1
|
Koyama S, Weber EL, Heinbockel T. Possible Combinatorial Utilization of Phytochemicals and Extracellular Vesicles for Wound Healing and Regeneration. Int J Mol Sci 2024; 25:10353. [PMID: 39408681 PMCID: PMC11476926 DOI: 10.3390/ijms251910353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 10/20/2024] Open
Abstract
Organ and tissue damage can result from injury and disease. How to facilitate regeneration from damage has been a topic for centuries, and still, we are trying to find agents to use for treatments. Two groups of biological substances are known to facilitate wound healing. Phytochemicals with bioactive properties form one group. Many phytochemicals have anti-inflammatory effects and enhance wound healing. Recent studies have described their effects at the gene and protein expression levels, highlighting the receptors and signaling pathways involved. The extremely large number of phytochemicals and the multiple types of receptors they activate suggest a broad range of applicability for their clinical use. The hydrophobic nature of many phytochemicals and the difficulty with chemical stabilization have been a problem. Recent developments in biotechnology and nanotechnology methods are enabling researchers to overcome these problems. The other group of biological substances is extracellular vesicles (EVs), which are now known to have important biological functions, including the improvement of wound healing. The proteins and nanoparticles contained in mammalian EVs as well as the specificity of the targets of microRNAs included in the EVs are becoming clear. Plant-derived EVs have been found to contain phytochemicals. The overlap in the wound-healing capabilities of both phytochemicals and EVs and the differences in their nature suggest the possibility of a combinatorial use of the two groups, which may enhance their effects.
Collapse
Affiliation(s)
- Sachiko Koyama
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Erin L. Weber
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Thomas Heinbockel
- Department of Anatomy, College of Medicine, Howard University, Washington, DC 20059, USA
| |
Collapse
|
2
|
Vyhlídalová B, Ondrová K, Zůvalová I. Dietary monoterpenoids and human health: Unlocking the potential for therapeutic use. Biochimie 2024:S0300-9084(24)00202-5. [PMID: 39260556 DOI: 10.1016/j.biochi.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/16/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
Natural products are widely used in different aspects of our lives - from household cleaners and food production, via cosmetics and aromatherapy, to both alternative and traditional medicine. In our research group, we have recently described several monoterpenoids with potential in the antiviral and anticancer therapy by allosteric targeting of aryl hydrocarbon receptor (AhR). Prior to any practical application, biological effects on human organism must be taken in concern. This review article is focused on the biological effects of 5 monoterpenoids on the human health previously identified as AhR antagonists with a therapeutic potential as antiviral and anticancer agents. We have thoroughly described cytotoxic, anti-inflammatory, anti-proliferative, and anticancer effects, as well as known interactions with nuclear receptors. As clearly demonstrated, monoterpenoids in general represent almost an inexhaustible reservoir of natural compounds possessing the ability to influence, modulate and improve human health.
Collapse
Affiliation(s)
- Barbora Vyhlídalová
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Karolína Ondrová
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Iveta Zůvalová
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| |
Collapse
|
3
|
Hu XQ, Zhang L. Role of transient receptor potential channels in the regulation of vascular tone. Drug Discov Today 2024; 29:104051. [PMID: 38838960 DOI: 10.1016/j.drudis.2024.104051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/17/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
Vascular tone is a major element in the control of hemodynamics. Transient receptor potential (TRP) channels conducting monovalent and/or divalent cations (e.g. Na+ and Ca2+) are expressed in the vasculature. Accumulating evidence suggests that TRP channels participate in regulating vascular tone by regulating intracellular Ca2+ signaling in both vascular smooth muscle cells (VSMCs) and endothelial cells (ECs). Aberrant expression/function of TRP channels in the vasculature is associated with vascular dysfunction in systemic/pulmonary hypertension and metabolic syndromes. This review intends to summarize our current knowledge of TRP-mediated regulation of vascular tone in both physiological and pathophysiological conditions and to discuss potential therapeutic approaches to tackle abnormal vascular tone due to TRP dysfunction.
Collapse
Affiliation(s)
- Xiang-Qun Hu
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| | - Lubo Zhang
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
4
|
Yap CX, Vo DD, Heffel MG, Bhattacharya A, Wen C, Yang Y, Kemper KE, Zeng J, Zheng Z, Zhu Z, Hannon E, Vellame DS, Franklin A, Caggiano C, Wamsley B, Geschwind DH, Zaitlen N, Gusev A, Pasaniuc B, Mill J, Luo C, Gandal MJ. Brain cell-type shifts in Alzheimer's disease, autism, and schizophrenia interrogated using methylomics and genetics. SCIENCE ADVANCES 2024; 10:eadn7655. [PMID: 38781333 PMCID: PMC11114225 DOI: 10.1126/sciadv.adn7655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/14/2024] [Indexed: 05/25/2024]
Abstract
Few neuropsychiatric disorders have replicable biomarkers, prompting high-resolution and large-scale molecular studies. However, we still lack consensus on a more foundational question: whether quantitative shifts in cell types-the functional unit of life-contribute to neuropsychiatric disorders. Leveraging advances in human brain single-cell methylomics, we deconvolve seven major cell types using bulk DNA methylation profiling across 1270 postmortem brains, including from individuals diagnosed with Alzheimer's disease, schizophrenia, and autism. We observe and replicate cell-type compositional shifts for Alzheimer's disease (endothelial cell loss), autism (increased microglia), and schizophrenia (decreased oligodendrocytes), and find age- and sex-related changes. Multiple layers of evidence indicate that endothelial cell loss contributes to Alzheimer's disease, with comparable effect size to APOE genotype among older people. Genome-wide association identified five genetic loci related to cell-type composition, involving plausible genes for the neurovascular unit (P2RX5 and TRPV3) and excitatory neurons (DPY30 and MEMO1). These results implicate specific cell-type shifts in the pathophysiology of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Chloe X. Yap
- Mater Research Institute, University of Queensland, Brisbane, Queensland, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Daniel D. Vo
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Lifespan Brain Institute at Penn Medicine and The Children’s Hospital of Philadelphia, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew G. Heffel
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA
| | - Arjun Bhattacharya
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Institute for Quantitative and Computational Biosciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Institute for Data Science in Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cindy Wen
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yuanhao Yang
- Mater Research Institute, University of Queensland, Brisbane, Queensland, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Kathryn E. Kemper
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Jian Zeng
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Zhili Zheng
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Zhihong Zhu
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
- The National Centre for Register-based Research, Aarhus University, Denmark
| | - Eilis Hannon
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Dorothea Seiler Vellame
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Alice Franklin
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Christa Caggiano
- Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Brie Wamsley
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
- Center for Autism Research and Treatment, Semel Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Daniel H. Geschwind
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
- Center for Autism Research and Treatment, Semel Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Noah Zaitlen
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
- Department of Computational Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Alexander Gusev
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Division of Genetics, Brigham & Women’s Hospital, Boston, MA, USA
- Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Bogdan Pasaniuc
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Computational Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jonathan Mill
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Chongyuan Luo
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michael J. Gandal
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Lifespan Brain Institute at Penn Medicine and The Children’s Hospital of Philadelphia, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
5
|
Moccia F, Brunetti V, Soda T, Berra-Romani R, Scarpellino G. Cracking the Endothelial Calcium (Ca 2+) Code: A Matter of Timing and Spacing. Int J Mol Sci 2023; 24:16765. [PMID: 38069089 PMCID: PMC10706333 DOI: 10.3390/ijms242316765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/16/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
A monolayer of endothelial cells lines the innermost surface of all blood vessels, thereby coming into close contact with every region of the body and perceiving signals deriving from both the bloodstream and parenchymal tissues. An increase in intracellular Ca2+ concentration ([Ca2+]i) is the main mechanism whereby vascular endothelial cells integrate the information conveyed by local and circulating cues. Herein, we describe the dynamics and spatial distribution of endothelial Ca2+ signals to understand how an array of spatially restricted (at both the subcellular and cellular levels) Ca2+ signals is exploited by the vascular intima to fulfill this complex task. We then illustrate how local endothelial Ca2+ signals affect the most appropriate vascular function and are integrated to transmit this information to more distant sites to maintain cardiovascular homeostasis. Vasorelaxation and sprouting angiogenesis were selected as an example of functions that are finely tuned by the variable spatio-temporal profile endothelial Ca2+ signals. We further highlighted how distinct Ca2+ signatures regulate the different phases of vasculogenesis, i.e., proliferation and migration, in circulating endothelial precursors.
Collapse
Affiliation(s)
- Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.B.); (G.S.)
| | - Valentina Brunetti
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.B.); (G.S.)
| | - Teresa Soda
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro, Italy;
| | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico;
| | - Giorgia Scarpellino
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.B.); (G.S.)
| |
Collapse
|
6
|
A Status Review on Health-Promoting Properties and Global Regulation of Essential Oils. Molecules 2023; 28:molecules28041809. [PMID: 36838797 PMCID: PMC9968027 DOI: 10.3390/molecules28041809] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Since ancient times, essential oils (EOs) have been known for their therapeutic potential against many health issues. Recent studies suggest that EOs may contribute to the regulation and modulation of various biomarkers and cellular pathways responsible for metabolic health as well as the development of many diseases, including cancer, obesity, diabetes, cardiovascular diseases, and bacterial infections. During metabolic dysfunction and even infections, the immune system becomes compromised and releases pro-inflammatory cytokines that lead to serious health consequences. The bioactive compounds present in EOs (especially terpenoids and phenylpropanoids) with different chemical compositions from fruits, vegetables, and medicinal plants confer protection against these metabolic and infectious diseases through anti-inflammatory, antioxidant, anti-cancer, and anti-microbial properties. In this review, we have highlighted some targeted physiological and cellular actions through which EOs may exhibit anti-inflammatory, anti-cancer, and anti-microbial properties. In addition, it has been observed that EOs from specific plant sources may play a significant role in the prevention of obesity, diabetes, hypertension, dyslipidemia, microbial infections, and increasing breast milk production, along with improvements in heart, liver, and brain health. The current status of the bioactive activities of EOs and their therapeutic effects are covered in this review. However, with respect to the health benefits of EOs, it is very important to regulate the dose and usage of EOs to reduce their adverse health effects. Therefore, we specified that some countries have their own regulatory bodies while others follow WHO and FAO standards and legislation for the use of EOs.
Collapse
|
7
|
TRPV3: Structure, Diseases and Modulators. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020774. [PMID: 36677834 PMCID: PMC9865980 DOI: 10.3390/molecules28020774] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/04/2023] [Accepted: 01/08/2023] [Indexed: 01/15/2023]
Abstract
Transient receptor potential vanillin 3 (TRPV3) is a member of the transient receptor potential (TRP) superfamily. As a Ca2+-permeable nonselective cation channel, TRPV3 can recognize thermal stimulation (31-39 °C), and it plays an important regulatory role in temperature perception, pain transduction, skin physiology, inflammation, cancer and other diseases. TRPV3 is not only activated by the changes in the temperature, but it also can be activated by a variety of chemical and physical stimuli. Selective TRPV3 agonists and antagonists with regulatory effects and the physiological functions for clinical application are highly demanded. In recent years, significant progress has been made in the study of TRPV3, but there is still a lack of modulators with a strong affinity and excellent selectivity. This paper reviews the functional characteristics of TRPV3 in terms of the structure, diseases and the research on TRPV3 modulators.
Collapse
|
8
|
Đukanović Đ, Gajic Bojic M, Marinkovic S, Trailovic SM, Stojiljković MP, Škrbić R. Vasorelaxant effect of monoterpene carvacrol on isolated human umbilical artery. Can J Physiol Pharmacol 2022; 100:755-762. [PMID: 35507953 DOI: 10.1139/cjpp-2021-0736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Carvacrol is the main compound of essential oils extracted primarily from Thymus and Origanum species. Its various biological activities were confirmed: antioxidant, anti-inflammatory, antibacterial, antifungal, anti-tumour, antinematodal and vasorelaxant action. Although vasodilation mediated by carvacrol was previously described, the exact mechanism of its action has not yet been established. Hence, the aim of this study was to investigate carvacrol vasoactivity on human umbilical arteries (HUA) and different pathways involved in its mechanism of action using tissue bath methodology. Carvacrol caused a significant decrease in vascular tension of 5-HT-pre-contracted umbilical arteries, with EC50 of 442.13 ± 33.8 µM (mean ± standard error of the mean - SEM). At 300 µM, carvacrol shifted downward the 5-HT concentration-response curve with statistical significance of p < 0.001 obtained for the four highest concentrations. At concentration of 1 mM, carvacrol completely abolished BaCl2-induced contraction in Ca2+-free Krebs-Ringer bicarbonate solution (p < 0.001). Isopentenyl pyrophosphate, the antagonist of TRPV3 channel, was able to decrease the efficacy of carvacrol (p < 0.001). The vasorelaxant effect of carvacrol seems to involve the blocking of L-type of Ca2+ channels on smooth muscle cells. However, the role of TRPV3 channels in carvacrol-induced vasodilation of HUA cannot be excluded either.
Collapse
Affiliation(s)
- Đorđe Đukanović
- University of Banja Luka Faculty of Medicine, 469576, Centre for Biomedical Research, Banja Luka, Bosnia and Herzegovina;
| | - Milica Gajic Bojic
- University of Banja Luka Faculty of Medicine, 469576, Centre for Biomedical Research, Banja Luka, Bosnia and Herzegovina;
| | - Sonja Marinkovic
- University of Banja Luka Faculty of Medicine, 469576, Centre for Biomedical Research, Banja Luka, Bosnia and Herzegovina;
| | - Sasa M Trailovic
- University of Belgrade, 54801, Pharmacology and Toxicology, Bulevar oslobodjenja 18, Beograd, Serbia, 11000;
| | - Miloš P Stojiljković
- University of Banja Luka Faculty of Medicine, 469576, Department of Pharmacology, Toxicology and Clinical Pharmacology, Banja Luka, Bosnia and Herzegovina, 78000;
| | - Ranko Škrbić
- University of Banja Luka Faculty of Medicine, 469576, Banja Luka, Bosnia and Herzegovina, 78000;
| |
Collapse
|
9
|
Unraveling the Cardiac Effects Induced by Carvacrol in Spontaneously Hypertensive Rats: Involvement of Transient Receptor Potential Melastatin Subfamily 4 and 7 Channels. J Cardiovasc Pharmacol 2022; 79:206-216. [PMID: 35099165 DOI: 10.1097/fjc.0000000000001165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/05/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Accumulating evidence indicates that transient receptor potential (TRP) channels are involved in the pathophysiological process in the heart, and monoterpenes, such as carvacrol, are able to modulate these channels activity. In this article, our purpose was to evaluate the direct cardiac effect of carvacrol on the contractility of cardiomyocytes and isolated right atria from spontaneously hypertensive and Wistar Kyoto rats. In this way, in vitro experiments were used to evaluate the ventricular cardiomyocytes contractility and the Ca2+ transient measuring, in addition to heart rhythm in the right atria. The role of TRPM channels in carvacrol-mediated cardiac activities was also investigated. The results demonstrated that carvacrol induced a significant reduction in ventricular cell contractility, without changes in transient Ca2+. In addition, carvacrol promoted a significant negative chronotropic response in spontaneously hypertensive and Wistar Kyoto rats' atria. Selective blockage of TRPM channels suggests the involvement of TRP melastatin subfamily 2 (TRPM2), TRPM4, and TRPM7 in the carvacrol-mediated cardiac effects. In silico studies were conducted to further investigate the putative role of TRPM4 in carvacrol-mediated cardiac action. FTMap underscores a conserved pocket in both TRPM4 and TRPM7, revealing a potential carvacrol binding site, and morphological similarity analysis demonstrated that carvacrol shares a more than 85% similarity to 9-phenanthrol. Taken together, these results suggest that carvacrol has direct cardiac actions, leading to reduced cellular contractility and inducing a negative chronotropic effect, which may be related to TRPM7 and TRPM4 modulation.
Collapse
|
10
|
Granado M, González-Hedström D, Amor S, Fajardo-Vidal A, Villalva M, de la Fuente-Fernández M, Tejera-Muñoz A, Jaime L, Santoyo S, García-Villalón AL. Marjoram extract prevents ischemia reperfusion-induced myocardial damage and exerts anti-contractile effects in aorta segments of male wistar rats. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114660. [PMID: 34547419 DOI: 10.1016/j.jep.2021.114660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Marjoram (Origanum majorana L.) is an herb traditionally used as a medicine in different countries, as Morocco and Iran, because of its beneficial cardiovascular effects. Some studies suggest that these effects are due, at least in part, to the presence of phenolic compounds such as rosmarinic acid (RA) and luteolin. AIM OF THE STUDY To analyze the possible cardiprotective effects of a marjoram extract (ME) reducing myocardial damage after coronary ischemia-reperfusion (IR) and its possible antihypertensive effects reducing the response of aorta segments to the vasoconstrictors noradrenaline (NA) and endothelin-1 (ET-1). MATERIALS AND METHODS Male Wistar rats (300g) were used. After sacrifice, the heart was immediately removed and mounted in a perfusion system (Langendorff). The aorta was carefully dissected and cut in 2 mm segments to perform vascular reactivity experiments. RESULTS In the heart, ME perfusion after IR reduced heart rate and prevented IR-induced decrease of cardiac contractility, possibly through vasodilation of coronary arteries and through the upregulation of antioxidant markers in the myocardium that led to reduced apoptosis of cardiomyocytes. In the aorta, ME decreased the vasoconstrictor response to NA and ET-1 and exerted a potent anti-inflammatory and antioxidant effect. Neither RA nor 6-hydroxi-luteolin-O-glucoside, major compounds of this ME, were effective in improving cardiac contractility after IR or attenuating vasoconstriction to NA and ET-1 in aorta segments. CONCLUSION In conclusion, ME reduces the myocardial damage induced by IR and the contractile response to vasoconstrictors in the aorta. Thus, it may be useful for the treatment of cardiovascular diseases such as myocardial infarction and hypertension.
Collapse
Affiliation(s)
- M Granado
- Physiology Department, School of Medicine, Universidad Autónoma de Madrid, Spain; CIBER Fisiopatología de La Obesidad y Nutrición. Instituto de Salud Carlos III, Madrid, Spain.
| | - D González-Hedström
- Physiology Department, School of Medicine, Universidad Autónoma de Madrid, Spain; Pharmactive Biotech Products SL, Parque Científico de Madrid, Spain
| | - S Amor
- Physiology Department, School of Medicine, Universidad Autónoma de Madrid, Spain
| | - A Fajardo-Vidal
- Physiology Department, School of Medicine, Universidad Autónoma de Madrid, Spain; Institute of Food Reserach (CIAL). Universidad Autónoma de Madrid (CEI UAM+CSIC), 28049, Madrid, Spain
| | - M Villalva
- Institute of Food Reserach (CIAL). Universidad Autónoma de Madrid (CEI UAM+CSIC), 28049, Madrid, Spain
| | | | - A Tejera-Muñoz
- Physiology Department, School of Medicine, Universidad Autónoma de Madrid, Spain
| | - L Jaime
- Institute of Food Reserach (CIAL). Universidad Autónoma de Madrid (CEI UAM+CSIC), 28049, Madrid, Spain
| | - S Santoyo
- Institute of Food Reserach (CIAL). Universidad Autónoma de Madrid (CEI UAM+CSIC), 28049, Madrid, Spain
| | - A L García-Villalón
- Physiology Department, School of Medicine, Universidad Autónoma de Madrid, Spain
| |
Collapse
|
11
|
De Silva TM, Sobey CG. Cerebral Vascular Biology in Health and Disease. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00001-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Alves-Silva JM, Zuzarte M, Girão H, Salgueiro L. The Role of Essential Oils and Their Main Compounds in the Management of Cardiovascular Disease Risk Factors. Molecules 2021; 26:molecules26123506. [PMID: 34207498 PMCID: PMC8227493 DOI: 10.3390/molecules26123506] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/28/2022] Open
Abstract
Cardiovascular diseases (CVDs) are a global health burden that greatly impact patient quality of life and account for a huge number of deaths worldwide. Despite current therapies, several side effects have been reported that compromise patient adherence; thus, affecting therapeutic benefits. In this context, plant metabolites, namely volatile extracts and compounds, have emerged as promising therapeutic agents. Indeed, these compounds, in addition to having beneficial bioactivities, are generally more amenable and present less side effects, allowing better patient tolerance. The present review is an updated compilation of the studies carried out in the last 20 years on the beneficial potential of essential oils, and their compounds, against major risk factors of CVDs. Overall, these metabolites show beneficial potential through a direct effect on these risk factors, namely hypertension, dyslipidemia and diabetes, or by acting on related targets, or exerting general cellular protection. In general, monoterpenic compounds are the most studied regarding hypotensive and anti-dyslipidemic/antidiabetic properties, whereas phenylpropanoids are very effective at avoiding platelet aggregation. Despite the number of studies performed, clinical trials are sparse and several aspects related to essential oil’s features, namely volatility and chemical variability, need to be considered in order to guarantee their efficacy in a clinical setting.
Collapse
Affiliation(s)
- Jorge M. Alves-Silva
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, 3000-548 Coimbra, Portugal; (J.M.A.-S.); (M.Z.); (H.G.)
- Univ Coimbra, Faculty of Pharmacy, 3000-548 Coimbra, Portugal
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra, 3000-548 Coimbra, Portugal
| | - Mónica Zuzarte
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, 3000-548 Coimbra, Portugal; (J.M.A.-S.); (M.Z.); (H.G.)
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra, 3000-548 Coimbra, Portugal
| | - Henrique Girão
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, 3000-548 Coimbra, Portugal; (J.M.A.-S.); (M.Z.); (H.G.)
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra, 3000-548 Coimbra, Portugal
| | - Lígia Salgueiro
- Univ Coimbra, Faculty of Pharmacy, 3000-548 Coimbra, Portugal
- Univ Coimbra, Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, 3030-790 Coimbra, Portugal
- Correspondence:
| |
Collapse
|
13
|
Ottolini M, Sonkusare SK. The Calcium Signaling Mechanisms in Arterial Smooth Muscle and Endothelial Cells. Compr Physiol 2021; 11:1831-1869. [PMID: 33792900 PMCID: PMC10388069 DOI: 10.1002/cphy.c200030] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The contractile state of resistance arteries and arterioles is a crucial determinant of blood pressure and blood flow. Physiological regulation of arterial contractility requires constant communication between endothelial and smooth muscle cells. Various Ca2+ signals and Ca2+ -sensitive targets ensure dynamic control of intercellular communications in the vascular wall. The functional effect of a Ca2+ signal on arterial contractility depends on the type of Ca2+ -sensitive target engaged by that signal. Recent studies using advanced imaging methods have identified the spatiotemporal signatures of individual Ca2+ signals that control arterial and arteriolar contractility. Broadly speaking, intracellular Ca2+ is increased by ion channels and transporters on the plasma membrane and endoplasmic reticular membrane. Physiological roles for many vascular Ca2+ signals have already been confirmed, while further investigation is needed for other Ca2+ signals. This article focuses on endothelial and smooth muscle Ca2+ signaling mechanisms in resistance arteries and arterioles. We discuss the Ca2+ entry pathways at the plasma membrane, Ca2+ release signals from the intracellular stores, the functional and physiological relevance of Ca2+ signals, and their regulatory mechanisms. Finally, we describe the contribution of abnormal endothelial and smooth muscle Ca2+ signals to the pathogenesis of vascular disorders. © 2021 American Physiological Society. Compr Physiol 11:1831-1869, 2021.
Collapse
Affiliation(s)
- Matteo Ottolini
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Swapnil K Sonkusare
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA.,Department of Molecular Physiology & Biological Physics, University of Virginia, Charlottesville, Virginia, USA.,Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
14
|
Infusion of Pituitary Adenylate Cyclase-Activating Polypeptide-38 in Patients with Rosacea Induces Flushing and Facial Edema that Can Be Attenuated by Sumatriptan. J Invest Dermatol 2021; 141:1687-1698. [PMID: 33600826 DOI: 10.1016/j.jid.2021.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/21/2021] [Accepted: 02/02/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND The pathogenesis of rosacea is incompletely understood. Signaling neuropeptides, including PACAP, a regulator of vasodilation and edema, are upregulated in rosacea skin. Here, we evaluated PACAP38-induced rosacea features and examined whether a 5-HT1B/1D receptor agonist could reduce these features. METHODS A total of 35 patients with erythematotelangiectatic rosacea received an intravenous infusion of 10 pmol/kg/minute of PACAP38 followed by an intravenous infusion of 4 mg sumatriptan or placebo (saline) on two study days in a double-blind, randomized, placebo-controlled, and cross-over trial. RESULTS PACAP38 increased facial skin blood flow by 90%, dilated the superficial temporal artery by 56%, and induced prolonged flushing and facial edema. Compared with placebo, sumatriptan reduced PACAP38-induced facial skin blood flow for 50 minutes (P = 0.023), constricted the superficial temporal artery for 80 minutes (P = 0.010), and reduced duration of flushing (P = 0.001) and facial edema (P < 0.001). CONCLUSIONS We established a clinical experimental model of rosacea features and showed that sumatriptan was able to attenuate PACAP38-induced rosacea flushing and edema. Findings support a key role of PACAP38 in rosacea flushing pathogenesis. It remains unknown whether PACAP38 inhibition can improve rosacea. TRIAL REGISTER The trial was registered at ClinicalTrials.govNCT03878784 in March 2019.
Collapse
|
15
|
The Antimicrobial Activity of Origanum vulgare L. Correlated with the Gastrointestinal Perturbation in Patients with Metabolic Syndrome. Molecules 2021; 26:molecules26020283. [PMID: 33429991 PMCID: PMC7827761 DOI: 10.3390/molecules26020283] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
(1) The metabolic syndrome (MS) promotes acute and chronic infections, due to the pro-inflammatory condition given by TNFα and IL6 or by affecting the microbiota. MS is also correlated with insulin resistance, causing inflammation and infections throughout the organism. (2) The purpose of this study was to track the effect of using the essential oil of Origanum vulgare L. (EOO) as an antibacterial treatment, compared to allopathic treatment with antibiotics in MS patients. A group of 106 people with MS was divided into four subgroups: L1-staphylococcal infection group, L2-Escherichia coli infection group, L3-streptococcal infection group with EOO treatment, and CG-control group without infection or treatment. (3) EOO is responsible for the antibacterial effect, and reduced minor uncomplicated infections. After a 10-day treatment, intestinal side effects were absent, improving the phase angle. (4) The results suggest that EOO may exhibit an antibacterial effect, similar to the antibiotic treatment, without promoting MS-specific dysbiosis, and it also improves the phase angle in patients, which is used as an index of health and cellular function.
Collapse
|
16
|
Ghosh M, Schepetkin IA, Özek G, Özek T, Khlebnikov AI, Damron DS, Quinn MT. Essential Oils from Monarda fistulosa: Chemical Composition and Activation of Transient Receptor Potential A1 (TRPA1) Channels. Molecules 2020; 25:E4873. [PMID: 33105614 PMCID: PMC7659962 DOI: 10.3390/molecules25214873] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022] Open
Abstract
Little is known about the pharmacological activity of Monarda fistulosa L. essential oils. To address this issue, we isolated essential oils from the flowers and leaves of M. fistulosa and analyzed their chemical composition. We also analyzed the pharmacological effects of M. fistulosa essential oils on transient receptor potential (TRP) channel activity, as these channels are known targets of various essential oil constituents. Flower (MEOFl) and leaf (MEOLv) essential oils were comprised mainly of monoterpenes (43.1% and 21.1%) and oxygenated monoterpenes (54.8% and 77.7%), respectively, with a high abundance of monoterpene hydrocarbons, including p-cymene, γ-terpinene, α-terpinene, and α-thujene. Major oxygenated monoterpenes of MEOFl and MEOLv included carvacrol and thymol. Both MEOFl and MEOLv stimulated a transient increase in intracellular free Ca2+ concentration ([Ca2+]i) in TRPA1 but not in TRPV1 or TRPV4-transfected cells, with MEOLv being much more effective than MEOFl. Furthermore, the pure monoterpenes carvacrol, thymol, and β-myrcene activated TRPA1 but not the TRPV1 or TRPV4 channels, suggesting that these compounds represented the TRPA1-activating components of M. fistulosa essential oils. The transient increase in [Ca2+]i induced by MEOFl/MEOLv, carvacrol, β-myrcene, and thymol in TRPA1-transfected cells was blocked by a selective TRPA1 antagonist, HC-030031. Although carvacrol and thymol have been reported previously to activate the TRPA1 channels, this is the first report to show that β-myrcene is also a TRPA1 channel agonist. Finally, molecular modeling studies showed a substantial similarity between the docking poses of carvacrol, thymol, and β-myrcene in the binding site of human TRPA1. Thus, our results provide a cellular and molecular basis to explain at least part of the therapeutic properties of these essential oils, laying the foundation for prospective pharmacological studies involving TRP ion channels.
Collapse
Affiliation(s)
- Monica Ghosh
- Department of Biological Sciences, School of Biological Sciences, Kent State University, Kent, OH 44242, USA; (M.G.); (D.S.D.)
| | - Igor A. Schepetkin
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA;
| | - Gulmira Özek
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, 26470 Eskisehir, Turkey; (G.Ö.); (T.Ö.)
| | - Temel Özek
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, 26470 Eskisehir, Turkey; (G.Ö.); (T.Ö.)
- Medicinal Plant, Drug and Scientific Research and Application Center (AUBIBAM), Anadolu University, 26470 Eskişehir, Turkey
| | - Andrei I. Khlebnikov
- National Research Tomsk Polytechnic University, Tomsk 643050, Russia;
- Faculty of Chemistry, Tomsk State University, 634050 Tomsk, Russia
| | - Derek S. Damron
- Department of Biological Sciences, School of Biological Sciences, Kent State University, Kent, OH 44242, USA; (M.G.); (D.S.D.)
| | - Mark T. Quinn
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA;
| |
Collapse
|
17
|
Roles of TRP Channels in Neurological Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7289194. [PMID: 32963700 PMCID: PMC7492880 DOI: 10.1155/2020/7289194] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/02/2020] [Indexed: 11/17/2022]
Abstract
Transient receptor potential (TRP) proteins consist of a superfamily of cation channels that have been involved in diverse physiological processes in the brain as well as in the pathogenesis of neurological disease. TRP channels are widely expressed in the brain, including neurons and glial cells, as well as in the cerebral vascular endothelium and smooth muscle. Members of this channel superfamily show a wide variety of mechanisms ranging from ligand binding to voltage, physical, and chemical stimuli, implying the promising therapeutic potential of TRP in neurological diseases. In this review, we focus on the physiological functions of TRP channels in the brain and the pathological roles in neurological disorders to explore future potential neuroprotective strategies.
Collapse
|
18
|
Huang Q, Wang X, Lin X, Zhang J, You X, Shao A. The Role of Transient Receptor Potential Channels in Blood-Brain Barrier Dysfunction after Ischemic Stroke. Biomed Pharmacother 2020; 131:110647. [PMID: 32858500 DOI: 10.1016/j.biopha.2020.110647] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/11/2020] [Accepted: 08/16/2020] [Indexed: 12/25/2022] Open
Abstract
Stroke is the leading cause of long-term disability, demanding an ever-increasing need to find treatment. Transient receptor potential (TRP) channels are nonselective Ca2+-permeable channels, among which TRPC, TRPM, and TRPV are widely expressed in the brain. Dysfunction of the blood brain barrier (BBB) is a core feature of stroke and is associated with severity of injury. As studies have shown, TRP channels influence various neuronal functions by regulating the BBB. Here, we briefly review the role of TRP channel in the BBB dysfunction after stroke, and explore the therapeutic potential of TRP-targeted therapy.
Collapse
Affiliation(s)
- Qingxia Huang
- Department of Echocardiography, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xianyi Lin
- Department of anesthesiology, Sir run run shaw hospital, school of medicine, zhejiang university, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Brain Research Institute, Zhejiang University, Hangzhou, China; Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, China
| | - Xiangdong You
- Department of Echocardiography, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
19
|
Gao S, Kaudimba KK, Guo S, Zhang S, Liu T, Chen P, Wang R. Transient Receptor Potential Ankyrin Type-1 Channels as a Potential Target for the Treatment of Cardiovascular Diseases. Front Physiol 2020; 11:836. [PMID: 32903613 PMCID: PMC7438729 DOI: 10.3389/fphys.2020.00836] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 06/22/2020] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular disease is one of the chronic conditions with the highest mortality rate in the world. Underlying conditions such as hypertension, metabolic disorders, and habits like smoking are contributors to the manifestation of cardiovascular diseases. The treatment of cardiovascular diseases is inseparable from the development of drugs. Consequently, this has led to many researchers to focus on the search for effective drug targets. The transient receptor potential channel Ankyrin 1 (TRPA1) subtype is a non-selective cation channel, which belongs to the transient receptor potential (TRP) ion channel. Previous studies have shown that members of the TRP family contribute significantly to cardiovascular disease. However, many researchers have not explored the role of TRPA1 as a potential target for the treatment of cardiovascular diseases. Furthermore, recent studies revealed that TRPA1 is commonly expressed in the vascular endothelium. The endothelium is linked to the causes of some cardiovascular diseases, such as atherosclerosis, myocardial fibrosis, heart failure, and arrhythmia. The activation of TRPA1 has a positive effect on atherosclerosis, but it has a negative effect on other cardiovascular diseases such as myocardial fibrosis and heart failure. This review introduces the structural and functional characteristics of TRPA1 and its importance on vascular physiology and common cardiovascular diseases. Moreover, this review summarizes some evidence that TRPA1 is correlated to cardiovascular disease risk factors.
Collapse
Affiliation(s)
- Song Gao
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | | | - Shanshan Guo
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Shuang Zhang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China.,Institute of Sport Science, Harbin Sport University, Harbin, China
| | - Tiemin Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China.,State Key Laboratory of Genetic Engineering, Institute of Metabolism and Integrative Biology, Human Phenome Institute, Department of Endocrinology and Metabolism, and School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Peijie Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Ru Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
20
|
Hong KS, Lee MG. Endothelial Ca 2+ signaling-dependent vasodilation through transient receptor potential channels. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2020; 24:287-298. [PMID: 32587123 PMCID: PMC7317173 DOI: 10.4196/kjpp.2020.24.4.287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/03/2020] [Accepted: 04/14/2020] [Indexed: 01/18/2023]
Abstract
Ca2+ signaling of endothelial cells plays a critical role in controlling blood flow and pressure in small arteries and arterioles. As the impairment of endothelial function is closely associated with cardiovascular diseases (e.g., atherosclerosis, stroke, and hypertension), endothelial Ca2+ signaling mechanisms have received substantial attention. Increases in endothelial intracellular Ca2+ concentrations promote the synthesis and release of endothelial-derived hyperpolarizing factors (EDHFs, e.g., nitric oxide, prostacyclin, or K+ efflux) or directly result in endothelial-dependent hyperpolarization (EDH). These physiological alterations modulate vascular contractility and cause marked vasodilation in resistance arteries. Transient receptor potential (TRP) channels are nonselective cation channels that are present in the endothelium, vascular smooth muscle cells, or perivascular/sensory nerves. TRP channels are activated by diverse stimuli and are considered key biological apparatuses for the Ca2+ influx-dependent regulation of vasomotor reactivity in resistance arteries. Ca2+-permeable TRP channels, which are primarily found at spatially restricted microdomains in endothelial cells (e.g., myoendothelial projections), have a large unitary or binary conductance and contribute to EDHFs or EDH-induced vasodilation in concert with the activation of intermediate/small conductance Ca2+-sensitive K+ channels. It is likely that endothelial TRP channel dysfunction is related to the dysregulation of endothelial Ca2+ signaling and in turn gives rise to vascular-related diseases such as hypertension. Thus, investigations on the role of Ca2+ dynamics via TRP channels in endothelial cells are required to further comprehend how vascular tone or perfusion pressure are regulated in normal and pathophysiological conditions.
Collapse
Affiliation(s)
- Kwang-Seok Hong
- Department of Physical Education, College of Education, Chung-Ang University, Seoul 06974, Korea
| | - Man-Gyoon Lee
- Sports Medicine and Science, Graduate School of Physical Education, Kyung Hee University, Yongin 17104, Korea
| |
Collapse
|
21
|
MacKay CE, Leo MD, Fernández-Peña C, Hasan R, Yin W, Mata-Daboin A, Bulley S, Gammons J, Mancarella S, Jaggar JH. Intravascular flow stimulates PKD2 (polycystin-2) channels in endothelial cells to reduce blood pressure. eLife 2020; 9:56655. [PMID: 32364494 PMCID: PMC7228764 DOI: 10.7554/elife.56655] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023] Open
Abstract
PKD2 (polycystin-2, TRPP1), a TRP polycystin channel, is expressed in endothelial cells (ECs), but its physiological functions in this cell type are unclear. Here, we generated inducible, EC-specific Pkd2 knockout mice to examine vascular functions of PKD2. Data show that a broad range of intravascular flow rates stimulate EC PKD2 channels, producing vasodilation. Flow-mediated PKD2 channel activation leads to calcium influx that activates SK/IK channels and eNOS serine 1176 phosphorylation in ECs. These signaling mechanisms produce arterial hyperpolarization and vasodilation. In contrast, EC PKD2 channels do not contribute to acetylcholine-induced vasodilation, suggesting stimulus-specific function. EC-specific PKD2 knockout elevated blood pressure in mice without altering cardiac function or kidney anatomy. These data demonstrate that flow stimulates PKD2 channels in ECs, leading to SK/IK channel and eNOS activation, hyperpolarization, vasodilation and a reduction in systemic blood pressure. Thus, PKD2 channels are a major component of functional flow sensing in the vasculature.
Collapse
Affiliation(s)
- Charles E MacKay
- Department of Physiology University of Tennessee Health Science Center Memphis, Memphis, United States
| | - M Dennis Leo
- Department of Physiology University of Tennessee Health Science Center Memphis, Memphis, United States
| | - Carlos Fernández-Peña
- Department of Physiology University of Tennessee Health Science Center Memphis, Memphis, United States
| | - Raquibul Hasan
- Department of Physiology University of Tennessee Health Science Center Memphis, Memphis, United States
| | - Wen Yin
- Department of Physiology University of Tennessee Health Science Center Memphis, Memphis, United States
| | - Alejandro Mata-Daboin
- Department of Physiology University of Tennessee Health Science Center Memphis, Memphis, United States
| | - Simon Bulley
- Department of Physiology University of Tennessee Health Science Center Memphis, Memphis, United States
| | - Jesse Gammons
- Department of Physiology University of Tennessee Health Science Center Memphis, Memphis, United States
| | - Salvatore Mancarella
- Department of Physiology University of Tennessee Health Science Center Memphis, Memphis, United States
| | - Jonathan H Jaggar
- Department of Physiology University of Tennessee Health Science Center Memphis, Memphis, United States
| |
Collapse
|
22
|
The phospholipase C inhibitor U73122 is a potent agonist of the polymodal transient receptor potential ankyrin type 1 (TRPA1) receptor channel. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:177-189. [DOI: 10.1007/s00210-019-01722-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/26/2019] [Indexed: 01/07/2023]
|
23
|
Ottolini M, Hong K, Sonkusare SK. Calcium signals that determine vascular resistance. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2019; 11:e1448. [PMID: 30884210 PMCID: PMC6688910 DOI: 10.1002/wsbm.1448] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 02/07/2019] [Accepted: 02/14/2019] [Indexed: 12/19/2022]
Abstract
Small arteries in the body control vascular resistance, and therefore, blood pressure and blood flow. Endothelial and smooth muscle cells in the arterial walls respond to various stimuli by altering the vascular resistance on a moment to moment basis. Smooth muscle cells can directly influence arterial diameter by contracting or relaxing, whereas endothelial cells that line the inner walls of the arteries modulate the contractile state of surrounding smooth muscle cells. Cytosolic calcium is a key driver of endothelial and smooth muscle cell functions. Cytosolic calcium can be increased either by calcium release from intracellular stores through IP3 or ryanodine receptors, or the influx of extracellular calcium through ion channels at the cell membrane. Depending on the cell type, spatial localization, source of a calcium signal, and the calcium-sensitive target activated, a particular calcium signal can dilate or constrict the arteries. Calcium signals in the vasculature can be classified into several types based on their source, kinetics, and spatial and temporal properties. The calcium signaling mechanisms in smooth muscle and endothelial cells have been extensively studied in the native or freshly isolated cells, therefore, this review is limited to the discussions of studies in native or freshly isolated cells. This article is categorized under: Biological Mechanisms > Cell Signaling Laboratory Methods and Technologies > Imaging Models of Systems Properties and Processes > Mechanistic Models.
Collapse
Affiliation(s)
- Matteo Ottolini
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
- Department of Pharmacology, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
| | - Kwangseok Hong
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
- Department of Physical Education, Chung-Ang University, Seoul, 06974, South Korea
| | - Swapnil K. Sonkusare
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
- Department of Pharmacology, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
| |
Collapse
|
24
|
Thakore P, Earley S. Transient Receptor Potential Channels and Endothelial Cell Calcium Signaling. Compr Physiol 2019; 9:1249-1277. [PMID: 31187891 DOI: 10.1002/cphy.c180034] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The vascular endothelium is a broadly distributed and highly specialized organ. The endothelium has a number of functions including the control of blood vessels diameter through the production and release of potent vasoactive substances or direct electrical communication with underlying smooth muscle cells, regulates the permeability of the vascular barrier, stimulates the formation of new blood vessels, and influences inflammatory and thrombotic processes. Endothelial cells that make up the endothelium express a variety of cell-surface receptors and ion channels on the plasma membrane that are capable of detecting circulating hormones, neurotransmitters, oxygen tension, and shear stress across the vascular wall. Changes in these stimuli activate signaling cascades that initiate an appropriate physiological response. Increases in the global intracellular Ca2+ concentration and localized Ca2+ signals that occur within specialized subcellular microdomains are fundamentally important components of many signaling pathways in the endothelium. The transient receptor potential (TRP) channels are a superfamily of cation-permeable ion channels that act as a primary means of increasing cytosolic Ca2+ in endothelial cells. Consequently, TRP channels are vitally important for the major functions of the endothelium. In this review, we provide an in-depth discussion of Ca2+ -permeable TRP channels in the endothelium and their role in vascular regulation. © 2019 American Physiological Society. Compr Physiol 9:1249-1277, 2019.
Collapse
Affiliation(s)
- Pratish Thakore
- Department of Pharmacology, Center for Cardiovascular Research, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Scott Earley
- Department of Pharmacology, Center for Cardiovascular Research, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| |
Collapse
|
25
|
Behringer EJ, Hakim MA. Functional Interaction among K Ca and TRP Channels for Cardiovascular Physiology: Modern Perspectives on Aging and Chronic Disease. Int J Mol Sci 2019; 20:ijms20061380. [PMID: 30893836 PMCID: PMC6471369 DOI: 10.3390/ijms20061380] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/07/2019] [Accepted: 03/15/2019] [Indexed: 12/16/2022] Open
Abstract
Effective delivery of oxygen and essential nutrients to vital organs and tissues throughout the body requires adequate blood flow supplied through resistance vessels. The intimate relationship between intracellular calcium ([Ca2+]i) and regulation of membrane potential (Vm) is indispensable for maintaining blood flow regulation. In particular, Ca2+-activated K+ (KCa) channels were ascertained as transducers of elevated [Ca2+]i signals into hyperpolarization of Vm as a pathway for decreasing vascular resistance, thereby enhancing blood flow. Recent evidence also supports the reverse role for KCa channels, in which they facilitate Ca2+ influx into the cell interior through open non-selective cation (e.g., transient receptor potential; TRP) channels in accord with robust electrical (hyperpolarization) and concentration (~20,000-fold) transmembrane gradients for Ca2+. Such an arrangement supports a feed-forward activation of Vm hyperpolarization while potentially boosting production of nitric oxide. Furthermore, in vascular types expressing TRP channels but deficient in functional KCa channels (e.g., collecting lymphatic endothelium), there are profound alterations such as downstream depolarizing ionic fluxes and the absence of dynamic hyperpolarizing events. Altogether, this review is a refined set of evidence-based perspectives focused on the role of the endothelial KCa and TRP channels throughout multiple experimental animal models and vascular types. We discuss the diverse interactions among KCa and TRP channels to integrate Ca2+, oxidative, and electrical signaling in the context of cardiovascular physiology and pathology. Building from a foundation of cellular biophysical data throughout a wide and diverse compilation of significant discoveries, a translational narrative is provided for readers toward the treatment and prevention of chronic, age-related cardiovascular disease.
Collapse
Affiliation(s)
- Erik J Behringer
- Department of Basic Sciences, 11041 Campus Street, Risley Hall, Loma Linda University, Loma Linda, CA 92350, USA.
| | - Md A Hakim
- Department of Basic Sciences, 11041 Campus Street, Risley Hall, Loma Linda University, Loma Linda, CA 92350, USA.
| |
Collapse
|
26
|
A Novel Discovery: Holistic Efficacy at the Special Organ Level of Pungent Flavored Compounds from Pungent Traditional Chinese Medicine. Int J Mol Sci 2019; 20:ijms20030752. [PMID: 30754631 PMCID: PMC6387020 DOI: 10.3390/ijms20030752] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 12/25/2022] Open
Abstract
Pungent traditional Chinese medicines (TCMs) play a vital role in the clinical treatment of hepatobiliary disease, gastrointestinal diseases, cardiovascular diseases, diabetes, skin diseases and so on. Pungent TCMs have a vastness of pungent flavored (with pungent taste or smell) compounds. To elucidate the molecular mechanism of pungent flavored compounds in treating cardiovascular diseases (CVDs) and liver diseases, five pungent TCMs with the action of blood-activating and stasis-resolving (BASR) were selected. Here, an integrated systems pharmacology approach is presented for illustrating the molecular correlations between pungent flavored compounds and their holistic efficacy at the special organ level. First, we identified target proteins that are associated with pungent flavored compounds and found that these targets were functionally related to CVDs and liver diseases. Then, based on the phenotype that directly links human genes to the body parts they affect, we clustered target modules associated with pungent flavored compounds into liver and heart organs. We applied systems-based analysis to introduce a pungent flavored compound-target-pathway-organ network that clarifies mechanisms of pungent substances treating cardiovascular diseases and liver diseases by acting on the heart/liver organ. The systems pharmacology also suggests a novel systematic strategy for rational drug development from pungent TCMs in treating cardiovascular disease and associated liver diseases.
Collapse
|
27
|
Pires PW, Earley S. Neuroprotective effects of TRPA1 channels in the cerebral endothelium following ischemic stroke. eLife 2018; 7:35316. [PMID: 30239332 PMCID: PMC6177258 DOI: 10.7554/elife.35316] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 09/18/2018] [Indexed: 02/07/2023] Open
Abstract
Hypoxia and ischemia are linked to oxidative stress, which can activate the oxidant-sensitive transient receptor potential ankyrin 1 (TRPA1) channel in cerebral artery endothelial cells, leading to vasodilation. We hypothesized that TRPA1 channels in endothelial cells are activated by hypoxia-derived reactive oxygen species, leading to cerebral artery dilation and reduced ischemic damage. Using isolated cerebral arteries expressing a Ca2+ biosensor in endothelial cells, we show that 4-hydroxynonenal and hypoxia increased TRPA1 activity, detected as TRPA1 sparklets. TRPA1 activity during hypoxia was blocked by antioxidants and by TRPA1 antagonism. Hypoxia caused dilation of cerebral arteries, which was disrupted by antioxidants, TRPA1 blockade and by endothelial cell-specific Trpa1 deletion (Trpa1 ecKO mice). Loss of TRPA1 channels in endothelial cells increased cerebral infarcts, whereas TRPA1 activation with cinnamaldehyde reduced infarct in wildtype, but not Trpa1 ecKO, mice. These data suggest that endothelial TRPA1 channels are sensors of hypoxia leading to vasodilation, thereby reducing ischemic damage.
Collapse
Affiliation(s)
- Paulo Wagner Pires
- Department of Pharmacology, Center for Cardiovascular Research, University of Nevada, Reno, United States
| | - Scott Earley
- Department of Pharmacology, Center for Cardiovascular Research, University of Nevada, Reno, United States
| |
Collapse
|
28
|
Pires PW, Earley S. Redox regulation of transient receptor potential channels in the endothelium. Microcirculation 2018; 24. [PMID: 27809396 DOI: 10.1111/micc.12329] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 10/31/2016] [Indexed: 01/08/2023]
Abstract
ROS and RNS are important mediators of signaling pathways in the endothelium. Specific members of the TRP superfamily of cation channels act as important Ca2+ influx pathways in endothelial cells and are involved in endothelium-dependent vasodilation, regulation of barrier permeability, and angiogenesis. ROS and RNS can modulate the activity of certain TRP channels mainly by modifying specific cysteine residues or by stimulating the production of second messengers. In this review, we highlight the recent literature describing redox regulation of TRP channel activity in endothelial cells as well as the physiological importance of these pathways and implication for cardiovascular diseases.
Collapse
Affiliation(s)
- Paulo Wagner Pires
- Department of Pharmacology, Cardiovascular Research Center, Reno School of Medicine, University of Nevada, Reno, NV, USA
| | - Scott Earley
- Department of Pharmacology, Cardiovascular Research Center, Reno School of Medicine, University of Nevada, Reno, NV, USA
| |
Collapse
|
29
|
Fromy B, Josset-Lamaugarny A, Aimond G, Pagnon-Minot A, Marics I, Tattersall GJ, Moqrich A, Sigaudo-Roussel D. Disruption of TRPV3 Impairs Heat-Evoked Vasodilation and Thermoregulation: A Critical Role of CGRP. J Invest Dermatol 2018; 138:688-696. [DOI: 10.1016/j.jid.2017.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 09/08/2017] [Accepted: 10/08/2017] [Indexed: 12/24/2022]
|
30
|
Matin N, Pires PW, Garver H, Jackson WF, Dorrance AM. DOCA-salt hypertension impairs artery function in rat middle cerebral artery and parenchymal arterioles. Microcirculation 2018; 23:571-579. [PMID: 27588564 DOI: 10.1111/micc.12308] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 08/30/2016] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Chronic hypertension induces detrimental changes in the structure and function of surface cerebral arteries. Very little is known about PAs, which perfuse distinct neuronal populations in the cortex and may play a role in cerebrovascular disorders. We investigated the effect of DOCA-salt induced hypertension on endothelial function and artery structure in PAs and MCAs. METHODS Uninephrectomized male Sprague-Dawley rats were implanted with a subcutaneous pellet containing DOCA (150 mg/kg b.w.) and drank salt water (1% NaCl and 0.2% KCl) for 4 weeks. Sham rats were uninephrectomized and drank tap water. Vasoreactivity and passive structure in the MCAs and the PAs were assessed by pressure myography. RESULTS Both MCAs and PAs from DOCA-salt rats exhibited impaired endothelium-dependent dilation (P<.05). In the PAs, addition of NO and COX inhibitors enhanced dilation in DOCA-salt rats (P<.05), suggesting that dysfunctional NO and COX-dependent signaling could contribute to impaired endothelium-mediated dilation. MCAs from DOCA-salt rats exhibited inward remodeling (P<.05). CONCLUSIONS Hypertension-induced MCA remodeling coupled with impaired endothelium-dependent dilation in both the MCAs and PAs may exacerbate the risk of cerebrovascular accidents and the associated morbidity and mortality.
Collapse
Affiliation(s)
- Nusrat Matin
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA.
| | - Paulo W Pires
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA.,Department of Pharmacology, Center for Cardiovascular Research, University of Nevada School of Medicine, Reno, NV, USA
| | - Hannah Garver
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Anne M Dorrance
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
31
|
Zhang Q, Cao Y, Luo Q, Wang P, Shi P, Song C, E M, Ren J, Fu B, Sun H. The transient receptor potential vanilloid-3 regulates hypoxia-mediated pulmonary artery smooth muscle cells proliferation via PI3K/AKT signaling pathway. Cell Prolif 2018; 51:e12436. [PMID: 29359496 DOI: 10.1111/cpr.12436] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 12/01/2017] [Indexed: 01/01/2023] Open
Abstract
OBJECTVES Transient receptor potential vanilloid 3 (TRPV3) is a member of the TRP channels family of Ca2+ -permeant cation channels. In this study, we aim to investigate the role of TRPV3 in pulmonary vascular remodeling and PASMCs proliferation under hypoxia. MATERIALS AND METHODS The expression of TRPV3 was evaluated in patients with pulmonary arterial hypertension (PAH) and hypoxic rats, using hematoxylin and eosin (H&E) and immunohistochemistry. In vitro, MTT assay, flow cytometry, Western blotting and immunofluorescence were performed to investigate the effects of TRPV3 on proliferation of PASMCs. RESULTS We found that, in vivo, the expression of TRPV3 was increased in patients with PAH and hypoxic rats. Right ventricular hypertrophy measurements and pulmonary pathomorphology data show that the ratio of the heart weight/tibia length (HW/TL), the right ventricle/left ventricle plus septum (RV/LV+S) and the medial width of the pulmonary artery were increased in chronic hypoxic rats. Moreover, the expression of proliferating cell nuclear antigen (PCNA), Cyclin D, Cyclin E and Cyclin A, phospho-CaMKII (p-CaMKII) were induced by hypoxia. In vitro, we revealed that hypoxia promoted PASMCs viability, increased the expression of PCNA, Cyclin D, Cyclin E, Cyclin A p-CaMKII, made more cells from G0 /G1 phase to G2 /M + S phase, enhanced the microtubule formation, and increased [Ca2+ ]i , which could be suppressed by Ruthenium Red, an inhibitor of TRPV3, and TRPV3 silencing has similar effects. Furthermore, the up-regulated expression of PCNA, Cyclin D, Cyclin E and Cyclin A, the increased number of cells in G2 /M and S phase, and the enhanced activation and expression of PI3K and AKT proteins induced by hypoxia and in presence of carvacrol (an agonist of TRPV3), was significantly attenuated by incubation of LY 294002, a specific inhibitor for PI3K/AKT. CONCLUSIONS These findings suggest that TRPV3 is involved in hypoxia-induced pulmonary vascular remodeling and promotes proliferation of PASMCs and the effect is, at least in part, mediated via the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Qianlong Zhang
- Department of Physiology, Harbin Medical University-Daqing, Daqing, China
| | - Yonggang Cao
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, China
| | - Qian Luo
- Department of Physiology, Harbin Medical University-Daqing, Daqing, China
| | - Peng Wang
- Department of Physiology, Harbin Medical University-Daqing, Daqing, China
| | - Pilong Shi
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, China
| | - Chao Song
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, China
| | - Mingyao E
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, China
| | - Jing Ren
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, China
| | - Bowen Fu
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, China
| | - Hongli Sun
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, China
| |
Collapse
|
32
|
Goto K, Ohtsubo T, Kitazono T. Endothelium-Dependent Hyperpolarization (EDH) in Hypertension: The Role of Endothelial Ion Channels. Int J Mol Sci 2018; 19:E315. [PMID: 29361737 PMCID: PMC5796258 DOI: 10.3390/ijms19010315] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 12/28/2022] Open
Abstract
Upon stimulation with agonists and shear stress, the vascular endothelium of different vessels selectively releases several vasodilator factors such as nitric oxide and prostacyclin. In addition, vascular endothelial cells of many vessels regulate the contractility of the vascular smooth muscle cells through the generation of endothelium-dependent hyperpolarization (EDH). There is a general consensus that the opening of small- and intermediate-conductance Ca2+-activated K⁺ channels (SKCa and IKCa) is the initial mechanistic step for the generation of EDH. In animal models and humans, EDH and EDH-mediated relaxations are impaired during hypertension, and anti-hypertensive treatments restore such impairments. However, the underlying mechanisms of reduced EDH and its improvement by lowering blood pressure are poorly understood. Emerging evidence suggests that alterations of endothelial ion channels such as SKCa channels, inward rectifier K⁺ channels, Ca2+-activated Cl- channels, and transient receptor potential vanilloid type 4 channels contribute to the impaired EDH during hypertension. In this review, we attempt to summarize the accumulating evidence regarding the pathophysiological role of endothelial ion channels, focusing on their relationship with EDH during hypertension.
Collapse
Affiliation(s)
- Kenichi Goto
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | - Toshio Ohtsubo
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| |
Collapse
|
33
|
Britto RMD, Silva-Neto JAD, Mesquita TRR, Vasconcelos CMLD, de Almeida GKM, Jesus ICGD, Santos PHD, Souza DS, Miguel-Dos-Santos R, de Sá LA, Dos Santos FSM, Pereira-Filho RN, Albuquerque-Júnior RLC, Quintans-Júnior LJ, Guatimosim S, Lauton-Santos S. Myrtenol protects against myocardial ischemia-reperfusion injury through antioxidant and anti-apoptotic dependent mechanisms. Food Chem Toxicol 2017; 111:557-566. [PMID: 29208507 DOI: 10.1016/j.fct.2017.12.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/16/2017] [Accepted: 12/01/2017] [Indexed: 02/06/2023]
Abstract
Myrtenol is a monoterpene with multiple pharmacological activities. However, although monoterpenes have been proposed to play beneficial roles in a variety of cardiac disorders, pharmacological actions of myrtenol in the heart are not yet reported. Hence, the aim of this study was to evaluate whether myrtenol promotes cardioprotection against myocardial ischemia-reperfusion (IR) injury, and the mechanisms involved in these effects. Male Wistar rats were orally treated for seven consecutive days with myrtenol (50 mg/kg) or N-acetyl cysteine (1.200 mg/kg, NAC). Afterward, hearts were subjected to myocardial IR injury. Here, we show that the severe impairment of contractile performance induced by IR was significantly prevented by myrtenol or NAC. Moreover, myrtenol abolished aberrant electrocardiographic waveform (ST-segment elevation), as well as reduced life-threatening arrhythmias and infarct size induced by IR injury. Importantly, myrtenol fully prevented the massive increase of cardiac reactive oxygen species generation and oxidative stress damage. Accordingly, myrtenol restored the impairment of endogenous antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase and reductase) activities and balance of pro- and anti-apoptotic pathways (Bax and Bcl-2), associated with decreased apoptotic cells. Taken together, our data show that myrtenol promotes cardioprotection against IR injury through attenuation of oxidative stress and inhibition of pro-apoptotic pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Diego Santos Souza
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil
| | | | - Lucas Andrade de Sá
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil
| | | | | | | | | | - Silvia Guatimosim
- Departments of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | |
Collapse
|
34
|
Heteromeric TRPV4/TRPC1 channels mediate calcium-sensing receptor-induced nitric oxide production and vasorelaxation in rabbit mesenteric arteries. Vascul Pharmacol 2017; 96-98:53-62. [PMID: 28867591 PMCID: PMC5614111 DOI: 10.1016/j.vph.2017.08.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/30/2017] [Accepted: 08/30/2017] [Indexed: 12/11/2022]
Abstract
Stimulation of calcium-sensing receptors (CaSR) by increasing the external calcium concentration (Ca2 +]o) induces endothelium-dependent vasorelaxation through nitric oxide (NO) production and activation of intermediate Ca2 +-activated K+ currents (IKCa) channels in rabbit mesenteric arteries. The present study investigates the potential role of heteromeric TRPV4-TRPC1 channels in mediating these CaSR-induced vascular responses. Immunocytochemical and proximity ligation assays showed that TRPV4 and TRPC1 proteins were expressed and co-localised at the plasma membrane of freshly isolated endothelial cells (ECs). In wire myography studies, increasing [Ca2 +]o between 1 and 6 mM induced concentration-dependent relaxations of methoxamine (MO)-induced pre-contracted tone, which were inhibited by the TRPV4 antagonists RN1734 and HC067047, and the externally-acting TRPC1 blocking antibody T1E3. In addition, CaSR-evoked NO production in ECs measured using the fluorescent NO indicator DAF-FM was reduced by RN1734 and T1E3. In contrast, [Ca2 +]o-evoked perforated-patch IKCa currents in ECs were unaffected by RN1734 and T1E3. The TRPV4 agonist GSK1016790A (GSK) induced endothelium-dependent relaxation of MO-evoked pre-contracted tone and increased NO production, which were inhibited by the NO synthase inhibitor L-NAME, RN1734 and T1E3. GSK activated 6pS cation channel activity in cell-attached patches from ECs which was blocked by RN1734 and T1E3. These findings indicate that heteromeric TRPV4-TRPC1 channels mediate CaSR-induced vasorelaxation through NO production but not IKCa channel activation in rabbit mesenteric arteries. This further implicates CaSR-induced pathways and heteromeric TRPV4-TRPC1 channels in regulating vascular tone.
Collapse
|
35
|
Matluobi D, Araghi A, Maragheh BFA, Rezabakhsh A, Soltani S, Khaksar M, Siavashi V, Feyzi A, Bagheri HS, Rahbarghazi R, Montazersaheb S. Carvacrol promotes angiogenic paracrine potential and endothelial differentiation of human mesenchymal stem cells at low concentrations. Microvasc Res 2017; 115:20-27. [PMID: 28830763 DOI: 10.1016/j.mvr.2017.08.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/16/2017] [Accepted: 08/18/2017] [Indexed: 01/11/2023]
Abstract
OBJECTIVES Phenolic monoterpene compound, named Carvacrol, has been found to exert different biological outcomes. It has been accepted that the angiogenic activity of human mesenchymal stem cells was crucial in the pursuit of appropriate regeneration. In the current experiment, we investigated the contribution of Carvacrol on the angiogenic behavior of primary human mesenchymal stem cells. METHODS Mesenchymal stem cells were exposed to Carvacrol in a dose ranging from 25 to 200μM for 48h. We measured cell survival rate by MTT assay and migration rate by a scratch test. The oxidative status was monitored by measuring SOD, GPx activity. The endothelial differentiation was studied by evaluating the level of VE-cadherin and vWF by real-time PCR and ELISA analyses. The content of VEGF and tubulogenesis behavior was monitored in vitro. We also conducted Matrigel plug in vivo CAM assay to assess the angiogenic potential of conditioned media from human mesenchymal stem cells after exposure to Carvacrol. RESULTS Carvacrol was able to increase mesenchymal stem cell survival and migration rate (p<0.05). An increased activity of SOD was obtained while GPx activity unchanged or reduced. We confirmed the endothelial differentiation of stem cells by detecting vWF and VE-cadherin expression (p<0.05). The VEGF expression was increased and mesenchymal stem cells conditioned media improved angiogenesis tube formation in vitro (p<0.05). Moreover, histological analysis revealed an enhanced microvascular density at the site of Matrigel plug in CAM assay. CONCLUSIONS Our data shed lights on the possibility of a Carvacrol to induce angiogenesis in human mesenchymal stem cells by modulating cell differentiation and paracrine angiogenic response.
Collapse
Affiliation(s)
- Danial Matluobi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atefeh Araghi
- Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran
| | | | - Aysa Rezabakhsh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Pharmacy, Department of Pharmacology and Toxicology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sina Soltani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Khaksar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Siavashi
- Departments of Clinical Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Adel Feyzi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Hesam Saghaei Bagheri
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | |
Collapse
|
36
|
Alonso-Carbajo L, Kecskes M, Jacobs G, Pironet A, Syam N, Talavera K, Vennekens R. Muscling in on TRP channels in vascular smooth muscle cells and cardiomyocytes. Cell Calcium 2017; 66:48-61. [PMID: 28807149 DOI: 10.1016/j.ceca.2017.06.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/08/2017] [Accepted: 06/08/2017] [Indexed: 02/07/2023]
Abstract
The human TRP protein family comprises a family of 27 cation channels with diverse permeation and gating properties. The common theme is that they are very important regulators of intracellular Ca2+ signaling in diverse cell types, either by providing a Ca2+ influx pathway, or by depolarising the membrane potential, which on one hand triggers the activation of voltage-gated Ca2+ channels, and on the other limits the driving force for Ca2+ entry. Here we focus on the role of these TRP channels in vascular smooth muscle and cardiac striated muscle. We give an overview of highlights from the recent literature, and highlight the important and diverse roles of TRP channels in the pathophysiology of the cardiovascular system. The discovery of the superfamily of Transient Receptor Potential (TRP) channels has significantly enhanced our knowledge of multiple signal transduction mechanisms in cardiac muscle and vascular smooth muscle cells (VSMC). In recent years, multiple studies have provided evidence for the involvement of these channels, not only in the regulation of contraction, but also in cell proliferation and remodeling in pathological conditions. The mammalian family of TRP cation channels is composed by 28 genes which can be divided into 6 subfamilies groups based on sequence similarity: TRPC (Canonical), TRPM (Melastatin), TRPML (Mucolipins), TRPV (Vanilloid), TRPP (Policystin) and TRPA (Ankyrin-rich protein). Functional TRP channels are believed to form four-unit complexes in the plasma, each of them expressed with six transmembrane domain and intracellular N and C termini. Here we review the current knowledge on the expression of TRP channels in both muscle types, and discuss their functional properties and role in physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Lucía Alonso-Carbajo
- Laboratory of Ion Channel Research, TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Miklos Kecskes
- Laboratory of Ion Channel Research, TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Griet Jacobs
- Laboratory of Ion Channel Research, TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Andy Pironet
- Laboratory of Ion Channel Research, TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Ninda Syam
- Laboratory of Ion Channel Research, TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Karel Talavera
- Laboratory of Ion Channel Research, TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium.
| | - Rudi Vennekens
- Laboratory of Ion Channel Research, TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
37
|
Extraoral Taste Receptor Discovery: New Light on Ayurvedic Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017. [PMID: 28642799 PMCID: PMC5469997 DOI: 10.1155/2017/5435831] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
More and more research studies are revealing unexpectedly important roles of taste for health and pathogenesis of various diseases. Only recently it has been shown that taste receptors have many extraoral locations (e.g., stomach, intestines, liver, pancreas, respiratory system, heart, brain, kidney, urinary bladder, pancreas, adipose tissue, testis, and ovary), being part of a large diffuse chemosensory system. The functional implications of these taste receptors widely dispersed in various organs or tissues shed a new light on several concepts used in ayurvedic pharmacology (dravyaguna vijnana), such as taste (rasa), postdigestive effect (vipaka), qualities (guna), and energetic nature (virya). This review summarizes the significance of extraoral taste receptors and transient receptor potential (TRP) channels for ayurvedic pharmacology, as well as the biological activities of various types of phytochemical tastants from an ayurvedic perspective. The relative importance of taste (rasa), postdigestive effect (vipaka), and energetic nature (virya) as ethnopharmacological descriptors within Ayurveda boundaries will also be discussed.
Collapse
|
38
|
Wang G, Wang K. The Ca2+-Permeable Cation Transient Receptor Potential TRPV3 Channel: An Emerging Pivotal Target for Itch and Skin Diseases. Mol Pharmacol 2017; 92:193-200. [DOI: 10.1124/mol.116.107946] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/31/2017] [Indexed: 12/15/2022] Open
|
39
|
Tykocki NR, Boerman EM, Jackson WF. Smooth Muscle Ion Channels and Regulation of Vascular Tone in Resistance Arteries and Arterioles. Compr Physiol 2017; 7:485-581. [PMID: 28333380 DOI: 10.1002/cphy.c160011] [Citation(s) in RCA: 228] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vascular tone of resistance arteries and arterioles determines peripheral vascular resistance, contributing to the regulation of blood pressure and blood flow to, and within the body's tissues and organs. Ion channels in the plasma membrane and endoplasmic reticulum of vascular smooth muscle cells (SMCs) in these blood vessels importantly contribute to the regulation of intracellular Ca2+ concentration, the primary determinant of SMC contractile activity and vascular tone. Ion channels provide the main source of activator Ca2+ that determines vascular tone, and strongly contribute to setting and regulating membrane potential, which, in turn, regulates the open-state-probability of voltage gated Ca2+ channels (VGCCs), the primary source of Ca2+ in resistance artery and arteriolar SMCs. Ion channel function is also modulated by vasoconstrictors and vasodilators, contributing to all aspects of the regulation of vascular tone. This review will focus on the physiology of VGCCs, voltage-gated K+ (KV) channels, large-conductance Ca2+-activated K+ (BKCa) channels, strong-inward-rectifier K+ (KIR) channels, ATP-sensitive K+ (KATP) channels, ryanodine receptors (RyRs), inositol 1,4,5-trisphosphate receptors (IP3Rs), and a variety of transient receptor potential (TRP) channels that contribute to pressure-induced myogenic tone in resistance arteries and arterioles, the modulation of the function of these ion channels by vasoconstrictors and vasodilators, their role in the functional regulation of tissue blood flow and their dysfunction in diseases such as hypertension, obesity, and diabetes. © 2017 American Physiological Society. Compr Physiol 7:485-581, 2017.
Collapse
Affiliation(s)
- Nathan R Tykocki
- Department of Pharmacology, University of Vermont, Burlington, Vermont, USA
| | - Erika M Boerman
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
40
|
Leung SWS, Vanhoutte PM. Endothelium-dependent hyperpolarization: age, gender and blood pressure, do they matter? Acta Physiol (Oxf) 2017; 219:108-123. [PMID: 26548576 DOI: 10.1111/apha.12628] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 09/21/2015] [Accepted: 11/02/2015] [Indexed: 12/14/2022]
Abstract
Under physiological conditions, the endothelium generates vasodilator signals [prostacyclin, nitric oxide NO and endothelium-dependent hyperpolarization (EDH)], for the regulation of vascular tone. The relative importance of these two signals depends on the diameter of the blood vessels: as the diameter of the arteries decreases, the contribution of EDH to the regulation of vascular tone increases. The mechanism involved in EDH varies with species and blood vessel types; nevertheless, activation of endothelial intermediate- and small-conductance calcium-activated potassium channels (IKCa and SKCa , respectively) is characteristic of the EDH pathway. IKCa - and SKCa -mediated EDH are reduced with endothelial dysfunction, which develops with ageing and hypertension, and is less pronounced in female than in age-matched male until after menopause. Impaired EDH-mediated relaxation is related to a reduced involvement of SKCa , so that the response becomes more dependent on IKCa . The latter depends on the activation of adenosine monophosphate-activated protein kinase (AMPK) and silent information regulator T1 (SIRT1), proteins associated with the process of cellular senescence and vascular signalling in response to the female hormone. An understanding of the role of AMPK and/or SIRT1 in EDH-like responses may help identifying effective pharmacological strategies to prevent the development of vascular complications of different aetiologies.
Collapse
Affiliation(s)
- S. W. S. Leung
- Department of Pharmacology & Pharmacy; University of Hong Kong; Hong Kong Hong Kong SAR China
| | - P. M. Vanhoutte
- Department of Pharmacology & Pharmacy; University of Hong Kong; Hong Kong Hong Kong SAR China
| |
Collapse
|
41
|
Murphy TV, Kanagarajah A, Toemoe S, Bertrand PP, Grayson TH, Britton FC, Leader L, Senadheera S, Sandow SL. TRPV3 expression and vasodilator function in isolated uterine radial arteries from non-pregnant and pregnant rats. Vascul Pharmacol 2016; 83:66-77. [DOI: 10.1016/j.vph.2016.04.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 04/04/2016] [Indexed: 01/01/2023]
|
42
|
Testai L, Chericoni S, Martelli A, Flamini G, Breschi MC, Calderone V. Voltage-operated potassium (Kv) channels contribute to endothelium-dependent vasorelaxation of carvacrol on rat aorta. ACTA ACUST UNITED AC 2016; 68:1177-83. [PMID: 27334686 DOI: 10.1111/jphp.12585] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/14/2016] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Carvacrol, a monoterpene widely present in nature, is commonly used in the food industry and in cosmetics, besides to possess a plethora of pharmacological properties, among these also in vitro vasorelaxing effects and in vivo hypotensive responses. Although in rat aortic rings carvacrol evoked a vasodilatation both in the presence and in the absence of endothelium, in preparations with intact endothelial layer its vasoactive response markedly improved. METHODS This study aimed at investigating the mechanism of action responsible for the endothelial component of the carvacrol-induced vasorelaxing response observed in rat isolated aortic rings. KEY FINDINGS Pharmacological characterization led us to exclude the involvement of NO pathway (neither L-NAME, NO biosynthesis inhibitor, nor ODQ, guanylate cyclase inhibitor, was able to modify the vascular effects of carvacrol) and of arachidonic acid cascade (no inhibitor intercepting the cascade influenced the endothelial-dependent vasodilatation of the monoterpene). Moreover, endothelial TRP channels were also not involved, as capsazepine did not antagonize vasorelaxing effect. Finally, endothelial potassium channels were considered as possible targets of carvacrol; indeed, two voltage-operated potassium (Kv) channel blockers, 4-aminopyridine and quinine, significantly reduced carvacrol potency and efficacy indices. CONCLUSIONS Kv channels seem to be responsible for vascular effects of the monoterpene typical of Labiatae family.
Collapse
Affiliation(s)
- Lara Testai
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdipartimental Center of Nutraceutical Research and Food for Healthy "Nutrafood", Università di Pisa, Pisa, Italy
| | - Silvio Chericoni
- Section of Forensic Medicine, Department of "Patologia Chirurgica, Medica, Molecolare e dell'Area Critica", University of Pisa and Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdipartimental Center of Nutraceutical Research and Food for Healthy "Nutrafood", Università di Pisa, Pisa, Italy
| | - Guido Flamini
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdipartimental Center of Nutraceutical Research and Food for Healthy "Nutrafood", Università di Pisa, Pisa, Italy
| | | | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdipartimental Center of Nutraceutical Research and Food for Healthy "Nutrafood", Università di Pisa, Pisa, Italy
| |
Collapse
|
43
|
Stochastic model of endothelial TRPV4 calcium sparklets: effect of bursting and cooperativity on EDH. Biophys J 2016; 108:1566-1576. [PMID: 25809269 DOI: 10.1016/j.bpj.2015.01.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/15/2015] [Accepted: 01/27/2015] [Indexed: 01/28/2023] Open
Abstract
We examined the endothelial transient receptor vanilloid 4 (TRPV4) channel's vasodilatory signaling using mathematical modeling. The model analyzes experimental data by Sonkusare and coworkers on TRPV4-induced endothelial Ca(2+) events (sparklets). A previously developed continuum model of an endothelial and a smooth muscle cell coupled through microprojections was extended to account for the activity of a TRPV4 channel cluster. Different stochastic descriptions for the TRPV4 channel flux were examined using finite-state Markov chains. The model also took into consideration recent evidence for the colocalization of intermediate-conductance calcium-activated potassium channels (IKCa) and TRPV4 channels near the microprojections. A single TRPV4 channel opening resulted in a stochastic localized Ca(2+) increase in a small region (i.e., few μm(2) area) close to the channel. We predict micromolar Ca(2+) increases lasting for the open duration of the channel sufficient for the activation of low-affinity endothelial KCa channels. Simulations of a cluster of four TRPV4 channels incorporating burst and cooperative gating kinetics provided quantal Ca(2+) increases (i.e., steps of fixed amplitude), similar to the experimentally observed Ca(2+) sparklets. These localized Ca(2+) events result in endothelium-derived hyperpolarization (and SMC relaxation), with magnitude that depends on event frequency. The gating characteristics (bursting, cooperativity) of the TRPV4 cluster enhance Ca(2+) spread and the distance of KCa channel activation. This may amplify the EDH response by the additional recruitment of distant KCa channels.
Collapse
|
44
|
Eguchi E, Funakubo N, Tomooka K, Ohira T, Ogino K, Tanigawa T. The Effects of Aroma Foot Massage on Blood Pressure and Anxiety in Japanese Community-Dwelling Men and Women: A Crossover Randomized Controlled Trial. PLoS One 2016; 11:e0151712. [PMID: 27010201 PMCID: PMC4807074 DOI: 10.1371/journal.pone.0151712] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/03/2016] [Indexed: 12/21/2022] Open
Abstract
Objectives The aim of this study was to investigate the effects of aroma foot massage on blood pressure, anxiety, and health-related quality of life (QOL) in Japanese community-dwelling men and women using a crossover randomized controlled trial. Methods Fifty-seven eligible participants (5 men and 52 women) aged 27 to 72 were randomly divided into 2 intervention groups (group A: n = 29; group B: n = 28) to participate in aroma foot massages 12 times during the 4-week intervention period. Systolic and diastolic blood pressure (SBP and DBP, respectively), heart rate, state anxiety, and health-related QOL were measured at the baseline, 4-week follow-up, and 8-week follow-up. The effects of the aroma foot massage intervention on these factors and the proportion of participants with anxiety were analyzed using a linear mixed-effect model for a crossover design adjusted for participant and period effects. Furthermore, the relationship between the changes in SBP and state anxiety among participants with relieved anxiety was assessed using a linear regression model. Results Aroma foot massage significantly decreased the mean SBP (p = 0.02), DBP (p = 0.006), and state anxiety (p = 0.003) as well as the proportion of participants with anxiety (p = 0.003). Although it was not statistically significant (p = 0.088), aroma foot massage also increased the score of mental health-related QOL. The change in SBP had a significant and positive correlation with the change in state anxiety (p = 0.01) among participants with relieved anxiety. Conclusion The self-administered aroma foot massage intervention significantly decreased the mean SBP and DBP as well as the state anxiety score, and tended to increase the mental health-related QOL scores. The results suggest that aroma foot massage may be an easy and effective way to improve mental health and blood pressure. Trial Registration University Hospital Medical Information Network 000014260
Collapse
Affiliation(s)
- Eri Eguchi
- Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- * E-mail:
| | - Narumi Funakubo
- Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kiyohide Tomooka
- Department of Public Health, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tetsuya Ohira
- Department of Epidemiology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Keiki Ogino
- Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takeshi Tanigawa
- Department of Public Health, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
45
|
|
46
|
Pires PW, Sullivan MN, Pritchard HAT, Robinson JJ, Earley S. Unitary TRPV3 channel Ca2+ influx events elicit endothelium-dependent dilation of cerebral parenchymal arterioles. Am J Physiol Heart Circ Physiol 2015; 309:H2031-41. [PMID: 26453324 DOI: 10.1152/ajpheart.00140.2015] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 10/05/2015] [Indexed: 02/07/2023]
Abstract
Cerebral parenchymal arterioles (PA) regulate blood flow between pial arteries on the surface of the brain and the deeper microcirculation. Regulation of PA contractility differs from that of pial arteries and is not completely understood. Here, we investigated the hypothesis that the Ca(2+) permeable vanilloid transient receptor potential (TRPV) channel TRPV3 can mediate endothelium-dependent dilation of cerebral PA. Using total internal reflection fluorescence microscopy (TIRFM), we found that carvacrol, a monoterpenoid compound derived from oregano, increased the frequency of unitary Ca(2+) influx events through TRPV3 channels (TRPV3 sparklets) in endothelial cells from pial arteries and PAs. Carvacrol-induced TRPV3 sparklets were inhibited by the selective TRPV3 blocker isopentenyl pyrophosphate (IPP). TRPV3 sparklets have a greater unitary amplitude (ΔF/F0 = 0.20) than previously characterized TRPV4 (ΔF/F0 = 0.06) or TRPA1 (ΔF/F0 = 0.13) sparklets, suggesting that TRPV3-mediated Ca(2+) influx could have a robust influence on cerebrovascular tone. In pressure myography experiments, carvacrol caused dilation of cerebral PA that was blocked by IPP. Carvacrol-induced dilation was nearly abolished by removal of the endothelium and block of intermediate (IK) and small-conductance Ca(2+)-activated K(+) (SK) channels. Together, these data suggest that TRPV3 sparklets cause dilation of cerebral parenchymal arterioles by activating IK and SK channels in the endothelium.
Collapse
Affiliation(s)
- Paulo W Pires
- Department of Pharmacology, Center for Cardiovascular Research, University of Nevada School of Medicine, Reno, Nevada; and
| | - Michelle N Sullivan
- Department of Pharmacology, Center for Cardiovascular Research, University of Nevada School of Medicine, Reno, Nevada; and Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Harry A T Pritchard
- Department of Pharmacology, Center for Cardiovascular Research, University of Nevada School of Medicine, Reno, Nevada; and
| | - Jennifer J Robinson
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Scott Earley
- Department of Pharmacology, Center for Cardiovascular Research, University of Nevada School of Medicine, Reno, Nevada; and
| |
Collapse
|
47
|
Earley S, Brayden JE. Transient receptor potential channels in the vasculature. Physiol Rev 2015; 95:645-90. [PMID: 25834234 DOI: 10.1152/physrev.00026.2014] [Citation(s) in RCA: 302] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The mammalian genome encodes 28 distinct members of the transient receptor potential (TRP) superfamily of cation channels, which exhibit varying degrees of selectivity for different ionic species. Multiple TRP channels are present in all cells and are involved in diverse aspects of cellular function, including sensory perception and signal transduction. Notably, TRP channels are involved in regulating vascular function and pathophysiology, the focus of this review. TRP channels in vascular smooth muscle cells participate in regulating contractility and proliferation, whereas endothelial TRP channel activity is an important contributor to endothelium-dependent vasodilation, vascular wall permeability, and angiogenesis. TRP channels are also present in perivascular sensory neurons and astrocytic endfeet proximal to cerebral arterioles, where they participate in the regulation of vascular tone. Almost all of these functions are mediated by changes in global intracellular Ca(2+) levels or subcellular Ca(2+) signaling events. In addition to directly mediating Ca(2+) entry, TRP channels influence intracellular Ca(2+) dynamics through membrane depolarization associated with the influx of cations or through receptor- or store-operated mechanisms. Dysregulation of TRP channels is associated with vascular-related pathologies, including hypertension, neointimal injury, ischemia-reperfusion injury, pulmonary edema, and neurogenic inflammation. In this review, we briefly consider general aspects of TRP channel biology and provide an in-depth discussion of the functions of TRP channels in vascular smooth muscle cells, endothelial cells, and perivascular cells under normal and pathophysiological conditions.
Collapse
Affiliation(s)
- Scott Earley
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada; and Department of Pharmacology, University of Vermont College of Medicine, Burlington, Vermont
| | - Joseph E Brayden
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada; and Department of Pharmacology, University of Vermont College of Medicine, Burlington, Vermont
| |
Collapse
|
48
|
Peixoto-Neves D, Wang Q, Leal-Cardoso JH, Rossoni LV, Jaggar JH. Eugenol dilates mesenteric arteries and reduces systemic BP by activating endothelial cell TRPV4 channels. Br J Pharmacol 2015; 172:3484-94. [PMID: 25832173 DOI: 10.1111/bph.13156] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 01/27/2015] [Accepted: 03/15/2015] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Eugenol, a vanilloid molecule found in some dietary plants, relaxes vasculature in part via an endothelium-dependent process; however, the mechanisms involved are unclear. Here, we investigated the endothelial cell-mediated mechanism by which eugenol modulates rat mesenteric artery contractility and systemic BP. EXPERIMENTAL APPROACH The isometric tension of rat mesenteric arteries (size 200-300 μm) was measured using wire myography; non-selective cation currents (ICat ) were recorded in endothelial cells using patch clamp electrophysiology. Mean arterial pressure (MAP) and heart rate (HR) were determined in anaesthetized rats. KEY RESULTS Eugenol relaxed endothelium-intact arteries in a concentration-dependent manner and this effect was attenuated by endothelium denudation. L-NAME, a NOS inhibitor, a combination of TRAM-34 and apamin, selective blockers of intermediate and small conductance Ca(2+) -activated K(+) channels, respectively, and HC-067047, a TRPV4 channel inhibitor, but not indomethacin, a COX inhibitor, reduced eugenol-induced relaxation in endothelium-intact arteries. Eugenol activated HC-067047-sensitive ICat in mesenteric artery endothelial cells. Short interfering RNA (siRNA)-mediated TRPV4 knockdown abolished eugenol-induced ICat activation. An i.v. injection of eugenol caused an immediate, transient reduction in both MAP and HR, which was followed by prolonged, sustained hypotension in anaesthetized rats. This sustained hypotension was blocked by HC-067047. CONCLUSIONS AND IMPLICATIONS Eugenol activates TRPV4 channels in mesenteric artery endothelial cells, leading to vasorelaxation, and reduces systemic BP in vivo. Eugenol may be therapeutically useful as an antihypertensive agent and is a viable molecular candidate from which to develop second-generation TRPV4 channel activators that reduce BP.
Collapse
Affiliation(s)
- Dieniffer Peixoto-Neves
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, USA.,Laboratório de Eletrofisiologia, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | - Qian Wang
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jose H Leal-Cardoso
- Laboratório de Eletrofisiologia, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | - Luciana V Rossoni
- Laboratório de Fisiologia Vascular, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Jonathan H Jaggar
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
49
|
Five hTRPA1 Agonists Found in Indigenous Korean Mint, Agastache rugosa. PLoS One 2015; 10:e0127060. [PMID: 25978436 PMCID: PMC4433173 DOI: 10.1371/journal.pone.0127060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 04/10/2015] [Indexed: 01/09/2023] Open
Abstract
Transient receptor potential ankyrin1 (TRPA1) and transient receptor potential vanilloid 1 (TRPV1) are members of the TRP superfamily of structurally related, nonselective cation channels and mediators of several signaling pathways. Previously, we identified methyl syringate as an hTRPA1 agonist with efficacy against gastric emptying. The aim of this study was to find hTRPA1 and/or hTRPV1 activators in Agastache rugosa (Fisch. et Meyer) O. Kuntze (A.rugosa), commonly known as Korean mint to improve hTRPA1-related phenomena. An extract of the stem and leaves of A.rugosa (Labiatae) selectively activated hTRPA1 and hTRPV1. We next investigated the effects of commercially available compounds found in A.rugosa (acacetin, 4-allylanisole, p-anisaldehyde, apigenin 7-glucoside, L-carveol, β-caryophyllene, trans-p-methoxycinnamaldehyde, methyl eugenol, pachypodol, and rosmarinic acid) on cultured hTRPA1- and hTRPV1-expressing cells. Of the ten compounds, L-carveol, trans-p-methoxycinnamaldehyde, methyl eugenol, 4-allylanisole, and p-anisaldehyde selectively activated hTRPA1, with EC50 values of 189.1±26.8, 29.8±14.9, 160.2±21.9, 1535±315.7, and 546.5±73.0 μM, respectively. The activities of these compounds were effectively inhibited by the hTRPA1 antagonists, ruthenium red and HC-030031. Although the five active compounds showed weaker calcium responses than allyl isothiocyanate (EC50=7.2±1.4 μM), our results suggest that these compounds from the stem and leaves of A.rugosa are specific and selective agonists of hTRPA1.
Collapse
|
50
|
Participation of the TRP channel in the cardiovascular effects induced by carvacrol in normotensive rat. Vascul Pharmacol 2015; 67-69:48-58. [PMID: 25869504 DOI: 10.1016/j.vph.2015.02.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 02/12/2015] [Accepted: 02/16/2015] [Indexed: 11/21/2022]
Abstract
Carvacrol has been described as an agonist/antagonist of different transient receptor potential (TRP) channels and voltage-dependent calcium channels (Cavs). The aim of this study was to evaluate the role of Cav and TRP channels following carvacrol stimulation. Initially, in mesenteric artery rings carvacrol relaxed phenylephrine-induced contractions. Furthermore, carvacrol inhibited contraction elicited by CaCl2 in depolarizing nominally without Ca2+ medium and antagonized the contractions induced by S(-)-Bay K 8644 and inhibited Ca2+ currents indicating the inhibition of Ca2+ influx through L-type Cav. Additionally, carvacrol antagonized the contractions induced by CaCl2 in the presence of nifedipine/Cyclopiazonic acid/phenylephrine or nifedipine/Cyclopiazonic acid/KCl 60, suggesting a possible inhibition of calcium influx by store operated channels (SOCs), receptor operated channels (ROCs) and/or TRP channels. Interestingly, among the TRP channel blockers used, the effect induced by carvacrol was attenuated by Mg2+ and potentiated by La3+ and Gd3+, suggesting that TRP channels are involved in relaxation induced by carvacrol. Monoterpene also induced hypotension and bradycardia in non-anesthetized normotensive rats and negative inotropic and chronotropic effects. In conclusion, these results suggest that the hypotensive effect of carvacrol is probably due to bradycardia and a peripheral vasodilatation that involves, at least, the inhibition of the Ca2+ influx through Cav and TRP channels.
Collapse
|