1
|
Lee C, Xu S, Samad T, Goodyer WR, Raissadati A, Heinrich P, Wu SM. The cardiac conduction system: History, development, and disease. Curr Top Dev Biol 2024; 156:157-200. [PMID: 38556422 DOI: 10.1016/bs.ctdb.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
The heart is the first organ to form during embryonic development, establishing the circulatory infrastructure necessary to sustain life and enable downstream organogenesis. Critical to the heart's function is its ability to initiate and propagate electrical impulses that allow for the coordinated contraction and relaxation of its chambers, and thus, the movement of blood and nutrients. Several specialized structures within the heart, collectively known as the cardiac conduction system (CCS), are responsible for this phenomenon. In this review, we discuss the discovery and scientific history of the mammalian cardiac conduction system as well as the key genes and transcription factors implicated in the formation of its major structures. We also describe known human diseases related to CCS development and explore existing challenges in the clinical context.
Collapse
Affiliation(s)
- Carissa Lee
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
| | - Sidra Xu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
| | - Tahmina Samad
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States; Division of Pediatric Cardiology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States; Department of Pediatrics, Stanford University, Stanford, CA, United States
| | - William R Goodyer
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States; Division of Pediatric Cardiology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Alireza Raissadati
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States; Division of Pediatric Cardiology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Paul Heinrich
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States; Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Cardiology, Klinikum Rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Sean M Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, United States; Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA, United States.
| |
Collapse
|
2
|
Melgari D, Barbier C, Dilanian G, Rücker-Martin C, Doisne N, Coulombe A, Hatem SN, Balse E. Microtubule polymerization state and clathrin-dependent internalization regulate dynamics of cardiac potassium channel: Microtubule and clathrin control of K V1.5 channel. J Mol Cell Cardiol 2020; 144:127-139. [PMID: 32445844 DOI: 10.1016/j.yjmcc.2020.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 12/19/2022]
Abstract
Ion channel trafficking powerfully influences cardiac electrical activity as it regulates the number of available channels at the plasma membrane. Studies have largely focused on identifying the molecular determinants of the trafficking of the atria-specific KV1.5 channel, the molecular basis of the ultra-rapid delayed rectifier current IKur. Besides, regulated KV1.5 channel recycling upon changes in homeostatic state and mechanical constraints in native cardiomyocytes has been well documented. Here, using cutting-edge imaging in live myocytes, we investigated the dynamics of this channel in the plasma membrane. We demonstrate that the clathrin pathway is a major regulator of the functional expression of KV1.5 channels in atrial myocytes, with the microtubule network as the prominent organizer of KV1.5 transport within the membrane. Both clathrin blockade and microtubule disruption result in channel clusterization with reduced membrane mobility and internalization, whereas disassembly of the actin cytoskeleton does not. Mobile KV1.5 channels are associated with the microtubule plus-end tracking protein EB1 whereas static KV1.5 clusters are associated with stable acetylated microtubules. In human biopsies from patients in atrial fibrillation associated with atrial remodeling, drastic modifications in the trafficking balance occurs together with alteration in microtubule polymerization state resulting in modest reduced endocytosis and increased recycling. Consequently, hallmark of atrial KV1.5 dynamics within the membrane is clathrin- and microtubule- dependent. During atrial remodeling, predominance of anterograde trafficking activity over retrograde trafficking could result in accumulation ok KV1.5 channels in the plasma membrane.
Collapse
Affiliation(s)
- Dario Melgari
- INSERM UMRS1166, ICAN - Institute of CardioMetabolism and Nutrition, Sorbonne Université, Paris, France
| | - Camille Barbier
- INSERM UMRS1166, ICAN - Institute of CardioMetabolism and Nutrition, Sorbonne Université, Paris, France
| | - Gilles Dilanian
- INSERM UMRS1166, ICAN - Institute of CardioMetabolism and Nutrition, Sorbonne Université, Paris, France
| | | | - Nicolas Doisne
- INSERM UMRS1166, ICAN - Institute of CardioMetabolism and Nutrition, Sorbonne Université, Paris, France
| | - Alain Coulombe
- INSERM UMRS1166, ICAN - Institute of CardioMetabolism and Nutrition, Sorbonne Université, Paris, France
| | - Stéphane N Hatem
- INSERM UMRS1166, ICAN - Institute of CardioMetabolism and Nutrition, Sorbonne Université, Paris, France; Institut de Cardiologie, Hôpital Pitié-Salpêtrière, Paris, France
| | - Elise Balse
- INSERM UMRS1166, ICAN - Institute of CardioMetabolism and Nutrition, Sorbonne Université, Paris, France.
| |
Collapse
|
3
|
Fan G, Kaßmann M, Cui Y, Matthaeus C, Kunz S, Zhong C, Zhu S, Xie Y, Tsvetkov D, Daumke O, Huang Y, Gollasch M. Age attenuates the T-type Ca V 3.2-RyR axis in vascular smooth muscle. Aging Cell 2020; 19:e13134. [PMID: 32187825 PMCID: PMC7189999 DOI: 10.1111/acel.13134] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 01/28/2020] [Accepted: 02/16/2020] [Indexed: 12/26/2022] Open
Abstract
Caveolae position CaV3.2 (T‐type Ca2+ channel encoded by the α‐3.2 subunit) sufficiently close to RyR (ryanodine receptors) for extracellular Ca2+ influx to trigger Ca2+ sparks and large‐conductance Ca2+‐activated K+ channel feedback in vascular smooth muscle. We hypothesize that this mechanism of Ca2+ spark generation is affected by age. Using smooth muscle cells (VSMCs) from mouse mesenteric arteries, we found that both Cav3.2 channel inhibition by Ni2+ (50 µM) and caveolae disruption by methyl‐ß‐cyclodextrin or genetic abolition of Eps15 homology domain‐containing protein (EHD2) inhibited Ca2+ sparks in cells from young (4 months) but not old (12 months) mice. In accordance, expression of Cav3.2 channel was higher in mesenteric arteries from young than old mice. Similar effects were observed for caveolae density. Using SMAKO Cav1.2−/− mice, caffeine (RyR activator) and thapsigargin (Ca2+ transport ATPase inhibitor), we found that sufficient SR Ca2+ load is a prerequisite for the CaV3.2‐RyR axis to generate Ca2+ sparks. We identified a fraction of Ca2+ sparks in aged VSMCs, which is sensitive to the TRP channel blocker Gd3+ (100 µM), but insensitive to CaV1.2 and CaV3.2 channel blockade. Our data demonstrate that the VSMC CaV3.2‐RyR axis is down‐regulated by aging. This defective CaV3.2‐RyR coupling is counterbalanced by a Gd3+ sensitive Ca2+ pathway providing compensatory Ca2+ influx for triggering Ca2+ sparks in aged VSMCs.
Collapse
Affiliation(s)
- Gang Fan
- Experimental and Clinical Research Center (ECRC) a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC) Charité – Universitätsmedizin Berlin Berlin Germany
- Hunan Cancer Hospital The Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha China
| | - Mario Kaßmann
- Experimental and Clinical Research Center (ECRC) a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC) Charité – Universitätsmedizin Berlin Berlin Germany
| | - Yingqiu Cui
- Experimental and Clinical Research Center (ECRC) a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC) Charité – Universitätsmedizin Berlin Berlin Germany
| | - Claudia Matthaeus
- Crystallography Max‐Delbrück‐Center for Molecular Medicine Berlin Germany
| | - Séverine Kunz
- Electron Microscopy Facility Max Delbrück Center for Molecular Medicine (MDC) Berlin Germany
| | - Cheng Zhong
- Experimental and Clinical Research Center (ECRC) a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC) Charité – Universitätsmedizin Berlin Berlin Germany
| | - Shuai Zhu
- Hunan Cancer Hospital The Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha China
| | - Yu Xie
- Hunan Cancer Hospital The Affiliated Cancer Hospital of Xiangya School of Medicine Central South University Changsha China
| | - Dmitry Tsvetkov
- Experimental and Clinical Research Center (ECRC) a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC) Charité – Universitätsmedizin Berlin Berlin Germany
| | - Oliver Daumke
- Crystallography Max‐Delbrück‐Center for Molecular Medicine Berlin Germany
- Institute of Chemistry and Biochemistry Freie Universität Berlin Berlin Germany
| | - Yu Huang
- Institute of Vascular Medicine and School of Biomedical Sciences Chinese University of Hong Kong Hong Kong China
| | - Maik Gollasch
- Experimental and Clinical Research Center (ECRC) a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC) Charité – Universitätsmedizin Berlin Berlin Germany
- Medical Clinic for Nephrology and Internal Intensive Care Charité – Universitätsmedizin Berlin Berlin Germany
- Department of Geriatrics University Medicine Greifswald Greifswald Germany
| |
Collapse
|
4
|
Kang C, Hernandez VA, Hu K. Functional interaction of the two-pore domain potassium channel TASK-1 and caveolin-3. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017. [DOI: 10.1016/j.bbamcr.2017.06.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
5
|
|
6
|
Benson M, Iñiguez-Lluhí JA, Martens J. Sumo Modification of Ion Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 963:127-141. [PMID: 28197910 DOI: 10.1007/978-3-319-50044-7_8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recently, a role for SUMO modification outside of the nucleus has emerged. Although the number of extranuclear proteins known to be sumoylated is comparatively small, ion channels represent one important new class of these proteins. Ion channels are responsible for the control of membrane excitability and therefore are critical for fundamental physiological processes such as muscle contraction, neuronal firing, and cellular homeostasis. As such, these ion-conducting proteins are subject to precise regulation. Recently, several studies have identified sumoylation as a novel mechanism of modulating ion channel function. These studies expand the list of known functions of sumoylation and reveal that, in addition to its more established role in the regulation of nuclear proteins, this modification plays important roles at the cytoplasmic face of membranes.
Collapse
Affiliation(s)
- Mark Benson
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | | | - Jeffrey Martens
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
7
|
Expression of KCNA5 Protein in Human Mammary Epithelial Cell Line Associated with Caveolin-1. J Membr Biol 2016; 249:449-57. [DOI: 10.1007/s00232-016-9885-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 03/06/2016] [Indexed: 11/24/2022]
|
8
|
Steady-state modulation of voltage-gated K+ channels in rat arterial smooth muscle by cyclic AMP-dependent protein kinase and protein phosphatase 2B. PLoS One 2015; 10:e0121285. [PMID: 25793374 PMCID: PMC4368632 DOI: 10.1371/journal.pone.0121285] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 01/29/2015] [Indexed: 01/17/2023] Open
Abstract
Voltage-gated potassium channels (Kv) are important regulators of membrane potential in vascular smooth muscle cells, which is integral to controlling intracellular Ca2+ concentration and regulating vascular tone. Previous work indicates that Kv channels can be modulated by receptor-driven alterations of cyclic AMP-dependent protein kinase (PKA) activity. Here, we demonstrate that Kv channel activity is maintained by tonic activity of PKA. Whole-cell recording was used to assess the effect of manipulating PKA signalling on Kv and ATP-dependent K+ channels of rat mesenteric artery smooth muscle cells. Application of PKA inhibitors, KT5720 or H89, caused a significant inhibition of Kv currents. Tonic PKA-mediated activation of Kv appears maximal as application of isoprenaline (a β-adrenoceptor agonist) or dibutyryl-cAMP failed to enhance Kv currents. We also show that this modulation of Kv by PKA can be reversed by protein phosphatase 2B/calcineurin (PP2B). PKA-dependent inhibition of Kv by KT5720 can be abrogated by pre-treatment with the PP2B inhibitor cyclosporin A, or inclusion of a PP2B auto-inhibitory peptide in the pipette solution. Finally, we demonstrate that tonic PKA-mediated modulation of Kv requires intact caveolae. Pre-treatment of the cells with methyl-β-cyclodextrin to deplete cellular cholesterol, or adding caveolin-scaffolding domain peptide to the pipette solution to disrupt caveolae-dependent signalling each attenuated PKA-mediated modulation of the Kv current. These findings highlight a novel, caveolae-dependent, tonic modulatory role of PKA on Kv channels providing new insight into mechanisms and the potential for pharmacological manipulation of vascular tone.
Collapse
|
9
|
Zhang H, Liu Y, Xu J, Zhang F, Liang H, Du X, Zhang H. Membrane microdomain determines the specificity of receptor-mediated modulation of Kv7/M potassium currents. Neuroscience 2013; 254:70-9. [PMID: 24036375 DOI: 10.1016/j.neuroscience.2013.08.064] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 08/28/2013] [Accepted: 08/29/2013] [Indexed: 01/18/2023]
Abstract
The Kv7/M current is one of the major mechanisms controlling neuronal excitability, which can be modulated by activation of the G protein-coupled receptor (GPCR) via distinct signaling pathways. Membrane microdomains known as lipid rafts have been implicated in the specificity of various cell signaling pathways. The aim of this study was to understand the role of lipid rafts in the specificity of Kv7/M current modulation by activation of GPCR. Methyl-β-cyclodextrin (MβCD), often used to disrupt the integrity of lipid rafts, significantly reduced the bradykinin receptor (B2R)-induced but not muscarinic receptor (M1R)-induced inhibition of the Kv7/M current. B2R and related signaling molecules but not M1R were found in caveolin-containing raft fractions of the rat superior cervical ganglia. Furthermore, activation of B2R resulted in translocation of additional B2R into the lipid rafts, which was not observed for the activation of M1R. The increase of B2R-induced intracellular Ca(2+) was also greatly reduced after MβCD treatment. Finally, B2R but not M1R was found to interact with the IP3 receptor. In conclusion, the present study implicates an important role for lipid rafts in mediating specificity for GPCR-mediated inhibition of the Kv7/M current.
Collapse
Affiliation(s)
- H Zhang
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, Hebei Province, China; The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, Hebei Province, China; Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | | | | | | | | | | | | |
Collapse
|
10
|
Deutsch E, Weigel AV, Akin EJ, Fox P, Hansen G, Haberkorn CJ, Loftus R, Krapf D, Tamkun MM. Kv2.1 cell surface clusters are insertion platforms for ion channel delivery to the plasma membrane. Mol Biol Cell 2012; 23:2917-29. [PMID: 22648171 PMCID: PMC3408418 DOI: 10.1091/mbc.e12-01-0047] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Voltage-gated K+ (Kv) channels regulate membrane potential in many cell types. Although the channel surface density and location must be well controlled, little is known about Kv channel delivery and retrieval on the cell surface. The Kv2.1 channel localizes to micron-sized clusters in neurons and transfected human embryonic kidney (HEK) cells, where it is nonconducting. Because Kv2.1 is postulated to be involved in soluble N-ethylmaleimide–sensitive factor attachment protein receptor–mediated membrane fusion, we examined the hypothesis that these surface clusters are specialized platforms involved in membrane protein trafficking. Total internal reflection–based fluorescence recovery after photobleaching studies and quantum dot imaging of single Kv2.1 channels revealed that Kv2.1-containing vesicles deliver cargo at the Kv2.1 surface clusters in both transfected HEK cells and hippocampal neurons. More than 85% of cytoplasmic and recycling Kv2.1 channels was delivered to the cell surface at the cluster perimeter in both cell types. At least 85% of recycling Kv1.4, which, unlike Kv2.1, has a homogeneous surface distribution, is also delivered here. Actin depolymerization resulted in Kv2.1 exocytosis at cluster-free surface membrane. These results indicate that one nonconducting function of Kv2.1 is to form microdomains involved in membrane protein trafficking. This study is the first to identify stable cell surface platforms involved in ion channel trafficking.
Collapse
Affiliation(s)
- Emily Deutsch
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523
| | - Aubrey V. Weigel
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523
| | - Elizabeth J. Akin
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523
| | - Phil Fox
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523
| | - Gentry Hansen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523
| | | | - Rob Loftus
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523
| | - Diego Krapf
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO 80523
| | - Michael M. Tamkun
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| |
Collapse
|
11
|
Rosenhouse‐Dantsker A, Mehta D, Levitan I. Regulation of Ion Channels by Membrane Lipids. Compr Physiol 2012; 2:31-68. [DOI: 10.1002/cphy.c110001] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Ren G, Jacob RF, Kaulin Y, DiMuzio P, Xie Y, Mason RP, Tint GS, Steiner RD, Roulett JB, Merkens L, Whitaker-Mendez D, Frank PG, Lisanti M, Cox RH, Tulenko TN. Alterations in membrane caveolae and BKCa channel activity in skin fibroblasts in Smith-Lemli-Opitz syndrome. Mol Genet Metab 2011; 104:346-55. [PMID: 21724437 PMCID: PMC3365561 DOI: 10.1016/j.ymgme.2011.04.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 04/30/2011] [Indexed: 12/20/2022]
Abstract
The Smith-Lemli-Opitz syndrome (SLOS) is an inherited disorder of cholesterol synthesis caused by mutations in DHCR7 which encodes the final enzyme in the cholesterol synthesis pathway. The immediate precursor to cholesterol synthesis, 7-dehydrocholesterol (7-DHC) accumulates in the plasma and cells of SLOS patients which has led to the idea that the accumulation of abnormal sterols and/or reduction in cholesterol underlies the phenotypic abnormalities of SLOS. We tested the hypothesis that 7-DHC accumulates in membrane caveolae where it disturbs caveolar bilayer structure-function. Membrane caveolae from skin fibroblasts obtained from SLOS patients were isolated and found to accumulate 7-DHC. In caveolar-like model membranes containing 7-DHC, subtle, but complex alterations in intermolecular packing, lipid order and membrane width were observed. In addition, the BK(Ca) K(+) channel, which co-migrates with caveolin-1 in a membrane fraction enriched with cholesterol, was impaired in SLOS cells as reflected by reduced single channel conductance and a 50 mV rightward shift in the channel activation voltage. In addition, a marked decrease in BK(Ca) protein but not mRNA expression levels was seen suggesting post-translational alterations. Accompanying these changes was a reduction in caveolin-1 protein and mRNA levels, but membrane caveolar structure was not altered. These results are consistent with the hypothesis that 7-DHC accumulation in the caveolar membrane results in defective caveolar signaling. However, additional cellular alterations beyond mere changes associated with abnormal sterols in the membrane likely contribute to the pathogenesis of SLOS.
Collapse
Affiliation(s)
- Gongyi Ren
- Department of Surgery, Cooper University Hospital, Camden, NJ
| | - Robert F. Jacob
- Elucida Research LLC, Beverly, MA, Department of Surgery, Thomas Jefferson University College of Medicine, Philadelphia, PA
| | - Yuri Kaulin
- Department of Anatomy and Cell Biology, Thomas Jefferson University College of Medicine, Philadelphia, PA
| | - Paul DiMuzio
- Elucida Research LLC, Beverly, MA, Department of Surgery, Thomas Jefferson University College of Medicine, Philadelphia, PA
| | - Yi Xie
- Department of Surgery, Cooper University Hospital, Camden, NJ
| | - R. Preston Mason
- Elucida Research LLC, Beverly, MA, Department of Surgery, Thomas Jefferson University College of Medicine, Philadelphia, PA
- Brigham & Women's Hospital, Harvard Medical School, Boston, MA
| | - G. Stephen Tint
- Research Service, Department of Veterans Affairs Medical Center, East Orange, NJ and Department of Medicine, UMDNJ-New Jersey Medical School, Newark, NJ
| | - Robert D. Steiner
- Departments of Pediatrics and Molecular & Medical Genetics, Child Development and Rehabilitation Center, Doernbecher Children’s Hospital, Oregon Health & Science University, Portland, OR
| | - Jean-Baptiste Roulett
- Departments of Pediatrics and Molecular & Medical Genetics, Child Development and Rehabilitation Center, Doernbecher Children’s Hospital, Oregon Health & Science University, Portland, OR
| | - Louise Merkens
- Departments of Pediatrics and Molecular & Medical Genetics, Child Development and Rehabilitation Center, Doernbecher Children’s Hospital, Oregon Health & Science University, Portland, OR
| | - Diana Whitaker-Mendez
- Department of Stem Cell Biology & Regenerative Medicine, and Cancer Biology, Thomas Jefferson University College of Medicine, Philadelphia, PA
| | - Phillipe G. Frank
- Department of Stem Cell Biology & Regenerative Medicine, and Cancer Biology, Thomas Jefferson University College of Medicine, Philadelphia, PA
| | - Michael Lisanti
- Department of Stem Cell Biology & Regenerative Medicine, and Cancer Biology, Thomas Jefferson University College of Medicine, Philadelphia, PA
| | - Robert H. Cox
- Lankenau Institute for Medical Research, Wynnewood, PA
| | | |
Collapse
|
13
|
Different subcellular populations of L-type Ca2+ channels exhibit unique regulation and functional roles in cardiomyocytes. J Mol Cell Cardiol 2011; 52:376-87. [PMID: 21888911 DOI: 10.1016/j.yjmcc.2011.08.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 07/11/2011] [Accepted: 08/17/2011] [Indexed: 11/23/2022]
Abstract
Influx of Ca(2+) through L-type Ca(2+) channels (LTCCs) contributes to numerous cellular processes in cardiomyocytes including excitation-contraction (EC) coupling, membrane excitability, and transcriptional regulation. Distinct subpopulations of LTCCs have been identified in cardiac myocytes, including those at dyadic junctions and within different plasma membrane microdomains such as lipid rafts and caveolae. These subpopulations of LTCCs exhibit regionally distinct functional properties and regulation, affording precise spatiotemporal modulation of L-type Ca(2+) current (I(Ca,L)). Different subcellular LTCC populations demonstrate variable rates of Ca(2+)-dependent inactivation and sometimes coupled gating of neighboring channels, which can lead to focal, persistent I(Ca,L). In addition, the assembly of spatially defined macromolecular signaling complexes permits compartmentalized regulation of I(Ca,L) by a variety of neurohormonal pathways. For example, β-adrenergic receptor subtypes signal to different LTCC subpopulations, with β(2)-adrenergic activation leading to enhanced I(Ca,L) through caveolar LTCCs and β(1)-adrenergic stimulation modulating LTCCs outside of caveolae. Disruptions in the normal subcellular targeting of LTCCs and associated signaling proteins may contribute to the pathophysiology of a variety of cardiac diseases including heart failure and certain arrhythmias. Further identifying the characteristic functional properties and array of regulatory molecules associated with specific LTCC subpopulations will provide a mechanistic framework to understand how LTCCs contribute to diverse cellular processes in normal and diseased myocardium. This article is part of a Special Issue entitled "Local Signaling in Myocytes".
Collapse
|
14
|
Cell-specific dual role of caveolin-1 in pulmonary hypertension. Pulm Med 2011; 2011:573432. [PMID: 21660237 PMCID: PMC3109422 DOI: 10.1155/2011/573432] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2011] [Accepted: 03/10/2011] [Indexed: 12/15/2022] Open
Abstract
A wide variety of cardiopulmonary and systemic diseases are known to lead to pulmonary hypertension (PH). A number of signaling pathways have been implicated in PH; however, the precise mechanism/s leading to PH is not yet clearly understood. Caveolin-1, a membrane scaffolding protein found in a number of cells including endothelial and smooth muscle cells, has been implicated in PH. Loss of endothelial caveolin-1 is reported in clinical and experimental forms of PH. Caveolin-1, also known as a tumor-suppressor factor, interacts with a number of transducing molecules that reside in or are recruited to caveolae, and it inhibits cell proliferative pathways. Not surprisingly, the rescue of endothelial caveolin-1 has been found not only to inhibit the activation of proliferative pathways but also to attenuate PH. Recently, it has emerged that during the progression of PH, enhanced expression of caveolin-1 occurs in smooth muscle cells, where it facilitates cell proliferation, thus contributing to worsening of the disease. This paper summarizes the cell-specific dual role of caveolin-1 in PH.
Collapse
|
15
|
Gu C, Gu Y. Clustering and activity tuning of Kv1 channels in myelinated hippocampal axons. J Biol Chem 2011; 286:25835-47. [PMID: 21602278 DOI: 10.1074/jbc.m111.219113] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Precise localization of axonal ion channels is crucial for proper electrical and chemical functions of axons. In myelinated axons, Kv1 (Shaker) voltage-gated potassium (Kv) channels are clustered in the juxtaparanodal regions flanking the node of Ranvier. The clustering can be disrupted by deletion of various proteins in mice, including contactin-associated protein-like 2 (Caspr2) and transient axonal glycoprotein-1 (TAG-1), a glycosylphosphatidylinositol-anchored cell adhesion molecule. However, the mechanism and function of Kv1 juxtaparanodal clustering remain unclear. Here, using a new myelin coculture of hippocampal neurons and oligodendrocytes, we report that tyrosine phosphorylation plays a critical role in TAG-1-mediated clustering of axonal Kv1.2 channels. In the coculture, myelin specifically ensheathed axons but not dendrites of hippocampal neurons and clustered endogenous axonal Kv1.2 into internodes. The trans-homophilic interaction of TAG-1 was sufficient to position Kv1.2 clusters on axonal membranes in a neuron/HEK293 coculture. Mutating a tyrosine residue (Tyr⁴⁵⁸) in the Kv1.2 C terminus or blocking tyrosine phosphorylation disrupted myelin- and TAG-1-mediated clustering of axonal Kv1.2. Furthermore, Kv1.2 voltage dependence and activation threshold were reduced by TAG-1 coexpression. This effect was eliminated by the Tyr⁴⁵⁸ mutation or by cholesterol depletion. Taken together, our studies suggest that myelin regulates both trafficking and activity of Kv1 channels along hippocampal axons through TAG-1.
Collapse
Affiliation(s)
- Chen Gu
- Department of Neuroscience and Center for Molecular Neurobiology, Ohio State University, Columbus, Ohio 43210, USA.
| | | |
Collapse
|
16
|
Couchoux H, Bichraoui H, Chouabe C, Altafaj X, Bonvallet R, Allard B, Ronjat M, Berthier C. Caveolin-3 is a direct molecular partner of the Cav1.1 subunit of the skeletal muscle L-type calcium channel. Int J Biochem Cell Biol 2011; 43:713-20. [PMID: 21262376 DOI: 10.1016/j.biocel.2011.01.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 12/18/2010] [Accepted: 01/17/2011] [Indexed: 12/14/2022]
Abstract
Caveolin-3 is the striated muscle specific isoform of the scaffolding protein family of caveolins and has been shown to interact with a variety of proteins, including ion channels. Mutations in the human CAV3 gene have been associated with several muscle disorders called caveolinopathies and among these, the P104L mutation (Cav-3(P104L)) leads to limb girdle muscular dystrophy of type 1C characterized by the loss of sarcolemmal caveolin. There is still no clear-cut explanation as to specifically how caveolin-3 mutations lead to skeletal muscle wasting. Previous results argued in favor of a role for caveolin-3 in dihydropyridine receptor (DHPR) functional regulation and/or T-tubular membrane localization. It appeared worth closely examining such a functional link and investigating if it could result from the direct physical interaction of the two proteins. Transient expression of Cav-3(P104L) or caveolin-3 specific siRNAs in C2C12 myotubes both led to a significant decrease of the L-type Ca(2+) channel maximal conductance. Immunolabeling analysis of adult skeletal muscle fibers revealed the colocalization of a pool of caveolin-3 with the DHPR within the T-tubular membrane. Caveolin-3 was also shown to be present in DHPR-containing triadic membrane preparations from which both proteins co-immunoprecipitated. Using GST-fusion proteins, the I-II loop of Ca(v)1.1 was identified as the domain interacting with caveolin-3, with an apparent affinity of 60nM. The present study thus revealed a direct molecular interaction between caveolin-3 and the DHPR which is likely to underlie their functional link and whose loss might therefore be involved in pathophysiological mechanisms associated to muscle caveolinopathies.
Collapse
Affiliation(s)
- Harold Couchoux
- Physiologie Intégrative Cellulaire et Moléculaire, Université Lyon 1, UMR CNRS 5123, Université de Lyon, 43 Boulevard du 11 novembre 1918, F-69622 Villeurbanne, France
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Schwetz TA, Norring SA, Ednie AR, Bennett ES. Sialic acids attached to O-glycans modulate voltage-gated potassium channel gating. J Biol Chem 2010; 286:4123-32. [PMID: 21115483 DOI: 10.1074/jbc.m110.171322] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neuronal, cardiac, and skeletal muscle action potentials are produced and conducted through the highly regulated activity of several types of voltage-gated ion channels. Voltage-gated potassium (K(v)) channels are responsible for action potential repolarization. Glycans can be attached to glycoproteins through N- and O-linkages. Previous reports described the impact of N-glycans on voltage-gated ion channel function. Here, we show that sialic acids attached through O-linkages modulate gating of K(v)2.1, K(v)4.2, and K(v)4.3. The conductance-voltage (G-V) relationships for each isoform were shifted uniquely by a depolarizing 8-16 mV under conditions of reduced sialylation. The data indicate that sialic acids modulate K(v) channel activation through apparent electrostatic mechanisms that promote channel activity. Voltage-dependent steady-state inactivation was unaffected by changes in sialylation. N-Linked sialic acids cannot be responsible for the G-V shifts because K(v)4.2 and K(v)4.3 cannot be N-glycosylated, and immunoblot analysis confirmed K(v)2.1 is not N-glycosylated. Glycosidase gel shift analysis suggested that K(v)2.1, K(v)4.2, and K(v)4.3 were O-glycosylated and sialylated. To confirm this, azide-modified sugar residues involved specifically in O-glycan and sialic acid biosynthesis were shown to incorporate into all three K(v) channel isoforms using Cu(I)-catalyzed cycloaddition chemistry. Together, the data indicate that sialic acids attached to O-glycans uniquely modulate gating of three K(v) channel isoforms that are not N-glycosylated. These data provide the first evidence that external O-glycans, with core structures distinct from N-glycans in type and number of sugar residues, can modulate K(v) channel function and thereby contribute to changes in electrical signaling that result from regulated ion channel expression and/or O-glycosylation.
Collapse
Affiliation(s)
- Tara A Schwetz
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida 33612, USA
| | | | | | | |
Collapse
|
18
|
Felipe A, Soler C, Comes N. Kv1.5 in the immune system: the good, the bad, or the ugly? Front Physiol 2010; 1:152. [PMID: 21423392 PMCID: PMC3059964 DOI: 10.3389/fphys.2010.00152] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 10/28/2010] [Indexed: 11/13/2022] Open
Abstract
For the last 20 years, knowledge of the physiological role of voltage-dependent potassium channels (Kv) in the immune system has grown exponentially. Leukocytes express a limited repertoire of Kv channels, which contribute to the membrane potential. These proteins are involved in the immune response and are therefore considered good pharmacological targets. Although there is a clear consensus about the physiological relevance of Kv1.3, the expression and the role of Kv1.5 are controversial. However, recent reports indicate that certain heteromeric Kv1.3/Kv1.5 associations may provide insight on Kv1.5. Here, we summarize what is known about this issue and highlight the role of Kv1.5 partnership interactions that could be responsible for this debate. The Kv1.3/Kv1.5 heterotetrameric composition of the channel and their possible differential associations with accessory regulatory proteins warrant further investigation.
Collapse
Affiliation(s)
- Antonio Felipe
- Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina, Universitat de Barcelona Barcelona, Spain.
| | | | | |
Collapse
|
19
|
Harkcom WT, Abbott GW. Emerging concepts in the pharmacogenomics of arrhythmias: ion channel trafficking. Expert Rev Cardiovasc Ther 2010; 8:1161-73. [PMID: 20670193 DOI: 10.1586/erc.10.89] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Continuous, rhythmic beating of the heart requires exquisite control of expression, localization and function of cardiac ion channels - the foundations of the cardiac myocyte action potential. Disruption of any of these processes can alter the shape of the action potential, predisposing to cardiac arrhythmias. These arrhythmias can manifest in a variety of ways depending on both the channels involved and the type of disruption (i.e., gain or loss of function). As much as 1% of the population of developed countries is affected by cardiac arrhythmia each year, and a detailed understanding of the mechanism of each arrhythmia is crucial to developing and prescribing the proper therapies. Many of the antiarrhythmic drugs currently on the market were developed before the underlying cause of the arrhythmia was known, and as a result lack specificity, causing side effects. The majority of the available drugs target the conductance of cardiac ion channels, either by blocking or enhancing current through the channel. In recent years, however, it has become apparent that specific targeting of ion channel conductance may not be the most effective means for treatment. Here we review increasing evidence that suggests defects in ion channel trafficking play an important role in the etiology of arrhythmias, and small molecule approaches to correct trafficking defects will likely play an important role in the future of arrhythmia treatment.
Collapse
Affiliation(s)
- William T Harkcom
- Department of Pharmacology, Weill Medical College of Cornell University, 520 E 70th Street, New York, NY 10021, USA
| | | |
Collapse
|
20
|
N-glycans modulate Kv1.5 gating but have no effect on Kv1.4 gating. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:367-75. [DOI: 10.1016/j.bbamem.2009.11.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 11/12/2009] [Accepted: 11/16/2009] [Indexed: 12/13/2022]
|
21
|
Cogolludo A, Perez-Vizcaino F. 5-HT Receptors and KV Channel Internalization. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 661:391-401. [DOI: 10.1007/978-1-60761-500-2_25] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Abstract
A variety of ion channels, including members of all major ion channel families, have been shown to be regulated by changes in the level of membrane cholesterol and partition into cholesterol-rich membrane domains. In general, several types of cholesterol effects have been described. The most common effect is suppression of channel activity by an increase in membrane cholesterol, an effect that was described for several types of inwardly-rectifying K(+) channels, voltage-gated K(+) channels, Ca(+2) sensitive K(+) channels, voltage-gated Na(+) channels, N-type voltage-gated Ca(+2) channels and volume-regulated anion channels. In contrast, several types of ion channels, such as epithelial amiloride-sensitive Na(+) channels and Transient Receptor Potential channels, as well as some of the types of inwardly-rectifying and voltage-gated K(+) channels were shown to be inhibited by cholesterol depletion. Cholesterol was also shown to alter the kinetic properties and current-voltage dependence of several voltage-gated channels. Finally, maintaining membrane cholesterol level is required for coupling ion channels to signalling cascades. In terms of the mechanisms, three general mechanisms have been proposed: (i) specific interactions between cholesterol and the channel protein, (ii) changes in the physical properties of the membrane bilayer and (iii) maintaining the scaffolds for protein-protein interactions. The goal of this review is to describe systematically the role of cholesterol in regulation of the major types of ion channels and to discuss these effects in the context of the models proposed.
Collapse
Affiliation(s)
- Irena Levitan
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| | | | | | | |
Collapse
|
23
|
Brainard AM, Korovkina VP, England SK. Disruption of the maxi-K-caveolin-1 interaction alters current expression in human myometrial cells. Reprod Biol Endocrinol 2009; 7:131. [PMID: 19930645 PMCID: PMC2785819 DOI: 10.1186/1477-7827-7-131] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 11/23/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND One determinant of the total K+ myometrial smooth muscle cell (MSMC) current is the large conductance, calcium- and voltage-activated potassium channel (maxi-K channel). This channel provides a repolarizing current in response to excitatory stimuli, most notably in response to increases in the levels of intracellular Ca2+, and blocking the channel by pharmacological means induces the depolarization of MSMCs and also enhances contraction strength. In MSMCs, maxi-K channels can reside in the caveolae, where they associate with the scaffolding protein caveolin-1 (cav-1). The aim of this study was to investigate the consequences of this interaction - more specifically, how disruption of the association between the maxi-K channel and cav-1 may influence the current expression and excitability of myometrial cells - with the aim of better understanding the mechanisms that underlie the regulation of normal and aberrant uterine function. METHODS Myometrial biopsies were collected from women undergoing elective C-sections. From these samples, myometrial cells were isolated, cultured, infected with a virus containing either caveolin-1 (cav-1) siRNA or scrambled cav-1 siRNA, and finally subjected to patch-clamp analysis. Mutant caveolin-binding site maxi-K channel constructs were generated and transfected into mouse Ltk- fibroblasts. Channel activity, expression, association, and localization were examined by patch-clamping, Western blot, immunoprecipitation, and immunofluorescence, respectively. RESULTS The caveolin-1 siRNA suppressed the total K+ current in human myometrial smooth muscle cells (hMSMC), as evident from comparison to the currents generated by both non-infected cells and cells infected with scrambled siRNA controls. The interaction between the maxi-K channel and caveolin depends on a region in the channel's C-terminal caveolin-binding site. Mutations of aromatic residues in this site (mutant F1012A, mutant Y1007A, F1012A and mutant Y1007A, F1012A, Y1015A) resulted in a decrease in K+ current compared to that produced by wild-type channels transfected into mouse Ltk- fibroblasts. However, mutation of all three aromatic amino acids (mutant Y1007A, F1012A, Y1015A) was necessary to disrupt the association between caveolin and the maxi-K channel, as visualized by immunofluorescence and immunoprecipitation. CONCLUSION Our results suggest that disruption of the caveolin-binding site interferes with the cav-1/maxi-K channel interaction, and that lack of the cav-1/maxi-K channel interaction in MSMCs attenuates the total K+ channel current of the cell.
Collapse
Affiliation(s)
- Adam M Brainard
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Victoria P Korovkina
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Sarah K England
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
24
|
Tong J, Briggs MM, Mlaver D, Vidal A, McIntosh TJ. Sorting of lens aquaporins and connexins into raft and nonraft bilayers: role of protein homo-oligomerization. Biophys J 2009; 97:2493-502. [PMID: 19883592 PMCID: PMC2770620 DOI: 10.1016/j.bpj.2009.08.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 08/17/2009] [Accepted: 08/21/2009] [Indexed: 11/16/2022] Open
Abstract
Two classes of channel-forming proteins in the eye lens, the water channel aquaporin-0 (AQP-0) and the connexins Cx46 and Cx50, are preferentially located in different regions of lens plasma membranes (1,2). Because these membranes contain high concentrations of cholesterol and sphingomyelin, as well as phospholipids such as phosphatidylcholine with unsaturated hydrocarbon chains, microdomains (rafts) form in these membranes. Here we test the hypothesis that sorting into lipid microdomains can play a role in the disposition of AQP-0 and the connexins in the plane of the membrane. For both crude membrane fractions and proteoliposomes composed of lens proteins in phosphatidylcholine/sphingomyelin/cholesterol lipid bilayers, detergent extraction experiments showed that the connexins were located primarily in detergent soluble membrane (DSM) fractions, whereas AQP-0 was found in both detergent resistant membrane and DSM fractions. Analysis of purified AQP-0 reconstituted in raft-containing bilayers showed that the microdomain location of AQP-0 depended on protein/lipid ratio. AQP-0 was located almost exclusively in DSMs at a 1:1200 AQP-0/lipid ratio, whereas approximately 50% of the protein was sequestered into detergent resistant membranes at a 1:100 ratio, where freeze-fracture experiments show that AQP-0 oligomerizes (3). Consistent with these detergent extraction results, confocal microscopy images showed that AQP-0 was sequestered into raft microdomains in the 1:100 protein/lipid membranes. Taken together these results indicate that AQP-0 and connexins can be segregated in the membrane by protein-lipid interactions as modified by AQP-0 homo-oligomerization.
Collapse
Affiliation(s)
| | | | | | | | - Thomas J. McIntosh
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
25
|
Hatem SN, Coulombe A, Balse E. Specificities of atrial electrophysiology: Clues to a better understanding of cardiac function and the mechanisms of arrhythmias. J Mol Cell Cardiol 2009; 48:90-5. [PMID: 19744488 DOI: 10.1016/j.yjmcc.2009.08.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 08/14/2009] [Accepted: 08/29/2009] [Indexed: 11/19/2022]
Abstract
The electrical properties of the atria and ventricles differ in several aspects reflecting the distinct role of the atria in cardiac physiology. The study of atrial electrophysiology had greatly contributed to the understanding of the mechanisms of atrial fibrillation (AF). Only the atrial L-type calcium current is regulated by serotonine or, under basal condition, by phosphodiesterases. These distinct regulations can contribute to I(Ca) down-regulation observed during AF, which is an important determinant of action potential refractory period shortening. The voltage-gated potassium current, I(Kur), has a prominent role in the repolarization of the atrial but not ventricular AP. In many species, this current is based on the functional expression of K(V)1.5 channels, which might represent a specific therapeutic target for AF. Mechanisms regulating the trafficking of K(V)1.5 channels to the plasma membrane are being actively investigated. The resting potential of atrial myocytes is maintained by various inward rectifier currents which differ with ventricle currents by a reduced density of I(K1), the presence of a constitutively active I(KACh) and distinct regulation of I(KATP). Stretch-sensitive or mechanosensitive ion channels are particularly active in atrial myocytes and are involved in the secretion of the natriuretic peptide. Integration of knowledge on electrical properties of atrial myocytes in comprehensive schemas is now necessary for a better understanding of the physiology of atria and the mechanisms of AF.
Collapse
|
26
|
Garg V, Sun W, Hu K. Caveolin-3 negatively regulates recombinant cardiac K(ATP) channels. Biochem Biophys Res Commun 2009; 385:472-7. [PMID: 19481058 DOI: 10.1016/j.bbrc.2009.05.100] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 05/22/2009] [Indexed: 10/20/2022]
Abstract
We have recently shown that ATP-sensitive potassium (K(ATP)) channels in the heart are localized in the caveolae of cardiac myocytes and regulated by caveolae-related signaling. However, little is known about the role of caveolins, signature proteins of caveolae, in cardiac K(ATP) channel function. The present study was designed to explore the potential functional interaction between caveolin-3 and K(ATP) channels. The cardiac K(ATP) channel subunits Kir6.2 and SUR2A were transiently transfected in HEK293T cells with or without co-transfection of caveolin-3 or caveolin-1. Our data demonstrated that the recombinant K(ATP) channel activity in HEK293T cells was inhibited by expression of caveolin-3, but not caveolin-1. The application of caveolin-3 scaffolding domain peptide, corresponding to amino acid residues 55-74 of caveolin-3, blocked the inhibitory effect of caveolin-3 on K(ATP) channels. However, the same peptide did not have any significant effect on K(ATP) channels in HEK293T cells without caveolin-3 expression. We further confirmed that K(ATP) channels co-immunoprecipitated with caveolin-3 but not caveolin-1. The association of K(ATP) channels with caveolin-3 was largely prevented by caveolin-3 scaffolding domain peptide. Our results indicate that caveolin-3 negatively regulates Kir6.2/SUR2A channel function.
Collapse
Affiliation(s)
- Vivek Garg
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW Substantial evidence documents the key role of lipid (membrane) rafts and caveolae as microdomains that concentrate a wide variety of receptors and postreceptor components regulated by hormones, neurotransmitters and growth factors. RECENT FINDINGS Recent data document that these microdomains are important in regulating vascular endothelial and smooth muscle cells and renal epithelial cells, and particularly in signal transduction across the plasma membrane. SUMMARY Raft/caveolae domains are cellular regions, including in cardiovascular and renal epithelial cells, which organize a large number of signal transduction components, thereby providing spatially and temporally efficient regulation of cell function.
Collapse
|
28
|
Plasma membrane removal in rat skeletal muscle fibers reveals caveolin-3 hot-spots at the necks of transverse tubules. Exp Cell Res 2009; 315:1015-28. [DOI: 10.1016/j.yexcr.2008.11.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 11/11/2008] [Accepted: 11/30/2008] [Indexed: 02/07/2023]
|
29
|
Balijepalli RC, Kamp TJ. Caveolae, ion channels and cardiac arrhythmias. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2009; 98:149-60. [PMID: 19351512 DOI: 10.1016/j.pbiomolbio.2009.01.012] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Caveolae are specialized membrane microdomains enriched in cholesterol and sphingolipids which are present in multiple cell types including cardiomyocytes. Along with the essential scaffolding protein caveolin-3, a number of different ion channels and transporters have been localized to caveolae in cardiac myocytes including L-type Ca2+ channels (Ca(v)1.2), Na+ channels (Na(v)1.5), pacemaker channels (HCN4), Na+/Ca2+ exchanger (NCX1) and others. Closely associated with these channels are specific macromolecular signaling complexes that provide highly localized regulation of the channels. Mutations in the caveolin-3 gene (CAV3) have been linked with the congenital long QT syndrome (LQT9), and mutations in caveolar-localized ion channels may contribute to other inherited arrhythmias. Changes in the caveolar microdomain in acquired heart disease may also lead to dysregulation and dysfunction of ion channels, altering the risk of arrhythmias in conditions such as heart failure. This review highlights the existing evidence identifying and characterizing ion channels localized to caveolae in cardiomyocytes and their role in arrhythmogenesis.
Collapse
Affiliation(s)
- Ravi C Balijepalli
- Department of Medicine, Cellular and Molecular Arrhythmia Research Program, University of Wisconsin, Madison, WI 53792, USA
| | | |
Collapse
|
30
|
Martínez-Mármol R, Villalonga N, Solé L, Vicente R, Tamkun MM, Soler C, Felipe A. Multiple Kv1.5 targeting to membrane surface microdomains. J Cell Physiol 2008; 217:667-73. [PMID: 18668522 DOI: 10.1002/jcp.21538] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Surface expression of voltage-dependent K(+) channels (Kv) has a pivotal role in leukocyte physiology. Although little is known about the physiological role of lipid rafts, these microdomains concentrate signaling molecules and their ion channel substrates. Kv1.3 associates with Kv1.5 to form functional channels in macrophages. Different isoform stoichiometries lead to distinct heteromeric channels which may be further modulated by targeting the complex to different membrane surface microdomains. Kv1.3 targets to lipid rafts, whereas Kv1.5 localization is under debate. With this in mind, we wanted to study whether heterotetrameric Kv1.5-containing channels target to lipid rafts. While in transfected HEK-293 cells, homo- and heterotetrameric channels targeted to rafts, Kv1.5 did not target to rafts in macrophages. Therefore, Kv1.3/Kv1.5 hybrid channels are mostly concentrated in non-raft microdomains. However, LPS-induced activation, which increases the Kv1.3/Kv1.5 ratio and caveolin, targeted Kv1.5 back to lipid rafts. Moreover, Kv1.5 did not localize to low-buoyancy fractions in L6E9 skeletal myoblasts, which also coexpress both channels, heart membranes or cardiomyocyes. Coexpression of a Cav3(DGV)-mutant confined Kv1.5 to Cav3(DGV)-vesicles of HEK cells. Contrarily, coexpression of Kvbeta2.1 impaired the Kv1.5 targeting to raft microdomains in HEK cells. Our results indicate that Kv1.5 partnership interactions are underlying mechanisms governing channel targeting to lipid rafts.
Collapse
Affiliation(s)
- Ramón Martínez-Mármol
- Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
31
|
Vicente R, Villalonga N, Calvo M, Escalada A, Solsona C, Soler C, Tamkun MM, Felipe A. Kv1.5 association modifies Kv1.3 traffic and membrane localization. J Biol Chem 2008; 283:8756-64. [PMID: 18218624 DOI: 10.1074/jbc.m708223200] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Kv1.3 activity is determined by raft association. In addition to Kv1.3, leukocytes also express Kv1.5, and both channels control physiological responses. Because the oligomeric composition may modify the channel targeting to the membrane, we investigated heterotetrameric Kv1.3/Kv1.5 channel traffic and targeting in HEK cells. Kv1.3 and Kv1.5 generate multiple heterotetramers with differential surface expression according to the subunit composition. FRET analysis and pharmacology confirm the presence of functional hybrid channels. Raft association was evaluated by cholesterol depletion, caveolae colocalization, and lateral diffusion at the cell surface. Immunoprecipitation showed that both Kv1.3 and heteromeric channels associate with caveolar raft domains. However, homomeric Kv1.3 channels showed higher association with caveolin traffic. Moreover, FRAP analysis revealed higher mobility for hybrid Kv1.3/Kv1.5 than Kv1.3 homotetramers, suggesting that heteromers target to distinct surface microdomains. Studies with lipopolysaccharide-activated macrophages further supported that different physiological mechanisms govern Kv1.3 and Kv1.5 targeting to rafts. Our results implicate the traffic and localization of Kv1.3/Kv1.5 heteromers in the complex regulation of immune system cells.
Collapse
Affiliation(s)
- Rubén Vicente
- Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|