1
|
Hernando G, Turani O, Rodriguez Araujo N, Bouzat C. The diverse family of Cys-loop receptors in Caenorhabditis elegans: insights from electrophysiological studies. Biophys Rev 2023; 15:733-750. [PMID: 37681094 PMCID: PMC10480131 DOI: 10.1007/s12551-023-01080-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/18/2023] [Indexed: 09/09/2023] Open
Abstract
Cys-loop receptors integrate a large family of pentameric ligand-gated ion channels that mediate fast ionotropic responses in vertebrates and invertebrates. Their vital role in converting neurotransmitter recognition into an electrical impulse makes these receptors essential for a great variety of physiological processes. In vertebrates, the Cys-loop receptor family includes the cation-selective channels, nicotinic acetylcholine and 5-hydroxytryptamine type 3 receptors, and the anion-selective channels, GABAA and glycine receptors, whereas in invertebrates, the repertoire is significantly larger. The free-living nematode Caenorhabditis elegans has the largest known Cys-loop receptor family as well as unique receptors that are absent in vertebrates and constitute attractive targets for anthelmintic drugs. Given the large number and variety of Cys-loop receptor subunits and the multiple possible ways of subunit assembly, C. elegans offers a large diversity of receptors although only a limited number of them have been characterized to date. C. elegans has emerged as a powerful model for the study of the nervous system and human diseases as well as a model for antiparasitic drug discovery. This nematode has also shown promise in the pharmaceutical industry search for new therapeutic compounds. C. elegans is therefore a powerful model organism to explore the biology and pharmacology of Cys-loop receptors and their potential as targets for novel therapeutic interventions. In this review, we provide a comprehensive overview of what is known about the function of C. elegans Cys-loop receptors from an electrophysiological perspective.
Collapse
Affiliation(s)
- Guillermina Hernando
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Bioquímicas de Bahía Blanca, Camino La Carrindanga Km 7, 8000 Bahía Blanca, Argentina
| | - Ornella Turani
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Bioquímicas de Bahía Blanca, Camino La Carrindanga Km 7, 8000 Bahía Blanca, Argentina
| | - Noelia Rodriguez Araujo
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Bioquímicas de Bahía Blanca, Camino La Carrindanga Km 7, 8000 Bahía Blanca, Argentina
| | - Cecilia Bouzat
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Bioquímicas de Bahía Blanca, Camino La Carrindanga Km 7, 8000 Bahía Blanca, Argentina
| |
Collapse
|
2
|
An extracellular scaffolding complex confers unusual rectification upon an ionotropic acetylcholine receptor in C. elegans. Proc Natl Acad Sci U S A 2022; 119:e2113545119. [PMID: 35858330 PMCID: PMC9304021 DOI: 10.1073/pnas.2113545119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Biophysical properties of ligand-gated receptors can be profoundly modified by auxiliary subunits or by the lipid microenvironment of the membrane. Hence, it is sometimes challenging to relate the properties of receptors reconstituted in heterologous expression systems to those of their native counterparts. Here we show that the properties of Caenorhabditis elegans levamisole-sensitive acetylcholine receptors (L-AChRs), the ionotropic acetylcholine receptors targeted by the cholinergic anthelmintic levamisole at neuromuscular junctions, can be profoundly modified by their clustering machinery. We uncovered that L-AChRs exhibit a strong outward rectification in vivo, which was not previously described in heterologous systems. This unusual feature for an ionotropic AChR is abolished by disrupting the interaction of the receptors with the extracellular complex required for their synaptic clustering. When recorded at -60 mV, levamisole-induced currents are similar in the wild type and in L-AChR-clustering-defective mutants, while they are halved in these mutants at more depolarized physiological membrane potentials. Consequently, levamisole causes a strong muscle depolarization in the wild type, which leads to complete inactivation of the voltage-gated calcium channels and to an irreversible flaccid paralysis. In mutants defective for L-AChR clustering, the levamisole-induced depolarization is weaker, allowing voltage-gated calcium channels to remain partially active, which eventually leads to adaptation and survival of the worms. This explains why historical screens for C. elegans mutants resistant to levamisole identified the components of the L-AChR clustering machinery, in addition to proteins required for receptor biosynthesis or efficacy. This work further emphasizes the importance of pursuing ligand-gated channel characterization in their native environment.
Collapse
|
3
|
Repurposing of Antimicrobial Agents for Cancer Therapy: What Do We Know? Cancers (Basel) 2021; 13:cancers13133193. [PMID: 34206772 PMCID: PMC8269327 DOI: 10.3390/cancers13133193] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
The substantial costs of clinical trials, the lengthy timelines of new drug discovery and development, along the high attrition rates underscore the need for alternative strategies for finding quickly suitable therapeutics agents. Given that most approved drugs possess more than one target tightly linked to other diseases, it encourages promptly testing these drugs in patients. Over the past decades, this has led to considerable attention for drug repurposing, which relies on identifying new uses for approved or investigational drugs outside the scope of the original medical indication. The known safety of approved drugs minimizes the possibility of failure for adverse toxicology, making them attractive de-risked compounds for new applications with potentially lower overall development costs and shorter development timelines. This latter case is an exciting opportunity, specifically in oncology, due to increased resistance towards the current therapies. Indeed, a large body of evidence shows that a wealth of non-cancer drugs has beneficial effects against cancer. Interestingly, 335 drugs are currently being evaluated in different clinical trials for their potential activities against various cancers (Redo database). This review aims to provide an extensive discussion about the anti-cancer activities exerted by antimicrobial agents and presents information about their mechanism(s) of action and stage of development/evaluation.
Collapse
|
4
|
Giunti S, Andersen N, Rayes D, De Rosa MJ. Drug discovery: Insights from the invertebrate Caenorhabditis elegans. Pharmacol Res Perspect 2021; 9:e00721. [PMID: 33641258 PMCID: PMC7916527 DOI: 10.1002/prp2.721] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/06/2021] [Indexed: 12/18/2022] Open
Abstract
Therapeutic drug development is a long, expensive, and complex process that usually takes 12-15 years. In the early phases of drug discovery, in particular, there is a growing need for animal models that ensure the reduction in both cost and time. Caenorhabditis elegans has been traditionally used to address fundamental aspects of key biological processes, such as apoptosis, aging, and gene expression regulation. During the last decade, with the advent of large-scale platforms for screenings, this invertebrate has also emerged as an essential tool in the pharmaceutical research industry to identify novel drugs and drug targets. In this review, we discuss the reasons why C. elegans has been positioned as an outstanding cost-effective option for drug discovery, highlighting both the advantages and drawbacks of this model. Particular attention is paid to the suitability of this nematode in large-scale genetic and pharmacological screenings. High-throughput screenings in C. elegans have indeed contributed to the breakthrough of a wide variety of candidate compounds involved in extensive fields including neurodegeneration, pathogen infections and metabolic disorders. The versatility of this nematode, which enables its instrumentation as a model of human diseases, is another attribute also herein underscored. As illustrative examples, we discuss the utility of C. elegans models of both human neurodegenerative diseases and parasitic nematodes in the drug discovery industry. Summing up, this review aims to demonstrate the impact of C. elegans models on the drug discovery pipeline.
Collapse
Affiliation(s)
- Sebastián Giunti
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS‐CONICETBahía BlancaArgentina
- Dpto de Biología, Bioquímica y FarmaciaUniversidad Nacional del SurBahía BlancaArgentina
| | - Natalia Andersen
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS‐CONICETBahía BlancaArgentina
- Dpto de Biología, Bioquímica y FarmaciaUniversidad Nacional del SurBahía BlancaArgentina
| | - Diego Rayes
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS‐CONICETBahía BlancaArgentina
- Dpto de Biología, Bioquímica y FarmaciaUniversidad Nacional del SurBahía BlancaArgentina
| | - María José De Rosa
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS‐CONICETBahía BlancaArgentina
- Dpto de Biología, Bioquímica y FarmaciaUniversidad Nacional del SurBahía BlancaArgentina
| |
Collapse
|
5
|
Castro MJ, Turani O, Faraoni MB, Gerbino D, Bouzat C. A New Antagonist of Caenorhabditis elegans Glutamate-Activated Chloride Channels With Anthelmintic Activity. Front Neurosci 2020; 14:879. [PMID: 32973433 PMCID: PMC7466757 DOI: 10.3389/fnins.2020.00879] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 07/28/2020] [Indexed: 12/15/2022] Open
Abstract
Nematode parasitosis causes significant mortality and morbidity in humans and considerable losses in livestock and domestic animals. The acquisition of resistance to current anthelmintic drugs has prompted the search for new compounds for which the free-living nematode Caenorhabditis elegans has emerged as a valuable platform. We have previously synthetized a small library of oxygenated tricyclic compounds and determined that dibenzo[b,e]oxepin-11(6H)-one (doxepinone) inhibits C. elegans motility. Because doxepinone shows potential anthelmintic activity, we explored its behavioral effects and deciphered its target site and mechanism of action on C. elegans. Doxepinone reduces swimming rate, induces paralysis, and decreases the rate of pharyngeal pumping required for feeding, indicating a marked anthelmintic activity. To identify the main drug targets, we performed an in vivo screening of selected strains carrying mutations in Cys-loop receptors involved in worm locomotion for determining resistance to doxepinone effects. A mutant strain that lacks subunit genes of the invertebrate glutamate-gated chloride channels (GluCl), which are targets of the widely used antiparasitic ivermectin (IVM), is resistant to doxepinone effects. To unravel the molecular mechanism, we measured whole-cell currents from GluClα1/β receptors expressed in mammalian cells. Glutamate elicits macroscopic currents whereas no responses are elicited by doxepinone, indicating that it is not an agonist of GluCls. Preincubation of the cell with doxepinone produces a statistically significant decrease of the decay time constant and net charge of glutamate-elicited currents, indicating that it inhibits GluCls, which contrasts to IVM molecular actions. Thus, we identify doxepinone as an attractive scaffold with promising anthelmintic activity and propose the inhibition of GluCls as a potential anthelmintic mechanism of action.
Collapse
Affiliation(s)
- María Julia Castro
- Departamento de Biología, Bioquímica y Farmacia, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina.,Instituto de Química del Sur (INQUISUR), Universidad Nacional del Sur (UNS)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Ornella Turani
- Departamento de Biología, Bioquímica y Farmacia, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - María Belén Faraoni
- Instituto de Química del Sur (INQUISUR), Universidad Nacional del Sur (UNS)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Darío Gerbino
- Instituto de Química del Sur (INQUISUR), Universidad Nacional del Sur (UNS)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Cecilia Bouzat
- Departamento de Biología, Bioquímica y Farmacia, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| |
Collapse
|
6
|
Agotegaray M, Blanco MG, Campelo A, García E, Zysler R, Massheimer V, De Rosa MJ, Lassalle V. β-cyclodextrin coating: improving biocompatibility of magnetic nanocomposites for biomedical applications. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:22. [PMID: 32002683 DOI: 10.1007/s10856-020-6361-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 01/08/2020] [Indexed: 06/10/2023]
Abstract
The role Beta-cyclodextrin (βCD) on improving biocompatibility on healthy cellular and animal models was studied upon a formulation obtained from the development of a simple coating procedure. The obtained nanosystems were thoroughly characterized by FTIR, TGA, atomic absorption spectroscopy, dynamic light scattering and zeta potential, TEM/HR-TEM and magnetic properties. βCD might interact with the magnetic core through hosting OA. It is feasible that the nanocomposite is formed by nanoparticles of MG@OA dispersed in a βCD matrix. The evaluation of βCD role on biocompatibility was performed on two healthy models. To this end, in vivo studies were carried out on Caenorhabditis elegans. Locomotion and progeny were evaluated after exposure animals to MG, MG@OA, and MG@OA-βCD (10 to 500 µg/mL). The influence of βCD on cytotoxicity was explored in vitro on healthy rat aortic endothelial cells, avoiding alteration in the results derived from the use of transformed cell lines. Biological studies demonstrated that βCD attaching improves MG biocompatibility.
Collapse
Affiliation(s)
- Mariela Agotegaray
- Departamento de Química, Instituto de Química del Sur (INQUISUR-CONICET)-UNS, Universidad Nacional del Sur, Bahía Blanca, Argentina.
| | - María Gabriela Blanco
- Dpto. de Biología, Bioquímica y Farmacia, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB-CONICET)-UNS, Lab. de Neurobiología de Invertebrados, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Adrián Campelo
- Dpto. de Biología, Bioquímica y Farmacia,Instituto de Investigaciones Biológicas y Biomédicas del Sur (INBIOSUR-CONICET)-UNS, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Elba García
- Departamento de Química, Instituto de Química del Sur (INQUISUR-CONICET)-UNS, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Roberto Zysler
- CONICET-Centro Atómico Bariloche, Instituto Balseiro, S.C. de Bariloche, Río Negro, Argentina
| | - Virginia Massheimer
- Dpto. de Biología, Bioquímica y Farmacia,Instituto de Investigaciones Biológicas y Biomédicas del Sur (INBIOSUR-CONICET)-UNS, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - María José De Rosa
- Dpto. de Biología, Bioquímica y Farmacia, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB-CONICET)-UNS, Lab. de Neurobiología de Invertebrados, Universidad Nacional del Sur, Bahía Blanca, Argentina.
| | - Verónica Lassalle
- Departamento de Química, Instituto de Química del Sur (INQUISUR-CONICET)-UNS, Universidad Nacional del Sur, Bahía Blanca, Argentina
| |
Collapse
|
7
|
Hernando G, Turani O, Bouzat C. Caenorhabditis elegans muscle Cys-loop receptors as novel targets of terpenoids with potential anthelmintic activity. PLoS Negl Trop Dis 2019; 13:e0007895. [PMID: 31765374 PMCID: PMC6901230 DOI: 10.1371/journal.pntd.0007895] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 12/09/2019] [Accepted: 10/31/2019] [Indexed: 11/27/2022] Open
Abstract
The anthelmintic treatment of nematode infections remains the pillar of worm control in both human and veterinary medicine. Since control is threatened by the appearance of drug resistant nematodes, there is a need to develop novel compounds, among which phytochemicals constitute potential anthelmintic agents. Caenorhabditis elegans has been pivotal in anthelmintic drug discovery and in revealing mechanisms of drug action and resistance. By using C. elegans, we here revealed the anthelmintic actions of three plant terpenoids -thymol, carvacrol and eugenol- at the behavioral level. Terpenoids produce a rapid paralysis of worms with a potency rank order carvacrol > thymol > eugenol. In addition to their paralyzing activity, they also inhibit egg hatching, which would, in turn, lead to a broader anthelmintic spectrum of activity. To identify drug targets, we performed an in vivo screening of selected strains carrying mutations in receptors involved in worm locomotion for determining resistance to the paralyzing effect of terpenoids. The assays revealed that two Cys-loop receptors with key roles in worm locomotion -Levamisole sensitive nicotinic receptor (L-AChR) and GABA(A) (UNC-49) receptor- are involved in the paralyzing effects of terpenoids. To decipher the mechanism by which terpenoids affect these receptors, we performed electrophysiological studies using a primary culture of C. elegans L1 muscle cells. Whole cell recordings from L1 cells demonstrated that terpenoids decrease macroscopic responses of L-AChR and UNC-49 receptor to their endogenous agonists, thus acting as inhibitors. Single-channel recordings from L-AChR revealed that terpenoids decrease the frequency of opening events, probably by acting as negative allosteric modulators. The fact that terpenoids act at different receptors may have important advantages regarding efficacy and development of resistance. Thus, our findings give support to the use of terpenoids as either an alternative or a complementary anthelmintic strategy to overcome the ever-increasing resistance of parasites to classical anthelmintic drugs.
Collapse
Affiliation(s)
- Guillermina Hernando
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - Ornella Turani
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - Cecilia Bouzat
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| |
Collapse
|
8
|
Blanco MG, Vela Gurovic MS, Silbestri GF, Garelli A, Giunti S, Rayes D, De Rosa MJ. Diisopropylphenyl-imidazole (DII): A new compound that exerts anthelmintic activity through novel molecular mechanisms. PLoS Negl Trop Dis 2018; 12:e0007021. [PMID: 30557347 PMCID: PMC6312359 DOI: 10.1371/journal.pntd.0007021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 12/31/2018] [Accepted: 11/26/2018] [Indexed: 11/26/2022] Open
Abstract
Nematode parasites cause substantial morbidity to billions of people and considerable losses in livestock and food crops. The repertoire of effective anthelmintic compounds for treating these parasitoses is very limited, as drug development has been delayed for decades. Moreover, resistance has become a global concern in livestock parasites and is an emerging issue for human helminthiasis. Therefore, anthelmintics with novel mechanisms of action are urgently needed. Taking advantage of Caenorhabditis elegans as an established model system, we here screened the nematicidal potential of novel imidazolium and imidazole derivatives. One of these derivatives, diisopropylphenyl-imidazole (DII), is lethal to C. elegans at both mature and immature stages. This lethal effect appears to be specific because DII concentrations which prove to be toxic to C. elegans do not induce significant lethality on bacteria, Drosophila melanogaster, and HEK-293 cells. Our analysis of DII action on C. elegans mutant strains determined that, in the adult stage, null mutants of unc-29 are resistant to the drug. Muscle expression of this gene completely restores DII sensitivity. UNC-29 has been largely reported as an essential constituent of the levamisole-sensitive muscle nicotinic receptor (L-AChR). Nevertheless, null mutants in unc-63 and lev-8 (essential and non-essential subunits of L-AChRs, respectively) are as sensitive to DII as the wild-type strain. Therefore, our results suggest that DII effects on adult nematodes rely on a previously unidentified UNC-29-containing muscle AChR, different from the classical L-AChR. Interestingly, DII targets appear to be different between larvae and adults, as unc-29 null mutant larvae are sensitive to the drug. The existence of more than one target could delay resistance development. Its lethality on C. elegans, its harmlessness in non-nematode species and its novel and dual mechanism of action make DII a promising candidate compound for anthelmintic therapy. Intestinal helminth infections affect approximately one-third of the world’s population, particularly in developing countries. Paradoxically, drug development in this area has been delayed for years. In addition, resistance to currently available drugs is also an emerging global concern. Therefore, there is an urgent need for new and effective anthelmintics. In this work, we used C. elegans as a model for parasitic nematodes to screen the anthelmintic activity of several imidazole-derivative compounds. We found a compound, diisopropylphenyl-imidazole (DII), that is lethal to both mature and immature stages of C. elegans. The DII nematicidal mechanism of action depends on a novel UNC-29-containing AChR in adult C. elegans muscle. Since this mechanism is different from those of currently used anthelmintics, it could constitute a therapeutic option when traditional anthelmintic agents fail. In addition, we found that the DII larvicidal effect depends on a different target to that of adult stages. The fact that DII produces lethality through different targets may delay resistance development. The specificity and novel mode of action of DII, which includes differential targeting in larvae and adult nematodes, support its potential as a promising drug candidate to treat helminthiasis.
Collapse
Affiliation(s)
- María Gabriela Blanco
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS-CONICET, Bahía Blanca, Argentina.,Dpto de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - María Soledad Vela Gurovic
- Dpto de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina.,CERZOS UNS-CONICET CCT, Bahía Blanca, Argentina
| | - Gustavo Fabián Silbestri
- Dpto de Química, Universidad Nacional del Sur (UNS)-CONICET, Instituto de Química del Sur (INQUISUR), Bahía Blanca, Argentina
| | - Andrés Garelli
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS-CONICET, Bahía Blanca, Argentina.,Dpto de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Sebastián Giunti
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS-CONICET, Bahía Blanca, Argentina.,Dpto de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Diego Rayes
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS-CONICET, Bahía Blanca, Argentina.,Dpto de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - María José De Rosa
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS-CONICET, Bahía Blanca, Argentina.,Dpto de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| |
Collapse
|
9
|
Turani O, Hernando G, Corradi J, Bouzat C. Activation of Caenorhabditis elegans Levamisole-Sensitive and Mammalian Nicotinic Receptors by the Antiparasitic Bephenium. Mol Pharmacol 2018; 94:1270-1279. [PMID: 30190363 DOI: 10.1124/mol.118.113357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/29/2018] [Indexed: 11/22/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels involved in neuromuscular transmission. In nematodes, muscle nAChRs are targets of antiparasitic drugs. Bephenium is an anthelmintic compound whose molecular action in the free-living nematode Caenorhabditis elegans, which is a model for anthelmintic drug discovery, is poorly known. We explored the effect of bephenium on C. elegans locomotion and applied single-channel recordings to identify its molecular target, mechanism of action, and selectivity between mammalian and C. elegans nAChRs. As in parasites, bephenium paralyzes C. elegans A mutant strain lacking the muscle levamisole-sensitive nAChR (L-AChR) shows full resistance to bephenium, indicating that this receptor is the target site. Bephenium activates L-AChR channels from larvae muscle cells in the micromolar range. Channel activity is similar to that elicited by levamisole, appearing mainly as isolated brief openings. Our analysis revealed that bephenium is an agonist of L-AChR and an open-channel blocker at higher concentrations. It also activates mammalian muscle nAChRs. Opening events are significantly briefer than those elicited by ACh and do not appear in activation episodes at a range of concentrations, indicating that it is a very weak agonist of mammalian nAChRs. Recordings in the presence of ACh showed that bephenium acts as a voltage-dependent channel blocker and a low-affinity agonist. Molecular docking into homology-modeled binding-site interfaces represent the binding mode of bephenium that explains its partial agonism. Given the great diversity of helminth nAChRs and the overlap of their pharmacological profiles, unraveling the basis of drug receptor-selectivity will be required for rational design of anthelmintic drugs.
Collapse
Affiliation(s)
- Ornella Turani
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Guillermina Hernando
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Jeremías Corradi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Cecilia Bouzat
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| |
Collapse
|
10
|
Blazie SM, Jin Y. Pharming for Genes in Neurotransmission: Combining Chemical and Genetic Approaches in Caenorhabditis elegans. ACS Chem Neurosci 2018; 9:1963-1974. [PMID: 29432681 DOI: 10.1021/acschemneuro.7b00509] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Synaptic transmission is central to nervous system function. Chemical and genetic screens are valuable approaches to probe synaptic mechanisms in living animals. The nematode Caenorhabditis elegans is a prime system to apply these methods to discover genes and dissect the cellular pathways underlying neurotransmission. Here, we review key approaches to understand neurotransmission and the action of psychiatric drugs in C. elegans. We start with early studies on cholinergic excitatory signaling at the neuromuscular junction, and move into mechanisms mediated by biogenic amines. Finally, we discuss emerging work toward understanding the mechanisms driving synaptic plasticity with a focus on regulation of protein translation.
Collapse
Affiliation(s)
- Stephen M. Blazie
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Yishi Jin
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
11
|
Bouzat C, Sine SM. Nicotinic acetylcholine receptors at the single-channel level. Br J Pharmacol 2018; 175:1789-1804. [PMID: 28261794 PMCID: PMC5979820 DOI: 10.1111/bph.13770] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/21/2017] [Accepted: 02/24/2017] [Indexed: 01/28/2023] Open
Abstract
Over the past four decades, the patch clamp technique and nicotinic ACh (nACh) receptors have established an enduring partnership. Like all good partnerships, each partner has proven significant in its own right, while their union has spurred innumerable advances in life science research. A member and prototype of the superfamily of pentameric ligand-gated ion channels, the nACh receptor is a chemo-electric transducer, binding ACh released from nerves and rapidly opening its channel to cation flow to elicit cellular excitation. A subject of a Nobel Prize in Physiology or Medicine, the patch clamp technique provides unprecedented resolution of currents through single ion channels in their native cellular environments. Here, focusing on muscle and α7 nACh receptors, we describe the extraordinary contribution of the patch clamp technique towards understanding how they activate in response to neurotransmitter, how subtle structural and mechanistic differences among nACh receptor subtypes translate into significant physiological differences, and how nACh receptors are being exploited as therapeutic drug targets. LINKED ARTICLES This article is part of a themed section on Nicotinic Acetylcholine Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.11/issuetoc/.
Collapse
Affiliation(s)
- Cecilia Bouzat
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, INIBIBB (CONICET‐UNS), Departamento de Biología, Bioquímica y FarmaciaUniversidad Nacional del SurBahía BlancaArgentina
| | - Steven M Sine
- Receptor Biology Laboratory, Department of Physiology and Biomedical EngineeringMayo Clinic College of MedicineRochesterMN55905USA
- Department of NeurologyMayo Clinic College of MedicineRochesterMN55905USA
- Department of Pharmacology and Experimental TherapeuticsMayo Clinic College of MedicineRochesterMN55905USA
| |
Collapse
|
12
|
Blanchard A, Guégnard F, Charvet CL, Crisford A, Courtot E, Sauvé C, Harmache A, Duguet T, O’Connor V, Castagnone-Sereno P, Reaves B, Wolstenholme AJ, Beech RN, Holden-Dye L, Neveu C. Deciphering the molecular determinants of cholinergic anthelmintic sensitivity in nematodes: When novel functional validation approaches highlight major differences between the model Caenorhabditis elegans and parasitic species. PLoS Pathog 2018; 14:e1006996. [PMID: 29719008 PMCID: PMC5931475 DOI: 10.1371/journal.ppat.1006996] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 03/28/2018] [Indexed: 01/14/2023] Open
Abstract
Cholinergic agonists such as levamisole and pyrantel are widely used as anthelmintics to treat parasitic nematode infestations. These drugs elicit spastic paralysis by activating acetylcholine receptors (AChRs) expressed in nematode body wall muscles. In the model nematode Caenorhabditis elegans, genetic screens led to the identification of five genes encoding levamisole-sensitive-AChR (L-AChR) subunits: unc-38, unc-63, unc-29, lev-1 and lev-8. These subunits form a functional L-AChR when heterologously expressed in Xenopus laevis oocytes. Here we show that the majority of parasitic species that are sensitive to levamisole lack a gene orthologous to C. elegans lev-8. This raises important questions concerning the properties of the native receptor that constitutes the target for cholinergic anthelmintics. We demonstrate that the closely related ACR-8 subunit from phylogenetically distant animal and plant parasitic nematode species functionally substitutes for LEV-8 in the C. elegans L-AChR when expressed in Xenopus oocytes. The importance of ACR-8 in parasitic nematode sensitivity to cholinergic anthelmintics is reinforced by a ‘model hopping’ approach in which we demonstrate the ability of ACR-8 from the hematophagous parasitic nematode Haemonchus contortus to fully restore levamisole sensitivity, and to confer high sensitivity to pyrantel, when expressed in the body wall muscle of C. elegans lev-8 null mutants. The critical role of acr-8 to in vivo drug sensitivity is substantiated by the successful demonstration of RNAi gene silencing for Hco-acr-8 which reduced the sensitivity of H. contortus larvae to levamisole. Intriguingly, the pyrantel sensitivity remained unchanged thus providing new evidence for distinct modes of action of these important anthelmintics in parasitic species versus C. elegans. More broadly, this highlights the limits of C. elegans as a predictive model to decipher cholinergic agonist targets from parasitic nematode species and provides key molecular insight to inform the discovery of next generation anthelmintic compounds. Parasitic nematodes have global health and economic impacts. They infect animals, including livestock, humans, and plants including all major food crops. Their control in human and veterinary medicine is reliant on anthelmintic drugs but this is now challenged by resistant worms especially in livestock. Importantly, for anthelmintics such as levamisole and other cholinergic agonists, resistance appears to be less frequent stressing the need to investigate their molecular target in parasitic nematodes. The levamisole receptor was first identified in the free-living model nematode C. elegans but it is now becoming apparent that this is not a good predictor for many parasitic species. In particular we have found that the LEV-8 subunit which is involved in levamisole sensitivity in C. elegans, is not present in many levamisole-sensitive parasitic species. Here we used heterologous expression systems and gene silencing to provide the functional in vivo demonstration that the ACR-8 subunit, which is not an essential component of the levamisole receptor in C. elegans, has a critical role in the levamisole sensitivity of parasitic nematodes. This has important significance for understanding the molecular targets of cholinergic anthelmintics and addresses the increasing challenge of drug resistance.
Collapse
Affiliation(s)
| | | | | | - Anna Crisford
- Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Elise Courtot
- ISP, INRA, Université Tours, UMR1282, Nouzilly, France
| | | | | | - Thomas Duguet
- Institute of Parasitology, McGill University, Macdonald Campus, Ste. Anne de Bellevue, Québec, Canada
| | - Vincent O’Connor
- Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | | | - Barbara Reaves
- Department of Infectious Disease & Center for Tropical and Emerging Global Disease, University of Georgia, Athens, GA, United States of America
| | - Adrian J. Wolstenholme
- Department of Infectious Disease & Center for Tropical and Emerging Global Disease, University of Georgia, Athens, GA, United States of America
| | - Robin N. Beech
- Institute of Parasitology, McGill University, Macdonald Campus, Ste. Anne de Bellevue, Québec, Canada
| | - Lindy Holden-Dye
- Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Cedric Neveu
- ISP, INRA, Université Tours, UMR1282, Nouzilly, France
- * E-mail:
| |
Collapse
|
13
|
Iron(II) promoted direct synthesis of dibenzo[b,e]oxepin-11(6H)-one derivatives with biological activity. A short synthesis of doxepin. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.03.085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Abongwa M, Baber KE, Martin RJ, Robertson AP. The cholinomimetic morantel as an open channel blocker of the Ascaris suum ACR-16 nAChR. INVERTEBRATE NEUROSCIENCE 2016; 16:10. [DOI: 10.1007/s10158-016-0193-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 11/23/2016] [Indexed: 12/13/2022]
|
15
|
Courtot E, Charvet CL, Beech RN, Harmache A, Wolstenholme AJ, Holden-Dye L, O’Connor V, Peineau N, Woods DJ, Neveu C. Functional Characterization of a Novel Class of Morantel-Sensitive Acetylcholine Receptors in Nematodes. PLoS Pathog 2015; 11:e1005267. [PMID: 26625142 PMCID: PMC4666645 DOI: 10.1371/journal.ppat.1005267] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 10/20/2015] [Indexed: 01/06/2023] Open
Abstract
Acetylcholine receptors are pentameric ligand-gated channels involved in excitatory neuro-transmission in both vertebrates and invertebrates. In nematodes, they represent major targets for cholinergic agonist or antagonist anthelmintic drugs. Despite the large diversity of acetylcholine-receptor subunit genes present in nematodes, only a few receptor subtypes have been characterized so far. Interestingly, parasitic nematodes affecting human or animal health possess two closely related members of this gene family, acr-26 and acr-27 that are essentially absent in free-living or plant parasitic species. Using the pathogenic parasitic nematode of ruminants, Haemonchus contortus, as a model, we found that Hco-ACR-26 and Hco-ACR-27 are co-expressed in body muscle cells. We demonstrated that co-expression of Hco-ACR-26 and Hco-ACR-27 in Xenopus laevis oocytes led to the functional expression of an acetylcholine-receptor highly sensitive to the anthelmintics morantel and pyrantel. Importantly we also reported that ACR-26 and ACR-27, from the distantly related parasitic nematode of horses, Parascaris equorum, also formed a functional acetylcholine-receptor highly sensitive to these two drugs. In Caenorhabditis elegans, a free-living model nematode, we demonstrated that heterologous expression of the H. contortus and P. equorum receptors drastically increased its sensitivity to morantel and pyrantel, mirroring the pharmacological properties observed in Xenopus oocytes. Our results are the first to describe significant molecular determinants of a novel class of nematode body wall muscle AChR.
Collapse
Affiliation(s)
- Elise Courtot
- INRA, UMR1282 Infectiologie et Santé Publique, Nouzilly, France
- Université de François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, Tours, France
| | - Claude L. Charvet
- INRA, UMR1282 Infectiologie et Santé Publique, Nouzilly, France
- Université de François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, Tours, France
| | - Robin N. Beech
- INRA, UMR1282 Infectiologie et Santé Publique, Nouzilly, France
- Institute of Parasitology, McGill University, Macdonald Campus, Sainte Anne de Bellevue, Québec, Canada
| | - Abdallah Harmache
- INRA, UMR1282 Infectiologie et Santé Publique, Nouzilly, France
- Université de François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, Tours, France
| | - Adrian J. Wolstenholme
- Department of Infectious Disease and Center for Tropical and Emerging Global Disease, University of Georgia, Athens, Georgia, United States of America
| | - Lindy Holden-Dye
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Vincent O’Connor
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Nicolas Peineau
- Université François Rabelais de Tours, Département de physiologie animale, Tours, France
| | - Debra J. Woods
- Veterinary Medicine Research and Development, Zoetis LLC, Kalamazoo, Michigan, United States of America
| | - Cedric Neveu
- INRA, UMR1282 Infectiologie et Santé Publique, Nouzilly, France
- Université de François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, Tours, France
- * E-mail:
| |
Collapse
|
16
|
Hernando G, Bouzat C. Caenorhabditis elegans neuromuscular junction: GABA receptors and ivermectin action. PLoS One 2014; 9:e95072. [PMID: 24743647 PMCID: PMC3990606 DOI: 10.1371/journal.pone.0095072] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 03/23/2014] [Indexed: 11/25/2022] Open
Abstract
The prevalence of human and animal helminth infections remains staggeringly high, thus urging the need for concerted efforts towards this area of research. GABA receptors, encoded by the unc-49 gene, mediate body muscle inhibition in Caenorhabditis elegans and parasitic nematodes and are targets of anthelmintic drugs. Thus, the characterization of nematode GABA receptors provides a foundation for rational anti-parasitic drug design. We therefore explored UNC-49 channels from C. elegans muscle cultured cells of the first larval stage at the electrophysiological and behavioral levels. Whole-cell recordings reveal that GABA, muscimol and the anthelmintic piperazine elicit macroscopic currents from UNC-49 receptors that decay in their sustained presence, indicating full desensitization. Single-channel recordings show that all drugs elicit openings of ∼2.5 pA (+100 mV), which appear either as brief isolated events or in short bursts. The comparison of the lowest concentration required for detectable channel opening, the frequency of openings and the amplitude of macroscopic currents suggest that piperazine is the least efficacious of the three drugs. Macroscopic and single-channel GABA-activated currents are profoundly and apparently irreversibly inhibited by ivermectin. To gain further insight into ivermectin action at C. elegans muscle, we analyzed its effect on single-channel activity of the levamisol-sensitive nicotinic receptor (L-AChR), the excitatory receptor involved in neuromuscular transmission. Ivermectin produces a profound inhibition of the frequency of channel opening without significant changes in channel properties. By revealing that ivermectin inhibits C. elegans muscle GABA and L-AChR receptors, our study adds two receptors to the already known ivermectin targets, thus contributing to the elucidation of its pleiotropic effects. Behavioral assays in worms show that ivermectin potentiates piperazine-induced paralysis, thus suggesting that their combination is a good strategy to overcome the increasing resistance of parasites, an issue of global concern for human and animal health.
Collapse
Affiliation(s)
- Guillermina Hernando
- Instituto de Investigaciones Bioquímicas de Bahía Blanca-Universidad Nacional del Sur, Consejo Nacional de Investigaciones Científicas y Técnicas, Bahía Blanca, Buenos Aires, Argentina
| | - Cecilia Bouzat
- Instituto de Investigaciones Bioquímicas de Bahía Blanca-Universidad Nacional del Sur, Consejo Nacional de Investigaciones Científicas y Técnicas, Bahía Blanca, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
17
|
Silva MC, Amaral MD, Morimoto RI. Neuronal reprograming of protein homeostasis by calcium-dependent regulation of the heat shock response. PLoS Genet 2013; 9:e1003711. [PMID: 24009518 PMCID: PMC3757039 DOI: 10.1371/journal.pgen.1003711] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Accepted: 06/25/2013] [Indexed: 12/20/2022] Open
Abstract
Protein quality control requires constant surveillance to prevent misfolding, aggregation, and loss of cellular function. There is increasing evidence in metazoans that communication between cells has an important role to ensure organismal health and to prevent stressed cells and tissues from compromising lifespan. Here, we show in C. elegans that a moderate increase in physiological cholinergic signaling at the neuromuscular junction (NMJ) induces the calcium (Ca(2+))-dependent activation of HSF-1 in post-synaptic muscle cells, resulting in suppression of protein misfolding. This protective effect on muscle cell protein homeostasis was identified in an unbiased genome-wide screening for modifiers of protein aggregation, and is triggered by downregulation of gei-11, a Myb-family factor and proposed regulator of the L-type acetylcholine receptor (AChR). This, in-turn, activates the voltage-gated Ca(2+) channel, EGL-19, and the sarcoplasmic reticulum ryanodine receptor in response to acetylcholine signaling. The release of calcium into the cytoplasm of muscle cells activates Ca(2+)-dependent kinases and induces HSF-1-dependent expression of cytoplasmic chaperones, which suppress misfolding of metastable proteins and stabilize the folding environment of muscle cells. This demonstrates that the heat shock response (HSR) can be activated in muscle cells by neuronal signaling across the NMJ to protect proteome health.
Collapse
Affiliation(s)
- M. Catarina Silva
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois, United States of America
- Faculty of Sciences, Centre for Biodiversity, Functional and Integrative Genomics (BioFIG), University of Lisboa, Lisboa, Portugal
| | - Margarida D. Amaral
- Faculty of Sciences, Centre for Biodiversity, Functional and Integrative Genomics (BioFIG), University of Lisboa, Lisboa, Portugal
- Centre of Human Genetics, National Institute of Health, Lisboa, Portugal
| | - Richard I. Morimoto
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois, United States of America
- * E-mail:
| |
Collapse
|
18
|
Holden-Dye L, Joyner M, O'Connor V, Walker RJ. Nicotinic acetylcholine receptors: a comparison of the nAChRs of Caenorhabditis elegans and parasitic nematodes. Parasitol Int 2013; 62:606-15. [PMID: 23500392 DOI: 10.1016/j.parint.2013.03.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 02/28/2013] [Accepted: 03/05/2013] [Indexed: 01/15/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) play a key role in the normal physiology of nematodes and provide an established target site for anthelmintics. The free-living nematode, Caenorhabditis elegans, has a large number of nAChR subunit genes in its genome and so provides an experimental model for testing novel anthelmintics which act at these sites. However, many parasitic nematodes lack specific genes present in C. elegans, and so care is required in extrapolating from studies using C. elegans to the situation in other nematodes. In this review the properties of C. elegans nAChRs are reviewed and compared to those of parasitic nematodes. This forms the basis for a discussion of the possible subunit composition of nAChRs from different species of parasitic nematodes. Currently our knowledge on this is largely based on studies using heterologous expression and pharmacological analysis of receptor subunits in Xenopus laevis oocytes. It is concluded that more information is required regarding the subunit composition and pharmacology of endogenous nAChRs in parasitic nematodes.
Collapse
Affiliation(s)
- Lindy Holden-Dye
- Centre for Biological Sciences, Life Sciences Building 85, University of Southampton, Southampton SO17 1BJ, UK.
| | | | | | | |
Collapse
|
19
|
Positive modulation of a Cys-loop acetylcholine receptor by an auxiliary transmembrane subunit. Nat Neurosci 2012; 15:1374-81. [DOI: 10.1038/nn.3197] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 07/30/2012] [Indexed: 02/07/2023]
|
20
|
Hernando G, Bergé I, Rayes D, Bouzat C. Contribution of Subunits to Caenorhabditis elegans Levamisole-Sensitive Nicotinic Receptor Function. Mol Pharmacol 2012; 82:550-60. [DOI: 10.1124/mol.112.079962] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
21
|
Boulin T, Fauvin A, Charvet CL, Cortet J, Cabaret J, Bessereau JL, Neveu C. Functional reconstitution of Haemonchus contortus acetylcholine receptors in Xenopus oocytes provides mechanistic insights into levamisole resistance. Br J Pharmacol 2012; 164:1421-32. [PMID: 21486278 DOI: 10.1111/j.1476-5381.2011.01420.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND AND PURPOSE The cholinergic agonist levamisole is widely used to treat parasitic nematode infestations. This anthelmintic drug paralyses worms by activating a class of levamisole-sensitive acetylcholine receptors (L-AChRs) expressed in nematode muscle cells. However, levamisole efficacy has been compromised by the emergence of drug-resistant parasites, especially in gastrointestinal nematodes such as Haemonchus contortus. We report here the first functional reconstitution and pharmacological characterization of H. contortus L-AChRs in a heterologous expression system. EXPERIMENTAL APPROACH In the free-living nematode Caenorhabditis elegans, five AChR subunit and three ancillary protein genes are necessary in vivo and in vitro to synthesize L-AChRs. We have cloned the H. contortus orthologues of these genes and expressed them in Xenopus oocytes. We reconstituted two types of H. contortus L-AChRs with distinct pharmacologies by combining different receptor subunits. KEY RESULTS The Hco-ACR-8 subunit plays a pivotal role in selective sensitivity to levamisole. As observed with C. elegans L-AChRs, expression of H. contortus receptors requires the ancillary proteins Hco-RIC-3, Hco-UNC-50 and Hco-UNC-74. Using this experimental system, we demonstrated that a truncated Hco-UNC-63 L-AChR subunit, which was specifically detected in a levamisole-resistant H. contortus isolate, but not in levamisole-sensitive strains, hampers the normal function of L-AChRs, when co-expressed with its full-length counterpart. CONCLUSIONS AND IMPLICATIONS We provide the first functional evidence for a putative molecular mechanism involved in levamisole resistance in any parasitic nematode. This expression system will provide a means to analyse molecular polymorphisms associated with drug resistance at the electrophysiological level.
Collapse
Affiliation(s)
- T Boulin
- Institut de Biologie de l'École Normale Supérieure, Biology Department, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
22
|
Liu Y, LeBeouf B, Guo X, Correa PA, Gualberto DG, Lints R, Garcia LR. A cholinergic-regulated circuit coordinates the maintenance and bi-stable states of a sensory-motor behavior during Caenorhabditis elegans male copulation. PLoS Genet 2011; 7:e1001326. [PMID: 21423722 PMCID: PMC3053324 DOI: 10.1371/journal.pgen.1001326] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 02/04/2011] [Indexed: 11/18/2022] Open
Abstract
Penetration of a male copulatory organ into a suitable mate is a conserved and necessary behavioral step for most terrestrial matings; however, the detailed molecular and cellular mechanisms for this distinct social interaction have not been elucidated in any animal. During mating, the Caenorhabditis elegans male cloaca is maintained over the hermaphrodite's vulva as he attempts to insert his copulatory spicules. Rhythmic spicule thrusts cease when insertion is sensed. Circuit components consisting of sensory/motor neurons and sex muscles for these steps have been previously identified, but it was unclear how their outputs are integrated to generate a coordinated behavior pattern. Here, we show that cholinergic signaling between the cloacal sensory/motor neurons and the posterior sex muscles sustains genital contact between the sexes. Simultaneously, via gap junctions, signaling from these muscles is transmitted to the spicule muscles, thus coupling repeated spicule thrusts with vulval contact. To transit from rhythmic to sustained muscle contraction during penetration, the SPC sensory-motor neurons integrate the signal of spicule's position in the vulva with inputs from the hook and cloacal sensilla. The UNC-103 K(+) channel maintains a high excitability threshold in the circuit, so that sustained spicule muscle contraction is not stimulated by fewer inputs. We demonstrate that coordination of sensory inputs and motor outputs used to initiate, maintain, self-monitor, and complete an innate behavior is accomplished via the coupling of a few circuit components.
Collapse
Affiliation(s)
- Yishi Liu
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Brigitte LeBeouf
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- Howard Hughes Medical Institute, Texas A&M University, College Station, Texas, United States of America
| | - Xiaoyan Guo
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Paola A. Correa
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Daisy G. Gualberto
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- Howard Hughes Medical Institute, Texas A&M University, College Station, Texas, United States of America
| | - Robyn Lints
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - L. Rene Garcia
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- Howard Hughes Medical Institute, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
23
|
Jones AK, Rayes D, Al-Diwani A, Maynard TPR, Jones R, Hernando G, Buckingham SD, Bouzat C, Sattelle DB. A Cys-loop mutation in the Caenorhabditis elegans nicotinic receptor subunit UNC-63 impairs but does not abolish channel function. J Biol Chem 2011; 286:2550-8. [PMID: 20966081 PMCID: PMC3024750 DOI: 10.1074/jbc.m110.177238] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 09/24/2010] [Indexed: 11/06/2022] Open
Abstract
The nematode Caenorhabditis elegans is an established model organism for studying neurobiology. UNC-63 is a C. elegans nicotinic acetylcholine receptor (nAChR) α-subunit. It is an essential component of the levamisole-sensitive muscle nAChR (L-nAChR) and therefore plays an important role in cholinergic transmission at the nematode neuromuscular junction. Here, we show that worms with the unc-63(x26) allele, with its αC151Y mutation disrupting the Cys-loop, have deficient muscle function reflected by impaired swimming (thrashing). Single-channel recordings from cultured muscle cells from the mutant strain showed a 100-fold reduced frequency of opening events and shorter channel openings of L-nAChRs compared with those of wild-type worms. Anti-UNC-63 antibody staining in both cultured adult muscle and embryonic cells showed that L-nAChRs were expressed at similar levels in the mutant and wild-type cells, suggesting that the functional changes in the receptor, rather than changes in expression, are the predominant effect of the mutation. The kinetic changes mimic those reported in patients with fast-channel congenital myasthenic syndromes. We show that pyridostigmine bromide and 3,4-diaminopyridine, which are drugs used to treat fast-channel congenital myasthenic syndromes, partially rescued the motility defect seen in unc-63(x26). The C. elegans unc-63(x26) mutant may therefore offer a useful model to assist in the development of therapies for syndromes produced by altered function of human nAChRs.
Collapse
Affiliation(s)
- Andrew K. Jones
- From the Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, United Kingdom
| | - Diego Rayes
- the Instituto de Investigaciones Bioquímicas de Bahía Blanca, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas, B-8000FWB Bahía Blanca, Argentina, and
| | - Adam Al-Diwani
- From the Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, United Kingdom
| | - Thomas P. R. Maynard
- From the Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, United Kingdom
| | - Rachel Jones
- From the Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, United Kingdom
| | - Guillermina Hernando
- the Instituto de Investigaciones Bioquímicas de Bahía Blanca, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas, B-8000FWB Bahía Blanca, Argentina, and
| | - Steven D. Buckingham
- From the Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, United Kingdom
| | - Cecilia Bouzat
- the Instituto de Investigaciones Bioquímicas de Bahía Blanca, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas, B-8000FWB Bahía Blanca, Argentina, and
| | - David B. Sattelle
- the Faculty of Life Sciences, AV Hill Building, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom
| |
Collapse
|
24
|
|
25
|
Almedom RB, Liewald JF, Hernando G, Schultheis C, Rayes D, Pan J, Schedletzky T, Hutter H, Bouzat C, Gottschalk A. An ER-resident membrane protein complex regulates nicotinic acetylcholine receptor subunit composition at the synapse. EMBO J 2009; 28:2636-49. [PMID: 19609303 PMCID: PMC2738700 DOI: 10.1038/emboj.2009.204] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 06/18/2009] [Indexed: 11/09/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are homo- or heteropentameric ligand-gated ion channels mediating excitatory neurotransmission and muscle activation. Regulation of nAChR subunit assembly and transfer of correctly assembled pentamers to the cell surface is only partially understood. Here, we characterize an ER transmembrane (TM) protein complex that influences nAChR cell-surface expression and functional properties in Caenorhabditis elegans muscle. Loss of either type I TM protein, NRA-2 or NRA-4 (nicotinic receptor associated), affects two different types of muscle nAChRs and causes in vivo resistance to cholinergic agonists. Sensitivity to subtype-specific agonists of these nAChRs is altered differently, as demonstrated by whole-cell voltage-clamp of dissected adult muscle, when applying exogenous agonists or after photo-evoked, channelrhodopsin-2 (ChR2) mediated acetylcholine (ACh) release, as well as in single-channel recordings in cultured embryonic muscle. These data suggest that nAChRs desensitize faster in nra-2 mutants. Cell-surface expression of different subunits of the 'levamisole-sensitive' nAChR (L-AChR) is differentially affected in the absence of NRA-2 or NRA-4, suggesting that they control nAChR subunit composition or allow only certain receptor assemblies to leave the ER.
Collapse
Affiliation(s)
- Ruta B Almedom
- Department of Biochemistry, Chemistry and Pharmacy, Johann Wolfgang Goethe-University, Institute of Biochemistry, Frankfurt, Germany
| | - Jana F Liewald
- Department of Biochemistry, Chemistry and Pharmacy, Johann Wolfgang Goethe-University, Institute of Biochemistry, Frankfurt, Germany
| | - Guillermina Hernando
- Instituto de Investigaciones Bioquimicas, Universidad Nacional del Sur-CONICET, Bahia Blanca, Argentina
| | - Christian Schultheis
- Department of Biochemistry, Chemistry and Pharmacy, Johann Wolfgang Goethe-University, Institute of Biochemistry, Frankfurt, Germany
| | - Diego Rayes
- Instituto de Investigaciones Bioquimicas, Universidad Nacional del Sur-CONICET, Bahia Blanca, Argentina
| | - Jie Pan
- Department of Biological Sciences, Simon Fraser University, University Drive, Burnaby, British Columbia, Canada
| | - Thorsten Schedletzky
- Department of Biochemistry, Chemistry and Pharmacy, Johann Wolfgang Goethe-University, Institute of Biochemistry, Frankfurt, Germany
| | - Harald Hutter
- Department of Biological Sciences, Simon Fraser University, University Drive, Burnaby, British Columbia, Canada
| | - Cecilia Bouzat
- Instituto de Investigaciones Bioquimicas, Universidad Nacional del Sur-CONICET, Bahia Blanca, Argentina
| | - Alexander Gottschalk
- Department of Biochemistry, Chemistry and Pharmacy, Johann Wolfgang Goethe-University, Institute of Biochemistry, Frankfurt, Germany
- Cluster of Excellence Frankfurt—Macromolecular Complexes (CEF-MC), Goethe-University, Frankfurt, Germany
| |
Collapse
|
26
|
Bartos M, Price KL, Lummis SCR, Bouzat C. Glutamine 57 at the complementary binding site face is a key determinant of morantel selectivity for {alpha}7 nicotinic receptors. J Biol Chem 2009; 284:21478-87. [PMID: 19506073 PMCID: PMC2755872 DOI: 10.1074/jbc.m109.013797] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Nicotinic receptors (AChRs) play key roles in synaptic transmission. We explored activation of neuronal α7 and mammalian muscle AChRs by morantel and oxantel. Our results revealed a novel action of morantel as a high efficacy and more potent agonist than ACh of α7 receptors. The EC50 for activation by morantel of both α7 and α7-5HT3A receptors is 7-fold lower than that determined for ACh. The minimum morantel concentration required to activate α7-5HT3A channels is 6-fold lower than that of ACh, and activation episodes are more prolonged than in the presence of ACh. By contrast, oxantel is a weak agonist of α7 and α7-5HT3A, and both drugs are very low efficacy agonists of muscle AChRs. The replacement of Gln57 in α7 by glycine, which is found in the equivalent position of the muscle AChR, decreases the efficacy for activation and turns morantel into a partial agonist. The reverse mutation in the muscle AChR (ϵG57Q) increases 7-fold the efficacy of morantel. The mutations do not affect activation by ACh or oxantel, indicating that this position is selective for morantel. In silico studies show that the tetrahydropyrimidinyl group, common to both drugs, is close to Trp149 of the principal face of the binding site, whereas the other cyclic group is proximal to Gln57 of the complementary face in morantel but not in oxantel. Thus, position 57 at the complementary face is a key determinant of the high selectivity of morantel for α7. These results provide new information for further progress in drug design.
Collapse
Affiliation(s)
- Mariana Bartos
- Instituto de Investigaciones Bioquímicas, UNS-CONICET, Bahía Blanca 8000, Argentina
| | | | | | | |
Collapse
|
27
|
Qian H, Robertson AP, Powell-Coffman JA, Martin RJ. Levamisole resistance resolved at the single-channel level in Caenorhabditis elegans. FASEB J 2008; 22:3247-54. [PMID: 18519804 DOI: 10.1096/fj.08-110502] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Sydney Brenner promoted Caenorhabditis elegans as a model organism, and subsequent investigations pursued resistance to the nicotinic anthelmintic drug levamisole in C. elegans at a genetic level. These studies have advanced our understanding of genes associated with neuromuscular transmission and resistance to the antinematodal drug. In lev-8 and lev-1 mutant C. elegans, levamisole resistance is associated with reductions in levamisole-activated whole muscle cell currents. Although lev-8 and lev-1 are known to code for nicotinic acetylcholine receptor (nAChR) subunits, an explanation for why these currents get smaller is not available. In wild-type adults, nAChRs aggregate at neuromuscular junctions and are not accessible for single-channel recording. Here we describe a use of LEV-10 knockouts, in which aggregation is lost, to make in situ recordings of nAChR channel currents. Our observations provide an explanation for levamisole resistance produced by LEV-8 and LEV-1 mutants at the single-channel level.
Collapse
Affiliation(s)
- Hai Qian
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | | | | | | |
Collapse
|
28
|
Parker S, Peterkin HS, Baylis HA. Muscular dystrophy associated mutations in caveolin-1 induce neurotransmission and locomotion defects in Caenorhabditis elegans. INVERTEBRATE NEUROSCIENCE 2007; 7:157-64. [PMID: 17629760 DOI: 10.1007/s10158-007-0051-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Accepted: 06/11/2007] [Indexed: 12/13/2022]
Abstract
Mutations in human caveolin-3 are known to underlie a range of myopathies. The cav-1 gene of Caenorhabditis elegans is a homologue of human caveolin-3 and is expressed in both neurons and body wall muscles. Within the body wall muscle CAV-1 localises adjacent to neurons, most likely at the neuromuscular junction (NMJ). Using fluorescently tagged CAV-1 and pre- and post-synaptic markers we demonstrate that CAV-1 co-localises with UNC-63, a post-synaptic marker, but not with several pre-synaptic markers. To establish a model for human muscular dystrophies caused by dominant-negative mutations in caveolin-3 we created transgenic animals carrying versions of cav-1 with homologous mutations. These animals had increased sensitivity to levamisole, suggesting a role for cav-1 at the NMJ. Animals carrying a deletion in cav-1 show a similar sensitivity. Sensitivity to levamisole and locomotion were also perturbed in animals carrying a dominant-negative cav-1 and a mutation in dynamin, which is a protein known to interact with caveolins. Thus, indicating an interaction between CAV-1 and dynamin at the NMJ and/or in neurons.
Collapse
Affiliation(s)
- Scott Parker
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | | | | |
Collapse
|