1
|
Khan SH, Dube N, Sudhakar N, Fraser O, Villalona P, Braet SM, Leedom S, Reilly ER, Sivak J, Crittenden K, Okafor CD. Ancient and modern mechanisms compete in progesterone receptor activation. RSC Chem Biol 2024; 5:518-529. [PMID: 38846073 PMCID: PMC11151858 DOI: 10.1039/d4cb00002a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/27/2024] [Indexed: 06/09/2024] Open
Abstract
The progesterone receptor (PR) belongs to the steroid receptor family of ligand-regulated transcription factors, controlling genes important for development, metabolism, and reproduction. Understanding how diverse ligands bind and modulate PR activity will illuminate the design of ligands that control PR-driven signaling pathways. Here, we use molecular dynamics simulations to investigate how PR dynamics are altered by functionally diverse ligands. Using a library of 33 steroidal ligands that range from inactive to EC50 < 0.1 nM, we reveal an unexpected evolutionary basis for the wide gamut of activation. While other oxosteroid receptors employ an evolutionarily conserved mechanism dependent on a hydrogen bond between the receptor and ligand, extant PR has evolved a preference for activation that is not reliant on this polar interaction. We demonstrate that potent ligands utilize the modern PR mechanism while weaker ligands coopt the defunct ancestral mechanism by forming hydrogen bonds with Asn719. Based on their structures and dynamic signatures, ligands partition into four classes (inactive, weak, moderate and high potency) that interact distinctly with the PR binding pocket. Further, we use luciferase reporter assays and PR mutants to probe the roles of pocket residues in mediating distinct PR mechanisms. This combination of MD simulations and in vitro studies provide insight into how the evolutionary history of PR shapes its response to diverse ligands.
Collapse
Affiliation(s)
- Sabab Hasan Khan
- Department of Biochemistry and Molecular Biology, Pennsylvania State University University Park PA 16802 USA
| | - Namita Dube
- Department of Biochemistry and Molecular Biology, Pennsylvania State University University Park PA 16802 USA
| | - Nishanti Sudhakar
- Department of Biochemistry and Molecular Biology, Pennsylvania State University University Park PA 16802 USA
| | - Olivia Fraser
- Department of Biochemistry and Molecular Biology, Pennsylvania State University University Park PA 16802 USA
| | - Priscilla Villalona
- Department of Biochemistry and Molecular Biology, Pennsylvania State University University Park PA 16802 USA
| | - Sean M Braet
- Department of Chemistry, Pennsylvania State University University Park PA 16802 USA
| | - Stephanie Leedom
- Department of Biochemistry and Molecular Biology, Pennsylvania State University University Park PA 16802 USA
| | - Erin R Reilly
- Department of Biochemistry and Molecular Biology, Pennsylvania State University University Park PA 16802 USA
| | - Jacob Sivak
- Department of Chemistry, Pennsylvania State University University Park PA 16802 USA
| | - Kenidee Crittenden
- Department of Chemistry, Pennsylvania State University University Park PA 16802 USA
| | - C Denise Okafor
- Department of Biochemistry and Molecular Biology, Pennsylvania State University University Park PA 16802 USA
- Department of Chemistry, Pennsylvania State University University Park PA 16802 USA
| |
Collapse
|
2
|
Namba N, Fujii S. Hydroboration of vinylsilanes providing diversity-oriented hydrophobic building blocks for biofunctional molecules. Org Biomol Chem 2024. [PMID: 38826124 DOI: 10.1039/d4ob00632a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Hydroboration of vinylsilanes with BH3 affords two silylethanol regioisomers. Herein, we investigated the regioisomeric ratio of hydroboration products from various vinylsilanes, focusing on the characteristic reaction profile. All investigated vinylsilanes afforded both regioisomers, and greater bulkiness increased the proportion of the Markovnikov products. The obtained silylethanols were used as hydrophobic building blocks for constructing nuclear progesterone receptor (PR) modulators. Notably, structural conversions from an α-isomer (silylethan-1-oxy derivative) to a β-isomer (2-silylethoxy derivative) caused complete activity-switching from a PR agonist to an antagonist. Our results indicate that silylethanols are useful for structural development, and vinylsilanes are a versatile source of hydrophobic building blocks for obtaining biofunctional molecules.
Collapse
Affiliation(s)
- Nao Namba
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Shinya Fujii
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| |
Collapse
|
3
|
Parvizpour S, Elengoe A, Alizadeh E, Razmara J, Shamsir MS. In silico targeting breast cancer biomarkers by applying rambutan ( Nephelium lappaceum) phytocompounds. J Biomol Struct Dyn 2023; 41:10037-10050. [PMID: 36451602 DOI: 10.1080/07391102.2022.2152868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022]
Abstract
Worldwide, breast cancer is the leading type of cancer among women. Overexpression of various prognostic indicators, including nuclear receptors, is linked to breast cancer features. To date, no effective drug has been discovered to block the proliferation of breast cancer cells. This study has been designed to discover target-based small molecular-like natural drug candidates that have anti-cancer potential without causing any serious side effects. A comprehensive substrate-based drug design was carried out to discover the potential plant compounds against the target breast cancer biomarkers including phytochemicals screening, active site identification, molecular docking, pharmacokinetic (PK) properties prediction, toxicity prediction, and molecular dynamics (MD) simulation approaches. Twenty plant compounds extracted from the rambutan (Nephelium lappaceum) were obtained from PubChem Database; and screened against the breast cancer biomarkers including estrogen receptor (ER), progesterone receptor (PR), and androgen receptor (AR). The best docking interaction was chosen based on the higher binding affinity. Analyzing the pharmacokinetic properties and toxicity prediction results indicated that the fifteen selected plant compounds have good potency without toxicity and are safe for humans. Four phytochemicals with a higher binding affinity were chosen for each breast cancer biomarker to study their stability in interaction with the target proteins using MD simulation. Among the above compounds, Ellagic acid showed the high binding affinity against all three breast cancer biomarkers.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sepideh Parvizpour
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asita Elengoe
- Department of Biotechnology, Faculty of Science, Lincoln University College Malaysia, Petaling Jaya, Selangor, Malaysia
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Razmara
- Department of Computer Science, Faculty of Mathematics, Statistics, and Computer Science, University of Tabriz, Tabriz, Iran
| | - Mohd Shahir Shamsir
- Bioinformatics Research Group (BIRG), Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| |
Collapse
|
4
|
Khan SH, Braet SM, Koehler SJ, Elacqua E, Anand GS, Okafor CD. Ligand-induced shifts in conformational ensembles that describe transcriptional activation. eLife 2022; 11:e80140. [PMID: 36222302 PMCID: PMC9555869 DOI: 10.7554/elife.80140] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/14/2022] [Indexed: 11/15/2022] Open
Abstract
Nuclear receptors function as ligand-regulated transcription factors whose ability to regulate diverse physiological processes is closely linked with conformational changes induced upon ligand binding. Understanding how conformational populations of nuclear receptors are shifted by various ligands could illuminate strategies for the design of synthetic modulators to regulate specific transcriptional programs. Here, we investigate ligand-induced conformational changes using a reconstructed, ancestral nuclear receptor. By making substitutions at a key position, we engineer receptor variants with altered ligand specificities. We combine cellular and biophysical experiments to characterize transcriptional activity, as well as elucidate mechanisms underlying altered transcription in receptor variants. We then use atomistic molecular dynamics (MD) simulations with enhanced sampling to generate ensembles of wildtype and engineered receptors in combination with multiple ligands, followed by conformational analysis and correlation of MD-based predictions with functional ligand profiles. We determine that conformational ensembles accurately describe ligand responses based on observed population shifts. These studies provide a platform which will allow structural characterization of physiologically-relevant conformational ensembles, as well as provide the ability to design and predict transcriptional responses in novel ligands.
Collapse
Affiliation(s)
- Sabab Hasan Khan
- Department of Biochemistry and Molecular Biology, Pennsylvania State UniversityState CollegeUnited States
| | - Sean M Braet
- Department of Chemistry, Pennsylvania State UniversityState ParkUnited States
| | | | - Elizabeth Elacqua
- Department of Chemistry, Pennsylvania State UniversityState ParkUnited States
| | | | - C Denise Okafor
- Department of Biochemistry and Molecular Biology, Pennsylvania State UniversityState CollegeUnited States
- Department of Chemistry, Pennsylvania State UniversityState ParkUnited States
| |
Collapse
|
5
|
Disruption of a key ligand-H-bond network drives dissociative properties in vamorolone for Duchenne muscular dystrophy treatment. Proc Natl Acad Sci U S A 2020; 117:24285-24293. [PMID: 32917814 DOI: 10.1073/pnas.2006890117] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Duchenne muscular dystrophy is a genetic disorder that shows chronic and progressive damage to skeletal and cardiac muscle leading to premature death. Antiinflammatory corticosteroids targeting the glucocorticoid receptor (GR) are the current standard of care but drive adverse side effects such as deleterious bone loss. Through subtle modification to a steroidal backbone, a recently developed drug, vamorolone, appears to preserve beneficial efficacy but with significantly reduced side effects. We use combined structural, biophysical, and biochemical approaches to show that loss of a receptor-ligand hydrogen bond drives these remarkable therapeutic effects. Moreover, vamorolone uniformly weakens coactivator associations but not corepressor associations, implicating partial agonism as the main driver of its dissociative properties. Additionally, we identify a critical and evolutionarily conserved intramolecular network connecting the ligand to the coregulator binding surface. Interruption of this allosteric network by vamorolone selectively reduces GR-driven transactivation while leaving transrepression intact. Our results establish a mechanistic understanding of how vamorolone reduces side effects, guiding the future design of partial agonists as selective GR modulators with an improved therapeutic index.
Collapse
|
6
|
Rewiring Ancient Residue Interaction Networks Drove the Evolution of Specificity in Steroid Receptors. Structure 2020; 28:196-205.e3. [DOI: 10.1016/j.str.2019.11.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/10/2019] [Accepted: 11/15/2019] [Indexed: 12/13/2022]
|
7
|
Zheng L, Xia K, Mu Y. Ligand Binding Induces Agonistic-Like Conformational Adaptations in Helix 12 of Progesterone Receptor Ligand Binding Domain. Front Chem 2019; 7:315. [PMID: 31134186 PMCID: PMC6514052 DOI: 10.3389/fchem.2019.00315] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 04/23/2019] [Indexed: 01/28/2023] Open
Abstract
Progesterone receptor (PR) is a member of the nuclear receptor (NR) superfamily and plays a vital role in the female reproductive system. The malfunction of it would lead to several types of cancers. The understanding of conformational changes in its ligand binding domain (LBD) is valuable for both biological function studies and therapeutically intervenes. A key unsolved question is how the binding of a ligand (agonist, antagonist, or a selective modulator) induces conformational changes of PR LBD, especially its helix 12. We applied molecular dynamics (MD) simulations to explore the conformational adaptations of PR LBD with or without a ligand or the co-repressor peptides binding. From the simulations, both the agonist progesterone (P4) and the selective PR modulator (SPRM) asoprisnil induces agonistic-like helix 12 conformations (the "closed" states) in PR LBD and the complex of LBD-SPRM is less stable, comparing to the agonist-liganded PR LBD. The results, therefore, explain the partial agonism of the SPRM, which could induce weak agonistic effects in PR. We also found that co-repressor peptides could be stably associated with the LBD and stabilize the LBD in a "semi-open" state for helix 12. These findings would enhance our understanding of PR structural and functional relationships and would also be useful for future structure and knowledge-based drug discovery.
Collapse
Affiliation(s)
- Liangzhen Zheng
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Kelin Xia
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
8
|
Jones SL, Ismail N, Pfaus JG. Facilitation of sexual behavior in ovariectomized rats by estradiol and testosterone: A preclinical model of androgen effects on female sexual desire. Psychoneuroendocrinology 2017; 79:122-133. [PMID: 28278441 DOI: 10.1016/j.psyneuen.2017.02.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 01/20/2017] [Accepted: 02/16/2017] [Indexed: 12/25/2022]
Abstract
In the United States and Canada, there are no approved treatments for hypoactive sexual desire disorder in postmenopausal women. Testosterone improves female sexual desire in naturally- and surgically-menopausal women maintained on estrogen replacement therapy, and long-term safety data from randomized placebo-controlled clinical trials has yielded promising results. However, the mechanisms associated with its efficacy are not known, and could be addressed using preclinical rodent models; yet there is no systematic evaluation of the effects of estradiol and testosterone on female rat sexual behavior. The aim of these studies was to assess whether testosterone propionate (TP) facilitates sexual behaviors, particularly appetitive sexual behaviors, in Long-Evans and Wistar ovariectomized (OVX) rats primed with estradiol benzoate (EB). In Experiment 1, Long-Evans OVX rats were treated with Oil (O), 10μg EB+O, O+200μg TP, 10μg EB+500μg progesterone (P), or 10μg EB+200μg TP. In Experiment 2a, Wistar OVX rats were treated with varying doses of EB (2.5, 5, or 10μg) 48h prior, and TP (0, 200, or 400μg) 4h prior to testing in a Latin-Square design. A subset of animals was used in Experiment 2b and treated sequentially with EB (0, 2.5, 5, or 10μg) followed by TP (0, 200, or 400μg, in a Latin-Square design) 48h prior to sexual behavior testing. All tests occurred in the bilevel pacing chamber. Frequencies of female appetitive (hops/darts, solicitations, level changes) and consummatory (lordosis quotient and magnitude) sexual behaviors as well as the number of defensive behaviors towards males were scored. Number of mounts, intromissions and ejaculations from males were also scored. In EB-primed OVX Long-Evans rats, 200μg TP administered 4h prior to testing facilitated hops/darts and lordosis ratings beyond EB alone, and to levels equivalent to EB+P. In contrast, that regimen was not successful in EB-primed OVX Wistar rats. When EB and TP were co-administered 48h prior to testing, 10μg EB+200μg TP significantly increased hops/darts and level changes beyond that observed by 10μg EB alone. In summary, the administration of EB and TP to OVX Long-Evans and Wistar rats facilitates appetitive measures of sexual behavior. Strain differences exist that likely reflect underlying differences in sensitivities to EB, and the EB-primed OVX Long-Evans rat may be useful for studying mechanisms of TP-facilitation of desire due to higher baseline sexual inhibition.
Collapse
Affiliation(s)
- Sherri Lee Jones
- Douglas Mental Health University Institute, Perry Pavilion, 6875 LaSalle Blvd., Verdun, QC, H4H 1R3, Canada; Department of Psychiatry, McGill University, Montreal, QC, Canada; Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, 7141 Sherbrooke West, Montreal, QC, H4B 1R6 Canada.
| | - Nafissa Ismail
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, 7141 Sherbrooke West, Montreal, QC, H4B 1R6 Canada
| | - James G Pfaus
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, 7141 Sherbrooke West, Montreal, QC, H4B 1R6 Canada
| |
Collapse
|
9
|
Kumar N, Fagart J, Liere P, Mitchell SJ, Knibb AR, Petit-Topin I, Rame M, El-Etr M, Schumacher M, Lambert JJ, Rafestin-Oblin ME, Sitruk-Ware R. Nestorone® as a Novel Progestin for Nonoral Contraception: Structure-Activity Relationships and Brain Metabolism Studies. Endocrinology 2017; 158:170-182. [PMID: 27824503 PMCID: PMC5412978 DOI: 10.1210/en.2016-1426] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 11/01/2016] [Indexed: 11/19/2022]
Abstract
Nestorone® (NES) is a potent nonandrogenic progestin being developed for contraception. NES is a synthetic progestin that may possess neuroprotective and myelin regenerative potential as added health benefits. In receptor transactivation experiments, NES displayed greater potency than progesterone to transactivate the human progesterone receptor (PR). This was confirmed by docking experiments where NES adopts the same docking position within the PR ligand-binding domain (LBD) as progesterone and forms additional stabilizing contacts between 17α-acetoxy and 16-methylene groups and PR LBD, supporting its higher potency than progesterone. The analog 13-ethyl NES also establishes similar contacts as NES with Met909, leading to comparable potency as NES. In contrast, NES is not stabilized within the human androgen receptor LBD, leading to negligible androgen receptor transactivation. Because progesterone acts in the brain by both PR binding and indirectly via binding of the metabolite allopregnanolone to γ-aminobutyric acid type A receptor (GABAAR), we investigated if NES is metabolized to 3α, 5α-tetrahydronestorone (3α, 5α-THNES) in the brain and if this metabolite could interact with GABAAR. In female mice, low concentrations of reduced NES metabolites were identified by gas chromatography/mass spectrometry in both plasma and brain. Electrophysiological studies showed that 3α, 5α-THNES exhibited only limited activity to enhance GABAAR-evoked responses with WSS-1 cells and did not modulate synaptic GABAARs of mouse cortical neurons. Thus, the inability of reduced metabolite of NES (3α, 5α-THNES) to activate GABAAR suggests that the neuroprotective and myelin regenerative effects of NES are mediated via PR binding and not via its interaction with the GABAAR.
Collapse
Affiliation(s)
- Narender Kumar
- Population Council, Center for Biomedical Research, New York, New York 10065
| | | | - Philippe Liere
- U1195 INSERM, University Paris Sud, Le Kremlin Bicêtre 94276, France; and
| | - Scott J. Mitchell
- Division of Neuroscience, Ninewells Hospital & Medical School, Dundee University, Dundee DD1 9SY, Scotland, United Kingdom
| | - Alanah R. Knibb
- Division of Neuroscience, Ninewells Hospital & Medical School, Dundee University, Dundee DD1 9SY, Scotland, United Kingdom
| | | | - Marion Rame
- U1195 INSERM, University Paris Sud, Le Kremlin Bicêtre 94276, France; and
| | - Martine El-Etr
- U1195 INSERM, University Paris Sud, Le Kremlin Bicêtre 94276, France; and
| | - Michael Schumacher
- U1195 INSERM, University Paris Sud, Le Kremlin Bicêtre 94276, France; and
| | - Jeremy J. Lambert
- Division of Neuroscience, Ninewells Hospital & Medical School, Dundee University, Dundee DD1 9SY, Scotland, United Kingdom
| | | | - Regine Sitruk-Ware
- Population Council, Center for Biomedical Research, New York, New York 10065
| |
Collapse
|
10
|
Zheng L, Lin VC, Mu Y. Exploring Flexibility of Progesterone Receptor Ligand Binding Domain Using Molecular Dynamics. PLoS One 2016; 11:e0165824. [PMID: 27824891 PMCID: PMC5100906 DOI: 10.1371/journal.pone.0165824] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 10/18/2016] [Indexed: 12/23/2022] Open
Abstract
Progesterone receptor (PR), a member of nuclear receptor (NR) superfamily, plays a vital role for female reproductive tissue development, differentiation and maintenance. PR ligand, such as progesterone, induces conformation changes in PR ligand binding domain (LBD), thus mediates subsequent gene regulation cascades. PR LBD may adopt different conformations upon an agonist or an antagonist binding. These different conformations would trigger distinct transcription events. Therefore, the dynamics of PR LBD would be of general interest to biologists for a deep understanding of its structure-function relationship. However, no apo-form (non-ligand bound) of PR LBD model has been proposed either by experiments or computational methods so far. In this study, we explored the structural dynamics of PR LBD using molecular dynamics simulations and advanced sampling tools in both ligand-bound and the apo-forms. Resolved by the simulation study, helix 11, helix 12 and loop 895–908 (the loop between these two helices) are quite flexible in antagonistic conformation. Several residues, such as Arg899 and Glu723, could form salt-bridging interaction between helix 11 and helix 3, and are important for the PR LBD dynamics. And we also propose that helix 12 in apo-form PR LBD, not like other NR LBDs, such as human estrogen receptor α (ERα) LBD, may not adopt a totally extended conformation. With the aid of umbrella sampling and metadynamics simulations, several stable conformations of apo-form PR LBD have been sampled, which may work as critical structural models for further large scale virtual screening study to discover novel PR ligands for therapeutic application.
Collapse
Affiliation(s)
- Liangzhen Zheng
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Valerie Chunling Lin
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
- * E-mail:
| |
Collapse
|
11
|
Chen L, Zhang YH, Zou Q, Chu C, Ji Z. Analysis of the chemical toxicity effects using the enrichment of Gene Ontology terms and KEGG pathways. Biochim Biophys Acta Gen Subj 2016; 1860:2619-26. [PMID: 27208425 DOI: 10.1016/j.bbagen.2016.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/25/2016] [Accepted: 05/13/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND Chemical toxicity is one of the major barriers for designing and detecting new chemical entities during drug discovery. Unexpected toxicity of an approved drug may lead to withdrawal from the market and significant loss of the associated costs. Better understanding of the mechanisms underlying various toxicity effects can help eliminate unqualified candidate drugs in early stages, allowing researchers to focus their attention on other more viable candidates. METHODS In this study, we aimed to understand the mechanisms underlying several toxicity effects using Gene Ontology (GO) terms and KEGG pathways. GO term and KEGG pathway enrichment theories were adopted to encode each chemical, and the minimum redundancy maximum relevance (mRMR) was used to analyze the GO terms and the KEGG pathways. Based on the feature list obtained by the mRMR method, the most related GO terms and KEGG pathways were extracted. RESULTS Some important GO terms and KEGG pathways were uncovered, which were concluded to be significant for determining chemical toxicity effects. CONCLUSIONS Several GO terms and KEGG pathways are highly related to all investigated toxicity effects, while some are specific to a certain toxicity effect. GENERAL SIGNIFICANCE The findings in this study have the potential to further our understanding of different chemical toxicity mechanisms and to assist scientists in developing new chemical toxicity prediction algorithms. This article is part of a Special Issue entitled "System Genetics" Guest Editor: Dr. Yudong Cai and Dr. Tao Huang.
Collapse
Affiliation(s)
- Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, People's Republic of China.
| | - Yu-Hang Zhang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China.
| | - Quan Zou
- School of Computer Science and Technology, Tianjin University, Tianjin 300072, People's Republic of China.
| | - Chen Chu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China.
| | - Zhiliang Ji
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, People's Republic of China.
| |
Collapse
|
12
|
Silva-Ortiz AV, Bratoeff E, Ramírez-Apan MT, García-Becerra R, Ordaz-Rosado D, Noyola-Martínez N, Castillo-Bocanegra R, Barrera D. Synthesis and biological activity of two pregnane derivatives with a triazole or imidazole ring at C-21. J Steroid Biochem Mol Biol 2016; 159:8-18. [PMID: 26924581 DOI: 10.1016/j.jsbmb.2016.02.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/22/2016] [Accepted: 02/11/2016] [Indexed: 10/22/2022]
Abstract
Pregnane derivatives are studied as agents for the treatment of different hormone-dependent diseases. The biological importance of these steroids is based on their potential use against cancer. In this study, we report the synthesis, characterization and biological activity of two pregnane derivatives with a triazole (3β-hydroxy-21-(1H-1,2,4-triazol-1-yl)pregna-5,16-dien-20-one; T-OH) or imidazole (3β-hydroxy-21-(1H-imidazol-1-yl)pregna-5,16-dien-20-one; I-OH) moieties at C-21. These derivatives were synthesized from 16-dehydropregnenolone acetate. The activity on cell proliferation of the compounds was measured on three human cancer cells lines: prostate cancer (PC-3), breast cancer (MCF7) and lung cancer (SK-LU-1). The cytotoxic and antiproliferative effects of T-OH and I-OH were assessed by using SBR and XTT methods, respectively. The gene expressions were evaluated by real time PCR. In addition, results were complemented by docking studies and transactivation assays using an expression vector to progesterone and androgen receptor. Results show that the two compounds inhibited the three cell lines proliferation in a dose-dependent manner. Compound I-OH downregulated the gene expression of the cyclins D1 and E1 in PC-3 and MFC7 cells; however, effect upon Ki-67, EAG1, BIM or survivin genes was not observed. Docking studies show poor interaction with the steroid receptors. Nevertheless, the transactivation assays show a weak antagonist effect of I-OH on progesterone receptor but not androgenic or antiandrogenic actions. In conclusion, the synthesized compounds inhibited cell proliferation as well as genes key to cell cycle of PC-3 and MCF7 cell lines. Therefore, these compounds could be considered a good starting point for the development of novel therapeutic alternatives to treat cancer.
Collapse
Affiliation(s)
- Aylin Viviana Silva-Ortiz
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Mexico, D.F. 04510, Mexico
| | - Eugene Bratoeff
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Mexico, D.F. 04510, Mexico
| | | | - Rocío García-Becerra
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Avenida Vasco de Quiroga No. 15, Col. Belisario Domínguez, Sección XVI, México, D.F. 14080, Mexico
| | - David Ordaz-Rosado
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Avenida Vasco de Quiroga No. 15, Col. Belisario Domínguez, Sección XVI, México, D.F. 14080, Mexico
| | - Nancy Noyola-Martínez
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Avenida Vasco de Quiroga No. 15, Col. Belisario Domínguez, Sección XVI, México, D.F. 14080, Mexico
| | - Rafael Castillo-Bocanegra
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Mexico, D.F. 04510, Mexico
| | - David Barrera
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Avenida Vasco de Quiroga No. 15, Col. Belisario Domínguez, Sección XVI, México, D.F. 14080, Mexico.
| |
Collapse
|
13
|
Andrieu T, Mani O, Goepfert C, Bertolini R, Guettinger A, Setoud R, Uh KY, Baker ME, Frey FJ, Frey BM. Detection and functional portrayal of a novel class of dihydrotestosterone derived selective progesterone receptor modulators (SPRM). J Steroid Biochem Mol Biol 2015; 147:111-23. [PMID: 25541437 DOI: 10.1016/j.jsbmb.2014.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 12/12/2014] [Accepted: 12/16/2014] [Indexed: 12/14/2022]
Abstract
In early pregnancy, abortion can be induced by blocking the actions of progesterone receptors (PR). However, the PR antagonist, mifepristone (RU38486), is rather unselective in clinical use because it also cross-reacts with other nuclear receptors. Since the ligand-binding domain of human progesterone receptor (hPR) and androgen receptor (hAR) share 54% identity, we hypothesized that derivatives of dihydrotestosterone (DHT), the cognate ligand for hAR, might also regulate the hPR. Compounds designed and synthesized in our laboratory were investigated for their affinities for hPRB, hAR, glucocorticoid receptor (hGRα) and mineralocorticoid receptor (hMR), using whole cell receptor competitive binding assays. Agonistic and antagonistic activities were characterized by reporter assays. Nuclear translocation was monitored using cherry-hPRB and GFP-hAR chimeric receptors. Cytostatic properties and apoptosis were tested on breast cancer cells (MCF7, T-47D). One compound presented a favorable profile with an apparent neutral hPRB antagonistic function, a selective cherry-hPRB nuclear translocation and a cytostatic effect. 3D models of human PR and AR with this ligand were constructed to investigate the molecular basis of selectivity. Our data suggest that these novel DHT-derivatives provide suitable templates for the development of new selective steroidal hPR antagonists.
Collapse
Affiliation(s)
- Thomas Andrieu
- Department of Nephrology and Hypertension and Clinical Pharmacology, University of Berne, Berne, Switzerland.
| | - Orlando Mani
- Department of Nephrology and Hypertension and Clinical Pharmacology, University of Berne, Berne, Switzerland.
| | - Christine Goepfert
- Department of Nephrology and Hypertension and Clinical Pharmacology, University of Berne, Berne, Switzerland.
| | - Reto Bertolini
- Department of Nephrology and Hypertension and Clinical Pharmacology, University of Berne, Berne, Switzerland.
| | - Andreas Guettinger
- Department of Nephrology and Hypertension and Clinical Pharmacology, University of Berne, Berne, Switzerland.
| | - Raschid Setoud
- Department of Nephrology and Hypertension and Clinical Pharmacology, University of Berne, Berne, Switzerland.
| | - Kayla Y Uh
- Department of Medicine, University of California, San Diego, La Jolla, USA.
| | - Michael E Baker
- Department of Medicine, University of California, San Diego, La Jolla, USA.
| | - Felix J Frey
- Department of Nephrology and Hypertension and Clinical Pharmacology, University of Berne, Berne, Switzerland.
| | - Brigitte M Frey
- Department of Nephrology and Hypertension and Clinical Pharmacology, University of Berne, Berne, Switzerland; Department of Clinical Research, University of Berne, Berne, Switzerland.
| |
Collapse
|
14
|
Petit-Topin I, Fay M, Resche-Rigon M, Ulmann A, Gainer E, Rafestin-Oblin ME, Fagart J. Molecular determinants of the recognition of ulipristal acetate by oxo-steroid receptors. J Steroid Biochem Mol Biol 2014; 144 Pt B:427-35. [PMID: 25204619 DOI: 10.1016/j.jsbmb.2014.08.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/31/2014] [Accepted: 08/07/2014] [Indexed: 11/16/2022]
Abstract
The human progesterone receptor (PR) plays a key role in reproductive function in women. PR antagonists have numerous applications in female health care including regular and emergency contraception, and treatment of hormone-related pathological conditions such as breast cancer, endometriosis, and leiomyoma. The main factor limiting their long-term administration is the fact that they cross-bind to other oxo-steroid receptors. Ulipristal acetate (UPA), a highly potent PR antagonist, has recently come onto the market and is much more selective for PR than the other oxo-steroid receptors (androgen, AR, glucocorticoid, GR, and mineralocorticoid, MR receptors) and, remarkably, it displays lower GR-inactivating potency than RU486. We adopted a structural approach to characterizing the binding of UPA to the oxo-steroid receptors at the molecular level. We solved the X-ray crystal structure of the ligand-binding domain (LBD) of the human PR complexed with UPA and a peptide from the transcriptional corepressor SMRT. We used the X-ray crystal structure of the GR in its antagonist conformation to dock UPA within its ligand-binding cavity. Finally, we generated three-dimensional models of the LBD of androgen and mineralocorticoid receptors (AR and MR) in an antagonist conformation and docked UPA within them. Comparing the structures revealed that the network of stabilizing contacts between the UPA C11 aryl group and the LBD is responsible for its high PR antagonist potency. It also showed that it is the inability of UPA to contact Gln642 in GR that explains why it has lower potency in inactivating GR than RU486. Finally, we found that the binding pockets of AR and MR are too small to accommodate UPA, and allowed us to propose that the extremely low sensitivity of MR to UPA is due to inappropriate interactions with the C11 substituent. All these findings open new avenues for designing new PR antagonist compounds displaying greater selectivity.
Collapse
MESH Headings
- Binding Sites
- Crystallography, X-Ray
- HEK293 Cells
- Hormone Antagonists/pharmacology
- Humans
- Models, Molecular
- Norpregnadienes/pharmacology
- Protein Conformation
- Receptors, Androgen/chemistry
- Receptors, Androgen/metabolism
- Receptors, Mineralocorticoid/chemistry
- Receptors, Mineralocorticoid/metabolism
- Receptors, Progesterone/agonists
- Receptors, Progesterone/antagonists & inhibitors
- Receptors, Progesterone/chemistry
- Receptors, Progesterone/metabolism
Collapse
Affiliation(s)
- I Petit-Topin
- Inserm U773, Centre de Recherche Biomédicale Bichat-Beaujon CRB3, Paris, France; Université Denis Diderot, Site Bichat, Paris, France
| | - M Fay
- Inserm U773, Centre de Recherche Biomédicale Bichat-Beaujon CRB3, Paris, France; Université Denis Diderot, Site Bichat, Paris, France
| | | | - A Ulmann
- Laboratoire HRA Pharma, Paris, France
| | - E Gainer
- Laboratoire HRA Pharma, Paris, France
| | - M-E Rafestin-Oblin
- Inserm U773, Centre de Recherche Biomédicale Bichat-Beaujon CRB3, Paris, France; Université Denis Diderot, Site Bichat, Paris, France
| | - J Fagart
- Inserm U773, Centre de Recherche Biomédicale Bichat-Beaujon CRB3, Paris, France; Université Denis Diderot, Site Bichat, Paris, France; Inserm U693, Le Kremlin - Bicêtre F94276, France; Faculté de Médecine Paris-Sud, Univ Paris-Sud, UMR-S693, Le Kremlin - Bicêtre F94276, France.
| |
Collapse
|
15
|
Walker SD, McEldowney S. Molecular docking: a potential tool to aid ecotoxicity testing in environmental risk assessment of pharmaceuticals. CHEMOSPHERE 2013; 93:2568-2577. [PMID: 24344392 DOI: 10.1016/j.chemosphere.2013.09.074] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A cocktail of human pharmaceuticals pollute aquatic environments and there is considerable scientific uncertainty about the effects that this may have on aquatic organisms. Human drug target proteins can be highly conserved in non target species suggesting that similar modes of action (MoA) may occur. The aim of this work was to explore whether molecular docking offers a potential tool to predict the effects of pharmaceutical compounds on non target organisms. Three highly prescribed drugs, diclofenac, ibuprofen and levonorgestrel which regularly pollute freshwater environments were used as examples. Their primary drug targets are cyclooxygenase 2 (COX2) and progesterone receptor (PR). Molecular docking experiments were performed using these drugs and their primary drug target homologues for Danio rerio, Salmo salar, Oncorhynchus mykiss, Xenopus tropicalis, Xenopus laevis and Daphnia pulex. The results show that fish and frog COX2 enzymes are likely to bind diclofenac and ibuprofen in the same way as humans but that D. pulex would not. Binding will probably lead to inhibition of COX function and reduced prostaglandin production. Levonorgestrel was found to bind in the same binding pocket of the progesterone receptor in frogs and fish as the human form. This suggests implications for the fecundity of fish and frogs which are exposed to levonorgestrel. Chronic ecotoxicological effects of these drugs reported in the literature support these findings. Molecular docking may provide a valuable tool for ecotoxicity tests by guiding selection of test species and incorporating the MoA of drugs for relevant chronic test end points in environmental risk assessments.
Collapse
|
16
|
Cunha S, Gano L, Morais GR, Thiemann T, Oliveira MC. Progesterone receptor targeting with radiolabelled steroids: an approach in predicting breast cancer response to therapy. J Steroid Biochem Mol Biol 2013; 137:223-41. [PMID: 23669457 DOI: 10.1016/j.jsbmb.2013.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 04/24/2013] [Accepted: 04/30/2013] [Indexed: 11/30/2022]
Abstract
Steroid receptors have demonstrated to be potentially useful biological targets for the diagnosis and therapy follow-up of hormonally responsive cancers. The over-expression of these proteins in human cancer cells as well as their binding characteristics provides a favourable mechanism for the localization of malignant tumours. The need for newer and more selective probes to non-invasively assess steroid receptor expression in hormone-responsive tumours has encouraged the synthesis and the biological evaluation of several steroidal derivatives labelled with positron and gamma emitters. The physiological effects of the steroid hormone progesterone are mediated by the progesterone receptor (PR). Since PR expression is stimulated by the oestrogen receptor (ER), PR status has been considered as a biomarker of ER activity and its value for predicting and monitoring therapeutic efficacy of hormonal therapy has been studied. Imaging of PR-expressing breast cancer patients under hormonal therapy may be advantageous, since the response to therapy can be more accurately predicted after quantification of both ER and PR status. Thus, ligands for PR targeting, although much less explored than ER ligands, have gained some importance lately as potential PET and SPECT tumour imaging agents. In this review, we present a brief survey of explored approaches for progesterone targeting using radiolabelled progestins as potential clinical probes to predict responsiveness to breast cancer therapy. This article is part of a Special Issue entitled "Synthesis and biological testing of steroid derivatives as inhibitors".
Collapse
Affiliation(s)
- Susana Cunha
- Unidade de Ciências Químicas e Radiofarmacêuticas, IST/ITN, Instituto Superior Técnico, Universidade Técnica de Lisboa, Estrada Nacional 10, 2686-953 Sacavém, Portugal
| | | | | | | | | |
Collapse
|
17
|
Khan JA, Tikad A, Fay M, Hamze A, Fagart J, Chabbert-Buffet N, Meduri G, Amazit L, Brion JD, Alami M, Lombès M, Loosfelt H, Rafestin-Oblin ME. A new strategy for selective targeting of progesterone receptor with passive antagonists. Mol Endocrinol 2013; 27:909-24. [PMID: 23579486 DOI: 10.1210/me.2012-1328] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Currently available progesterone (P4) receptor (PR) antagonists, such as mifepristone (RU486), lack specificity and display partial agonist properties, leading to potential drawbacks in their clinical use. Recent x-ray crystallographic studies have identified key contacts involved in the binding of agonists and antagonists with PR opening the way for a new rational strategy for inactivating PR. We report here the synthesis and characterization of a novel class of PR antagonists (APRn) designed from such studies. The lead molecule, the homosteroid APR19, displays in vivo endometrial anti-P4 activity. APR19 inhibits P4-induced PR recruitment and transactivation from synthetic and endogenous gene promoters. Importantly, it exhibits high PR selectivity with respect to other steroid hormone receptors and is devoid of any partial agonist activity on PR target gene transcription. Two-hybrid and immunostaining experiments reveal that APR19-bound PR is unable to interact with either steroid receptor coactivators 1 and 2 (SRC1 and SCR2) or nuclear receptor corepressor (NcoR) and silencing mediator of retinoid acid and thyroid hormone receptor (SMRT), in contrast to RU486-PR complexes. APR19 also inhibits agonist-induced phosphorylation of serine 294 regulating PR transcriptional activity and turnover kinetics. In silico docking studies based on the crystal structure of the PR ligand-binding domain show that, in contrast to P4, APR19 does not establish stabilizing hydrogen bonds with the ligand-binding cavity, resulting in an unstable ligand-receptor complex. Altogether, these properties highly distinguish APR19 from RU486 and likely its derivatives, suggesting that it belongs to a new class of pure antiprogestins that inactivate PR by a passive mechanism. These specific PR antagonists open new perspectives for long-term hormonal therapy.
Collapse
Affiliation(s)
- Junaid A Khan
- Inserm U693, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, 94276 Le Kremlin-Bicêtre, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Burris TP, Solt LA, Wang Y, Crumbley C, Banerjee S, Griffett K, Lundasen T, Hughes T, Kojetin DJ. Nuclear receptors and their selective pharmacologic modulators. Pharmacol Rev 2013; 65:710-78. [PMID: 23457206 PMCID: PMC11060414 DOI: 10.1124/pr.112.006833] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Nuclear receptors are ligand-activated transcription factors and include the receptors for steroid hormones, lipophilic vitamins, sterols, and bile acids. These receptors serve as targets for development of myriad drugs that target a range of disorders. Classically defined ligands that bind to the ligand-binding domain of nuclear receptors, whether they are endogenous or synthetic, either activate receptor activity (agonists) or block activation (antagonists) and due to the ability to alter activity of the receptors are often termed receptor "modulators." The complex pharmacology of nuclear receptors has provided a class of ligands distinct from these simple modulators where ligands display agonist/partial agonist/antagonist function in a tissue or gene selective manner. This class of ligands is defined as selective modulators. Here, we review the development and pharmacology of a range of selective nuclear receptor modulators.
Collapse
Affiliation(s)
- Thomas P Burris
- The Scripps Research Institute, 130 Scripps Way 2A1, Jupiter, FL 33458, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kubli-Garfias C, González-Flores O, Gómora-Arrati P, González-Mariscal G, Vázquez-Ramírez R, Beyer C. Bimodal binding and free energy of the progesterone receptor in the induction of female sexual receptivity by progesterone and synthetic progestins. J Steroid Biochem Mol Biol 2013; 133:43-50. [PMID: 22960752 DOI: 10.1016/j.jsbmb.2012.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Revised: 08/17/2012] [Accepted: 08/19/2012] [Indexed: 11/20/2022]
Abstract
Synthetic progestins (SPs) are used for regulation of fertility, contraception and hormone replacement therapy. The acetylated medroxyprogesterone (MPA), megestrol (MGA) and chlormadinone (CLA) are related to progesterone (P). Other SPs are 19-nortestosterone derivatives such as: norethisterone (NET), norethynodrel (NED) or the 13-ethyl gonane, levonorgestrel (LNG). We studied MPA, NET, NED and LNG in a dose-response manner to induce sexual receptivity in rats. Results showed that MPA, NET and NED act as partial agonists, with similar or lower potency than P. However, LNG is a full agonist. Additionally, the molecules of MPA, MGA, CLA, NET, NED, LNG, and P, were submitted to computer calculations at ab initio quantum mechanics theory, to obtain their electronic structure and molecular properties. The aim was to correlate their behavioral effect with their physicochemical properties. In addition, the crystals of P, NET and LNG bound to the progesterone receptor (PR) were studied. The PR crystallizes as a dimer forming two monomers (mA and mB), in which Gln725 interacts in either of two possible ways with the C3-carbonyl pharmacophore of progestins. P binds differentially to both PR monomers, while NET binds exclusively as mA and LNG binds only as mB in both monomers with no difference. Energetically, binding of LNG and P to mB, is more favorable than that of NET and P to mA. Consequently, this bimodal mechanism increases the action possibilities of SPs on biological systems. Interestingly, progestin potency depends mostly on local molecular structure and electronic features, prevailing over total molecular properties.
Collapse
Affiliation(s)
- Carlos Kubli-Garfias
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, D.F. 04510, Mexico.
| | | | | | | | | | | |
Collapse
|
20
|
Baker ME, Uh KY. Evolutionary analysis of the segment from helix 3 through helix 5 in vertebrate progesterone receptors. J Steroid Biochem Mol Biol 2012; 132:32-40. [PMID: 22575083 DOI: 10.1016/j.jsbmb.2012.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 04/17/2012] [Accepted: 04/21/2012] [Indexed: 11/27/2022]
Abstract
The interaction between helix 3 and helix 5 in the human mineralocorticoid receptor [MR], progesterone receptor [PR] and glucocorticoid receptor [GR] influences their response to steroids. For the human PR, mutations at Gly-722 on helix 3 and Met-759 on helix 5 alter responses to progesterone. We analyzed the evolution of these two sites and the rest of a 59 residue segment containing helices 3, 4 and 5 in vertebrate PRs and found that a glycine corresponding to Gly-722 on helix 3 in human PR first appears in platypus, a monotreme. In lamprey, skates, fish, amphibians and birds, cysteine is found at this position in helix 3. This suggests that the cysteine to glycine replacement in helix 3 in the PR was important in the evolution of mammals. Interestingly, our analysis of the rest of the 59 residue segment finds 100% sequence conservation in almost all mammal PRs, substantial conservation in reptile and amphibian PRs and divergence of land vertebrate PR sequences from the fish PR sequences. The differences between fish and land vertebrate PRs may be important in the evolution of different biological progestins in fish and mammalian PR, as well as differences in susceptibility to environmental chemicals that disrupt PR-mediated physiology.
Collapse
Affiliation(s)
- Michael E Baker
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0693, United States.
| | | |
Collapse
|
21
|
Lusher SJ, Raaijmakers HCA, Vu-Pham D, Kazemier B, Bosch R, McGuire R, Azevedo R, Hamersma H, Dechering K, Oubrie A, van Duin M, de Vlieg J. X-ray structures of progesterone receptor ligand binding domain in its agonist state reveal differing mechanisms for mixed profiles of 11β-substituted steroids. J Biol Chem 2012; 287:20333-43. [PMID: 22535964 DOI: 10.1074/jbc.m111.308403] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We present here the x-ray structures of the progesterone receptor (PR) in complex with two mixed profile PR modulators whose functional activity results from two differing molecular mechanisms. The structure of Asoprisnil bound to the agonist state of PR demonstrates the contribution of the ligand to increasing stability of the agonist conformation of helix-12 via a specific hydrogen-bond network including Glu(723). This interaction is absent when the full antagonist, RU486, binds to PR. Combined with a previously reported structure of Asoprisnil bound to the antagonist state of the receptor, this structure extends our understanding of the complex molecular interactions underlying the mixed agonist/antagonist profile of the compound. In addition, we present the structure of PR in its agonist conformation bound to the mixed profile compound Org3H whose reduced antagonistic activity and increased agonistic activity compared with reference antagonists is due to an induced fit around Trp(755), resulting in a decreased steric clash with Met(909) but inducing a new internal clash with Val(912) in helix-12. This structure also explains the previously published observation that 16α attachments to RU486 analogs induce mixed profiles by altering the binding of 11β substituents. Together these structures further our understanding of the steric and electrostatic factors that contribute to the function of steroid receptor modulators, providing valuable insight for future compound design.
Collapse
Affiliation(s)
- Scott J Lusher
- Departments of Molecular Design and Informatics, MSD, P. O. Box 20, 5340 BH, Oss, The
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Lusher SJ, Raaijmakers HCA, Vu-Pham D, Dechering K, Lam TW, Brown AR, Hamilton NM, Nimz O, Bosch R, McGuire R, Oubrie A, de Vlieg J. Structural basis for agonism and antagonism for a set of chemically related progesterone receptor modulators. J Biol Chem 2011; 286:35079-86. [PMID: 21849509 DOI: 10.1074/jbc.m111.273029] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The progesterone receptor is able to bind to a large number and variety of ligands that elicit a broad range of transcriptional responses ranging from full agonism to full antagonism and numerous mixed profiles inbetween. We describe here two new progesterone receptor ligand binding domain x-ray structures bound to compounds from a structurally related but functionally divergent series, which show different binding modes corresponding to their agonistic or antagonistic nature. In addition, we present a third progesterone receptor ligand binding domain dimer bound to an agonist in monomer A and an antagonist in monomer B, which display binding modes in agreement with the earlier observation that agonists and antagonists from this series adopt different binding modes.
Collapse
Affiliation(s)
- Scott J Lusher
- Department of Molecular Design and Informatics, DMPK, MSD, PO Box 20, 5340 BH Oss, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Liu L, Zhao L, She H, Chen S, Wang JM, Wong C, McClure K, Sitruk-Ware R, Brinton RD. Clinically relevant progestins regulate neurogenic and neuroprotective responses in vitro and in vivo. Endocrinology 2010; 151:5782-94. [PMID: 20943809 PMCID: PMC2999493 DOI: 10.1210/en.2010-0005] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Previously, we demonstrated that progesterone (P(4)) promoted adult rat neural progenitor cell (rNPC) proliferation with concomitant regulation of cell-cycle gene expression via the P(4) receptor membrane component/ERK pathway. Here, we report the efficacy of seven clinically relevant progestins alone or in combination with 17β-estradiol (E(2)) on adult rNPC proliferation and hippocampal cell viability in vitro and in vivo. In vitro analyses indicated that P(4), norgestimate, Nestorone, norethynodrel, norethindrone, and levonorgestrel (LNG) significantly increased in rNPC proliferation, whereas norethindrone acetate was without effect, and medroxyprogesterone acetate (MPA) inhibited rNPC proliferation. Proliferative progestins in vitro were also neuroprotective. Acute in vivo exposure to P(4) and Nestorone significantly increased proliferating cell nuclear antigen and cell division cycle 2 expression and total number of hippocampal 5-bromo-2-deoxyuridine (BrdU)-positive cells, whereas LNG and MPA were without effect. Mechanistically, neurogenic progestins required activation of MAPK to promote proliferation. P(4), Nestorone, and LNG significantly increased ATP synthase subunit α (complex V, subunit α) expression, whereas MPA was without effect. In combination with E(2), P(4), Nestorone, LNG, and MPA significantly increased BrdU incorporation. However, BrdU incorporation induced by E(2) plus LNG or MPA was paralleled by a significant increase in apoptosis. A rise in Bax/Bcl-2 ratio paralleled apoptosis induced by LNG and MPA. With the exception of P(4), clinical progestins antagonized E(2)-induced rise in complex V, subunit α. These preclinical translational findings indicate that the neurogenic response to clinical progestins varies dramatically. Progestin impact on the regenerative capacity of the brain has clinical implications for contraceptive and hormone therapy formulations prescribed for pre- and postmenopausal women.
Collapse
Affiliation(s)
- Lifei Liu
- Program in Neuroscience, University of Southern California, School of Pharmacy Pharmaceutical Sciences Center, Los Angeles, California 90033, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
|