1
|
Steponenaite A, Lalic T, Atkinson L, Tanday N, Brown L, Mathie A, Cader ZM, Lall GS. TASK-3, two-pore potassium channels, contribute to circadian rhythms in the electrical properties of the suprachiasmatic nucleus and play a role in driving stable behavioural photic entrainment. Chronobiol Int 2024; 41:802-816. [PMID: 38757583 DOI: 10.1080/07420528.2024.2351515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/24/2023] [Revised: 03/20/2024] [Accepted: 04/19/2024] [Indexed: 05/18/2024]
Abstract
Stable and entrainable physiological circadian rhythms are crucial for overall health and well-being. The suprachiasmatic nucleus (SCN), the primary circadian pacemaker in mammals, consists of diverse neuron types that collectively generate a circadian profile of electrical activity. However, the mechanisms underlying the regulation of endogenous neuronal excitability in the SCN remain unclear. Two-pore domain potassium channels (K2P), including TASK-3, are known to play a significant role in maintaining SCN diurnal homeostasis by inhibiting neuronal activity at night. In this study, we investigated the role of TASK-3 in SCN circadian neuronal regulation and behavioural photoentrainment using a TASK-3 global knockout mouse model. Our findings demonstrate the importance of TASK-3 in maintaining SCN hyperpolarization during the night and establishing SCN sensitivity to glutamate. Specifically, we observed that TASK-3 knockout mice lacked diurnal variation in resting membrane potential and exhibited altered glutamate sensitivity both in vivo and in vitro. Interestingly, despite these changes, the mice lacking TASK-3 were still able to maintain relatively normal circadian behaviour.
Collapse
Affiliation(s)
| | - Tatjana Lalic
- Translational Molecular Neuroscience Group, University of Oxford, Oxford, UK
| | | | - Neil Tanday
- Medway School of Pharmacy, University of Kent, Kent, UK
| | - Lorna Brown
- Medway School of Pharmacy, University of Kent, Kent, UK
| | | | - Zameel M Cader
- Translational Molecular Neuroscience Group, University of Oxford, Oxford, UK
| | | |
Collapse
|
2
|
Gain and loss of TASK3 channel function and its regulation by novel variation cause KCNK9 imprinting syndrome. Genome Med 2022; 14:62. [PMID: 35698242 PMCID: PMC9195326 DOI: 10.1186/s13073-022-01064-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/23/2021] [Accepted: 05/19/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genomics enables individualized diagnosis and treatment, but large challenges remain to functionally interpret rare variants. To date, only one causative variant has been described for KCNK9 imprinting syndrome (KIS). The genotypic and phenotypic spectrum of KIS has yet to be described and the precise mechanism of disease fully understood. METHODS This study discovers mechanisms underlying KCNK9 imprinting syndrome (KIS) by describing 15 novel KCNK9 alterations from 47 KIS-affected individuals. We use clinical genetics and computer-assisted facial phenotyping to describe the phenotypic spectrum of KIS. We then interrogate the functional effects of the variants in the encoded TASK3 channel using sequence-based analysis, 3D molecular mechanic and dynamic protein modeling, and in vitro electrophysiological and functional methodologies. RESULTS We describe the broader genetic and phenotypic variability for KIS in a cohort of individuals identifying an additional mutational hotspot at p.Arg131 and demonstrating the common features of this neurodevelopmental disorder to include motor and speech delay, intellectual disability, early feeding difficulties, muscular hypotonia, behavioral abnormalities, and dysmorphic features. The computational protein modeling and in vitro electrophysiological studies discover variability of the impact of KCNK9 variants on TASK3 channel function identifying variants causing gain and others causing loss of conductance. The most consistent functional impact of KCNK9 genetic variants, however, was altered channel regulation. CONCLUSIONS This study extends our understanding of KIS mechanisms demonstrating its complex etiology including gain and loss of channel function and consistent loss of channel regulation. These data are rapidly applicable to diagnostic strategies, as KIS is not identifiable from clinical features alone and thus should be molecularly diagnosed. Furthermore, our data suggests unique therapeutic strategies may be needed to address the specific functional consequences of KCNK9 variation on channel function and regulation.
Collapse
|
3
|
Kohanski MA, Brown L, Orr M, Tan LH, Adappa ND, Palmer JN, Rubenstein RC, Cohen NA. Bitter taste receptor agonists regulate epithelial two-pore potassium channels via cAMP signaling. Respir Res 2021; 22:31. [PMID: 33509163 PMCID: PMC7844973 DOI: 10.1186/s12931-021-01631-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/21/2020] [Accepted: 01/20/2021] [Indexed: 11/20/2022] Open
Abstract
Background Epithelial solitary chemosensory cell (tuft cell) bitter taste signal transduction occurs through G protein coupled receptors and calcium-dependent signaling pathways. Type II taste cells, which utilize the same bitter taste signal transduction pathways, may also utilize cyclic adenosine monophosphate (cAMP) as an independent signaling messenger in addition to calcium. Methods In this work we utilized specific pharmacologic inhibitors to interrogate the short circuit current (Isc) of polarized nasal epithelial cells mounted in Ussing chambers to assess the electrophysiologic changes associated with bitter agonist (denatonium) treatment. We also assessed release of human β-defensin-2 from polarized nasal epithelial cultures following treatment with denatonium benzoate and/or potassium channel inhibitors. Results We demonstrate that the bitter taste receptor agonist, denatonium, decreases human respiratory epithelial two-pore potassium (K2P) current in polarized nasal epithelial cells mounted in Ussing chambers. Our data further suggest that this occurs via a cAMP-dependent signaling pathway. We also demonstrate that this decrease in potassium current lowers the threshold for denatonium to stimulate human β-defensin-2 release. Conclusions These data thus demonstrate that, in addition to taste transducing calcium-dependent signaling, bitter taste receptor agonists can also activate cAMP-dependent respiratory epithelial signaling pathways to modulate K2P currents. Bitter-agonist regulation of potassium currents may therefore serve as a means of rapid regional epithelial signaling, and further study of these pathways may provide new insights into regulation of mucosal ionic composition and innate mechanisms of epithelial defense.
Collapse
Affiliation(s)
- Michael A Kohanski
- Department of Otorhinolaryngology-Head and Neck Surgery, Division of Rhinology, University of Pennsylvania Medical Center, Perelman School of Medicine, 5th Floor Ravdin Building, 3400 Spruce Street, Philadelphia, PA, USA.
| | - Lauren Brown
- Cystic Fibrosis Center, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Melissa Orr
- Cystic Fibrosis Center, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Li Hui Tan
- Department of Otorhinolaryngology-Head and Neck Surgery, Division of Rhinology, University of Pennsylvania Medical Center, Perelman School of Medicine, 5th Floor Ravdin Building, 3400 Spruce Street, Philadelphia, PA, USA
| | - Nithin D Adappa
- Department of Otorhinolaryngology-Head and Neck Surgery, Division of Rhinology, University of Pennsylvania Medical Center, Perelman School of Medicine, 5th Floor Ravdin Building, 3400 Spruce Street, Philadelphia, PA, USA
| | - James N Palmer
- Department of Otorhinolaryngology-Head and Neck Surgery, Division of Rhinology, University of Pennsylvania Medical Center, Perelman School of Medicine, 5th Floor Ravdin Building, 3400 Spruce Street, Philadelphia, PA, USA
| | - Ronald C Rubenstein
- Cystic Fibrosis Center, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.,Division of Allergy and Pulmonary Medicine, Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Noam A Cohen
- Department of Otorhinolaryngology-Head and Neck Surgery, Division of Rhinology, University of Pennsylvania Medical Center, Perelman School of Medicine, 5th Floor Ravdin Building, 3400 Spruce Street, Philadelphia, PA, USA.,Corporal Michael J. Crescenz Veterans Administration Medical Center, Philadelphia, PA, USA.,Monell Chemical Senses Institute, Philadelphia, PA, USA
| |
Collapse
|
4
|
TASK channels: channelopathies, trafficking, and receptor-mediated inhibition. Pflugers Arch 2020; 472:911-922. [DOI: 10.1007/s00424-020-02403-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/03/2020] [Revised: 05/08/2020] [Accepted: 05/18/2020] [Indexed: 01/06/2023]
|
5
|
Cunningham KP, MacIntyre DE, Mathie A, Veale EL. Effects of the ventilatory stimulant, doxapram on human TASK-3 (KCNK9, K2P9.1) channels and TASK-1 (KCNK3, K2P3.1) channels. Acta Physiol (Oxf) 2020; 228:e13361. [PMID: 31423744 PMCID: PMC7003846 DOI: 10.1111/apha.13361] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/21/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 01/16/2023]
Abstract
AIMS The mode of action by which doxapram acts as a respiratory stimulant in humans is controversial. Studies in rodent models, have shown that doxapram is a more potent and selective inhibitor of TASK-1 and TASK-1/TASK-3 heterodimer channels, than TASK-3. Here we investigate the direct effect of doxapram and chirally separated, individual positive and negative enantiomers of the compound, on both human and mouse, homodimeric and heterodimeric variants of TASK-1 and TASK-3. METHODS Whole-cell patch clamp electrophysiology on tsA201 cells was used to assess the potency of doxapram on cloned human or mouse TASK-1, TASK-3 and TASK-2 channels. Mutations of amino acids in the pore-lining region of TASK-3 channels were introduced using site-directed mutagenesis. RESULTS Doxapram was an equipotent inhibitor of human TASK-1 and TASK-3 channels, compared with mouse channel variants, where it was more selective for TASK-1 and heterodimers of TASK-1 and TASK-3. The effect of doxapram could be attenuated by either the removal of the C-terminus of human TASK-3 channels or mutations of particular hydrophobic residues in the pore-lining region. These mutations, however, did not alter the effect of a known extracellular inhibitor of TASK-3, zinc. The positive enantiomer of doxapram, GAL-054, was a more potent antagonist of TASK channels, than doxapram, whereas the negative enantiomer, GAL-053, had little inhibitory effect. CONCLUSION These data show that in contrast to rodent channels, doxapram is a potent inhibitor of both TASK-1 and TASK-3 human channels, providing further understanding of the pharmacological profile of doxapram in humans and informing the development of new therapeutic agents.
Collapse
Affiliation(s)
- Kevin P. Cunningham
- Medway School of PharmacyUniversity of Greenwich and University of KentChatham MaritimeUK
| | - D. Euan MacIntyre
- Department of Drug DiscoveryGalleon Pharmaceuticals, IncHorshamPennsylvania
| | - Alistair Mathie
- Medway School of PharmacyUniversity of Greenwich and University of KentChatham MaritimeUK
| | - Emma L. Veale
- Medway School of PharmacyUniversity of Greenwich and University of KentChatham MaritimeUK
| |
Collapse
|
6
|
Dave S, Chen L, Yu C, Seaton M, Khodr CE, Al-Harthi L, Hu XT. Methamphetamine decreases K + channel function in human fetal astrocytes by activating the trace amine-associated receptor type-1. J Neurochem 2018; 148:29-45. [PMID: 30295919 DOI: 10.1111/jnc.14606] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/21/2017] [Revised: 09/28/2018] [Accepted: 10/03/2018] [Indexed: 12/22/2022]
Abstract
Methamphetamine (Meth) is a potent and commonly abused psychostimulant. Meth alters neuron and astrocyte activity; yet the underlying mechanism(s) is not fully understood. Here we assessed the impact of acute Meth on human fetal astrocytes (HFAs) using whole-cell patch-clamping. We found that HFAs displayed a large voltage-gated K+ efflux (IKv ) through Kv /Kv -like channels during membrane depolarization, and a smaller K+ influx (Ikir ) via inward-rectifying Kir /Kir -like channels during membrane hyperpolarization. Meth at a 'recreational' (20 μM) or toxic/fatal (100 μM) concentration depolarized resting membrane potential (RMP) and suppressed IKv/Kv-like . These changes were associated with a decreased time constant (Ƭ), and mimicked by blocking the two-pore domain K+ (K2P )/K2P -like and Kv /Kv -like channels, respectively. Meth also diminished IKir/Kir-like , but only at toxic/fatal levels. Given that Meth is a potent agonist for the trace amine-associated receptor type-1 (TAAR1), and TAAR1-coupled cAMP/cAMP-activated protein kinase (PKA) cascade, we further evaluated whether the Meth impact on K+ efflux was mediated by this pathway. We found that antagonizing TAAR1 with N-(3-Ethoxyphenyl)-4-(1-pyrrolidinyl)-3-(trifluoromethyl)benzamide (EPPTB) reversed Meth-induced suppression of IKv/Kv-like ; and inhibiting PKA activity by H89 abolished Meth effects on suppressing IKv/Kv-like . Antagonizing TAAR1 might also attenuate Meth-induced RMP depolarization. Voltage-gated Ca2+ currents were not detected in HFAs. These novel findings demonstrate that Meth suppresses IKv/Kv-like by facilitating the TAAR1/Gs /cAMP/PKA cascade and altering the kinetics of Kv /Kv -like channel gating, but reduces K2P /K2P -like channel activity through other pathway(s), in HFAs. Given that Meth-induced decrease in astrocytic K+ efflux through K2P /K2P -like and Kv /Kv -like channels reduces extracellular K+ levels, such reduction could consequently contribute to a decreased excitability of surrounding neurons. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Sonya Dave
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, USA
| | - Lihua Chen
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, USA
| | - Chunjiang Yu
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, USA
| | - Melanie Seaton
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, USA
| | - Christina E Khodr
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, USA
| | - Lena Al-Harthi
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, USA
| | - Xiu-Ti Hu
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
7
|
Srisomboon Y, Zaidman NA, Maniak PJ, Deachapunya C, O'Grady SM. P2Y receptor regulation of K2P channels that facilitate K + secretion by human mammary epithelial cells. Am J Physiol Cell Physiol 2018; 314:C627-C639. [PMID: 29365273 PMCID: PMC6008065 DOI: 10.1152/ajpcell.00342.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/18/2016] [Revised: 01/17/2018] [Accepted: 01/17/2018] [Indexed: 02/07/2023]
Abstract
The objective of this study was to determine the molecular identity of ion channels involved in K+ secretion by the mammary epithelium and to examine their regulation by purinoceptor agonists. Apical membrane voltage-clamp experiments were performed on human mammary epithelial cells where the basolateral membrane was exposed to the pore-forming antibiotic amphotericin B dissolved in a solution with intracellular-like ionic composition. Addition of the Na+ channel inhibitor benzamil reduced the basal current, consistent with inhibition of Na+ uptake across the apical membrane, whereas the KCa3.1 channel blocker TRAM-34 produced an increase in current resulting from inhibition of basal K+ efflux. Treatment with two-pore potassium (K2P) channel blockers quinidine, bupivacaine and a selective TASK1/TASK3 inhibitor (PK-THPP) all produced concentration-dependent inhibition of apical K+ efflux. qRT-PCR experiments detected mRNA expression for nine K2P channel subtypes. Western blot analysis of biotinylated apical membranes and confocal immunocytochemistry revealed that at least five K2P subtypes (TWIK1, TREK1, TREK2, TASK1, and TASK3) are expressed in the apical membrane. Apical UTP also increased the current, but pretreatment with the PKC inhibitor GF109203X blocked the response. Similarly, direct activation of PKC with phorbol 12-myristate 13-acetate produced a similar increase in current as observed with UTP. These results support the conclusion that the basal level of K+ secretion involves constitutive activity of apical KCa3.1 channels and multiple K2P channel subtypes. Apical UTP evoked a transient increase in KCa3.1 channel activity, but over time caused persistent inhibition of K2P channel function leading to an overall decrease in K+ secretion.
Collapse
Affiliation(s)
| | - Nathan A Zaidman
- Departments of Animal Science, Integrative Biology, and Physiology, University of Minnesota , St. Paul, Minnesota
| | - Peter J Maniak
- Departments of Animal Science, Integrative Biology, and Physiology, University of Minnesota , St. Paul, Minnesota
| | | | - Scott M O'Grady
- Departments of Animal Science, Integrative Biology, and Physiology, University of Minnesota , St. Paul, Minnesota
| |
Collapse
|
8
|
Brown DA. Regulation of neural ion channels by muscarinic receptors. Neuropharmacology 2017; 136:383-400. [PMID: 29154951 DOI: 10.1016/j.neuropharm.2017.11.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/08/2016] [Revised: 10/26/2017] [Accepted: 11/13/2017] [Indexed: 12/20/2022]
Abstract
The excitable behaviour of neurons is determined by the activity of their endogenous membrane ion channels. Since muscarinic receptors are not themselves ion channels, the acute effects of muscarinic receptor stimulation on neuronal function are governed by the effects of the receptors on these endogenous neuronal ion channels. This review considers some principles and factors determining the interaction between subtypes and classes of muscarinic receptors with neuronal ion channels, and summarizes the effects of muscarinic receptor stimulation on a number of different channels, the mechanisms of receptor - channel transduction and their direct consequences for neuronal activity. Ion channels considered include potassium channels (voltage-gated, inward rectifier and calcium activated), voltage-gated calcium channels, cation channels and chloride channels. This article is part of the Special Issue entitled 'Neuropharmacology on Muscarinic Receptors'.
Collapse
Affiliation(s)
- David A Brown
- Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
9
|
Affiliation(s)
- Donghee Kim
- Department of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
| |
Collapse
|
10
|
Wright PD, Veale EL, McCoull D, Tickle DC, Large JM, Ococks E, Gothard G, Kettleborough C, Mathie A, Jerman J. Terbinafine is a novel and selective activator of the two-pore domain potassium channel TASK3. Biochem Biophys Res Commun 2017; 493:444-450. [DOI: 10.1016/j.bbrc.2017.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/04/2017] [Accepted: 09/01/2017] [Indexed: 12/12/2022]
|
11
|
Rajani V, Zhang Y, Revill A, Funk G. The role of P2Y1 receptor signaling in central respiratory control. Respir Physiol Neurobiol 2016; 226:3-10. [DOI: 10.1016/j.resp.2015.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/22/2015] [Accepted: 10/06/2015] [Indexed: 12/24/2022]
|
12
|
Lu VB, Ikeda SR. Strategies for Investigating G-Protein Modulation of Voltage-Gated Ca2+ Channels. Cold Spring Harb Protoc 2016; 2016:2016/5/pdb.top087072. [PMID: 27140924 DOI: 10.1101/pdb.top087072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/24/2022]
Abstract
G-protein-coupled receptor modulation of voltage-gated ion channels is a common means of fine-tuning the response of channels to changes in membrane potential. Such modulation impacts physiological processes such as synaptic transmission, and hence therapeutic strategies often directly or indirectly target these pathways. As an exemplar of channel modulation, we examine strategies for investigating G-protein modulation of CaV2.2 or N-type voltage-gated Ca(2+) channels. We focus on biochemical and genetic tools for defining the molecular mechanisms underlying the various forms of CaV2.2 channel modulation initiated following ligand binding to G-protein-coupled receptors.
Collapse
Affiliation(s)
- Van B Lu
- Section on Transmitter Signaling, Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892-9411
| | - Stephen R Ikeda
- Section on Transmitter Signaling, Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892-9411
| |
Collapse
|
13
|
The role of K₂p channels in anaesthesia and sleep. Pflugers Arch 2014; 467:907-16. [PMID: 25482669 PMCID: PMC4428837 DOI: 10.1007/s00424-014-1654-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/04/2014] [Revised: 11/11/2014] [Accepted: 11/12/2014] [Indexed: 12/20/2022]
Abstract
Tandem two-pore potassium channels (K2Ps) have widespread expression in the central nervous system and periphery where they contribute to background membrane conductance. Some general anaesthetics promote the opening of some of these channels, enhancing potassium currents and thus producing a reduction in neuronal excitability that contributes to the transition to unconsciousness. Similarly, these channels may be recruited during the normal sleep-wake cycle as downstream effectors of wake-promoting neurotransmitters such as noradrenaline, histamine and acetylcholine. These transmitters promote K2P channel closure and thus an increase in neuronal excitability. Our understanding of the roles of these channels in sleep and anaesthesia has been largely informed by the study of mouse K2P knockout lines and what is currently predicted by in vitro electrophysiology and channel structure and gating.
Collapse
|
14
|
Kim D, Kang D. Role of K₂p channels in stimulus-secretion coupling. Pflugers Arch 2014; 467:1001-11. [PMID: 25476848 DOI: 10.1007/s00424-014-1663-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/26/2014] [Revised: 11/26/2014] [Accepted: 11/28/2014] [Indexed: 11/30/2022]
Abstract
Two-pore domain K(+) (K2P) channels are involved in a variety of physiological processes by virtue of their high basal activity and sensitivity to various biological stimuli. One of these processes is secretion of hormones and transmitters in response to stimuli such as hypoxia, acidosis, and receptor agonists. The rise in intracellular [Ca(2+)] ([Ca(2+)]i) that is critical for the secretory event can be achieved by several mechanisms: (a) inhibition of resting (background) K(+) channels, (b) activation of Na(+)/Ca(2+)-permeable channels, and (c) release of Ca(2+) from intracellular stores. Here, we discuss the role of TASK and TREK in stimulus-secretion mechanisms in carotid body chemoreceptor cells and adrenal medullary/cortical cells. Studies show that stimuli such as hypoxia and acidosis cause cell depolarization and transmitter/hormone secretion by inhibition of TASK or TREK. Subsequent elevation of [Ca(2+)]i produced by opening of voltage-dependent Ca(2+) channels then activates a Na(+)-permeable cation channel, presumably to help sustain the depolarization and [Ca(2+)]i. Agonists such as angiotensin II may elevate [Ca(2+)]i via multiple mechanisms involving both inhibition of TASK/TREK and Ca(2+) release from internal stores to cause aldosterone secretion. Thus, inhibition of resting (background) K(+) channels and subsequent activation of voltage-gated Ca(2+) channels and Na(+)-permeable non-selective cation channels may be a common ionic mechanism that lead to hormone and transmitter secretion.
Collapse
Affiliation(s)
- Donghee Kim
- Department of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA,
| | | |
Collapse
|
15
|
Wilke BU, Lindner M, Greifenberg L, Albus A, Kronimus Y, Bünemann M, Leitner MG, Oliver D. Diacylglycerol mediates regulation of TASK potassium channels by Gq-coupled receptors. Nat Commun 2014; 5:5540. [PMID: 25420509 DOI: 10.1038/ncomms6540] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/19/2014] [Accepted: 10/09/2014] [Indexed: 11/09/2022] Open
Abstract
The two-pore domain potassium (K2P) channels TASK-1 (KCNK3) and TASK-3 (KCNK9) are important determinants of background K(+) conductance and membrane potential. TASK-1/3 activity is regulated by hormones and transmitters that act through G protein-coupled receptors (GPCR) signalling via G proteins of the Gαq/11 subclass. How the receptors inhibit channel activity has remained unclear. Here, we show that TASK-1 and -3 channels are gated by diacylglycerol (DAG). Receptor-initiated inhibition of TASK required the activity of phospholipase C, but neither depletion of the PLC substrate PI(4,5)P2 nor release of the downstream messengers IP3 and Ca(2+). Attenuation of cellular DAG transients by DAG kinase or lipase suppressed receptor-dependent inhibition, showing that the increase in cellular DAG-but not in downstream lipid metabolites-mediates channel inhibition. The findings identify DAG as the signal regulating TASK channels downstream of GPCRs and define a novel role for DAG that directly links cellular DAG dynamics to excitability.
Collapse
Affiliation(s)
- Bettina U Wilke
- Institute of Physiology and Pathophysiology, Department of Neurophysiology, Philipps University, Deutschhausstr. 1-2, 35037 Marburg, Germany
| | - Moritz Lindner
- Institute of Physiology and Pathophysiology, Department of Neurophysiology, Philipps University, Deutschhausstr. 1-2, 35037 Marburg, Germany
| | - Lea Greifenberg
- Institute of Physiology and Pathophysiology, Department of Neurophysiology, Philipps University, Deutschhausstr. 1-2, 35037 Marburg, Germany
| | - Alexandra Albus
- Institute of Physiology and Pathophysiology, Department of Neurophysiology, Philipps University, Deutschhausstr. 1-2, 35037 Marburg, Germany
| | - Yannick Kronimus
- Institute of Physiology and Pathophysiology, Department of Neurophysiology, Philipps University, Deutschhausstr. 1-2, 35037 Marburg, Germany
| | - Moritz Bünemann
- Department of Pharmacology and Clinical Pharmacy, Philipps University, 35032 Marburg, Germany
| | - Michael G Leitner
- Institute of Physiology and Pathophysiology, Department of Neurophysiology, Philipps University, Deutschhausstr. 1-2, 35037 Marburg, Germany
| | - Dominik Oliver
- Institute of Physiology and Pathophysiology, Department of Neurophysiology, Philipps University, Deutschhausstr. 1-2, 35037 Marburg, Germany
| |
Collapse
|
16
|
Zhang H, Dong H, Cilz NI, Kurada L, Hu B, Wada E, Bayliss DA, Porter JE, Lei S. Neurotensinergic Excitation of Dentate Gyrus Granule Cells via Gαq-Coupled Inhibition of TASK-3 Channels. Cereb Cortex 2014; 26:977-90. [PMID: 25405940 DOI: 10.1093/cercor/bhu267] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/14/2022] Open
Abstract
Neurotensin (NT) is a 13-amino acid peptide and serves as a neuromodulator in the brain. Whereas NT has been implicated in learning and memory, the underlying cellular and molecular mechanisms are ill-defined. Because the dentate gyrus receives profound innervation of fibers containing NT and expresses high density of NT receptors, we examined the effects of NT on the excitability of dentate gyrus granule cells (GCs). Our results showed that NT concentration dependently increased action potential (AP) firing frequency of the GCs by the activation of NTS1 receptors resulting in the depolarization of the GCs. NT-induced enhancement of AP firing frequency was not caused indirectly by releasing glutamate, GABA, acetylcholine, or dopamine, but due to the inhibition of TASK-3 K(+) channels. NT-mediated excitation of the GCs was G protein dependent, but independent of phospholipase C, intracellular Ca(2+) release, and protein kinase C. Immunoprecipitation experiment demonstrates that the activation of NTS1 receptors induced the association of Gαq/11 and TASK-3 channels suggesting a direct coupling of Gαq/11 to TASK-3 channels. Endogenously released NT facilitated the excitability of the GCs contributing to the induction of long-term potentiation at the perforant path-GC synapses. Our results provide a cellular mechanism that helps to explain the roles of NT in learning and memory.
Collapse
Affiliation(s)
- Haopeng Zhang
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Hailong Dong
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Nicholas I Cilz
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Lalitha Kurada
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Binqi Hu
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Etsuko Wada
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, Tokyo, Japan
| | - Douglas A Bayliss
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - James E Porter
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Saobo Lei
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| |
Collapse
|
17
|
Bista P, Pawlowski M, Cerina M, Ehling P, Leist M, Meuth P, Aissaoui A, Borsotto M, Heurteaux C, Decher N, Pape HC, Oliver D, Meuth SG, Budde T. Differential phospholipase C-dependent modulation of TASK and TREK two-pore domain K+ channels in rat thalamocortical relay neurons. J Physiol 2014; 593:127-44. [PMID: 25556792 DOI: 10.1113/jphysiol.2014.276527] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/24/2014] [Accepted: 09/23/2014] [Indexed: 01/10/2023] Open
Abstract
KEY POINTS During the behavioural states of sleep and wakefulness thalamocortical relay neurons fire action potentials in high frequency bursts or tonic sequences, respectively. The modulation of specific K(+) channel types, termed TASK and TREK, allows these neurons to switch between the two modes of activity. In this study we show that the signalling lipids phosphatidylinositol 4,5-bisphosphate (PIP2) and diacylglycerol (DAG), which are components of their membrane environment, switch on and shut off TREK and TASK channels, respectively. These channel modulations contribute to a better understanding of the molecular basis of the effects of neurotransmitters such as ACh which are released by the brainstem arousal system. The present report introduces PIP2 and DAG as new elements of signal transduction in the thalamus. The activity of two-pore domain potassium channels (K2P ) regulates the excitability and firing modes of thalamocortical (TC) neurons. In particular, the inhibition of two-pore domain weakly inwardly rectifying K(+) channel (TWIK)-related acid-sensitive K(+) (TASK) channels and TWIK-related K(+) (TREK) channels, as a consequence of the stimulation of muscarinic ACh receptors (MAChRs) which are coupled to phosphoinositide-specific phospholipase C (PLCβ), induces a shift from burst to tonic firing. By using a whole cell patch-clamp approach, the contribution of the membrane-bound second messenger molecules phosphatidylinositol 4,5-bisphosphate (PIP2 ) and diacylglycerol (DAG) acting downstream of PLCβ was probed. The standing outward current (ISO ) was used to monitor the current through TASK and TREK channels in TC neurons. By exploiting different manoeuvres to change the intracellular PIP2 level in TC neurons, we here show that the scavenging of PIP2 (by neomycin) results in an increased muscarinic effect on ISO whereas increased availability of PIP2 (inclusion to the patch pipette; histone-based carrier) decreased muscarinic signalling. The degree of muscarinic inhibition specifically depends on phosphatidylinositol phosphate (PIP) and PIP2 but no other phospholipids (phosphatidic acid, phosphatidylserine). The use of specific blockers revealed that PIP2 is targeting TREK but not TASK channels. Furthermore, we demonstrate that the inhibition of TASK channels is induced by the application of the DAG analogue 1-oleoyl-2-acetyl-sn-glycerol (OAG). Under current clamp conditions the activation of MAChRs and PLCβ as well as the application of OAG resulted in membrane depolarization, while PIP2 application via histone carrier induced a hyperpolarization. These results demonstrate a differential role of PIP2 and DAG in K2P channel modulation in native neurons which allows a fine-tuned inhibition of TREK (via PIP2 depletion) and TASK (via DAG) channels following MAChR stimulation.
Collapse
Affiliation(s)
- Pawan Bista
- Institut für Physiologie I, Westfälische Wilhelms-Universität, Robert-Koch-Straße 27a, D-48149, Münster, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Bista P, Cerina M, Ehling P, Leist M, Pape HC, Meuth SG, Budde T. The role of two-pore-domain background K⁺ (K₂p) channels in the thalamus. Pflugers Arch 2014; 467:895-905. [PMID: 25346156 DOI: 10.1007/s00424-014-1632-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/27/2014] [Revised: 10/09/2014] [Accepted: 10/12/2014] [Indexed: 12/15/2022]
Abstract
The thalamocortical system is characterized by two fundamentally different activity states, namely synchronized burst firing and tonic action potential generation, which mainly occur during the behavioral states of sleep and wakefulness, respectively. The switch between the two firing modes is crucially governed by the bidirectional modulation of members of the K2P channel family, namely tandem of P domains in a weakly inward rectifying K(+) (TWIK)-related acid-sensitive K(+) (TASK) and TWIK-related K(+) (TREK) channels, in thalamocortical relay (TC) neurons. Several physicochemical stimuli including neurotransmitters, protons, di- and multivalent cations as well as clinically used drugs have been shown to modulate K2P channels in these cells. With respect to modulation of these channels by G-protein-coupled receptors, PLCβ plays a unique role with both substrate breakdown and product synthesis exerting important functions. While the degradation of PIP2 leads to the closure of TREK channels, the production of DAG induces the inhibition of TASK channels. Therefore, TASK and TREK channels were found to be central elements in the control of thalamic activity modes. Since research has yet focused on identifying the muscarinic pathway underling the modulation of TASK and TREK channels in TC neurons, future studies should address other thalamic cell types and members of the K2P channel family.
Collapse
Affiliation(s)
- Pawan Bista
- Institut für Physiologie I, Westfälische Wilhelms-Universität, Robert-Koch-Str. 27a, 48149, Münster, Germany
| | | | | | | | | | | | | |
Collapse
|
19
|
Veale EL, Hassan M, Walsh Y, Al-Moubarak E, Mathie A. Recovery of current through mutated TASK3 potassium channels underlying Birk Barel syndrome. Mol Pharmacol 2014; 85:397-407. [PMID: 24342771 DOI: 10.1124/mol.113.090530] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/31/2022] Open
Abstract
TASK3 (TWIK-related acid-sensitive K(+) channel 3) potassium channels are members of the two-pore-domain potassium channel family. They are responsible for background leak potassium currents found in many cell types. TASK3 channels are genetically imprinted, and a mutation in TASK3 (G236R) is responsible for Birk Barel mental retardation dysmorphism syndrome, a maternally transmitted developmental disorder. This syndrome may arise from a neuronal migration defect during development caused by dysfunctional TASK3 channels. Through the use of whole-cell electrophysiologic recordings, we have found that, although G236R mutated TASK3 channels give rise to a functional current, this current is significantly smaller in an outward direction when compared with wild-type (WT) TASK3 channels. In contrast to WT TASK3 channels, the current is inwardly rectifying. Furthermore, the current through mutated channels is differentially sensitive to a number of regulators, such as extracellular acidification, extracellular zinc, and activation of Gαq-coupled muscarinic (M3) receptors, compared with WT TASK3 channels. The reduced outward current through mutated TASK3_G236R channels can be overcome, at least in part, by both a gain-of-function additional mutation of TASK3 channels (A237T) or by application of the nonsteroidal anti-inflammatory drug flufenamic acid (FFA; 2-{[3-(trifluoromethyl)phenyl]amino}benzoic acid). FFA produces a significantly greater enhancement of current through mutated channels than through WT TASK3 channels. We propose that pharmacologic enhancement of mutated TASK3 channel current during development may, therefore, provide a potentially useful therapeutic strategy in the treatment of Birk Barel syndrome.
Collapse
Affiliation(s)
- Emma L Veale
- Medway School of Pharmacy, University of Kent and University of Greenwich, Kent, United Kingdom
| | | | | | | | | |
Collapse
|
20
|
El Hachmane MF, Rees KA, Veale EL, Sumbayev VV, Mathie A. Enhancement of TWIK-related acid-sensitive potassium channel 3 (TASK3) two-pore domain potassium channel activity by tumor necrosis factor α. J Biol Chem 2013; 289:1388-401. [PMID: 24307172 DOI: 10.1074/jbc.m113.500033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
TASK3 two-pore domain potassium (K2P) channels are responsible for native leak K channels in many cell types which regulate cell resting membrane potential and excitability. In addition, TASK3 channels contribute to the regulation of cellular potassium homeostasis. Because TASK3 channels are important for cell viability, having putative roles in both neuronal apoptosis and oncogenesis, we sought to determine their behavior under inflammatory conditions by investigating the effect of TNFα on TASK3 channel current. TASK3 channels were expressed in tsA-201 cells, and the current through them was measured using whole cell voltage clamp recordings. We show that THP-1 human myeloid leukemia monocytes, co-cultured with hTASK3-transfected tsA-201 cells, can be activated by the specific Toll-like receptor 7/8 activator, R848, to release TNFα that subsequently enhances hTASK3 current. Both hTASK3 and mTASK3 channel activity is increased by incubation with recombinant TNFα (10 ng/ml for 2-15 h), but other K2P channels (hTASK1, hTASK2, hTREK1, and hTRESK) are unaffected. This enhancement by TNFα is not due to alterations in levels of channel expression at the membrane but rather to an alteration in channel gating. The enhancement by TNFα can be blocked by extracellular acidification but persists for mutated TASK3 (H98A) channels that are no longer acid-sensitive even in an acidic extracellular environment. TNFα action on TASK3 channels is mediated through the intracellular C terminus of the channel. Furthermore, it occurs through the ASK1 pathway and is JNK- and p38-dependent. In combination, TNFα activation and TASK3 channel activity can promote cellular apoptosis.
Collapse
Affiliation(s)
- Mickael-F El Hachmane
- From the Medway School of Pharmacy, University of Kent, Central Avenue, Chatham Maritime, ME4 4TB Kent, United Kingdom
| | | | | | | | | |
Collapse
|
21
|
Hayoz S, Cubano L, Maldonado H, Bychkov R. Protein kinase A and C regulate leak potassium currents in freshly isolated vascular myocytes from the aorta. PLoS One 2013; 8:e75077. [PMID: 24086441 PMCID: PMC3781042 DOI: 10.1371/journal.pone.0075077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/19/2013] [Accepted: 08/09/2013] [Indexed: 11/18/2022] Open
Abstract
We tested the hypothesis that protein kinase A (PKA) inhibits K2P currents activated by protein kinase C (PKC) in freshly isolated aortic myocytes. PDBu, the PKC agonist, applied extracellularly, increased the amplitude of the K2P currents in the presence of the “cocktail” of K+ channel blockers. Gö 6976 significantly reduced the increase of the K2P currents by PDBu suggesting the involvement of either α or β isoenzymes of PKC. We found that forskolin, or membrane permeable cAMP, did not inhibit K2P currents activated by the PKC. However, when PKA agonists were added prior to PDBu, they produced a strong decrease in the K2P current amplitudes activated by PKC. Inhibition of PDBu-elicited K2P currents by cAMP agonists was not prevented by the treatment of vascular smooth muscle cells with PKA antagonists (H-89 and Rp-cAMPs). Zn2+ and Hg2+ inhibited K2P currents in one population of cells, produced biphasic responses in another population, and increased the amplitude of the PDBu-elicited K+ currents in a third population of myocytes, suggesting expression of several K2P channel types. We found that cAMP agonists inhibited biphasic responses and increase of amplitude of the PDBu-elicited K2P currents produced by Zn2+ and Hg2. 6-Bnz-cAMp produced a significantly altered pH sensitivity of PDBu-elicited K2P-currents, suggesting the inhibition of alkaline-activated K2P-currents. These results indicate that 6-Bnz-cAMP and other cAMP analogs may inhibit K2P currents through a PKA-independent mechanism. cAMP analogs may interact with unidentified proteins involved in K2P channel regulation. This novel cellular mechanism could provide insights into the interplay between PKC and PKA pathways that regulate vascular tone.
Collapse
Affiliation(s)
- Sébastien Hayoz
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, United States of America
- Department of Pharmacology, Universidad Central Del Caribe, Bayamon, Puerto Rico, United States of America
| | - Luis Cubano
- Department of Pharmacology, Universidad Central Del Caribe, Bayamon, Puerto Rico, United States of America
| | - Hector Maldonado
- Department of Pharmacology, Universidad Central Del Caribe, Bayamon, Puerto Rico, United States of America
| | - Rostislav Bychkov
- Department of Pharmacology, Universidad Central Del Caribe, Bayamon, Puerto Rico, United States of America
- * E-mail:
| |
Collapse
|
22
|
G protein modulation of K2P potassium channel TASK-2 : a role of basic residues in the C terminus domain. Pflugers Arch 2013; 465:1715-26. [PMID: 23812165 DOI: 10.1007/s00424-013-1314-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/17/2013] [Revised: 06/12/2013] [Accepted: 06/13/2013] [Indexed: 12/24/2022]
Abstract
TASK-2 (K2P5.1) is a background K(+) channel opened by extra- or intracellular alkalinisation that plays a role in renal bicarbonate handling, central chemoreception and cell volume regulation. Here, we present results that suggest that TASK-2 is also modulated by Gβγ subunits of heterotrimeric G protein. TASK-2 was strongly inhibited when GTP-γ-S was used as a replacement for intracellular GTP. No inhibition was present using GDP-β-S instead. Purified Gβγ introduced intracellularly also inhibited TASK-2 independently of whether GTP or GDP-β-S was present. The effects of GTP-γ-S and Gβγ subunits were abolished by neutralisation of TASK-2 C terminus double lysine residues K257-K258 or K296-K297. Use of membrane yeast two hybrid (MYTH) experiments and immunoprecipitation assays using tagged proteins gave evidence for a physical interaction between Gβ1 and Gβ2 subunits and TASK-2, in agreement with expression of these subunits in proximal tubule cells. Co-immunoprecipitation was impeded by mutating C terminus K257-K258 (but not K296-K297) to alanines. Gating by extra- or intracellular pH was unaltered in GTP-γ-S-insensitive TASK-2-K257A-K258A mutant. Shrinking TASK-2-expressing cells in hypertonic solution decreased the current to 36 % of its initial value. The same manoeuvre had a significantly diminished effect on TASK-2-K257A-K258A- or TASK-2-K296-K297-expressing cells, or in cells containing intracellular GDP-β-S. Our data are compatible with the concept that TASK-2 channels are modulated by Gβγ subunits of heterotrimeric G protein. We propose that this modulation is a novel way in which TASK-2 can be tuned to its physiological functions.
Collapse
|
23
|
Rahm AK, Gierten J, Kisselbach J, Staudacher I, Staudacher K, Schweizer PA, Becker R, Katus HA, Thomas D. PKC-dependent activation of human K(2P) 18.1 K(+) channels. Br J Pharmacol 2012; 166:764-73. [PMID: 22168364 DOI: 10.1111/j.1476-5381.2011.01813.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Two-pore-domain K(+) channels (K(2P) ) mediate K(+) background currents that modulate the membrane potential of excitable cells. K(2P) 18.1 (TWIK-related spinal cord K(+) channel) provides hyperpolarizing background currents in neurons. Recently, a dominant-negative loss-of-function mutation in K(2P) 18.1 has been implicated in migraine, and activation of K(2P) 18.1 channels was proposed as a therapeutic strategy. Here we elucidated the molecular mechanisms underlying PKC-dependent activation of K(2P) 18.1 currents. EXPERIMENTAL APPROACH Human K(2P) 18.1 channels were heterologously expressed in Xenopus laevis oocytes, and currents were recorded with the two-electrode voltage clamp technique. KEY RESULTS Stimulation of PKC using phorbol 12-myristate-13-acetate (PMA) activated the hK(2P) 18.1 current by 3.1-fold in a concentration-dependent fashion. The inactive analogue 4α-PMA had no effect on channel activity. The specific PKC inhibitors bisindolylmaleimide I, Ro-32-0432 and chelerythrine reduced PMA-induced channel activation indicating that PKC is involved in this effect of PMA. Selective activation of conventional PKC isoforms with thymeleatoxin (100 nM) did not reproduce K(2P) 18.1 channel activation. Current activation by PMA was not affected by pretreatment with CsA (calcineurin inhibitor) or KT 5720 (PKA inhibitor), ruling out a significant contribution of calcineurin or cross-talk with PKA to the PKC-dependent hK(2P) 18.1 activation. Finally, mutation of putative PKC phosphorylation sites did not prevent PMA-induced K(2P) 18.1 channel activation. CONCLUSIONS AND IMPLICATIONS We demonstrated that activation of hK(2P) 18.1 (TRESK) by PMA is mediated by PKC stimulation. Hence, PKC-mediated activation of K(2P) 18.1 background currents may serve as a novel molecular target for migraine treatment.
Collapse
Affiliation(s)
- Ann-Kathrin Rahm
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Gabriel L, Lvov A, Orthodoxou D, Rittenhouse AR, Kobertz WR, Melikian HE. The acid-sensitive, anesthetic-activated potassium leak channel, KCNK3, is regulated by 14-3-3β-dependent, protein kinase C (PKC)-mediated endocytic trafficking. J Biol Chem 2012; 287:32354-66. [PMID: 22846993 DOI: 10.1074/jbc.m112.391458] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/23/2022] Open
Abstract
The acid-sensitive neuronal potassium leak channel, KCNK3, is vital for setting the resting membrane potential and is the primary target for volatile anesthetics. Recent reports demonstrate that KCNK3 activity is down-regulated by PKC; however, the mechanisms responsible for PKC-induced KCNK3 down-regulation are undefined. Here, we report that endocytic trafficking dynamically regulates KCNK3 activity. Phorbol esters and Group I metabotropic glutamate receptor (mGluR) activation acutely decreased both native and recombinant KCNK3 currents with concomitant KCNK3 surface losses in cerebellar granule neurons and cell lines. PKC-mediated KCNK3 internalization required the presence of both 14-3-3β and a novel potassium channel endocytic motif, because depleting either 14-3-3β protein levels or ablating the endocytic motif completely abrogated PKC-regulated KCNK3 trafficking. These results demonstrate that neuronal potassium leak channels are not static membrane residents but are subject to 14-3-3β-dependent regulated trafficking, providing a straightforward mechanism to modulate neuronal excitability and synaptic plasticity by Group I mGluRs.
Collapse
Affiliation(s)
- Luke Gabriel
- Graduate Program in Neuroscience, University of Massachusetts Medical School, Worcester, Massachusetts 01604, USA
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
This review summarizes the brain mechanisms controlling sleep and wakefulness. Wakefulness promoting systems cause low-voltage, fast activity in the electroencephalogram (EEG). Multiple interacting neurotransmitter systems in the brain stem, hypothalamus, and basal forebrain converge onto common effector systems in the thalamus and cortex. Sleep results from the inhibition of wake-promoting systems by homeostatic sleep factors such as adenosine and nitric oxide and GABAergic neurons in the preoptic area of the hypothalamus, resulting in large-amplitude, slow EEG oscillations. Local, activity-dependent factors modulate the amplitude and frequency of cortical slow oscillations. Non-rapid-eye-movement (NREM) sleep results in conservation of brain energy and facilitates memory consolidation through the modulation of synaptic weights. Rapid-eye-movement (REM) sleep results from the interaction of brain stem cholinergic, aminergic, and GABAergic neurons which control the activity of glutamatergic reticular formation neurons leading to REM sleep phenomena such as muscle atonia, REMs, dreaming, and cortical activation. Strong activation of limbic regions during REM sleep suggests a role in regulation of emotion. Genetic studies suggest that brain mechanisms controlling waking and NREM sleep are strongly conserved throughout evolution, underscoring their enormous importance for brain function. Sleep disruption interferes with the normal restorative functions of NREM and REM sleep, resulting in disruptions of breathing and cardiovascular function, changes in emotional reactivity, and cognitive impairments in attention, memory, and decision making.
Collapse
Affiliation(s)
- Ritchie E Brown
- Laboratory of Neuroscience, VA Boston Healthcare System and Harvard Medical School, Brockton, Massachusetts 02301, USA
| | | | | | | | | |
Collapse
|
26
|
Templin JS, Bang SJ, Soiza-Reilly M, Berde CB, Commons KG. Patterned expression of ion channel genes in mouse dorsal raphe nucleus determined with the Allen Mouse Brain Atlas. Brain Res 2012; 1457:1-12. [PMID: 22534482 DOI: 10.1016/j.brainres.2012.03.066] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/29/2011] [Revised: 03/06/2012] [Accepted: 03/28/2012] [Indexed: 12/29/2022]
Abstract
The dorsal raphe nucleus (DR) is the major source of serotonin (5-hydroxytryptamine, 5-HT) in the forebrain and dysfunction of this midbrain structure is implicated in affective disorders. The DR is composed of several types of 5-HT and non-5-HT neurons and their excitable-membrane properties are heterogeneous and overlapping. In order to understand how these properties may be generated, we examined the mRNA expression patterns of voltage- and ligand-gated ion channels in the DR using the Allen Mouse Brain Atlas. Since DR cytoarchitecture is organized with respect to the midline, we sought to identify genes that were expressed in a pattern with respect to the midline, either enriched or depleted, rather than those that were homogenously expressed throughout the DR. Less than 10% of the screened genes for voltage-gated ion channels showed patterned expression within the DR. Identified genes included voltage-gated sodium channel beta subunits, potassium channels, P/Q-, N-type calcium channels, as well as the alpha2/delta-1 calcium channel. Several voltage-gated chloride channels were also identified, although these may function within intracellular compartments. Of the ligand-gated ion channels examined, 20% showed patterned expression. These consisted primarily of glutamate and GABA-A receptor subunits. The identified genes likely contribute to unique excitable properties of different groups of neurons in the DR and may include novel pharmacologic targets for affective disorders.
Collapse
Affiliation(s)
- J Scott Templin
- Department of Anesthesiology, Perioperative, and Pain Medicine, Children's Hospital, Boston, 300 Longwood Ave., Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
27
|
Lee GW, Park HS, Kim EJ, Cho YW, Kim GT, Mun YJ, Choi EJ, Lee JS, Han J, Kang D. Reduction of breast cancer cell migration via up-regulation of TASK-3 two-pore domain K+ channel. Acta Physiol (Oxf) 2012; 204:513-24. [PMID: 21910834 DOI: 10.1111/j.1748-1716.2011.02359.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/05/2023]
Abstract
AIM Many kinds of K(+) channels are expressed in a variety of cells, including cancer cells. However, only a small amount of research has explored the relationship between voltage-independent K(+) channels and breast cancer. This study was performed to investigate whether changes in two-pore domain K(+) (K(2P) ) channel expression levels are related to the migration of human breast cancer cells. METHODS K(2P) channel gene/protein expression levels were compared between MCF-7 (a non-invasive cell) and MDA-MB-231 (an invasive cell) using reverse transcriptase (RT)-polymerase chain reaction (PCR), real-time PCR, Western blotting and immunocytochemistry. The relationship between K(2P) channel expression level and cell migration was analysed using gene overexpression and knock-down techniques. Functional expression of TASK-3 in MCF-7 and MDA-MB-231 cells was recorded using patch-clamp technique. RESULTS Of K(2P) channels, TASK-3 mRNA and protein were highly expressed in MCF-7 cells compared with those in MDA-MB-231 cells. Overexpression of TASK-3 in breast cancer cells reduced migration and invasion, whereas silencing of TASK-3 increased the migration and invasion. The TASK-3 expression level was decreased by phorbol myristate acetate (PMA), a PKC activator. PMA also enhanced the cell migration in MDA-MB-231 cells. CONCLUSION These results show that an increase in TASK-3 expression levels, which could be modulated by PKC activation, reduces cell migration/invasion in breast cancer cells and suggest that modulation of TASK-3 expression may regulate metastasis of breast cancer cells.
Collapse
Affiliation(s)
- G-W Lee
- Division of Hematology-Oncology, Department of Internal Medicine, Gyeongsang National University Hospital, Jinju, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Identification of the muscarinic pathway underlying cessation of sleep-related burst activity in rat thalamocortical relay neurons. Pflugers Arch 2011; 463:89-102. [PMID: 22083644 DOI: 10.1007/s00424-011-1056-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/23/2011] [Revised: 10/19/2011] [Accepted: 10/26/2011] [Indexed: 12/20/2022]
Abstract
Modulation of the standing outward current (I (SO)) by muscarinic acetylcholine (ACh) receptor (MAChR) stimulation is fundamental for the state-dependent change in activity mode of thalamocortical relay (TC) neurons. Here, we probe the contribution of MAChR subtypes, G proteins, phospholipase C (PLC), and two pore domain K(+) (K(2P)) channels to this signaling cascade. By the use of spadin and A293 as specific blockers, we identify TWIK-related K(+) (TREK)-1 channel as new targets and confirm TWIK-related acid-sensitve K(+) (TASK)-1 channels as known effectors of muscarinic signaling in TC neurons. These findings were confirmed using a high affinity blocker of TASK-3 and TREK-1, namely, tetrahexylammonium chloride. It was found that the effect of muscarinic stimulation was inhibited by M(1)AChR-(pirenzepine, MT-7) and M(3)AChR-specific (4-DAMP) antagonists, phosphoinositide-specific PLCβ (PI-PLC) inhibitors (U73122, ET-18-OCH(3)), but not the phosphatidylcholine-specific PLC (PC-PLC) blocker D609. By comparison, depleting guanosine-5'-triphosphate (GTP) in the intracellular milieu nearly completely abolished the effect of MAChR stimulation. The block of TASK and TREK channels was accompanied by a reduction of the muscarinic effect on I (SO). Current-clamp recordings revealed a membrane depolarization following MAChR stimulation, which was sufficient to switch TC neurons from burst to tonic firing under control conditions but not during block of M(1)AChR/M(3)AChR and in the absence of intracellular GTP. These findings point to a critical role of G proteins and PLC as well as TASK and TREK channels in the muscarinic modulation of thalamic activity modes.
Collapse
|
29
|
Lindner M, Leitner MG, Halaszovich CR, Hammond GRV, Oliver D. Probing the regulation of TASK potassium channels by PI4,5P₂ with switchable phosphoinositide phosphatases. J Physiol 2011; 589:3149-62. [PMID: 21540350 DOI: 10.1113/jphysiol.2011.208983] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/14/2022] Open
Abstract
TASK channels are background K+ channels that contribute to the resting conductance in many neurons. A key feature of TASK channels is the reversible inhibition by Gq-coupled receptors, thereby mediating the dynamic regulation of neuronal activity by modulatory transmitters. The mechanism that mediates channel inhibition is not fully understood. While it is clear that activation of Gαq is required, the immediate signal for channel closure remains controversial. Experimental evidence pointed to either phospholipase C (PLC)-mediated depletion of phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) as the cause for channel closure or to a direct inhibitory interaction of active Gαq with the channel. Here, we address the role of PI(4,5)P2 for G-protein-coupled receptor (GPCR)-mediated TASK inhibition by using recently developed genetically encoded tools to alter phosphoinositide (PI) concentrations in the living cell.When expressed in CHO cells, TASK-1- and TASK-3-mediated currents were not affected by depletion of plasma membrane PI(4,5)P2 either via the voltage-activated phosphatase Ci-VSP or via chemically triggered recruitment of a PI(4,5)P2-5'-phosphatase. Depletion of both PI(4,5)P2 and PI(4)P via membrane recruitment of a novel engineered dual-specificity phosphatase also did not inhibit TASK currents. In contrast, each of these methods produced robust inhibition of the bona fide PI(4,5)P2-dependent channel KCNQ4. Efficient depletion of PI(4,5)P2 and PI(4)P was further confirmed with a fluorescent phosphoinositide sensor. Moreover, TASK channels recovered normally from inhibition by co-expressed muscarinic M1 receptors when resynthesis of PI(4,5)P2 was prevented by depletion of cellular ATP. These results demonstrate that TASK channel activity is independent of phosphoinositide concentrations within the physiological range. Consequently, Gq-mediated inhibition of TASK channels is not mediated by depletion of PI(4,5)P2.
Collapse
Affiliation(s)
- Moritz Lindner
- Institute of Physiology and Pathophysiology, Department of Neurophysiology, Philipps University, Deutschhausstrasse 1-2, 35037 Marburg, Germany
| | | | | | | | | |
Collapse
|
30
|
Mant A, Elliott D, Eyers PA, O'Kelly IM. Protein kinase A is central for forward transport of two-pore domain potassium channels K2P3.1 and K2P9.1. J Biol Chem 2011; 286:14110-9. [PMID: 21357689 DOI: 10.1074/jbc.m110.190702] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/18/2023] Open
Abstract
Acid-sensitive two-pore domain potassium channels (K2P3.1 and K2P9.1) play key roles in both physiological and pathophysiological mechanisms, the most fundamental of which is control of resting membrane potential of cells in which they are expressed. These background "leak" channels are constitutively active once expressed at the plasma membrane, and hence tight control of their targeting and surface expression is fundamental to the regulation of K(+) flux and cell excitability. The chaperone protein, 14-3-3, binds to a critical phosphorylated serine in the channel C termini of K2P3.1 and K2P9.1 (Ser(393) and Ser(373), respectively) and overcomes retention in the endoplasmic reticulum by βCOP. We sought to identify the kinase responsible for phosphorylation of the terminal serine in human and rat variants of K2P3.1 and K2P9.1. Adopting a bioinformatic approach, three candidate protein kinases were identified: cAMP-dependent protein kinase, ribosomal S6 kinase, and protein kinase C. In vitro phosphorylation assays were utilized to determine the ability of the candidate kinases to phosphorylate the channel C termini. Electrophysiological measurements of human K2P3.1 transiently expressed in HEK293 cells and cell surface assays of GFP-tagged K2P3.1 and K2P9.1 enabled the determination of the functional implications of phosphorylation by specific kinases. All of our findings support the conclusion that cAMP-dependent protein kinase is responsible for the phosphorylation of the terminal serine in both K2P3.1 and K2P9.1.
Collapse
Affiliation(s)
- Alexandra Mant
- Division of Human Genetics, Centre for Human Development, Stem Cells and Regeneration, University of Southampton, Duthie Building, Mail Point 808, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, United Kingdom
| | | | | | | |
Collapse
|
31
|
Discrete change in volatile anesthetic sensitivity in mice with inactivated tandem pore potassium ion channel TRESK. Anesthesiology 2010; 113:1326-37. [PMID: 21042202 DOI: 10.1097/aln.0b013e3181f90ca5] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND We investigated the role of tandem pore potassium ion channel (K2P) TRESK in neurobehavioral function and volatile anesthetic sensitivity in genetically modified mice. METHODS Exon III of the mouse TRESK gene locus was deleted by homologous recombination using a targeting vector. The genotype of bred mice (wild type, knockout, or heterozygote) was determined using polymerase chain reaction. Morphologic and behavioral evaluations of TRESK knockout mice were compared with wild-type littermates. Sensitivity of bred mice to isoflurane, halothane, sevoflurane, and desflurane were studied by determining the minimum alveolar concentration preventing movement to tail clamping in 50% of each genotype. RESULTS With the exception of decreased number of inactive periods and increased thermal pain sensitivity (20% decrease in latency with hot plate test), TRESK knockout mice had healthy development and behavior. TRESK knockout mice showed a statistically significant 8% increase in isoflurane minimum alveolar concentration compared with wild-type littermates. Sensitivity to other volatile anesthetics was not significantly different. Spontaneous mortality of TRESK knockout mice after initial anesthesia testing was nearly threefold higher than that of wild-type littermates. CONCLUSIONS TRESK alone is not critical for baseline central nervous system function but may contribute to the action of volatile anesthetics. The inhomogeneous change in anesthetic sensitivity corroborates findings in other K2P knockout mice and supports the theory that the mechanism of volatile anesthetic action involves multiple targets. Although it was not shown in this study, a compensatory effect by other K2P channels may also contribute to these observations.
Collapse
|
32
|
Deng PY, Xiao Z, Lei S. Distinct modes of modulation of GABAergic transmission by Group I metabotropic glutamate receptors in rat entorhinal cortex. Hippocampus 2010; 20:980-93. [PMID: 19739246 DOI: 10.1002/hipo.20697] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/10/2022]
Abstract
Activation of metabotropic glutamate receptors (mGluRs) modulates synaptic transmission, whereas the roles of mGluRs in GABAergic transmission in the entorhinal cortex (EC) are elusive. Here, we examined the effects of mGluRs on GABAergic transmission onto the principal neurons in the superficial layers of the EC. Bath application of DHPG, a selective Group I mGluR agonist, increased the frequency and amplitude of spontaneous IPSCs (sIPSCs) whereas application of DCG-IV, an agonist for Group II mGluRs or L-AP4, an agonist for Group III mGluRs failed to change significantly sIPSC frequency and amplitude. Bath application of DHPG failed to change significantly the frequency and amplitude of miniature IPSCs (mIPSCs) recorded in the presence of tetradotoxin but significantly reduced the amplitude of IPSCs evoked by extracellular field stimulation or in synaptically connected interneuron-pyramidal neuron pairs in layer III of the EC. DHPG increased the frequency but reduced the amplitude of APs recorded from entorhinal interneurons. Bath application of DHPG generated membrane depolarization and increased the input resistance of GABAergic interneurons. DHPG-mediated depolarization of GABAergic interneurons was mediated by inhibition of background K(+) channels which are insensitive to extracellular Cs(+), TEA, 4-AP, and Ba(2+). DHPG-induced facilitation of sIPSCs was mediated by mGluR(5) and required the function of Galphaq but was independent of phospholipase C activity. Elevation of synaptic glutamate concentration by bath application of glutamate transporter inhibitors significantly increased sIPSC frequency and amplitude demonstrating a physiological role of mGluRs in GABAergic transmission. Our results provide a cellular and molecular mechanism to explain the physiological and pathological roles of mGluRs in the EC.
Collapse
Affiliation(s)
- Pan-Yue Deng
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota 58203, USA
| | | | | |
Collapse
|
33
|
Abstract
Two-pore-domain potassium (K2P) channels are responsible for background leak currents which regulate the membrane potential and excitability of many cell types. Their activity is modulated by a variety of chemical and physical stimuli which act to increase or decrease the open probability of individual K2P channels. Crystallographic data and homology modelling suggest that all K(+) channels possess a highly conserved structure for ion selectivity and gating mechanisms. Like other K(+) channels, K2P channels are thought to have two primary conserved gating mechanisms: an inactivation (or C-type) gate at the selectivity filter close to the extracellular side of the channel and an activation gate at the intracellular entrance to the channel involving key, identified, hinge glycine residues. Zinc and hydrogen ions regulate Drosophila KCNK0 and mammalian TASK channels, respectively, by interacting with the inactivation gate of these channels. In contrast, the voltage dependence of TASK3 channels is mediated through its activation gate. For KCNK0 it has been shown that the gates display positive cooperativity. It is of much interest to determine whether other K2P regulatory compounds interact with either the activation gate or the inactivation gate to alter channel activity or, indeed, whether additional regulatory gating pathways exist.
Collapse
Affiliation(s)
- Alistair Mathie
- Medway School of Pharmacy, University of Kent, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK.
| | | | | |
Collapse
|
34
|
Abstract
Two-pore domain K(+) (K(2P)) channels give rise to leak (also called background) K(+) currents. The well-known role of background K(+) currents is to stabilize the negative resting membrane potential and counterbalance depolarization. However, it has become apparent in the past decade (during the detailed examination of the cloned and corresponding native K(2P) channel types) that this primary hyperpolarizing action is not performed passively. The K(2P) channels are regulated by a wide variety of voltage-independent factors. Basic physicochemical parameters (e.g., pH, temperature, membrane stretch) and also several intracellular signaling pathways substantially and specifically modulate the different members of the six K(2P) channel subfamilies (TWIK, TREK, TASK, TALK, THIK, and TRESK). The deep implication in diverse physiological processes, the circumscribed expression pattern of the different channels, and the interesting pharmacological profile brought the K(2P) channel family into the spotlight. In this review, we focus on the physiological roles of K(2P) channels in the most extensively investigated cell types, with special emphasis on the molecular mechanisms of channel regulation.
Collapse
Affiliation(s)
- Péter Enyedi
- Department of Physiology, Semmelweis University, Budapest, Hungary.
| | | |
Collapse
|
35
|
Ortiz FC, Varas R. Muscarinic modulation of TASK-like background potassium channel in rat carotid body chemoreceptor cells. Brain Res 2010; 1323:74-83. [DOI: 10.1016/j.brainres.2010.01.091] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/04/2010] [Revised: 01/29/2010] [Accepted: 01/30/2010] [Indexed: 10/19/2022]
|
36
|
|
37
|
Deng PY, Xiao Z, Yang C, Rojanathammanee L, Grisanti L, Watt J, Geiger JD, Liu R, Porter JE, Lei S. GABA(B) receptor activation inhibits neuronal excitability and spatial learning in the entorhinal cortex by activating TREK-2 K+ channels. Neuron 2009; 63:230-43. [PMID: 19640481 DOI: 10.1016/j.neuron.2009.06.022] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/29/2008] [Revised: 02/23/2009] [Accepted: 06/29/2009] [Indexed: 11/25/2022]
Abstract
The entorhinal cortex (EC) is regarded as the gateway to the hippocampus and thus is essential for learning and memory. Whereas the EC expresses a high density of GABA(B) receptors, the functions of these receptors in this region remain unexplored. Here, we examined the effects of GABA(B) receptor activation on neuronal excitability in the EC and spatial learning. Application of baclofen, a specific GABA(B) receptor agonist, inhibited significantly neuronal excitability in the EC. GABA(B) receptor-mediated inhibition in the EC was mediated via activating TREK-2, a type of two-pore domain K(+) channels, and required the functions of inhibitory G proteins and protein kinase A pathway. Depression of neuronal excitability in the EC underlies GABA(B) receptor-mediated inhibition of spatial learning as assessed by Morris water maze. Our study indicates that GABA(B) receptors exert a tight control over spatial learning by modulating neuronal excitability in the EC.
Collapse
Affiliation(s)
- Pan-Yue Deng
- Department of Pharmacology, Physiology, and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Comment on “Functional consequences of Kv1.3 ion channel rearrangement into the immunological synapse”. Immunol Lett 2009; 125:156-7. [DOI: 10.1016/j.imlet.2009.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/20/2009] [Revised: 06/26/2009] [Accepted: 07/02/2009] [Indexed: 11/20/2022]
|
39
|
Judge SIV, Smith PJ. Patents related to therapeutic activation of K(ATP) and K(2P) potassium channels for neuroprotection: ischemic/hypoxic/anoxic injury and general anesthetics. Expert Opin Ther Pat 2009; 19:433-60. [PMID: 19441925 DOI: 10.1517/13543770902765151] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Mechanisms of neuroprotection encompass energy deficits in brain arising from insufficient oxygen and glucose levels following respiratory failure; ischemia or stroke, which produce metabolic stresses that lead to unconsciousness and seizures; and the effects of general anesthetics. Foremost among those K(+) channels viewed as important for neuroprotection are ATP-sensitive (K(ATP)) channels, which belong to the family of inwardly rectifying K(+) channels (K(ir)) and contain a sulfonylurea subunit (SUR1 or SUR2) combined with either K(ir)6.1 (KCNJ8) or K(ir)6.2 (KCNJ11) channel pore-forming alpha-subunits, and various members of the tandem two-pore or background (K(2P)) K(+) channel family, including K(2P)1.1 (KCNK1 or TWIK1), K(2P)2.1 (KCNK2 or TREK/TREK1), K(2P)3.1 (KCNK3 or TASK), K(2P)4.1 (KCNK4 or TRAAK), and K(2P)10.1 (KCNK10 or TREK2). OBJECTIVES This review covers patents and patent applications related to inventions of therapeutics, compound screening methods and diagnostics, including K(ATP) channel openers and blockers, as well as K(ATP) and K(2P) nucleic/amino acid sequences and proteins, vectors, transformed cells and transgenic animals. Although the focus of this patent review is on brain and neuroprotection, patents covering inventions of K(ATP) channel openers for cardioprotection, diabetes mellitus and obesity, where relevant, are addressed. RESULTS/CONCLUSIONS Overall, an important emerging therapeutic mechanism underlying neuroprotection is activation/opening of K(ATP) and K(2P) channels. To this end substantial progress has been made in identifying and patenting agents that target K(ATP) channels. However, current K(2P) channels patents encompass compound screening and diagnostics methodologies, reflecting an earlier 'discovery' stage (target identification/validation) than K(ATP) in the drug development pipeline; this reveals a wide-open field for the discovery and development of K(2P)-targeting compounds.
Collapse
Affiliation(s)
- Susan I V Judge
- University of Maryland School of Medicine, MS Center of Excellence-East, VA Maryland Health Care System, Department of Neurology, BRB 12-040, 655 West Baltimore Street, Baltimore, MD 21201, USA
| | | |
Collapse
|
40
|
Xiao Z, Deng PY, Yang C, Lei S. Modulation of GABAergic transmission by muscarinic receptors in the entorhinal cortex of juvenile rats. J Neurophysiol 2009; 102:659-69. [PMID: 19494196 DOI: 10.1152/jn.00226.2009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022] Open
Abstract
Whereas the entorhinal cortex (EC) receives profuse cholinergic innervations from the basal forebrain and activation of cholinergic receptors has been shown to modulate the activities of the principal neurons and promote the intrinsic oscillations in the EC, the effects of cholinergic receptor activation on GABAergic transmission in this brain region have not been determined. We examined the effects of muscarinic receptor activation on GABA(A) receptor-mediated synaptic transmission in the superficial layers of the EC. Application of muscarine dose-dependently increased the frequency and amplitude of spontaneous inhibitory postsynaptic currents (IPSCs) recorded from the principal neurons in layer II/III via activation of M(3) muscarinic receptors. Muscarine slightly reduced the frequency but had no effects on the amplitude of miniature IPSCs recorded in the presence of tetrodotoxin. Muscarine reduced the amplitude of IPSCs evoked by extracellular field stimulation and by depolarization of GABAergic interneurons in synaptically connected interneuron and pyramidal neuron pairs. Application of muscarine generated membrane depolarization and increased action potential firing frequency but reduced the amplitude of action potentials in GABAergic interneurons. Muscarine-induced depolarization of GABAergic interneurons was mediated by inhibition of background K(+) channels and independent of phospholipase C, intracellular Ca(2+) release, and protein kinase C. Our results demonstrate that activation of muscarinic receptors exerts diverse effects on GABAergic transmission in the EC.
Collapse
Affiliation(s)
- Zhaoyang Xiao
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota 58203, USA
| | | | | | | |
Collapse
|
41
|
Gating the pore of potassium leak channels. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 39:61-73. [PMID: 19404634 DOI: 10.1007/s00249-009-0457-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/13/2009] [Revised: 04/02/2009] [Accepted: 04/07/2009] [Indexed: 11/27/2022]
Abstract
A key feature of potassium channel function is the ability to switch between conducting and non-conducting states by undergoing conformational changes in response to cellular or extracellular signals. Such switching is facilitated by the mechanical coupling of gating domain movements to pore opening and closing. Two-pore domain potassium channels (K(2P)) conduct leak or background potassium-selective currents that are mostly time- and voltage-independent. These channels play a significant role in setting the cell resting membrane potential and, therefore modulate cell responsiveness and excitability. Thus, K(2P) channels are key players in numerous physiological processes and were recently shown to also be involved in human pathologies. It is well established that K(2P) channel conductance, open probability and cell surface expression are significantly modulated by various physical and chemical stimuli. However, in understanding how such signals are translated into conformational changes that open or close the channels gate, there remain more open questions than answers. A growing line of evidence suggests that the outer pore area assumes a critical role in gating K(2P) channels, in a manner reminiscent of C-type inactivation of voltage-gated potassium channels. In some K(2P) channels, this gating mechanism is facilitated in response to external pH levels. Recently, it was suggested that K(2P) channels also possess a lower activation gate that is positively coupled to the outer pore gate. The purpose of this review is to present an up-to-date summary of research describing the conformational changes and gating events that take place at the K(2P) channel ion-conducting pathway during the channel regulation.
Collapse
|
42
|
Xiao Z, Deng PY, Rojanathammanee L, Yang C, Grisanti L, Permpoonputtana K, Weinshenker D, Doze VA, Porter JE, Lei S. Noradrenergic depression of neuronal excitability in the entorhinal cortex via activation of TREK-2 K+ channels. J Biol Chem 2009; 284:10980-91. [PMID: 19244246 DOI: 10.1074/jbc.m806760200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
The entorhinal cortex is closely associated with the consolidation and recall of memories, Alzheimer disease, schizophrenia, and temporal lobe epilepsy. Norepinephrine is a neurotransmitter that plays a significant role in these physiological functions and neurological diseases. Whereas the entorhinal cortex receives profuse noradrenergic innervations from the locus coeruleus of the pons and expresses high densities of adrenergic receptors, the function of norepinephrine in the entorhinal cortex is still elusive. Accordingly, we examined the effects of norepinephrine on neuronal excitability in the entorhinal cortex and explored the underlying cellular and molecular mechanisms. Application of norepinephrine-generated hyperpolarization and decreased the excitability of the neurons in the superficial layers with no effects on neuronal excitability in the deep layers of the entorhinal cortex. Norepinephrine-induced hyperpolarization was mediated by alpha(2A) adrenergic receptors and required the functions of Galpha(i) proteins, adenylyl cyclase, and protein kinase A. Norepinephrine-mediated depression on neuronal excitability was mediated by activation of TREK-2, a type of two-pore domain K(+) channel, and mutation of the protein kinase A phosphorylation site on TREK-2 channels annulled the effects of norepinephrine. Our results indicate a novel action mode in which norepinephrine depresses neuronal excitability in the entorhinal cortex by disinhibiting protein kinase A-mediated tonic inhibition of TREK-2 channels.
Collapse
Affiliation(s)
- Zhaoyang Xiao
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota 58203
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Brenner T, O'Shaughnessy KM. Both TASK-3 and TREK-1 two-pore loop K channels are expressed in H295R cells and modulate their membrane potential and aldosterone secretion. Am J Physiol Endocrinol Metab 2008; 295:E1480-6. [PMID: 18854423 DOI: 10.1152/ajpendo.90652.2008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022]
Abstract
The rate of aldosterone synthesis by adrenal glomerulosa cells relies on the selective permeability of the glomerulosa cell to K(+) ions. In rodent and bovine adrenal glomerulosa cells, this background potassium current is provided by a two-pore loop potassium (K2P) channel: largely TASK-3 in the rat and TREK-1 in the cow. The nature of the K2P channel in the human adrenal cortex is not known, and we have addressed this issue here using the H295R human adrenal cell line. We show that these cells express mRNA and protein for both TASK-3 and TREK-1 K2P channels. Using a potentiometric dye (FMP), we also show that TASK-3 and TREK-1 channel modulators can affect the membrane potential of H295R cells. Transfecting H295R cells with TASK-3 or TREK-1 dominant-negative mutants (TASK-3 G95E or TREK-1 G144E) produced depolarization of H295R cells and altered K-stimulated aldosterone secretion. Finally, transfection of a constitutively active mutant of Galpha(q) into H295R cells (GTPase-deficient Galpha(q)-QL) depolarized them and increased basal aldosterone secretion. Taken together, our data support both TASK-3 and TREK-1 as being functionally operational in the H295R cell line. This suggests that human adrenal glomerulosa cells may utilize both of these K2P channels for their background potassium current.
Collapse
Affiliation(s)
- Tanja Brenner
- Department of Medicine, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
44
|
Regulation of K(+) channels may enhance wound healing in the skin. Med Hypotheses 2008; 71:927-9. [PMID: 18760881 DOI: 10.1016/j.mehy.2008.05.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/15/2008] [Revised: 05/15/2008] [Accepted: 05/20/2008] [Indexed: 11/20/2022]
Abstract
In the process of promoting wound healing, epidermal growth factor (EGF) activates protein kinase C, protein tyrosine kinase and ERK MAPK (mitogen-activated protein kinase). The activation of these mediators in signal pathways can regulate the operation of K(+) channels. In addition, the K(+) channel is involved with cell migration and proliferation, both of which are requisite for wound healing. Recent studies, although not conducted on skin wounds, have found that the K(+) channel is associated with wound healing and that wound healing can be promoted by regulating the K(+) channels. Therefore, the authors hypothesize that healing of skin wounds could be promoted by regulating K(+) channel distribution in skin keratinocytes or fibroblasts. We plan to conduct a study of the promotion of skin wound healing using K(+) channel regulators.
Collapse
|
45
|
Deng PY, Lei S. Serotonin increases GABA release in rat entorhinal cortex by inhibiting interneuron TASK-3 K+ channels. Mol Cell Neurosci 2008; 39:273-84. [PMID: 18687403 DOI: 10.1016/j.mcn.2008.07.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/19/2008] [Revised: 06/23/2008] [Accepted: 07/08/2008] [Indexed: 11/20/2022] Open
Abstract
Whereas the entorhinal cortex (EC) receives profuse serotonergic innervations from the raphe nuclei in the brain stem and is critically involved in the generation of temporal lobe epilepsy, the function of serotonin (5-hydroxytryptamine, 5-HT) in the EC and particularly its roles in temporal lobe epilepsy are still elusive. Here we explored the cellular and molecular mechanisms underlying 5-HT-mediated facilitation of GABAergic transmission and depression of epileptic activity in the superficial layers of the EC. Application of 5-HT increased sIPSC frequency and amplitude recorded from the principal neurons in the EC with no effects on mIPSCs recorded in the presence of TTX. However, 5-HT reduced the amplitude of IPSCs evoked by extracellular field stimulation and in synaptically connected interneuron and pyramidal neuron pairs. Application of 5-HT generated membrane depolarization and increased action potential firing frequency but reduced the amplitude of action potentials in presynaptic interneurons suggesting that 5-HT still increases GABA release whereas the depressant effects of 5-HT on evoked IPSCs could be explained by 5-HT-induced reduction in action potential amplitude. The depolarizing effect of 5-HT was mediated by inhibition of TASK-3 K(+) channels in interneurons and required the functions of 5-HT(2A) receptors and Galpha(q/11) but was independent of phospholipase C activity. Application of 5-HT inhibited low-Mg(2+)-induced seizure activity in slices via 5-HT(1A) and 5-HT(2A) receptors suggesting that 5-HT-mediated depression of neuronal excitability and increase in GABA release contribute to its anti-epileptic effects in the EC.
Collapse
Affiliation(s)
- Pan-Yue Deng
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | | |
Collapse
|
46
|
Czirják G, Vuity D, Enyedi P. Phosphorylation-dependent binding of 14-3-3 proteins controls TRESK regulation. J Biol Chem 2008; 283:15672-80. [PMID: 18397886 PMCID: PMC3259650 DOI: 10.1074/jbc.m800712200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/28/2008] [Revised: 04/03/2008] [Indexed: 01/04/2023] Open
Abstract
The two-pore domain K(+) channel, TRESK (TWIK-related spinal cord K(+) channel) is reversibly activated by the calcium/calmodulin-dependent protein phosphatase, calcineurin. In the present study, we report that 14-3-3 proteins directly bind to the intracellular loop of TRESK and control the kinetics of the calcium-dependent regulation of the channel. Coexpression of 14-3-3eta with TRESK blocked, whereas the coexpression of a dominant negative form of 14-3-3eta accelerated the return of the K(+) current to the resting state after the activation mediated by calcineurin in Xenopus oocytes. The direct action of 14-3-3 was spatially restricted to TRESK, since 14-3-3eta was also effective, when it was tethered to the channel by a flexible polyglutamine-containing chain. The effect of both the coexpressed and chained 14-3-3 was alleviated by the microinjection of Ser(P)-Raf259 phosphopeptide that competes with TRESK for binding to 14-3-3. The gamma and eta isoforms of 14-3-3 controlled TRESK regulation, whereas the beta, zeta, epsilon, sigma, and tau isoforms failed to influence the mechanism significantly. Phosphorylation of serine 264 in mouse TRESK was required for the binding of 14-3-3eta. Because 14-3-3 proteins are ubiquitous, they are expected to control the duration of calcineurin-mediated TRESK activation in all the cell types that express the channel, depending on the phosphorylation state of serine 264. This kind of direct control of channel regulation by 14-3-3 is unique within the two-pore domain K(+) channel family.
Collapse
Affiliation(s)
| | | | - Péter Enyedi
- Department of Physiology, Semmelweis University, H-1444 Budapest,
Hungary
| |
Collapse
|
47
|
Regulation of two-pore-domain (K2P) potassium leak channels by the tyrosine kinase inhibitor genistein. Br J Pharmacol 2008; 154:1680-90. [PMID: 18516069 DOI: 10.1038/bjp.2008.213] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND PURPOSE Two-pore-domain potassium (K2P) channels mediate potassium background (or 'leak') currents, controlling excitability by stabilizing membrane potential below firing threshold and expediting repolarization. Inhibition of K2P currents permits membrane potential depolarization and excitation. As expected for key regulators of excitability, leak channels are under tight control from a plethora of stimuli. Recently, signalling via protein tyrosine kinases (TKs) has been implicated in ion channel modulation. The objective of this study was to investigate TK regulation of K2P channels. EXPERIMENTAL APPROACH The two-electrode voltage clamp technique was used to record K2P currents in Xenopus oocytes. In addition, K2P channels were studied in Chinese hamster ovary (CHO) cells using the whole-cell patch clamp technique. KEY RESULTS Here, we report inhibition of human K2P3.1 (TASK-1) currents by the TK antagonist, genistein, in Xenopus oocytes (IC50=10.7 microM) and in CHO cells (IC50=12.3 microM). The underlying molecular mechanism was studied in detail. hK2P3.1 was not affected by genistin, an inactive analogue of genistein. Perorthovanadate, an inhibitor of tyrosine phosphatase activity, reduced the inhibitory effect of genistein. Current reduction was voltage independent and did not require channel protonation at position H98 or phosphorylation at the single TK phosphorylation site, Y323. Among functional hK2P family members, genistein also reduced K2P6.1 (TWIK-2), K2P9.1 (TASK-3) and K2P13.1 (THIK-1) currents, respectively. CONCLUSIONS AND IMPLICATIONS Modulation of K2P channels by the TK inhibitor, genistein, represents a novel molecular mechanism to alter background K+ currents.
Collapse
|
48
|
Gamper N, Shapiro MS. Regulation of ion transport proteins by membrane phosphoinositides. Nat Rev Neurosci 2007; 8:921-34. [DOI: 10.1038/nrn2257] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/24/2022]
|
49
|
Veale EL, Buswell R, Clarke CE, Mathie A. Identification of a region in the TASK3 two pore domain potassium channel that is critical for its blockade by methanandamide. Br J Pharmacol 2007; 152:778-86. [PMID: 17828294 PMCID: PMC2190017 DOI: 10.1038/sj.bjp.0707436] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/10/2007] [Revised: 07/20/2007] [Accepted: 07/25/2007] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE The TASK subfamily of two pore domain potassium channels (K2P) encodes for leak K currents, contributing to the resting membrane potential of many neurons and regulating their excitability. TASK1 and TASK3 channels are regulated by a number of pharmacological and physiological mediators including cannabinoids such as methanandamide. In this study, we investigate how methanandamide blocks these channels. EXPERIMENTAL APPROACH Currents through wild type and mutated TASK1 and TASK3 channels expressed in modified HEK-293 cells were measured using whole-cell electrophysiological recordings in the presence and absence of methanandamide. KEY RESULTS Methanandamide (3 microM) produced substantial block of hTASK1, hTASK3 and mTASK3 channels but was most potent at blocking hTASK3 channels. Block of these channels was irreversible unless cells were washed with buffer containing bovine serum albumin. Mutation of the distal six amino acids of TASK1 did not alter methanandamide inhibition, whilst C terminal truncation of TASK3 channels caused a small but significant reduction of inhibition. However, deletion of six amino acids (VLRFLT) at the interface between the final transmembrane domain and cytoplasmic C terminus of TASK3 channels gave functional currents that were no longer inhibited by methanandamide or by activation of GPCRs. CONCLUSIONS AND IMPLICATIONS Methanandamide potently blocked TASK3 and TASK1 channels and both methanandamide and G protein-mediated inhibition converged on the same intracellular gating pathway. Physiologically, methanandamide block of TASK1 and TASK3 channels may underpin a number of CNS effects of cannabinoids that are not mediated through activation of CB1 or CB2 receptors.
Collapse
MESH Headings
- Amino Acids/genetics
- Animals
- Arachidonic Acids/pharmacology
- Binding Sites/genetics
- Cattle
- Cell Line
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Dose-Response Relationship, Drug
- Humans
- Hydrogen-Ion Concentration
- Membrane Potentials/drug effects
- Mice
- Mutagenesis, Site-Directed/methods
- Mutation
- Nerve Tissue Proteins/antagonists & inhibitors
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/physiology
- Patch-Clamp Techniques
- Phosphorylation/drug effects
- Potassium Channels, Tandem Pore Domain/antagonists & inhibitors
- Potassium Channels, Tandem Pore Domain/genetics
- Potassium Channels, Tandem Pore Domain/physiology
- Protein Kinase C/metabolism
- Receptor, Muscarinic M3/genetics
- Receptor, Muscarinic M3/physiology
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/physiology
- Serum Albumin, Bovine/pharmacology
- Zinc/pharmacology
Collapse
Affiliation(s)
- E L Veale
- Medway School of Pharmacy, Universities of Kent and Greenwich at Medway Kent, UK
- Biophysics Section, Blackett Laboratory, Division of Cell and Molecular Biology, Imperial College London London, UK
| | - R Buswell
- Biophysics Section, Blackett Laboratory, Division of Cell and Molecular Biology, Imperial College London London, UK
| | - C E Clarke
- Victor Chang Research Institute, University of New South Wales Sydney, Australia
| | - A Mathie
- Medway School of Pharmacy, Universities of Kent and Greenwich at Medway Kent, UK
- Biophysics Section, Blackett Laboratory, Division of Cell and Molecular Biology, Imperial College London London, UK
| |
Collapse
|
50
|
The TASK background K2P channels: chemo- and nutrient sensors. Trends Neurosci 2007; 30:573-80. [PMID: 17945357 DOI: 10.1016/j.tins.2007.08.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/14/2007] [Revised: 07/30/2007] [Accepted: 08/13/2007] [Indexed: 11/23/2022]
Abstract
Specialized chemo- and nutrient-sensing cells share a common electrophysiological mechanism by transducing low O(2), high CO(2) and low glucose stimuli into a compensatory cellular response: the closing of background K(+) channels encoded by the K(2P) subunits. Inhibition of the TASK K(2P) channels by extracellular acidosis leads to an increased excitability of brainstem respiratory neurons. Moreover, hypoxic down-modulation of TASK channels is implicated in the activation of glomus cells in the carotid body. Stimulation of both types of cell leads to an enhanced ventilation and to cardiocirculatory adjustments. Differential modulation of TASK channels by acidosis and high glucose alters excitability of the hypothalamic orexin neurons, which influence arousal, food seeking and breathing. These recent results shed light on the role of TASK channels in sensing physiological stimuli.
Collapse
|