1
|
Clark BJ, Klinge CM. Structure-function of DHEA binding proteins. VITAMINS AND HORMONES 2022; 123:587-617. [PMID: 37717999 DOI: 10.1016/bs.vh.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dehydroepiandrosterone (3β-hydroxy-5-androsten-17-one, DHEA) and its sulfated metabolite DHEA-S are the most abundant circulating steroids and are precursors for active sex steroid hormones, estradiol and testosterone. DHEA has a broad range of reported effects in the central nervous system (CNS), cardiovascular system, adipose tissue, kidney, liver, and in the reproductive system. The mechanisms by which DHEA and DHEA-S initiate their biological effects are diverse. DHEA and DHEA-S may directly bind to plasma membrane (PM) receptors, including a DHEA-specific, G-protein coupled receptor (GPCR) in endothelial cells; various neuroreceptors, e.g., aminobutyric-acid-type A (GABA(A)), N-methyl-d-aspartate (NMDA) and sigma-1 (S1R) receptors (NMDAR and SIG-1R). DHEA and DHEA-S directly bind the nuclear androgen and estrogen receptors (AR, ERα, or ERβ) although with significantly lower binding affinities compared to the steroid hormones, e.g., testosterone, dihydrotestosterone, and estradiol, which are the cognate ligands for AR and ERs. Thus, extra-gonadal metabolism of DHEA to the sex hormones must be considered for many of the biological benefits of DHEA. DHEA also actives GPER1 (G protein coupled estrogen receptor 1). DHEA activates constitutive androstane receptor CAR (CAR) and proliferator activated receptor (PPARα) by indirect dephosphorylation. DHEA affects voltage-gated sodium and calcium ion channels and DHEA-2 activates TRPM3 (Transient Receptor Potential Cation Channel Subfamily M Member 3). This chapter updates our previous 2018 review pertaining to the physiological, biochemical, and molecular mechanisms of DHEA and DHEA-S activity.
Collapse
Affiliation(s)
- Barbara J Clark
- Department of Biochemistry & Molecular Genetics, Center for Integrative Environmental Health Sciences (CIEHS), University of Louisville School of Medicine, Louisville, KY, United States
| | - Carolyn M Klinge
- Department of Biochemistry & Molecular Genetics, Center for Integrative Environmental Health Sciences (CIEHS), University of Louisville School of Medicine, Louisville, KY, United States.
| |
Collapse
|
2
|
Chatterton RT. Functions of dehydroepiandrosterone in relation to breast cancer. Steroids 2022; 179:108970. [PMID: 35122788 DOI: 10.1016/j.steroids.2022.108970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/17/2022] [Accepted: 01/31/2022] [Indexed: 11/20/2022]
Abstract
Although DHEA sulfate (DS) is the most abundant steroid in the circulation, breast fluid contains an approximately 80-fold greater concentration than serum. Transport of DS into cells requires organic anion transporting polypeptides (OATPs), which are specific for cell type, cell location, and substrate, but may have a broader specificity for housekeeping functions. Specific classes, which may be modified by soluble factors including neutral steroids, have been identified in the breast. After transport, DS may be cleaved to DHEA by ubiquitous sulfatases, which may be modified by the cell milieu, or DHEA may enter by diffusion. Synthesis from cholesterol does not occur because CYP17B12 and cytochrome b5 are lacking in breast tissues. Case-control studies reveal a positive association of serum DS with risk of breast cancer. The association is even greater with DHEA, particularly in postmenopausal women with HR + invasive tumors. Metabolites of DHEA, androstenedione and testosterone, are associated with breast cancer but DHEA is likely to have an independent role as well. Mechanisms by which DHEA may promote breast cancer relate to its effect in increasing circulating IGF-I, by inhibiting the suppressive effect of glucocorticoids, and by promoting retention of pre-adipocytes with aromatase activity. In addition, DHEA may interact with the G-protein coupled receptor GPER for stimulation of miR-21 and subsequent activation of the MAPK pathway. DHEA also has antitumor properties that relate to stimulation of immunity, suppression of inflammation, and elevation of adipose tissue adiponectin synthesis. The net effect may depend on the which factors predominate.
Collapse
Affiliation(s)
- Robert T Chatterton
- Department of Obstetrics and Gynecology and the Robert H Lurie Comprehensive Cancer Center of Northwestern, Northwestern University Feinberg Medical School. Chicago, IL 60911, USA.
| |
Collapse
|
3
|
Malliou F, Andriopoulou CE, Gonzalez FJ, Kofinas A, Skaltsounis AL, Konstandi M. Oleuropein-Induced Acceleration of Cytochrome P450-Catalyzed Drug Metabolism: Central Role for Nuclear Receptor Peroxisome Proliferator-Activated Receptor α. Drug Metab Dispos 2021; 49:833-843. [PMID: 34162688 PMCID: PMC11022892 DOI: 10.1124/dmd.120.000302] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 04/06/2021] [Indexed: 11/22/2022] Open
Abstract
Oleuropein (OLE), the main constituent of Olea europaea, displays pleiotropic beneficial effects in health and disease, which are mainly attributed to its anti-inflammatory and cardioprotective properties. Several food supplements and herbal medicines contain OLE and are available without a prescription. This study investigated the effects of OLE on the main cytochrome P450s (P450s) catalyzing the metabolism of many prescribed drugs. Emphasis was given to the role of peroxisome proliferator-activated receptor α (PPARα), a nuclear transcription factor regulating numerous genes including P450s. 129/Sv wild-type and Ppara-null mice were treated with OLE for 6 weeks. OLE induced Cyp1a1, Cyp1a2, Cyp1b1, Cyp3a14, Cyp3a25, Cyp2c29, Cyp2c44, Cyp2d22, and Cyp2e1 mRNAs in liver of wild-type mice, whereas no similar effects were observed in Ppara-null mice, indicating that the OLE-induced effect on these P450s is mediated by PPARα. Activation of the pathways related to phosphoinositide 3-kinase/protein kinase B (AKT)/forkhead box protein O1, c-Jun N-terminal kinase, AKT/p70, and extracellular signal-regulated kinase participates in P450 induction by OLE. These data indicate that consumption of herbal medicines and food supplements containing OLE could accelerate the metabolism of drug substrates of the above-mentioned P450s, thus reducing their efficacy and the outcome of pharmacotherapy. Therefore, OLE-induced activation of PPARα could modify the effects of drugs due to their increased metabolism and clearance, which should be taken into account when consuming OLE-containing products with certain drugs, in particular those of narrow therapeutic window. SIGNIFICANCE STATEMENT: This study indicated that oleuropein, which belongs to the main constituents of the leaves and olive drupes of Olea europaea, induces the synthesis of the major cytochrome P450s (P450s) metabolizing the majority of prescribed drugs via activation of peroxisome proliferator-activated receptor α. This effect could modify the pharmacokinetic profile of co-administered drug substrates of the P450s, thus altering their therapeutic efficacy and toxicity.
Collapse
Affiliation(s)
- Foteini Malliou
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece (F.M., C.E.A., A.K., M.K.); Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (F.J.G.); and Faculty of Pharmacy, School of Health Sciences, University of Athens, Athens, Greece (A.-L.S.)
| | - Christina E Andriopoulou
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece (F.M., C.E.A., A.K., M.K.); Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (F.J.G.); and Faculty of Pharmacy, School of Health Sciences, University of Athens, Athens, Greece (A.-L.S.)
| | - Frank J Gonzalez
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece (F.M., C.E.A., A.K., M.K.); Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (F.J.G.); and Faculty of Pharmacy, School of Health Sciences, University of Athens, Athens, Greece (A.-L.S.)
| | - Aristeidis Kofinas
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece (F.M., C.E.A., A.K., M.K.); Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (F.J.G.); and Faculty of Pharmacy, School of Health Sciences, University of Athens, Athens, Greece (A.-L.S.)
| | - Alexios-Leandros Skaltsounis
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece (F.M., C.E.A., A.K., M.K.); Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (F.J.G.); and Faculty of Pharmacy, School of Health Sciences, University of Athens, Athens, Greece (A.-L.S.)
| | - Maria Konstandi
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece (F.M., C.E.A., A.K., M.K.); Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (F.J.G.); and Faculty of Pharmacy, School of Health Sciences, University of Athens, Athens, Greece (A.-L.S.)
| |
Collapse
|
4
|
Cao J, Lu M, Yan W, Li L, Ma H. Dehydroepiandrosterone alleviates intestinal inflammatory damage via GPR30-mediated Nrf2 activation and NLRP3 inflammasome inhibition in colitis mice. Free Radic Biol Med 2021; 172:386-402. [PMID: 34182071 DOI: 10.1016/j.freeradbiomed.2021.06.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 01/27/2023]
Abstract
Dehydroepiandrosterone (DHEA) is a popular dietary supplement that has anti-inflammatory, anti-oxidant and immune-regulating role; meanwhile, it also can effective in the protection of inflammation diseases such as inflammatory bowel disease (IBD), but the underlying mechanisms remain elusive. Here, we demonstrated that DHEA inhibits excessive inflammation response and enhances gut barrier function via activating the G protein-coupled receptor 30 (GPR30). GPR30-induced the ERK phosphorylation and p62 accumulation led to the activation of nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway, which subsequently inhibited the reactive oxygen species (ROS) overproduction and finally alleviated the intestinal barrier dysfunction. Furthermore, DHEA blocked the p38-induced NLRP3 inflammasome activation in both LPS-stimulated colon epithelial cells and macrophages. In addition, in vivo results showed that DHEA and GPR30 agonist G1 attenuated inflammatory responses and gut barrier dysfunction in colitis mice, while the GPR30 specific inhibitor G15 abrogated these beneficial effects of DHEA. Cumulatively, our study unveiled that DHEA is an effective anti-inflammatory agent and suggested that GPR30 could as a potential target for the treatment of IBD.
Collapse
Affiliation(s)
- Ji Cao
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Miaomiao Lu
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Weiyuan Yan
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Longlong Li
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Haitian Ma
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
5
|
Liu XH, Graham ZA, Harlow L, Pan J, Azulai D, Bauman WA, Yarrow J, Cardozo CP. Spinal Cord Injury Reduces Serum Levels of Fibroblast Growth Factor-21 and Impairs Its Signaling Pathways in Liver and Adipose Tissue in Mice. Front Endocrinol (Lausanne) 2021; 12:668984. [PMID: 34046014 PMCID: PMC8147560 DOI: 10.3389/fendo.2021.668984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/23/2021] [Indexed: 01/21/2023] Open
Abstract
Spinal cord injury (SCI) results in dysregulation of carbohydrate and lipid metabolism; the underlying cellular and physiological mechanisms remain unclear. Fibroblast growth factor 21 (FGF21) is a circulating protein primarily secreted by the liver that lowers blood glucose levels, corrects abnormal lipid profiles, and mitigates non-alcoholic fatty liver disease. FGF21 acts via activating FGF receptor 1 and ß-klotho in adipose tissue and stimulating release of adiponectin from adipose tissue which in turn signals in the liver and skeletal muscle. We examined FGF21/adiponectin signaling after spinal cord transection in mice fed a high fat diet (HFD) or a standard mouse chow. Tissues were collected at 84 days after spinal cord transection or a sham SCI surgery. SCI reduced serum FGF21 levels and hepatic FGF21 expression, as well as β-klotho and FGF receptor-1 (FGFR1) mRNA expression in adipose tissue. SCI also reduced serum levels and adipose tissue mRNA expression of adiponectin and leptin, two major adipokines. In addition, SCI suppressed hepatic type 2 adiponectin receptor (AdipoR2) mRNA expression and PPARα activation in the liver. Post-SCI mice fed a HFD had further suppression of serum FGF21 levels and hepatic FGF21 expression. Elevated serum free fatty acid (FFA) levels after HFD feeding were observed in post-SCI mice but not in sham-mice, suggesting defective FFA uptake after SCI. Moreover, after SCI several genes that are implicated in insulin's action had reduced expression in tissues of interest. These findings suggest that downregulated FGF21/adiponectin signaling and impaired responsiveness of adipose tissues to FGF21 may, at least in part, contribute to the overall picture of metabolic dysfunction after SCI.
Collapse
Affiliation(s)
- Xin-Hua Liu
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY, United States
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Zachary A. Graham
- Research Service, Birmingham VA Medical Center, Birmingham, AL, United States
- Department of Cell, Developmental and Integrative Biology, University of Alabama-Birmingham, Birmingham, AL, United States
| | - Lauren Harlow
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY, United States
| | - Jiangping Pan
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY, United States
| | - Daniella Azulai
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY, United States
| | - William A. Bauman
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY, United States
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Joshua Yarrow
- Research Service and Brain Rehabilitation Research Center, Malcolm Randall VA Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, United States
- Division of Endocrinology, Diabetes, and Metabolism, University of Florida College of Medicine, Gainesville, FL, United States
| | - Christopher P. Cardozo
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY, United States
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Research Service, Birmingham VA Medical Center, Birmingham, AL, United States
| |
Collapse
|
6
|
Imanaka S, Shigetomi H, Kobayashi H. Reprogramming of glucose metabolism of cumulus cells and oocytes and its therapeutic significance. Reprod Sci 2021; 29:653-667. [PMID: 33675030 DOI: 10.1007/s43032-021-00505-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/21/2021] [Indexed: 12/17/2022]
Abstract
The aim of this review is to summarize our current understanding of the molecular mechanism for the glucose metabolism, especially pyruvate dehydrogenase (PDH), during oocyte maturation, as well as future perspectives of therapeutic strategies for aging focusing on metabolic regulation between aerobic glycolysis and the tricarboxylic acid (TCA) cycle/oxidative phosphorylation (OXPHOS). Each keyword alone or in combination was used to search from PubMed. Glucose metabolism is a dynamic process involving "On" and "Off" switches by the pyruvate dehydrogenase kinase (PDK)-PDH axis, which is crucial for energy metabolism and mitochondrial efficiency in cumulus cell differentiation and oocyte maturation. Activation of PDK suppresses the conversion of pyruvate to acetyl-coenzyme A (acetyl-CoA) through the inactivation of PDH, which allows the cumulus cells to supply sufficient amounts of pyruvate, lactate, and nicotinamide adenine dinucleotide phosphate (NADPH) to the oocytes. On the other hand, inactivation of PDK in oocytes can produce adenosine triphosphate (ATP) through a metabolic shift from aerobic glycolysis to the TCA cycle/OXPHOS. The metabolic balance between aerobic glycolysis and TCA cycle/OXPHOS presents us with a number of enzymes, ligands, receptors, and antioxidants that are potential therapeutic targets, some of which have already been successfully pursued to improve fertility outcomes. However, there are also many reports that question their efficacy. In conclusion, understanding the molecular mechanisms involved in the PDK-PDH axis is a crucial step to advance in novel therapeutic strategies to improve oocyte quality.
Collapse
Affiliation(s)
- Shogo Imanaka
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan.,Ms.Clinic MayOne, Kashihara, Japan
| | - Hiroshi Shigetomi
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan.,Aska Ladies Clinic, Nara, Japan
| | - Hiroshi Kobayashi
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan. .,Ms.Clinic MayOne, Kashihara, Japan.
| |
Collapse
|
7
|
Wang J, Wang L. The therapeutic effect of dehydroepiandrosterone (DHEA) on vulvovaginal atrophy. Pharmacol Res 2021; 166:105509. [PMID: 33610719 DOI: 10.1016/j.phrs.2021.105509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 01/23/2023]
Abstract
Vulvovaginal atrophy (VVA) is a chronic disease that mostly occurs in postmenopausal women. After menopause, insufficient sex hormones affect the anatomy of the vagina and cause drastic physiological changes. The main histopathological studies of VVA show that postmenopausal estrogen deficiency can lead to the increase of intermediate/parabasal cells, resulting in the loss of lactobacillus, elasticity and lubricity, vaginal epithelial atrophy, pain, dryness. Although the role of estrogen hormones in the treatment of VVA has always been in the past, it is now widely accepted that it also depends on androgens. Estrogen drugs have many side effects. So, Dehydroepiandrosterone(DHEA)is promising for the treatment of VVA, especially when women with contraindications to estrogen have symptoms. This review is expected to understand the latest developments in VVA and the efficacy of DHEA.
Collapse
Affiliation(s)
- Jing Wang
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China; The Academy of Integrative Medicine, Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Ling Wang
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, Shanghai Medical College, Fudan University, Shanghai, China; The Academy of Integrative Medicine, Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China.
| |
Collapse
|
8
|
Luo Y, Zhang YN, Zhang H, Lv HB, Zhang ML, Chen LQ, Du ZY. PPARα activation enhances the ability of nile tilapia (Oreochromis niloticus) to resist Aeromonas hydrophila infection. FISH & SHELLFISH IMMUNOLOGY 2019; 94:675-684. [PMID: 31563556 DOI: 10.1016/j.fsi.2019.09.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/20/2019] [Accepted: 09/26/2019] [Indexed: 06/10/2023]
Abstract
Peroxisome proliferator-activated receptor α (PPARα) plays critical physiological roles in energy metabolism, antioxidation and immunity of mammals, however, these functions have not been fully understood in fish. In the present study, Nile tilapia (Oreochromis niloticus) were fed with fenofibrate, an agonist of PPARα, for six weeks, and subsequently challenged with Aeromonas hydrophila. The results showed that PPARα was efficiently activated by fenofibrate through increasing mRNA and protein expressions and protein dephosphorylation. PPARα activation increased significantly mitochondrial fatty acid β-oxidation efficiency, the copy number of mitochondrial DNA and expression of monoamine oxidase (MAO), a marker gene of mitochondria. Meanwhile, PPARα activation also increased significantly the expression of NADH dehydrogenase [ubiquinone] 1α subcomplex subunit 9 (NDUFA9, complex I) and mitochondrial cytochrome c oxidase 1 (MTCO1, complex IV). The fenofibrate-fed fish had higher survival rate when exposed to A. hydrophila. Moreover, the fenofibrate-fed fish also had higher activities of immune and antioxidative enzymes, and gene expressions of anti-inflammatory cytokines, while had lower expressions of pro-inflammatory cytokine genes. Taken together, PPARα activation improved the ability of Nile tilapia to resist A. hydrophila, mainly through enhancing mitochondrial fatty acids β-oxidation, immune and antioxidant capacities, as well as inhibiting inflammation. This is the first study showing the regulatory effects of PPARα activation on immune functions through increasing mitochondria-mediated energy supply in fish.
Collapse
Affiliation(s)
- Yuan Luo
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China
| | - Yun-Ni Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China
| | - Han Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China
| | - Hong-Bo Lv
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China
| | - Mei-Ling Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China
| | - Li-Qiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China.
| | - Zhen-Yu Du
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
9
|
Steroidogenic control of liver metabolism through a nuclear receptor-network. Mol Metab 2019; 30:221-229. [PMID: 31767173 PMCID: PMC6819870 DOI: 10.1016/j.molmet.2019.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 09/13/2019] [Accepted: 09/19/2019] [Indexed: 12/15/2022] Open
Abstract
Objective Coupling metabolic and reproductive pathways is essential for the survival of species. However, the functions of steroidogenic enzymes expressed in metabolic tissues are largely unknown. Methods and results Here, we show that in the liver, the classical steroidogenic enzyme Cyp17a1 forms an essential nexus for glucose and ketone metabolism during feed-fast cycles. Both gain- and loss-of-function approaches are used to show that hepatic Cyp17a1 is induced by fasting, catalyzes the production of at least one hormone-ligand (DHEA) for the nuclear receptor PPARα, and is ultimately required for maintaining euglycemia and ketogenesis during nutrient deprivation. The feedback-loop that terminates Cyp17a1-PPARα activity, and re-establishes anabolic liver metabolism during re-feeding is mapped to postprandial bile acid-signaling, involving the receptors FXR, SHP and LRH-1. Conclusions Together, these findings represent a novel paradigm of homeostatic control in which nutritional cues feed-forward on to metabolic pathways by influencing extragonadal steroidogenesis. The classical steroidogenic enzyme, Cyp17a1, is upregulated in liver during fasting. CYP17a1 produces a hormone-ligand for the nuclear receptor PPARα and affects glucose and lipid handling in the liver. Hepatic Cyp17a1 is essential for maintaining glycaemia and ketones during fasting. Bile acids, via a nuclear receptor cascade, repress hepatic Cyp17a1 as part of the re-feeding response.
Collapse
|
10
|
Clark BJ, Prough RA, Klinge CM. Mechanisms of Action of Dehydroepiandrosterone. VITAMINS AND HORMONES 2018; 108:29-73. [PMID: 30029731 DOI: 10.1016/bs.vh.2018.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Dehydroepiandrosterone (3β-hydroxy-5-androsten-17-one, DHEA) and its sulfated metabolite DHEA-S are the most abundant steroids in circulation and decline with age. Rodent studies have shown that DHEA has a wide variety of effects on liver, kidney, adipose, reproductive tissues, and central nervous system/neuronal function. The mechanisms by which DHEA and DHEA-S impart their physiological effects may be direct actions on plasma membrane receptors, including a DHEA-specific, G-protein-coupled receptor in endothelial cells; various neuroreceptors, e.g., aminobutyric-acid-type A, N-methyl-d-aspartate (NMDA), and sigma-1 (S1R) receptors; by binding steroid receptors: androgen and estrogen receptors (ARs, ERα, or ERβ); or by their metabolism to more potent sex steroid hormones, e.g., testosterone, dihydrotestosterone, and estradiol, which bind with higher affinity to ARs and ERs. DHEA inhibits voltage-gated T-type calcium channels. DHEA activates peroxisome proliferator-activated receptor (PPARα) and CAR by a mechanism apparently involving PP2A, a protein phosphatase dephosphorylating PPARα and CAR to activate their transcriptional activity. We review our recent study showing DHEA activated GPER1 (G-protein-coupled estrogen receptor 1) in HepG2 cells to stimulate miR-21 transcription. This chapter reviews some of the physiological, biochemical, and molecular mechanisms of DHEA and DHEA-S activity.
Collapse
Affiliation(s)
- Barbara J Clark
- Department of Biochemistry and Molecular Genetics, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY, United States
| | - Russell A Prough
- Department of Biochemistry and Molecular Genetics, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY, United States
| | - Carolyn M Klinge
- Department of Biochemistry and Molecular Genetics, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY, United States.
| |
Collapse
|
11
|
Kosters A, Abebe DF, Felix JC, Dawson PA, Karpen SJ. Inflammation-associated upregulation of the sulfated steroid transporter Slc10a6 in mouse liver and macrophage cell lines. Hepatol Res 2016; 46:794-803. [PMID: 26510996 PMCID: PMC4851596 DOI: 10.1111/hepr.12609] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 09/28/2015] [Accepted: 10/14/2015] [Indexed: 12/12/2022]
Abstract
AIM Slc10a6, an incompletely characterized member of the SLC10A bile acid transporter family, was one of the most highly induced RNA transcripts identified in a screen for inflammation-responsive genes in mouse liver. This study aimed to elucidate a role for Slc10a6 in hepatic inflammation. METHODS Mice were treated with lipopolysaccharide (LPS; 2 mg/kg) or interleukin (IL)-1β (5 mg/kg) for various time points. Cells were treated with LPS (1 μg/mL) at various time points, with cell signaling inhibitors, nuclear receptor ligands and Slc10a6 substrates. All mRNA levels were determined by quantitative polymerase chain reaction. RESULTS Slc10a6 mRNA levels were upregulated in mouse liver at 2 h (7-fold), 4 h (100-fold) and 16 h (50-fold) after LPS treatment, and 35-fold by the cytokine IL-1β (4 h). Both absence of the nuclear receptor Fxr and pretreating mice with the synthetic retinoid X receptor-α ligand LG268 attenuated the LPS upregulation of Slc10a6 mRNA by 60-75%. In vitro, Slc10a6 mRNA was induced 30-fold by LPS in mouse RAW264.7 macrophages in a time-dependent manner (maximum at 8 h). The Slc10a6 substrate dehydroepiandrosterone sulfate (DHEAS) enhanced LPS induction of CCL5 mRNA, a pro-inflammatory chemokine, by 50% in RAW264.7 cells. This effect was abrogated in the presence of anti-inflammatory nuclear receptor ligands 9-cis-retinoic acid and dexamethasone. CONCLUSION Dramatic upregulation of Slc10a6 mRNA by LPS combined with enhanced LPS stimulation of CCL5 expression by the Slc10a6 substrate DHEAS in macrophages suggests that Slc10a6 function contributes to the hepatic inflammatory response.
Collapse
Affiliation(s)
- Astrid Kosters
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University School of Medicine, Atlanta GA, 30322
| | - Demesew F. Abebe
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University School of Medicine, Atlanta GA, 30322
| | - Julio C. Felix
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
| | - Paul A. Dawson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University School of Medicine, Atlanta GA, 30322
| | - Saul J. Karpen
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University School of Medicine, Atlanta GA, 30322
| |
Collapse
|
12
|
Ning LJ, He AY, Li JM, Lu DL, Jiao JG, Li LY, Li DL, Zhang ML, Chen LQ, Du ZY. Mechanisms and metabolic regulation of PPARα activation in Nile tilapia (Oreochromis niloticus). Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1036-1048. [PMID: 27320014 DOI: 10.1016/j.bbalip.2016.06.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/30/2016] [Accepted: 06/10/2016] [Indexed: 11/28/2022]
Abstract
Although the key metabolic regulatory functions of mammalian peroxisome proliferator-activated receptor α (PPARα) have been thoroughly studied, the molecular mechanisms and metabolic regulation of PPARα activation in fish are less known. In the first part of the present study, Nile tilapia (Nt)PPARα was cloned and identified, and high mRNA expression levels were detected in the brain, liver, and heart. NtPPARα was activated by an agonist (fenofibrate) and by fasting and was verified in primary hepatocytes and living fish by decreased phosphorylation of NtPPARα and/or increased NtPPARα mRNA and protein expression. In the second part of the present work, fenofibrate was fed to fish or fish were fasted for 4weeks to investigate the metabolic regulatory effects of NtPPARα. A transcriptomic study was also performed. The results indicated that fenofibrate decreased hepatic triglyceride and 18C-series fatty acid contents but increased the catabolic rate of intraperitoneally injected [1-(14)C] palmitate in vivo, hepatic mitochondrial β-oxidation efficiency, the quantity of cytochrome b DNA, and carnitine palmitoyltransferase-1a mRNA expression. Fenofibrate also increased serum glucose, insulin, and lactate concentrations. Fasting had stronger hypolipidemic and gene regulatory effects than those of fenofibrate. Taken together, we conclude that: 1) liver is one of the main target tissues of the metabolic regulation of NtPPARα activation; 2) dephosphorylation is the basal NtPPARα activation mechanism rather than enhanced mRNA and protein expression; 3) activated NtPPARα has a hypolipidemic effect by increasing activity and the number of hepatic mitochondria; and 4) PPARα activation affects carbohydrate metabolism by altering energy homeostasis among nutrients.
Collapse
Affiliation(s)
- Li-Jun Ning
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China
| | - An-Yuan He
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China
| | - Jia-Min Li
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China
| | - Dong-Liang Lu
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China
| | - Jian-Gang Jiao
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China
| | - Ling-Yu Li
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China
| | - Dong-Liang Li
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China
| | - Mei-Ling Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China
| | - Li-Qiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhen-Yu Du
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
13
|
Prough RA, Clark BJ, Klinge CM. Novel mechanisms for DHEA action. J Mol Endocrinol 2016; 56:R139-55. [PMID: 26908835 DOI: 10.1530/jme-16-0013] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 01/02/2023]
Abstract
Dehydroepiandrosterone (3β-hydroxy-5-androsten-17-one, DHEA), secreted by the adrenal cortex, gastrointestinal tract, gonads, and brain, and its sulfated metabolite DHEA-S are the most abundant endogeneous circulating steroid hormones. DHEA actions are classically associated with age-related changes in cardiovascular tissues, female fertility, metabolism, and neuronal/CNS functions. Early work on DHEA action focused on the metabolism to more potent sex hormones, testosterone and estradiol, and the subsequent effect on the activation of the androgen and estrogen steroid receptors. However, it is now clear that DHEA and DHEA-S act directly as ligands for many hepatic nuclear receptors and G-protein-coupled receptors. In addition, it can function to mediate acute cell signaling pathways. This review summarizes the molecular mechanisms by which DHEA acts in cells and animal models with a focus on the 'novel' and physiological modes of DHEA action.
Collapse
Affiliation(s)
- Russell A Prough
- Department of Biochemistry and Molecular GeneticsCenter for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | - Barbara J Clark
- Department of Biochemistry and Molecular GeneticsCenter for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | - Carolyn M Klinge
- Department of Biochemistry and Molecular GeneticsCenter for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
14
|
Pluchino N, Drakopoulos P, Bianchi-Demicheli F, Wenger JM, Petignat P, Genazzani AR. Neurobiology of DHEA and effects on sexuality, mood and cognition. J Steroid Biochem Mol Biol 2015; 145:273-80. [PMID: 24892797 DOI: 10.1016/j.jsbmb.2014.04.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/14/2014] [Accepted: 04/20/2014] [Indexed: 10/25/2022]
Abstract
Dehydroepiandrosterone (DHEA) and its sulfate ester, DHEAS, are the most abundant steroid hormones in the humans. However, their physiological significance, their mechanisms of action and their possible roles as treatment are not fully clarified. Biological actions of DHEA(S) in the brain involve neuroprotection, neurite growth, neurogenesis and neuronal survival, apoptosis, catecholamine synthesis and secretion, as well as anti-oxidant, anti-inflammatory and antiglucocorticoid effects. In addition, DHEA affects neurosteroidogenis and endorphin synthesis/release. We also demonstrated in a model of ovariectomized rats that DHEA therapy increases proceptive behaviors, already after 1 week of treatment, affecting central function of sexual drive. In women, the analyses of clinical outcomes are far from being conclusive and many issues should still be addressed. Although DHEA preparations have been available in the market since the 1990s, there are very few definitive reports on the biological functions of this steroid. We demonstrate that 1 year DHEA administration at the dose of 10mg provided a significant improvement in comparison with vitamin D in sexual function and in frequency of sexual intercourse in early postmenopausal women. Among symptomatic women, the spectrum of symptoms responding to DHEA requires further investigation, to define the type of sexual symptoms (e.g. decreased sexual function or hypoactive sexual desire disorder) and the degree of mood/cognitive symptoms that could be responsive to hormonal treatment. In this regard, our findings are promising, although they need further exploration with a larger and more representative sample size. This article is part of a Special Issue entitled: Essential role of DHEA.
Collapse
Affiliation(s)
- N Pluchino
- Division of Gynecology and Obstetrics, University Hospital of Geneva, Geneva, Switzerland.
| | - P Drakopoulos
- Division of Gynecology and Obstetrics, University Hospital of Geneva, Geneva, Switzerland
| | - F Bianchi-Demicheli
- Division of Gynecology and Obstetrics, University Hospital of Geneva, Geneva, Switzerland
| | - J M Wenger
- Division of Gynecology and Obstetrics, University Hospital of Geneva, Geneva, Switzerland
| | - P Petignat
- Division of Gynecology and Obstetrics, University Hospital of Geneva, Geneva, Switzerland
| | - A R Genazzani
- Division of Gynecology and Obstetrics, University of Pisa, Pisa, Italy
| |
Collapse
|
15
|
Retraction. Prenatal PFOA exposure alters gene expression pathways in murine mammary gland. Toxicol Sci 2014; 145:211. [PMID: 25490953 DOI: 10.1093/toxsci/kfu253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
16
|
CHEN TONG, SHI DUANYU, CHEN JINFENG, YANG YANXUE, QIU MENGGUANG, WANG WEI, QIU LONGXIN. Inhibition of aldose reductase ameliorates diet-induced nonalcoholic steatohepatitis in mice via modulating the phosphorylation of hepatic peroxisome proliferator-activated receptor α. Mol Med Rep 2014; 11:303-8. [DOI: 10.3892/mmr.2014.2713] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 07/22/2014] [Indexed: 11/06/2022] Open
|
17
|
Qiu L, Lin J, Ying M, Chen W, Yang J, Deng T, Chen J, Shi D, Yang JY. Aldose reductase is involved in the development of murine diet-induced nonalcoholic steatohepatitis. PLoS One 2013; 8:e73591. [PMID: 24066058 PMCID: PMC3774689 DOI: 10.1371/journal.pone.0073591] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 07/30/2013] [Indexed: 12/21/2022] Open
Abstract
Hepatic aldose reductase (AR) expression is known to be induced in liver diseases, including hepatitis and hepatocellular carcinoma. However, the role of AR in the development of these diseases remains unclear. We performed this current study to determine whether and how AR might be involved in the development of diet-induced nonalcoholic steatohepatitis. Our results showed that the level of AR protein expression was significantly higher in db/db mice fed the methionine-choline-deficient (MCD) diet than in mice fed the control diet. In parallel with the elevation in AR, steatohepatitis was observed in MCD diet-fed mice, and this diet-induced steatohepatitis was significantly attenuated by lentiviral-mediated knock-down of the AR gene. This suppressive effect of AR knock-down was associated with repressed levels of serum alanine aminotransferase and hepatic lipoperoxides, reduced mRNA and protein expression of hepatic cytochrome P450 2E1 (CYP2E1), and decreased mRNA expression of pro-inflammatory tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Moreover, AR-induced elevations on the level of CYP2E1 expression, reactive oxygen species, mRNA expression of TNF-α and IL-6 were confirmed in AML12 hepatocytes. Further, lentiviral-mediated knock-down of AR ameliorated MCD diet-induced collagen deposition in the livers of db/db mice. With the improvement in liver fibrosis, the mRNA levels of tissue inhibitor of metalloproteinase-1 (TIMP-1) and matrix metalloproteinase-2 (MMP-2), two genes involved in hepatic fibrogenesis, were found to be significantly suppressed, while TIMP-2 and MMP-13 were unaffected. Together these data indicate that inhibition of AR alleviates the MCD diet-induced liver inflammation and fibrosis in db/db mice, probably through dampening CYP2E1 mediated-oxidative stress and ameliorating the expression of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Longxin Qiu
- School of Life Sciences, Longyan University, Longyan, China
- Fujian Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Longyan, China
- * E-mail: (LQ); (JYY)
| | - Jianhui Lin
- School of Life Sciences, Longyan University, Longyan, China
| | - Miao Ying
- School of Life Sciences, Longyan University, Longyan, China
| | - Weiqiang Chen
- School of Life Sciences, Longyan University, Longyan, China
| | - Jinmei Yang
- School of Life Sciences, Longyan University, Longyan, China
| | - Tiantian Deng
- School of Life Sciences, Longyan University, Longyan, China
| | - Jinfeng Chen
- School of Life Sciences, Longyan University, Longyan, China
| | - Duanyu Shi
- School of Life Sciences, Longyan University, Longyan, China
| | - James Y. Yang
- State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University, Xiang’an, Xiamen, China
- * E-mail: (LQ); (JYY)
| |
Collapse
|
18
|
Karbowska J, Kochan Z. Fat-reducing effects of dehydroepiandrosterone involve upregulation of ATGL and HSL expression, and stimulation of lipolysis in adipose tissue. Steroids 2012; 77:1359-65. [PMID: 22951290 DOI: 10.1016/j.steroids.2012.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 08/07/2012] [Indexed: 12/31/2022]
Abstract
Dehydroepiandrosterone (DHEA) reduces body fat in rodents and humans, and increases glycerol release from isolated rat epididymal adipocytes and human visceral adipose tissue explants. It suggests that DHEA stimulates triglyceride hydrolysis in adipose tissue; however, the mechanisms underlying this action are still unclear. We examined the effects of DHEA on the expression of adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL), the key enzymes of lipolysis, in rat epididymal white adipose tissue (eWAT). Male Wistar rats were fed a diet containing 0.6% DHEA for 2 weeks and eWAT was analyzed for mRNA and protein expression of ATGL and HSL, as well as mRNA expression of peroxisome proliferator-activated receptor γ 2 (PPARγ2) and its downstream target fatty acid translocase (FAT). Glycerol release from eWAT explants and serum free fatty acids (FFA) were also measured. Rats that received DHEA gained less weight, had 23% lower eWAT mass and 31% higher serum FFA levels than controls. Cultured explants of eWAT from DHEA-treated rats released 81% more glycerol than those from control rats. DHEA administration upregulated ATGL mRNA (1.62-fold, P<0.05) and protein (1.78-fold, P<0.05) expression as well as augmented HSL mRNA levels (1.36-fold, P<0.05) and Ser660 phosphorylation of HSL (2.49-fold, P<0.05). PPARγ2 and FAT mRNA levels were also increased in DHEA-treated rats (1.61-fold, P<0.05 and 2.16-fold, P<0.05; respectively). Moreover, ATGL, HSL, and FAT mRNA levels were positively correlated with PPARγ2 expression. This study demonstrates that DHEA promotes lipid mobilization in adipose tissue by increasing the expression and activity of ATGL and HSL. The effects of DHEA appear to be mediated, at least in part, via PPARγ2 activation, which in turn upregulates ATGL and HSL gene expression.
Collapse
Affiliation(s)
- Joanna Karbowska
- Department of Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland.
| | | |
Collapse
|
19
|
Weiss EP, Villareal DT, Ehsani AA, Fontana L, Holloszy JO. Dehydroepiandrosterone replacement therapy in older adults improves indices of arterial stiffness. Aging Cell 2012; 11:876-84. [PMID: 22712469 DOI: 10.1111/j.1474-9726.2012.00852.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Serum dehydroepiandrosterone (DHEA) concentrations decrease approximately 80% between ages 25 and 75 year. Aging also results in an increase in arterial stiffness, which is an independent predictor of cardiovascular disease (CVD) risk and mortality. Therefore, it is conceivable that DHEA replacement in older adults could reduce arterial stiffness. We sought to determine whether DHEA replacement therapy in older adults reduces carotid augmentation index (AI) and carotid-femoral pulse wave velocity (PWV) as indices of arterial stiffness. A randomized, double-blind trial was conducted to study the effects of 50 mg day(-1) DHEA replacement on AI (n = 92) and PWV (n = 51) in women and men aged 65-75 year. Inflammatory cytokines and sex hormones were measured in fasting serum. AI decreased in the DHEA group, but not in the placebo group (difference between groups, -6 ± 2 AI units, P = 0.002). Pulse wave velocity also decreased (difference between groups, -3.5 ± 1.0 m s(-1), P = 0.001); however, after adjusting for baseline values, the between-group comparison became nonsignificant (P = 0.20). The reductions in AI and PWV were accompanied by decreases in inflammatory cytokines (tumor necrosis factor α and IL-6, P < 0.05) and correlated with increases in serum DHEAS (r = -0.31 and -0.37, respectively, P < 0.05). The reductions in AI also correlated with free testosterone index (r = -0.23, P = 0.03). In conclusion, DHEA replacement in elderly men and women improves indices of arterial stiffness. Arterial stiffness increases with age and is an independent risk factor for CVD. Therefore, the improvements observed in this study suggest that DHEA replacement might partly reverse arterial aging and reduce CVD risk.
Collapse
Affiliation(s)
- Edward P Weiss
- Division of Geriatrics and Nutritional Sciences, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | | | | | |
Collapse
|
20
|
Tagashira H, Bhuiyan S, Shioda N, Fukunaga K. Distinct cardioprotective effects of 17β-estradiol and dehydroepiandrosterone on pressure overload-induced hypertrophy in ovariectomized female rats. Menopause 2011; 18:1317-26. [PMID: 21844826 DOI: 10.1097/gme.0b013e31821f915b] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE We recently reported decreased σ1 receptor expression in the heart after abdominal aortic stenosis in bilateral ovariectomized rats. Here, we use ovariectomized female rats to investigate the distinct cardioprotective effects of 17β-estradiol (E2) and dehydroepiandrosterone (DHEA) in pressure overload (PO)-induced cardiac dysfunction. METHODS E2 (0.1 mg/kg) and DHEA (30 mg/kg) were administered to rats subcutaneously and orally, respectively, for 14 days starting 2 weeks after aortic banding. RESULTS Both E2 and DHEA treatments significantly inhibited PO-induced increases both in heart weight/body weight ratio and lung weight/body weight ratios. Both E2 and DHEA also ameliorated hypertrophy-induced impairment of left ventricular end-diastolic pressure, left ventricular-developed pressure, left ventricular contraction and relaxation (± dp/dt) rates, heart rate, and mean arterial blood pressure. Notably, DHEA but not E2 administration rescued decreased PO-induced σ1 receptor reduction in the heart. Coadministration with N,N-Dipropyl-2-[4-methoxy-3-(2-phenylethoxy) phenyl]-ethylamine monohydrochloride, an σ1 receptor antagonist, inhibited DHEA-induced amelioration of heart dysfunction without altering E2-induced cardioprotection. Mechanistically, both E2 and DHEA treatments significantly restored PO-induced decreases in protein kinase B (Akt) phosphorylation and Akt-mediated endothelial nitric oxide synthase (eNOS) phosphorylation (Ser1179). N,N-Dipropyl-2-[4-methoxy-3-(2-phenylethoxy) phenyl]-ethylamine monohydrochloride treatment totally abolished DHEA-induced Akt and eNOS phosphorylation without altering E2-induced Akt-eNOS activation. CONCLUSIONS Taken together, these results from an ovariectomized rat model of PO-induced cardiac dysfunction show that DHEA but not E2 elicits a cardioprotective action through σ1 receptor activation. DHEA-induced Akt-eNOS activation through σ1 receptors is probably associated with its cardioprotective activity.
Collapse
Affiliation(s)
- Hideaki Tagashira
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | | | | | | |
Collapse
|
21
|
Wood P, Mulay V, Darabi M, Chan KC, Heeren J, Pol A, Lambert G, Rye KA, Enrich C, Grewal T. Ras/mitogen-activated protein kinase (MAPK) signaling modulates protein stability and cell surface expression of scavenger receptor SR-BI. J Biol Chem 2011; 286:23077-92. [PMID: 21525007 DOI: 10.1074/jbc.m111.236398] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The mitogen-activated protein kinase (MAPK) Erk1/2 has been implicated to modulate the activity of nuclear receptors, including peroxisome proliferator activator receptors (PPARs) and liver X receptor, to alter the ability of cells to export cholesterol. Here, we investigated if the Ras-Raf-Mek-Erk1/2 signaling cascade could affect reverse cholesterol transport via modulation of scavenger receptor class BI (SR-BI) levels. We demonstrate that in Chinese hamster ovary (CHO) and human embryonic kidney (HEK293) cells, Mek1/2 inhibition reduces PPARα-inducible SR-BI protein expression and activity, as judged by reduced efflux onto high density lipoprotein (HDL). Ectopic expression of constitutively active H-Ras and Mek1 increases SR-BI protein levels, which correlates with elevated PPARα Ser-21 phosphorylation and increased cholesterol efflux. In contrast, SR-BI levels are insensitive to Mek1/2 inhibitors in PPARα-depleted cells. Most strikingly, Mek1/2 inhibition promotes SR-BI degradation in SR-BI-overexpressing CHO cells and human HuH7 hepatocytes, which is associated with reduced uptake of radiolabeled and 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyane-labeled HDL. Loss of Mek1/2 kinase activity reduces SR-BI expression in the presence of bafilomycin, an inhibitor of lysosomal degradation, indicating down-regulation of SR-BI via proteasomal pathways. In conclusion, Mek1/2 inhibition enhances the PPARα-dependent degradation of SR-BI in hepatocytes.
Collapse
Affiliation(s)
- Peta Wood
- Faculty of Pharmacy, University of Sydney, Sydney, New South Wales 2006, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Malik AK, Khaldoyanidi S, Auci DL, Miller SC, Ahlem CN, Reading CL, Page T, Frincke JM. 5-Androstene-3β,7β,17β-triol (β-AET) slows thermal injury induced osteopenia in mice: relation to aging and osteoporosis. PLoS One 2010; 5:e13566. [PMID: 21042414 PMCID: PMC2958849 DOI: 10.1371/journal.pone.0013566] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 09/24/2010] [Indexed: 01/06/2023] Open
Abstract
5-androstene-3β,7β,17β-triol (β-AET), an active metabolite of dehydroepiandrosterone (DHEA), reversed glucocorticoid (GC)-induced suppression of IL-6, IL-8 and osteoprotegerin production by human osteoblast-like MG-63 cells and promoted osteoblast differentiation of human mesenchymal stem cells (MSCs). In a murine thermal injury model that includes glucocorticoid-induced osteopenia, β-AET significantly (p<0.05) preserved bone mineral content, restored whole body bone mineral content and endochondral growth, suggesting reversal of GC-mediated decreases in chondrocyte proliferation, maturation and osteogenesis in the growth plate. In men and women, levels of β-AET decline with age, consistent with a role for β-AET relevant to diseases associated with aging. β-AET, related compounds or synthetic derivatives may be part of effective therapeutic strategies to accelerate tissue regeneration and prevent or treat diseases associated with aging such as osteoporosis.
Collapse
Affiliation(s)
- Ajay K. Malik
- Harbor Biosciences, Inc., San Diego, California, United States of America
| | - Sophia Khaldoyanidi
- Torrey Pines Institute for Molecular Studies, San Diego, California, United States of America
| | - Dominick L. Auci
- Harbor Biosciences, Inc., San Diego, California, United States of America
- * E-mail:
| | - Scott C. Miller
- Radiobiology Division, University of Utah, Salt Lake City, Utah, United States of America
| | - Clarence N. Ahlem
- Harbor Biosciences, Inc., San Diego, California, United States of America
| | | | - Theodore Page
- Harbor Biosciences, Inc., San Diego, California, United States of America
| | - James M. Frincke
- Harbor Biosciences, Inc., San Diego, California, United States of America
| |
Collapse
|
23
|
Riggins RB, Mazzotta MM, Maniya OZ, Clarke R. Orphan nuclear receptors in breast cancer pathogenesis and therapeutic response. Endocr Relat Cancer 2010; 17:R213-31. [PMID: 20576803 PMCID: PMC3518023 DOI: 10.1677/erc-10-0058] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nuclear receptors comprise a large family of highly conserved transcription factors that regulate many key processes in normal and neoplastic tissues. Most nuclear receptors share a common, highly conserved domain structure that includes a carboxy-terminal ligand-binding domain. However, a subgroup of this gene family is known as the orphan nuclear receptors because to date there are no known natural ligands that regulate their activity. Many of the 25 nuclear receptors classified as orphan play critical roles in embryonic development, metabolism, and the regulation of circadian rhythm. Here, we review the emerging role(s) of orphan nuclear receptors in breast cancer, with a particular focus on two of the estrogen-related receptors (ERRalpha and ERRgamma) and several others implicated in clinical outcome and response or resistance to cytotoxic or endocrine therapies, including the chicken ovalbumin upstream promoter transcription factors, nerve growth factor-induced B, DAX-1, liver receptor homolog-1, and retinoic acid-related orphan receptor alpha. We also propose that a clearer understanding of the function of orphan nuclear receptors in mammary gland development and normal mammary tissues could significantly improve our ability to diagnose, treat, and prevent breast cancer.
Collapse
Affiliation(s)
- Rebecca B. Riggins
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University School of Medicine, 3970 Reservoir Road NW, Washington, DC 20057, USA
| | - Mary M. Mazzotta
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University School of Medicine, 3970 Reservoir Road NW, Washington, DC 20057, USA
| | - Omar Z. Maniya
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University School of Medicine, 3970 Reservoir Road NW, Washington, DC 20057, USA
| | - Robert Clarke
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University School of Medicine, 3970 Reservoir Road NW, Washington, DC 20057, USA
- Department of Physiology and Biophysics, Georgetown University School of Medicine, 3970 Reservoir Road NW, Washington, DC 20057, USA
| |
Collapse
|
24
|
Azizi H, Mehrjardi NZ, Shahbazi E, Hemmesi K, Bahmani MK, Baharvand H. Dehydroepiandrosterone Stimulates Neurogenesis in Mouse Embryonal Carcinoma Cell- and Human Embryonic Stem Cell-Derived Neural Progenitors and Induces Dopaminergic Neurons. Stem Cells Dev 2010; 19:809-18. [DOI: 10.1089/scd.2009.0261] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Hossein Azizi
- Department of Stem Cells and Developmental Biology, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Narges-Zare Mehrjardi
- Department of Stem Cells and Developmental Biology, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ebrahim Shahbazi
- Department of Stem Cells and Developmental Biology, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Katayoun Hemmesi
- Department of Stem Cells and Developmental Biology, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mirza Khalil Bahmani
- HIV and Hepatitis Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, ACECR, Tehran, Iran
| |
Collapse
|
25
|
Maninger N, Wolkowitz OM, Reus VI, Epel ES, Mellon SH. Neurobiological and neuropsychiatric effects of dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS). Front Neuroendocrinol 2009; 30:65-91. [PMID: 19063914 PMCID: PMC2725024 DOI: 10.1016/j.yfrne.2008.11.002] [Citation(s) in RCA: 524] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 11/10/2008] [Accepted: 11/11/2008] [Indexed: 01/12/2023]
Abstract
DHEA and DHEAS are steroids synthesized in human adrenals, but their function is unclear. In addition to adrenal synthesis, evidence also indicates that DHEA and DHEAS are synthesized in the brain, further suggesting a role of these hormones in brain function and development. Despite intensifying research into the biology of DHEA and DHEAS, many questions concerning their mechanisms of action and their potential involvement in neuropsychiatric illnesses remain unanswered. We review and distill the preclinical and clinical data on DHEA and DHEAS, focusing on (i) biological actions and putative mechanisms of action, (ii) differences in endogenous circulating concentrations in normal subjects and patients with neuropsychiatric diseases, and (iii) the therapeutic potential of DHEA in treating these conditions. Biological actions of DHEA and DHEAS include neuroprotection, neurite growth, and antagonistic effects on oxidants and glucocorticoids. Accumulating data suggest abnormal DHEA and/or DHEAS concentrations in several neuropsychiatric conditions. The evidence that DHEA and DHEAS may be fruitful targets for pharmacotherapy in some conditions is reviewed.
Collapse
Affiliation(s)
- Nicole Maninger
- Department of Psychiatry, University of California San Francisco, School of Medicine, San Francisco 94143, USA
| | | | | | | | | |
Collapse
|
26
|
Qiu L, Wu X, Chau JFL, Szeto IYY, Tam WY, Guo Z, Chung SK, Oates PJ, Chung SSM, Yang JY. Aldose reductase regulates hepatic peroxisome proliferator-activated receptor alpha phosphorylation and activity to impact lipid homeostasis. J Biol Chem 2008; 283:17175-83. [PMID: 18445591 DOI: 10.1074/jbc.m801791200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Aldose reductase (AR) is implicated in the development of a number of diabetic complications, but the underlying mechanisms remain to be fully elucidated. We performed this study to determine whether and how AR might influence hepatic peroxisome proliferator-activated receptor alpha (PPARalpha) activity and lipid metabolism. Our results in mouse hepatocyte AML12 cells show that AR overexpression caused strong suppression of PPARalpha/delta activity (74%, p < 0.001) together with significant down-regulation of mRNA expression for acetyl-CoA oxidase and carnitine palmitoyltransferase-1. These suppressive effects were attenuated by the selective AR inhibitor zopolrestat. Furthermore, AR overexpression greatly increased the levels of phosphorylated PPARalpha and ERK1/2. Moreover, AR-induced suppression of PPARalpha activity was attenuated by treatment with an inhibitor for ERK1/2 but not that for phosphoinositide 3-kinase, p38, or JNK. Importantly, similar effects were observed for cells exposed to 25 mm glucose. In streptozotocin-diabetic mice, AR inhibitor treatment or genetic deficiency of AR resulted in significant dephosphorylation of both PPARalpha and ERK1/2. With the dephosphorylation of PPARalpha, hepatic acetyl-CoA oxidase and apolipoprotein C-III mRNA expression was greatly affected and that was associated with substantial reductions in blood triglyceride and nonesterified fatty acid levels. These data indicate that AR plays an important role in the regulation of hepatic PPARalpha phosphorylation and activity and lipid homeostasis. A significant portion of the AR-induced modulation is achieved through ERK1/2 signaling.
Collapse
Affiliation(s)
- Longxin Qiu
- Ministry of Education Key Laboratory for Cell Biology and Tumor Cell Engineering and Department of Biomedical Sciences, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|