports that RFPL1 is expressed during cell differentiation, its impact on cell-cycle lengthening therefore provides novel insights into primate-specific development.
Collapse
Affiliation(s)
- J Bonnefont
- Department of Pathology and Immunology, School of Medicine, University of Geneva, Rue Michel-Servet 1, Geneva, Switzerland
| | | | | | | | | | | | | |
Collapse
|
19
|
Supornsilpchai W, le Grand SM, Srikiatkhachorn A. Cortical hyperexcitability and mechanism of medication-overuse headache. Cephalalgia 2010; 30:1101-9. [PMID: 20713560 DOI: 10.1177/0333102409355600] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The present study was conducted to determine the effect of acute (1 h) and chronic (daily dose for 30 days) paracetamol administration on the development of cortical spreading depression (CSD), CSD-evoked cortical hyperaemia and CSD-induced Fos expression in cerebral cortex and trigeminal nucleus caudalis (TNC). Paracetamol (200 mg/kg body weight, intraperitonealy) was administered to Wistar rats. CSD was elicited by topical application of solid KCl. Electrocorticogram and cortical blood flow were recorded. Results revealed that acute paracetamol administration substantially decreased the number of Fos-immunoreactive cells in the parietal cortex and TNC without causing change in CSD frequency. On the other hand, chronic paracetamol administration led to an increase in CSD frequency as well as CSD-evoked Fos expression in parietal cortex and TNC, indicating an increase in cortical excitability and facilitation of trigeminal nociception. Alteration of cortical excitability which leads to an increased susceptibility of CSD development can be a possible mechanism underlying medication-overuse headache.
Collapse
Affiliation(s)
- Weera Supornsilpchai
- Department of Physiology, Faculty of Medicine, Chulalongkorn University, Patumwan, Bangkok, Thailand
| | | | | |
Collapse
|
20
|
Hamza M, Dionne RA. Mechanisms of non-opioid analgesics beyond cyclooxygenase enzyme inhibition. Curr Mol Pharmacol 2010; 2:1-14. [PMID: 19779578 DOI: 10.2174/1874467210902010001] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Non-opioid analgesics including both selective and non-selective cyclooxygenase (COX) inhibitors and acetaminophen are the most widely used treatments for pain. Inhibition of COX is thought to be largely responsible for both the therapeutic and adverse effects of this class of drugs. Accumulating evidence over the past two decades has demonstrated effects of non-opioids beyond the inhibition of COX and prostaglandin synthesis that might also explain their therapeutic and adverse effects. These include their interaction with endocannabinoids, nitric oxide, monoaminergic, and cholinergic systems. Moreover, the recent development of microarray technology that allows the study of human gene expression suggests multiple pathways that may be related to the analgesic and anti-inflammatory effects of non-opioids. The present review will discuss the multiple actions of non-opioids and their interactions with these systems during inflammation and pain, suggesting that COX inhibition is an incomplete explanation for the actions of non-opioids and proposes the involvement of multiple selective targets for their analgesic, as well as, their adverse effects.
Collapse
Affiliation(s)
- May Hamza
- National Institute of Nursing Research, NIH, Bethesda, MD 20892, USA
| | | |
Collapse
|
21
|
Noto C, Pappagallo M. Current and emerging pharmacologic therapies for pain and challenges which still lay ahead. Methods Mol Biol 2010; 617:539-554. [PMID: 20336447 DOI: 10.1007/978-1-60327-323-7_39] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
This chapter seeks to provide a concise overview of the pharmacologic armamentarium available to treat pain. Drugs will be discussed in terms of their indications, mechanisms of action, and major side effects. For the purposes of this chapter, analgesics will be divided into two groups: current and emerging; current analgesics will be further subdivided into older analgesics and newer analgesics. Older analgesics will refer to drugs that have had FDA approval or were used off label for pain before 1990. Newer analgesics will refer to drugs developed or approved for treating pain since 1990. Finally, emerging analgesics will refer to drugs that have pre-clinical data or phase I/II data to suggest efficacy in treating pain but have not been validated by larger Phase III clinical trials. The chapter concludes with a chart that seeks to highlight current problems involved in pain pharmacotherapy.
Collapse
Affiliation(s)
- Christopher Noto
- Department of Anesthesiology, Mount Sinai School of Medicine, New York, NY, USA
| | | |
Collapse
|
22
|
Gatti A, Sabato AF, Carucci A, Bertini L, Mammucari M, Occhioni R. Adequacy assessment of oxycodone/paracetamol (acetaminophen) in multimodal chronic pain : a prospective observational study. Clin Drug Investig 2009; 29 Suppl 1:31-40. [PMID: 19445553 DOI: 10.2165/0044011-200929001-00005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
BACKGROUND Multimodal pain is comprised of nociceptive/inflammatory and neuropathic components. Pharmacological pain therapies from different classes provide pain relief using different mechanistic actions; often a combination of such therapies provides more effective pain relief than monotherapy. To assess whether pain management is adequate requires a comprehensive pain scoring system. OBJECTIVE To evaluate the adequacy of a low-dose combination of oxycodone and paracetamol (acetaminophen) in patients with multimodal, chronic, non-malignant pain using the Pain Management Index (PMI). METHODS During this prospective, observational study, consecutive patients were classified according to the presence of prevalent osteoarticular pain (group A, n = 78) or prevalent neuropathic pain (group B, n = 72). Existing pain-relief medications were discontinued and both groups received oxycodone 5 mg and paracetamol 325 mg up to 8 hourly for a planned duration of >/= 6 weeks. Patients in group B who were receiving gabapentin continued this treatment up to a maximum daily dosage of 2400 mg during the observation period. Pain intensity was evaluated using a visual analogue scale (VAS from 0 to 10). Functional limitation for patients in group A was evaluated using the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC). The intensities of dynamic allodynia and hyperalgesia in patients in group B were evaluated by a VAS. Results from the WOMAC, dynamic allodynia, and hyperalgesia assessments were evaluated using the PMI. RESULTS In group A, 64.3% of patients showed improvements in pain symptoms after 15 days of treatment in the WOMAC categories of "pain preventing sleep" and "walks with aid". The PMI showed that the oxycodone/paracetamol therapy was adequate in patients with osteoarticular pain. In group B, 83.3% of patients reported improvement in the category of "pain preventing sleep", and all patients rated the remaining four categories ("spontaneous pain", "burning pain", "painful paresthesia", and "pinprick") as either stable or improved after 15 days of treatment. Using the PMI, hyperalgesia resolved with oxycodone/paracetamol therapy. 37.1% and 58.3% of patients did not complete the study in group A and B, respectively. CONCLUSION The PMI was an effective tool for assessment of pain management efficacy. Oxycodone/paracetamol improved pain symptoms in the majority of compliant patients. In patients with neuropathic pain, rescue therapy with oxycodone/paracetamol showed a lesser, but significant, improvement of pain symptoms.
Collapse
Affiliation(s)
- Antonio Gatti
- University of Tor Vergata, Anaesthesiology and Intensive Care Medicine Department, Rome, Italy
| | | | | | | | | | | |
Collapse
|
23
|
Santeularia Vergés MT, Català Puigbò E, Genové Cortada M, Revuelta Rizo M, Moral García MV. [New trends in the treatment of post-operative pain in general and gastrointestinal surgery]. Cir Esp 2009; 86:63-71. [PMID: 19586620 DOI: 10.1016/j.ciresp.2009.03.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 03/31/2009] [Indexed: 12/19/2022]
Abstract
The correct application of multimodal analgesia appropriate to the pain intensity, the characteristics of the surgery and the hospitalisation scheme provide the key to improving the management of postoperative pain, which is currently still under treated. In highly complex surgeries the best benefit is obtained by combining systemic analgesic drugs with regional analgesia techniques. Epidural analgesia, not only provides an excellent quality of analgesia, but can prevent complications and reduce postoperative morbidity. Recently, peripheral blocks and parietal infiltration techniques, with or without catheter, have gained prominence in the postoperative analgesia of haemorrhoids and hernia repair. All these analgesic techniques are integrated into the concept of early postoperative rehabilitation and pursue the objective of minimising the side effects associated with the treatment and facilitate the functional recovery of the patient. In addition, proper postoperative pain management, not only increases the quality of in-patient care but is also a factor to consider in the development of chronic post-surgical pain, where the impact is significant and impairs the quality of life of the patients.
Collapse
Affiliation(s)
- María Teresa Santeularia Vergés
- Servicio de Anestesiología, Reanimación y Tratamiento del Dolor, Hospital Universitario de la Santa Creu i Sant Pau, Barcelona, España.
| | | | | | | | | |
Collapse
|
24
|
Abstract
Intravenous paracetamol (rINN)/intravenous acetaminophen (USAN) is an analgesic and antipyretic agent, recommended worldwide as a first-line agent for the treatment of pain and fever in adults and children. In double-blind clinical trials, single or multiple doses of intravenous paracetamol 1 g generally provided significantly better analgesic efficacy than placebo treatment (as determined by primary efficacy endpoints) in adult patients who had undergone dental, orthopaedic or gynaecological surgery. Furthermore, where evaluated, intravenous paracetamol 1 g generally showed similar analgesic efficacy to a bioequivalent dose of propacetamol, and a reduced need for opioid rescue medication. In paediatric surgical patients, recommended doses of intravenous paracetamol 15 mg/kg were not significantly different from propacetamol 30 mg/kg for the treatment of pain, and showed equivocal analgesic efficacy compared with intramuscular pethidine 1 mg/kg in several randomized, active comparator-controlled studies. In a randomized, noninferiority study in paediatric patients with an infection-induced fever, intravenous paracetamol 15 mg/kg treatment was shown to be no less effective than propacetamol 30 mg/kg in terms of antipyretic efficacy. Intravenous paracetamol was well tolerated in clinical trials, having a tolerability profile similar to placebo. Additionally, adverse reactions emerging from the use of the intravenous formulation of paracetamol are extremely rare (<1/10 000). [table: see text].
Collapse
|
25
|
Romero‐Sandoval EA, Curros‐Criado MM, Gaitan G, Molina C, Herrero JF. Nitroparacetamol (NCX-701) and pain: first in a series of novel analgesics. CNS DRUG REVIEWS 2008; 13:279-95. [PMID: 17894645 PMCID: PMC6494127 DOI: 10.1111/j.1527-3458.2007.00016.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The combination of numerous classic drugs with nitric oxide donors has led to the development of new compounds with promising therapeutic activities in a great variety of situations, including cardiovascular and respiratory systems, ocular pressure, inflammation, and pain. One of the first compounds developed was NCX-701 or nitroparacetamol, resulting from the combination of paracetamol, a classic and popular analgesic used in a great number of over-the-counter medications because of its antipyretic and analgesic properties, and a nitrooxybutyroyl moiety, which releases nitric oxide at a low but steady level. Although paracetamol is devoid of most of the gastrointestinal toxicity associated with aspirin-like drugs, this type of compounds was first designed to take advantage of the cytoprotective properties of nitric oxide when released at low concentrations. However, the combination of these molecules also resulted in an unexpected enhancement of the analgesic activity of paracetamol. In fact, NCX-701 has been shown to be effective in acute nociception as well as in neuropathic pain, situations in which paracetamol and other COX inhibitors are devoid of any effect. In addition, NCX-701 is more potent and, in some circumstances, more effective than its parent compound in different models of inflammatory pain. Furthermore, whereas paracetamol lacks any effective antiinflammatory action, NCX-701 might reduce inflammation. All these results taken together imply that the mechanism of action of NCX-701 is different from that of paracetamol, although it is not yet established for either molecule. NCX-701 appears to be a promising compound in the treatment of different types of pain, with a likely better profile of side effects than its parent molecule, paracetamol. Although recent clinical trials provided data consistent with the preclinical profile of NCX-701, further studies are needed to support its clinical use.
Collapse
Affiliation(s)
- E. Alfonso Romero‐Sandoval
- Department of Anesthesiology, Dartmouth College, Dartmouth Hitchcock Medical Center, Hanover, New Hampshire, USA
| | - M. Mar Curros‐Criado
- Departamento de Fisiología, Facultad de Medicina, Universidad de Alcalá, Madrid, Spain
| | - Gema Gaitan
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Carlos Molina
- Departamento de Fisiología, Facultad de Medicina, Universidad de Alcalá, Madrid, Spain
| | - Juan F. Herrero
- Departamento de Fisiología, Facultad de Medicina, Universidad de Alcalá, Madrid, Spain
| |
Collapse
|
26
|
Abstract
The mechanism of the analgesic action of acetaminophen involves the serotonergic system. This study explores how acetaminophen interferes with serotonergic descending pain pathways. Eighteen rapid metabolizers of tropisetron were included in this double-blind cross-over study. After ethical approval, the healthy volunteers took 1 g oral acetaminophen (A) or placebo (p) combined with either the 5-HT3 antagonist tropisetron (T) (5 mg) or saline, intravenously, at weekly intervals. Mechanical pain thresholds, determined before and after a cold pressor test (CPT), were repeated seven times during the three post-dosing hours, and area under the concentration-time curves (AUCs) of the three treatments were compared. After CPT, AUC (%*min) of Ap (1,561+/-429) was larger than before CPT (393+/-382, P<0.05); these effects were totally inhibited by tropisetron. Acetaminophen reinforces descending inhibitory pain pathways; it suggests a supraspinal target for acetaminophen's antinociceptive action. This study also confirmed that there is a central serotonergic mechanism of action for acetaminophen that is not stimulus-dependent.
Collapse
|