1
|
Bjørklund G, Semenova Y, El-Ansary A, Al-Ayadhi LY. Porphyrinuria in Autism Spectrum Disorder: A Review. Curr Med Chem 2024; 31:6911-6925. [PMID: 38031776 DOI: 10.2174/0109298673259183231117073347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 10/02/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023]
Abstract
Numerous studies demonstrated that the number of children with autism spectrum disorder (ASD) has increased remarkably in the past decade. A portion of ASD etiology, however, is attributed to environmental issues and genetic disorders. We highlighted a scoping review to principally evaluate the current information on mercury exposure in ASD children and to reveal knowledge gaps. Elevated porphyrins concentration in the urinary system related to mercury exposure, such as precoproporphyrin (prcP), coproporphyrin (cP), and pentacarboxyporphyrin (5cxP), was shown in comparison with controls. Moreover, high levels of urinary porphyrins have been elevated in response to heavy metal exposure. The related pattern (increased prcP, cP, and 5cxP) with Hg exposure may be used as biomarkers in the characteristics of ASD symptoms. However, this review highlighted the data gaps because the control groups were not genderand age-matched for ASD children.
Collapse
Affiliation(s)
- Geir Bjørklund
- Department of Research, Council for Nutritional and Environmental Medicine, Mo i Rana, Norway
| | - Yuliya Semenova
- School of Medicine, Nazarbayev University, Astana, Kazakhstan
| | - Afaf El-Ansary
- Autism Center, Lotus Holistic Alternative Medical Center, Abu Dhabi, United Arab Emirates
| | - Laila Youssef Al-Ayadhi
- Department of Physiology, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
- Autism Research and Treatment Center, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Chiabrando D, Fiorito V, Petrillo S, Bertino F, Tolosano E. HEME: a neglected player in nociception? Neurosci Biobehav Rev 2021; 124:124-136. [PMID: 33545213 DOI: 10.1016/j.neubiorev.2021.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 12/16/2020] [Accepted: 01/08/2021] [Indexed: 12/12/2022]
Abstract
Despite increasing progress in the understanding of the pathophysiology of pain, current management of pain syndromes is still unsatisfactory. The recent discovery of novel pathways associated with pain insensitivity in humans represents a unique opportunity to improve our knowledge on the pathophysiology of pain. Heme metabolism recently emerged as a crucial regulator of nociception. Of note, alteration of heme metabolism has been associated with pain insensitivity as well as with acute and chronic pain in porphyric neuropathy and hemolytic diseases. However, the molecular mechanisms linking heme to the pain pathways still remain unclear. The review focuses on the major heme-regulated processes relevant for sensory neurons' maintenance, peripheral and central sensitization as well as for pain comorbidities, like anxiety and depression. By discussing the body of knowledge on the topic, we provide a novel perspective on the molecular mechanisms linking heme to nociception.
Collapse
Affiliation(s)
- Deborah Chiabrando
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy.
| | - Veronica Fiorito
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Sara Petrillo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Francesca Bertino
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Emanuela Tolosano
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| |
Collapse
|
3
|
Badawy AAB. Hypothesis: Metabolic targeting of 5-aminolevulinate synthase by tryptophan and inhibitors of heme utilisation by tryptophan 2,3-dioxygenase as potential therapies of acute hepatic porphyrias. Med Hypotheses 2019; 131:109314. [PMID: 31443750 DOI: 10.1016/j.mehy.2019.109314] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/14/2019] [Accepted: 07/19/2019] [Indexed: 12/24/2022]
Abstract
Metabolic targeting of liver 5-aminolevulinate synthase (5-ALAS) by inhibition of heme utilisation by tryptophan (Trp) 2,3-dioxygenase (TDO) or the use of tryptophan is proposed as a therapy of acute hepatic porphyrias. 5-ALAS, the rate-limiting enzyme of heme biosynthesis, is under negative feedback control by a small regulatory heme pool in the hepatic cytosol. Acute porphyric attacks, precipitated by fasting, certain hormones and some drugs, involve induction of 5-ALAS secondarily to depletion of the above pool, and the resultant elevation of 5-ALA levels initiates the abdominal and neurological symptoms of attacks. By utilising the regulatory heme, cytosolic TDO undermines the feedback control, thus allowing 5-ALAS induction to occur, e.g. upon glucocorticoid induction of TDO during fasting (starvation) and exogenous glucocorticoid administration. Currently, glucose therapy is the preferred strategy for reversing moderate attacks induced by fasting (calorie restriction), with more severe attacks being treated by intravenous heme preparations. Reversal of fasting-induced attacks by glucose is explained by the previously demonstrated reversal of increased heme utilisation by TDO. Inhibitors of this utilisation are therefore potential therapeutic targets in acute attacks and also for maintenance of a symptomless state. Existing TDO inhibitors other than glucose include allopurinol, nicotinamide and recently developed potent inhibitors such as LM10 used in cancer therapy. Based on studies in rats, the hypothesis predicts that the safety or otherwise of drugs in the hepatic porphyrias is determined by their ability to inhibit TDO utilisation of heme under basal conditions or after glucocorticoid induction or heme activation of TDO, in parallel with reciprocal changes in 5-ALAS induction. Tryptophan is also proposed as a potential therapy of acute attacks either alone or as an adjunct to the recently proposed 5-ALAS1 gene silencing. Trp increases heme biosynthesis by enhancing 5-ALA dehydratase activity and, based on a Trp-5-ALA model presented herein, Trp offers several advantages over heme therapy, namely rapid conversion of 5-ALA into heme, a greatly enhanced heme availability, a near complete inhibition of 5-ALAS induction, assumed rapid clearance of 5-ALA and hence accelerated resolution of symptoms of attacks, and finally provision of the neuroprotective metabolite kynurenic acid to neutralise the neurological symptoms. The hypothesis also addresses heme regulation in species lacking the TDO free apoenzyme and its glucocorticoid induction mechanism and proposes detailed assessment of heme biosynthesis in these species. Detailed proposals for testing the hypothesis are presented.
Collapse
Affiliation(s)
- Abdulla A-B Badawy
- Formerly School of Health Sciences, Cardiff Metropolitan University, Western Avenue, Cardiff CF5 2YB, Wales, UK.
| |
Collapse
|
4
|
Khaled EM, Meguid NA, Bjørklund G, Gouda A, Bahary MH, Hashish A, Sallam NM, Chirumbolo S, El-Bana MA. Altered urinary porphyrins and mercury exposure as biomarkers for autism severity in Egyptian children with autism spectrum disorder. Metab Brain Dis 2016; 31:1419-1426. [PMID: 27406246 DOI: 10.1007/s11011-016-9870-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 06/30/2016] [Indexed: 12/11/2022]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder that affects social, communication, and behavioral development. Recent evidence supported but also questioned the hypothetical role of compounds containing mercury (Hg) as contributors to the development of ASD. Specific alterations in the urinary excretion of porphyrin-containing ring catabolites have been associated with exposure to Hg in ASD patients. In the present study, the level of urinary porphyrins, as biomarkers of Hg toxicity in children with ASD, was evaluated, and its correlation with severity of the autistic behavior further explored. A total of 100 children was enrolled in the present study. They were classified into three groups: children with ASD (40), healthy controls (40), and healthy siblings of the ASD children (20). Children with ASD were diagnosed using DSM-IV-TR, ADI-R, and CARS tests. Urinary porphyrins were evaluated within the three groups using high-performance liquid chromatography (HPLC), after plasma evaluation of mercury (Hg) and lead (Pb) in the same groups. Results showed that children with ASD had significantly higher levels of Hg, Pb, and the porphyrins pentacarboxyporphyrin, coproporphyrin, precoproporphyrin, uroporphyrins, and hexacarboxyporphyrin compared to healthy controls and healthy siblings of the ASD children. However, there was no significant statistical difference in the level of heptacarboxyporphyrin among the three groups, while a significant positive correlation between the levels of coproporphyrin and precoproporphyrin and autism severity was observed. Mothers of ASD children showed a higher percentage of dental amalgam restorations compared to the mothers of healthy controls suggesting that high Hg levels in children with ASD may relate to the increased exposure to Hg from maternal dental amalgam during pregnancy and lactation. The results showed that the ASD children in the present study had increased blood Hg and Pb levels compared with healthy control children indicating that disordered porphyrin metabolism might interfere with the pathology associated with the autistic neurologic phenotype. The present study indicates that coproporphyrin and precoproporhyrin may be utilized as possible biomarkers for heavy metal exposure and autism severity in children with ASD.
Collapse
Affiliation(s)
- Eman M Khaled
- Department of Pediatric, Al-Azhar University, Cairo, Egypt
| | - Nagwa A Meguid
- Department of Research on Children with Special Needs, National Research Centre, Giza, Egypt
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Toften 24, 8610, Mo i Rana, Norway.
| | - Amr Gouda
- Department of Genetic Biochemistry, National Research Centre, Giza, Egypt
| | | | - Adel Hashish
- Department of Research on Children with Special Needs, National Research Centre, Giza, Egypt
| | - Nermin M Sallam
- Department of Research on Children with Special Needs, National Research Centre, Giza, Egypt
| | - Salvatore Chirumbolo
- University Laboratory of Medical Research, Department of Medicine, University of Verona, Verona, Italy
| | - Mona A El-Bana
- Department of Medical Biochemistry, National Research Centre, Giza, Egypt
| |
Collapse
|
5
|
Hooda J, Alam M, Zhang L. Measurement of Heme Synthesis Levels in Mammalian Cells. J Vis Exp 2015:e51579. [PMID: 26275174 DOI: 10.3791/51579] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Heme serves as the prosthetic group for a wide variety of proteins known as hemoproteins, such as hemoglobin, myoglobin and cytochromes. It is involved in various molecular and cellular processes such as gene transcription, translation, cell differentiation and cell proliferation. The biosynthesis levels of heme vary across different tissues and cell types and is altered in diseased conditions such as anemia, neuropathy and cancer. This technique uses [4-(14)C] 5-aminolevulinic acid ([(14)C] 5-ALA), one of the early precursors in the heme biosynthesis pathway to measure the levels of heme synthesis in mammalian cells. This assay involves incubation of cells with [(14)C] 5-ALA followed by extraction of heme and measurement of the radioactivity incorporated into heme. This procedure is accurate and quick. This method measures the relative levels of heme biosynthesis rather than the total heme content. To demonstrate the use of this technique the levels of heme biosynthesis were measured in several mammalian cell lines.
Collapse
Affiliation(s)
- Jagmohan Hooda
- Department of Molecular and Cell Biology, Center for Systems Biology, University of Texas at Dallas
| | - Maksudul Alam
- Department of Molecular and Cell Biology, Center for Systems Biology, University of Texas at Dallas
| | - Li Zhang
- Department of Molecular and Cell Biology, Center for Systems Biology, University of Texas at Dallas;
| |
Collapse
|
6
|
Woods JS, Heyer NJ, Echeverria D, Russo JE, Martin MD, Bernardo MF, Luis HS, Vaz L, Farin FM. Modification of neurobehavioral effects of mercury by a genetic polymorphism of coproporphyrinogen oxidase in children. Neurotoxicol Teratol 2012; 34:513-21. [PMID: 22765978 DOI: 10.1016/j.ntt.2012.06.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 06/22/2012] [Accepted: 06/23/2012] [Indexed: 12/15/2022]
Abstract
Mercury (Hg) is neurotoxic, and children may be particularly susceptible to this effect. A current major challenge is the identification of children who may be uniquely susceptible to Hg toxicity because of genetic disposition. We examined the hypothesis that CPOX4, a genetic variant of the heme pathway enzyme coproporphyrinogen oxidase (CPOX) that affects susceptibility to mercury toxicity in adults, also modifies the neurotoxic effects of Hg in children. Five hundred seven children, 8-12 years of age at baseline, participated in a clinical trial to evaluate the neurobehavioral effects of Hg from dental amalgam tooth fillings in children. Subjects were evaluated at baseline and at 7 subsequent annual intervals for neurobehavioral performance and urinary mercury levels. Following the completion of the clinical trial, genotyping assays for CPOX4 allelic status were performed on biological samples provided by 330 of the trial participants. Regression modeling strategies were employed to evaluate associations between CPOX4 status, Hg exposure, and neurobehavioral test outcomes. Among girls, few significant CPOX4-Hg interactions or independent main effects for Hg or CPOX4 were observed. In contrast, among boys, numerous significant interaction effects between CPOX4 and Hg were observed spanning all 5 domains of neurobehavioral performance. All underlying dose-response associations between Hg exposure and test performance were restricted to boys with the CPOX4 variant, and all of these associations were in the expected direction where increased exposure to Hg decreased performance. These findings are the first to demonstrate genetic susceptibility to the adverse neurobehavioral effects of Hg exposure in children. The paucity of responses among same-age girls with comparable Hg exposure provides evidence of sexual dimorphism in genetic susceptibility to the adverse neurobehavioral effects of Hg in children and adolescents.
Collapse
Affiliation(s)
- James S Woods
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Heyer NJ, Echeverria D, Woods JS. Disordered porphyrin metabolism: a potential biological marker for autism risk assessment. Autism Res 2012; 5:84-92. [PMID: 22298513 DOI: 10.1002/aur.236] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 10/24/2011] [Indexed: 01/19/2023]
Abstract
Autism (AUT) is a complex neurodevelopmental disorder that, together with Asperger's syndrome and Pervasive Developmental Disorder-Not Otherwise Specified (PDD-NOS), comprises the expanded classification of autistic spectrum disorder (ASD). The heterogeneity of ASD underlies the need to identify biomarkers or clinical features that can be employed to identify meaningful subtypes of ASD, define specific etiologies, and inform intervention and treatment options. Previous studies have shown that disordered porphyrin metabolism, manifested principally as significantly elevated urinary concentrations of pentacarboxyl (penta) and coproporphyrins, is commonly observed among some children with ASD. Here, we extend these observations by specifically evaluating penta and coproporphyrins as biological indicators of ASD among 76 male children comprising 30 with validated AUT, 14 with PDD-NOS, and 32 neurotypical (NT) controls. ASD children (AUT and PDD-NOS) had higher mean urinary penta (P < 0.006) and copro (P < 0.006) concentrations compared with same-aged NT children, each characterized by a number of extreme values. Using Receiver Operating Characteristic curve analysis, we evaluated the sensitivity and specificity of penta, copro, and their combined Z-scores in ASD detection. The penta sensitivity was 30% for AUT and 36% for PDD-NOS, with 94% specificity. The copro sensitivity was 33% and 14%, respectively, with 94% specificity. The combined Z-score measure had 33% and 21% sensitivity for AUT and PDD-NOS, respectively, with 100% specificity. These findings demonstrate that porphyrin measures are strong predictors of both AUT and PDD-NOS, and support the potential clinical utility of urinary porphyrin measures for identifying a subgroup of ASD subjects in whom disordered porphyrin metabolism may be a salient characteristic.
Collapse
Affiliation(s)
- Nicholas J Heyer
- Battelle Centers for Public Health Research and Evaluation, Seattle, Washington, USA
| | | | | |
Collapse
|
8
|
Ruvin Kumara VM, Wessling-Resnick M. Influence of Iron Deficiency on Olfactory Behavior in Weanling Rats. ACTA ACUST UNITED AC 2012. [PMID: 29520328 DOI: 10.4236/jbbs.2012.22020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chronically high occupational exposure to airborne metals like iron can impair olfactory function, but little is known about how low iron status modifies olfactory behavior. To investigate the influence of body iron status, weanling rats were fed a diet with low iron content (4 - 7 ppm) to induce iron deficiency anemia and olfactory behavior was compared to control rats fed an isocaloric diet sufficient in iron (210 - 220 ppm). Iron-deficient rats had prolonged exploratory time for attractive odorants in behavioral olfactory habituation/dis-habituation tests, olfactory preference tests and olfactory sensitivity tests compared with control rats. No significant differences were observed for aversive odorants between the two groups. These findings suggest that iron-dependent functions may be involved in controlling and processing of olfactory signal transduction via self and lateral inhibition such that odorant signal remains stronger for longer times prolonging exploratory activity on attractive odorants in the behavioral tests. These findings establish that iron deficiency can modify olfactory behavior.
Collapse
Affiliation(s)
- V M Ruvin Kumara
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, USA.,Department of Biochemistry, Faculty of Medicine, University of Ruhuna, Galle, Sri Lanka
| | | |
Collapse
|
9
|
|