1
|
Kamieniak M, Kośmider K, Miziak B, Czuczwar SJ. The Oxidative Stress in Epilepsy-Focus on Melatonin. Int J Mol Sci 2024; 25:12943. [PMID: 39684654 DOI: 10.3390/ijms252312943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/29/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024] Open
Abstract
Oxidative stress develops when there is an excess of oxidants leading to molecular and cellular damage. Seizure activity leads to oxidative stress and the resulting increased lipid peroxidation. Generally, antiseizure medications reduce oxidative stress, although the data on levetiracetam are ambiguous. Exogenous antioxidants (vitamin E, resveratrol, hesperidin, and curcumin) have been documented to exert an anticonvulsant effect in animal models of seizures and some recent clinical data point to curcumin as an affective adjuvant for the therapy of pediatric intractable epilepsy. Melatonin is an antioxidant with an ability to attenuate seizure activity induced by various convulsants in rodents. Its clinical effectiveness has been also confirmed in a number of clinical studies. Experimental studies point to a possibility that endogenous melatonin may possess proconvulsive activity. Moreover, some scarce clinical data seem to express this view; however, a limited number of patients were included. The anticonvulsant activity of exogenous melatonin may involve GABA-mediated inhibition, while endogenous melatonin may act as a proconvulsant due to a decrease in the brain dopaminergic transmission. Antioxidants, including melatonin, may be considered as adjuvants in the therapy of epilepsy and melatonin, in addition, in patients with epilepsy suffering from sleep disorders.
Collapse
Affiliation(s)
- Maciej Kamieniak
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Kamil Kośmider
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Barbara Miziak
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Stanisław J Czuczwar
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland
| |
Collapse
|
2
|
Rao NR, DeGulis O, Nomura T, Lee S, Hark TJ, Dynes JC, Dexter EX, Dulewicz M, Ge J, Upadhyay A, Fornasiero EF, Vassar R, Hanrieder J, Contractor A, Savas JN. Levetiracetam prevents Aβ 42 production through SV2a-dependent modulation of App processing in Alzheimer's disease models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620698. [PMID: 39554163 PMCID: PMC11565754 DOI: 10.1101/2024.10.28.620698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
In Alzheimer's disease (AD), amyloid-beta (Aβ) peptides are produced by proteolytic cleavage of the amyloid precursor protein (APP), which can occur during synaptic vesicle (SV) cycling at presynapses. Precisely how amyloidogenic APP processing may impair presynaptic proteostasis and how to therapeutically target this process remains poorly understood. Using App knock-in mouse models of early Aβ pathology, we found proteins with hampered degradation accumulate at presynaptic sites. At this mild pathological stage, amyloidogenic processing leads to accumulation of Aβ42 inside SVs. To explore if targeting SVs modulates Aβ accumulation, we investigated levetiracetam (Lev), a SV-binding small molecule drug that has shown promise in mitigating AD-related pathologies despite its mechanism of action being unclear. We discovered Lev reduces Aβ42 levels by decreasing amyloidogenic processing of APP in a SV2a-dependent manner. Lev corrects SV protein levels and cycling, which results in increased surface localization of APP, where it favors processing via the non-amyloidogenic pathway. Using metabolic stable isotopes and mass spectrometry we confirmed that Lev prevents the production of Aβ42 in vivo. In transgenic mice with aggressive pathology, electrophysiological and immunofluorescent microscopy analyses revealed that Lev treatment reduces SV cycling and minimizes synapse loss. Finally, we found that human Down syndrome brains with early Aβ pathology, have elevated levels of presynaptic proteins, confirming a comparable presynaptic deficit in human brains. Taken together, we report a mechanism that highlights the therapeutic potential of Lev to modify the early stages of AD and represent a promising strategy to prevent Aβ42 pathology before irreversible damage occurs.
Collapse
Affiliation(s)
- Nalini R. Rao
- Department of Neurology, Northwestern University Feinberg School of Medicine; Chicago, IL USA
| | - Olivia DeGulis
- Department of Neurology, Northwestern University Feinberg School of Medicine; Chicago, IL USA
| | - Toshihiro Nomura
- Department of Neuroscience, Northwestern University Feinberg School of Medicine; Chicago, IL USA
| | - SeungEun Lee
- Department of Neurology, Northwestern University Feinberg School of Medicine; Chicago, IL USA
| | - Timothy J. Hark
- Department of Neurology, Northwestern University Feinberg School of Medicine; Chicago, IL USA
| | - Justin C. Dynes
- Department of Neurology, Northwestern University Feinberg School of Medicine; Chicago, IL USA
| | - Emily X. Dexter
- Department of Neurology, Northwestern University Feinberg School of Medicine; Chicago, IL USA
| | - Maciej Dulewicz
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg; Mölndal, Sweden
| | - Junyue Ge
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg; Mölndal, Sweden
| | - Arun Upadhyay
- Department of Neurology, Northwestern University Feinberg School of Medicine; Chicago, IL USA
| | - Eugenio F. Fornasiero
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Robert Vassar
- Department of Neurology, Northwestern University Feinberg School of Medicine; Chicago, IL USA
| | - Jörg Hanrieder
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg; Mölndal, Sweden
- Department of Neurodegenerative disease, Queen Square Institute of Neurology, University College London, London, UK
| | - Anis Contractor
- Department of Neuroscience, Northwestern University Feinberg School of Medicine; Chicago, IL USA
| | - Jeffrey N. Savas
- Department of Neurology, Northwestern University Feinberg School of Medicine; Chicago, IL USA
| |
Collapse
|
3
|
Hino U, Tamura R, Kosugi K, Ezaki T, Karatsu K, Yamamoto K, Tomioka A, Toda M. Optimizing perampanel monotherapy for surgically resected brain tumors. Mol Clin Oncol 2024; 20:42. [PMID: 38756871 PMCID: PMC11097131 DOI: 10.3892/mco.2024.2740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/10/2024] [Indexed: 05/18/2024] Open
Abstract
Perampanel (PER) is an antiseizure medication (ASM) with a unique mechanism of action, which was approved in Japan for use in combination therapy in 2016 and as a monotherapy in 2020. It has exerted antitumor effects against several types of tumors in vitro. However, the efficacy of PER monotherapy for seizure control is not well-established in patients with brain tumor. In the present study, 25 patients with brain tumor treated using PER monotherapy at our institution were analyzed and compared with 45 patients treated using the most commonly prescribed ASM, levetiracetam (LEV). The PER group was younger and had a higher frequency of glioma cases. During drug administration, seizures were observed in two patients from the PER group (8.0%) and five patients from the LEV group (11.1%); however, the difference was not significant. The incidence of adverse effects did not significantly differ between the groups (12.0 and 2.2%, respectively). In the PER group, mild liver dysfunction was observed in two patients and drug rash in one. In the LEV group, a drug-induced rash was observed in one patient. PER monotherapy may be safe and effective for seizure treatment or prophylaxis in patients with brain tumor. Further large-scale clinical studies are warranted.
Collapse
Affiliation(s)
- Utaro Hino
- Department of Neurosurgery, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Ryota Tamura
- Department of Neurosurgery, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kenzo Kosugi
- Department of Neurosurgery, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Taketo Ezaki
- Department of Pharmacy, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kosuke Karatsu
- Department of Neurosurgery, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kosei Yamamoto
- Department of Neurosurgery, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Azuna Tomioka
- Department of Neurosurgery, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masahiro Toda
- Department of Neurosurgery, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
4
|
Viguier T, Agier MS, Jonville-Béra AP, Giraudeau B, Largeau B. Drug clustering to anticipate new aspects of drug safety profile: Application to gabapentinoids and other voltage-gated calcium channel ligand drugs. Br J Clin Pharmacol 2024; 90:475-482. [PMID: 37872105 DOI: 10.1111/bcp.15931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/25/2023] [Accepted: 10/08/2023] [Indexed: 10/25/2023] Open
Abstract
AIMS Gabapentin and pregabalin bind to α2-δ subunit of voltage-gated calcium channels (Cav ). Other drugs targeting Cav include cardiovascular calcium channel blockers (CCBs) and anticonvulsants (levetiracetam, ethosuximide and zonisamide). In addition to pharmacodynamics, the safety profile of gabapentinoids seems to overlap with the one of cardiovascular CCBs (oedema) and Cav -blocking anticonvulsants (suicide and ataxia). The objective of this study was to cluster the safety profile of different Cav -ligand drugs by focusing on whether gabapentinoids present a distinct adverse drug reaction (ADR) signature from cardiovascular CCBs and anticonvulsants. METHODS We extracted all ADRs with at least one significant disproportionate reporting (reporting odds ratio) related to gabapentinoids, CCBs or anticonvulsants in VigiBase. After principal component analysis preprocessing, a hierarchical ascendent classification was performed to cluster gabapentinoids and other Cav -ligand drugs that share a similar ADR signature. The robustness of the results was determined through four sensitivity analyses, varying on the dataset or the clustering method. RESULTS A total of 16 drugs and 65 ADRs were included. Gabapentinoids were in Cluster #1, which included eight other drugs (isradipine, nicardipine, lacidipine, lercanidipine, ethosuximide, levetiracetam, zonisamide and nimodipine). Cluster #2 contained two drugs (diltiazem and verapamil) and Cluster #3 contained four drugs (amlodipine, felodipine, nifedipine and nitrendipine). The clustering results were consistent in all sensitivity analyses. CONCLUSIONS The safety profile of gabapentinoids overlaps with those of some dihydropyridine CCBs and Cav -blocking anticonvulsants. These results could be used to anticipate some unidentified ADRs of gabapentinoids from information accumulated with older drugs and sharing a common molecular target and ADR signature.
Collapse
Affiliation(s)
- Thibault Viguier
- Centre Hospitalier Universitaire (CHU) de Tours, Service de Pharmacosurveillance, Centre Régional de Pharmacovigilance Centre-Val de Loire, Tours, France
| | - Marie-Sara Agier
- Centre Hospitalier Universitaire (CHU) de Tours, Service de Pharmacosurveillance, Centre Régional de Pharmacovigilance Centre-Val de Loire, Tours, France
- Université de Tours, Université de Nantes, INSERM, methodS in Patients-centered outcomes and HEalth ResEarch (SPHERE)-UMR 1246, Tours, France
| | - Annie-Pierre Jonville-Béra
- Centre Hospitalier Universitaire (CHU) de Tours, Service de Pharmacosurveillance, Centre Régional de Pharmacovigilance Centre-Val de Loire, Tours, France
- Université de Tours, Université de Nantes, INSERM, methodS in Patients-centered outcomes and HEalth ResEarch (SPHERE)-UMR 1246, Tours, France
| | - Bruno Giraudeau
- Université de Tours, Université de Nantes, INSERM, methodS in Patients-centered outcomes and HEalth ResEarch (SPHERE)-UMR 1246, Tours, France
- Centre Hospitalier Universitaire (CHU) de Tours, Centre d'investigation clinique-CIC INSERM 1415, Tours, France
| | - Bérenger Largeau
- Centre Hospitalier Universitaire (CHU) de Tours, Service de Pharmacosurveillance, Centre Régional de Pharmacovigilance Centre-Val de Loire, Tours, France
| |
Collapse
|
5
|
Fiais GA, Ferreira DSDB, de Freitas RN, da Silva LGL, Kawaguchi M, Veras ASC, Teixeira GR, Antoniali C, Dornelles RCM, Nakamune ACDMS, Fakhouri WD, Chaves-Neto AH. Assessment of the toxic effects of levetiracetam on biochemical, functional, and redox parameters of salivary glands in male Wistar rats. Toxicology 2023; 496:153615. [PMID: 37572749 DOI: 10.1016/j.tox.2023.153615] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/14/2023]
Abstract
Levetiracetam (LEV) is an anticonvulsant for epilepsy. The toxic effects of this medication in tissues have been associated with redox state imbalance, which can lead to salivary gland dysfunction. Therefore, the current work investigated the effects of LEV on the biochemical, functional, and redox parameters of the parotid and submandibular glands in rats. For this, male Wistar rats (Rattus norvegicus albinus) were randomly divided into 3 groups (n = 10/group): Control (0.9% saline solution), LEV100 (100 mg/kg), and LEV300 (300 mg/kg). After 21 consecutive days of intragastric gavage treatments, pilocarpine stimulated saliva secretion was collected for salivary biochemical analysis. The extracted salivary glands were utilized for histomorphometry and redox state analyses. Our results showed that LEV300 increased plasma hepatotoxicity markers and reduced salivary amylase activity and the acinar surface area of the parotid gland. Total oxidant capacity and oxidative damage to lipids and proteins were higher in the parotid gland, while total antioxidant capacity and uric acid levels were reduced in the submandibular gland of the LEV100 group compared to Control. On the other hand, total oxidant capacity, oxidative damage to lipids and proteins, total antioxidant capacity, and uric acid levels were lower in both salivary glands of the LEV300 group compared to Control. Superoxide dismutase and glutathione peroxidase activities were lower in the salivary glands of treated animals compared to Control. In conclusion our data suggest that treatment with LEV represents a potentially toxic agent, that contributes to drug-induced salivary gland dysfunction.
Collapse
Affiliation(s)
- Gabriela Alice Fiais
- Departmento de Ciências Básicas, Universidade Estadual Paulista (Unesp), Faculdade de Odontologia, Araçatuba, São Paulo, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, SBFis, Universidade Estadual Paulista (Unesp), Faculdade de Odontologia, Araçatuba, São Paulo, Brazil
| | | | - Rayara Nogueira de Freitas
- Departmento de Ciências Básicas, Universidade Estadual Paulista (Unesp), Faculdade de Odontologia, Araçatuba, São Paulo, Brazil; Programa de Pós-Graduação em Ciência Odontológica - Saúde Bucal da Criança, Universidade Estadual Paulista (Unesp), Faculdade de Odontologia, Araçatuba, São Paulo, Brazil
| | - Lucas Guilherme Leite da Silva
- Departmento de Ciências Básicas, Universidade Estadual Paulista (Unesp), Faculdade de Odontologia, Araçatuba, São Paulo, Brazil
| | - Marcelo Kawaguchi
- Departmento de Ciências Básicas, Universidade Estadual Paulista (Unesp), Faculdade de Odontologia, Araçatuba, São Paulo, Brazil
| | - Allice Santos Cruz Veras
- Departamento de Educação Física, Universidade Estadual Paulista (Unesp), Presidente Prudente, São Paulo, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, SBFis, Universidade Estadual Paulista (Unesp), Faculdade de Odontologia, Araçatuba, São Paulo, Brazil
| | - Giovana Rampazzo Teixeira
- Departamento de Educação Física, Universidade Estadual Paulista (Unesp), Presidente Prudente, São Paulo, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, SBFis, Universidade Estadual Paulista (Unesp), Faculdade de Odontologia, Araçatuba, São Paulo, Brazil
| | - Cristina Antoniali
- Departmento de Ciências Básicas, Universidade Estadual Paulista (Unesp), Faculdade de Odontologia, Araçatuba, São Paulo, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, SBFis, Universidade Estadual Paulista (Unesp), Faculdade de Odontologia, Araçatuba, São Paulo, Brazil
| | - Rita Cássia Menegati Dornelles
- Departmento de Ciências Básicas, Universidade Estadual Paulista (Unesp), Faculdade de Odontologia, Araçatuba, São Paulo, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, SBFis, Universidade Estadual Paulista (Unesp), Faculdade de Odontologia, Araçatuba, São Paulo, Brazil
| | - Ana Cláudia de Melo Stevanato Nakamune
- Departmento de Ciências Básicas, Universidade Estadual Paulista (Unesp), Faculdade de Odontologia, Araçatuba, São Paulo, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, SBFis, Universidade Estadual Paulista (Unesp), Faculdade de Odontologia, Araçatuba, São Paulo, Brazil
| | - Walid D Fakhouri
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, USA
| | - Antonio Hernandes Chaves-Neto
- Departmento de Ciências Básicas, Universidade Estadual Paulista (Unesp), Faculdade de Odontologia, Araçatuba, São Paulo, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, SBFis, Universidade Estadual Paulista (Unesp), Faculdade de Odontologia, Araçatuba, São Paulo, Brazil.
| |
Collapse
|
6
|
Huang WC, Peng Z, Murdock MH, Liu L, Mathys H, Davila-Velderrain J, Jiang X, Chen M, Ng AP, Kim T, Abdurrob F, Gao F, Bennett DA, Kellis M, Tsai LH. Lateral mammillary body neurons in mouse brain are disproportionately vulnerable in Alzheimer's disease. Sci Transl Med 2023; 15:eabq1019. [PMID: 37075128 PMCID: PMC10511020 DOI: 10.1126/scitranslmed.abq1019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 03/31/2023] [Indexed: 04/21/2023]
Abstract
The neural circuits governing the induction and progression of neurodegeneration and memory impairment in Alzheimer's disease (AD) are incompletely understood. The mammillary body (MB), a subcortical node of the medial limbic circuit, is one of the first brain regions to exhibit amyloid deposition in the 5xFAD mouse model of AD. Amyloid burden in the MB correlates with pathological diagnosis of AD in human postmortem brain tissue. Whether and how MB neuronal circuitry contributes to neurodegeneration and memory deficits in AD are unknown. Using 5xFAD mice and postmortem MB samples from individuals with varying degrees of AD pathology, we identified two neuronal cell types in the MB harboring distinct electrophysiological properties and long-range projections: lateral neurons and medial neurons. lateral MB neurons harbored aberrant hyperactivity and exhibited early neurodegeneration in 5xFAD mice compared with lateral MB neurons in wild-type littermates. Inducing hyperactivity in lateral MB neurons in wild-type mice impaired performance on memory tasks, whereas attenuating aberrant hyperactivity in lateral MB neurons ameliorated memory deficits in 5xFAD mice. Our findings suggest that neurodegeneration may be a result of genetically distinct, projection-specific cellular dysfunction and that dysregulated lateral MB neurons may be causally linked to memory deficits in AD.
Collapse
Affiliation(s)
- Wen-Chin Huang
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
| | - Zhuyu Peng
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
| | - Mitchell H. Murdock
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
| | - Liwang Liu
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
| | - Hansruedi Mathys
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA, 02139, USA
| | - Jose Davila-Velderrain
- Broad Institute of MIT and Harvard; Cambridge, MA, 02139, USA
- MIT Computer Science and Artificial Intelligence Laboratory; Cambridge, MA 02139, USA
| | - Xueqiao Jiang
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
| | - Maggie Chen
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
| | - Ayesha P. Ng
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
| | - TaeHyun Kim
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
| | - Fatema Abdurrob
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
| | - Fan Gao
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center; Chicago, IL 60612, USA
| | - Manolis Kellis
- Broad Institute of MIT and Harvard; Cambridge, MA, 02139, USA
- MIT Computer Science and Artificial Intelligence Laboratory; Cambridge, MA 02139, USA
| | - Li-Huei Tsai
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA, 02139, USA
| |
Collapse
|
7
|
Kośmider K, Kamieniak M, Czuczwar SJ, Miziak B. Second Generation of Antiepileptic Drugs and Oxidative Stress. Int J Mol Sci 2023; 24:ijms24043873. [PMID: 36835284 PMCID: PMC9964930 DOI: 10.3390/ijms24043873] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023] Open
Abstract
Epilepsy is a chronic disease of the central nervous system characterized by recurrent epileptic seizures. As a result of epileptic seizure or status epilepticus oxidants are excessively formed, which may be one of the causes of neuronal death. Given the role of oxidative stress in epileptogenesis, as well as the participation of this process in other neurological conditions, we decided to review the latest state of knowledge regarding the relationship between selected newer antiepileptic drugs (AEDs), also known as antiseizure drugs, and oxidative stress. The literature review indicates that drugs enhancing GABA-ergic transmission (e.g., vigabatrin, tiagabine, gabapentin, topiramate) or other antiepileptics (e.g., lamotrigine, levetiracetam) reduce neuronal oxidation markers. In particular, levetiracetam may produce ambiguous effects in this regard. However, when a GABA-enhancing drug was applied to the healthy tissue, it tended to increase oxidative stress markers in a dose-dependent manner. Studies on diazepam have shown that it exerts a neuroprotective effect in a "U-shaped" dose-dependent manner after excitotoxic or oxidative stress. Its lower concentrations are insufficient to protect against neuronal damage, while higher concentrations produce neurodegeneration. Therefore, a conclusion follows that newer AEDs, enhancing GABA-ergic neurotransmission, may act similarly to diazepam, causing neurodegeneration and oxidative stress when used in high doses.
Collapse
|
8
|
Zhang Y, Heylen L, Partoens M, Mills JD, Kaminski RM, Godard P, Gillard M, de Witte PAM, Siekierska A. Connectivity Mapping Using a Novel sv2a Loss-of-Function Zebrafish Epilepsy Model as a Powerful Strategy for Anti-epileptic Drug Discovery. Front Mol Neurosci 2022; 15:881933. [PMID: 35686059 PMCID: PMC9172968 DOI: 10.3389/fnmol.2022.881933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/08/2022] [Indexed: 12/03/2022] Open
Abstract
Synaptic vesicle glycoprotein 2A (SV2A) regulates action potential-dependent neurotransmitter release and is commonly known as the primary binding site of an approved anti-epileptic drug, levetiracetam. Although several rodent knockout models have demonstrated the importance of SV2A for functional neurotransmission, its precise physiological function and role in epilepsy pathophysiology remains to be elucidated. Here, we present a novel sv2a knockout model in zebrafish, a vertebrate with complementary advantages to rodents. We demonstrated that 6 days post fertilization homozygous sv2a–/– mutant zebrafish larvae, but not sv2a+/– and sv2a+/+ larvae, displayed locomotor hyperactivity and spontaneous epileptiform discharges, however, no major brain malformations could be observed. A partial rescue of this epileptiform brain activity could be observed after treatment with two commonly used anti-epileptic drugs, valproic acid and, surprisingly, levetiracetam. This observation indicated that additional targets, besides Sv2a, maybe are involved in the protective effects of levetiracetam against epileptic seizures. Furthermore, a transcriptome analysis provided insights into the neuropathological processes underlying the observed epileptic phenotype. While gene expression profiling revealed only one differentially expressed gene (DEG) between wildtype and sv2a+/– larvae, there were 4386 and 3535 DEGs between wildtype and sv2a–/–, and sv2a+/– and sv2a–/– larvae, respectively. Pathway and gene ontology (GO) enrichment analysis between wildtype and sv2a–/– larvae revealed several pathways and GO terms enriched amongst up- and down-regulated genes, including MAPK signaling, synaptic vesicle cycle, and extracellular matrix organization, all known to be involved in epileptogenesis and epilepsy. Importantly, we used the Connectivity map database to identify compounds with opposing gene signatures compared to the one observed in sv2a–/– larvae, to finally rescue the epileptic phenotype. Two out of three selected compounds rescued electrographic discharges in sv2a–/– larvae, while negative controls did not. Taken together, our results demonstrate that sv2a deficiency leads to increased seizure vulnerability and provide valuable insight into the functional importance of sv2a in the brain in general. Furthermore, we provided evidence that the concept of connectivity mapping represents an attractive and powerful approach in the discovery of novel compounds against epilepsy.
Collapse
Affiliation(s)
- Yifan Zhang
- Laboratory for Molecular Biodiscovery, KU Leuven, Leuven, Belgium
| | - Lise Heylen
- Laboratory for Molecular Biodiscovery, KU Leuven, Leuven, Belgium
| | - Michèle Partoens
- Laboratory for Molecular Biodiscovery, KU Leuven, Leuven, Belgium
| | - James D. Mills
- Department of Neuropathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- Chalfont Centre for Epilepsy, Chalfont St Peter, United Kingdom
| | - Rafal M. Kaminski
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
- UCB Pharma, Braine-l’Alleud, Belgium
| | | | | | - Peter A. M. de Witte
- Laboratory for Molecular Biodiscovery, KU Leuven, Leuven, Belgium
- *Correspondence: Peter A. M. de Witte,
| | - Aleksandra Siekierska
- Laboratory for Molecular Biodiscovery, KU Leuven, Leuven, Belgium
- Aleksandra Siekierska,
| |
Collapse
|
9
|
Rossi R, Arjmand S, Bærentzen SL, Gjedde A, Landau AM. Synaptic Vesicle Glycoprotein 2A: Features and Functions. Front Neurosci 2022; 16:864514. [PMID: 35573314 PMCID: PMC9096842 DOI: 10.3389/fnins.2022.864514] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/05/2022] [Indexed: 01/05/2023] Open
Abstract
In recent years, the field of neuroimaging dramatically moved forward by means of the expeditious development of specific radioligands of novel targets. Among these targets, the synaptic vesicle glycoprotein 2A (SV2A) is a transmembrane protein of synaptic vesicles, present in all synaptic terminals, irrespective of neurotransmitter content. It is involved in key functions of neurons, focused on the regulation of neurotransmitter release. The ubiquitous expression in gray matter regions of the brain is the basis of its candidacy as a marker of synaptic density. Following the development of molecules derived from the structure of the anti-epileptic drug levetiracetam, which selectively binds to SV2A, several radiolabeled markers have been synthetized to allow the study of SV2A distribution with positron emission tomography (PET). These radioligands permit the evaluation of in vivo changes of SV2A distribution held to be a potential measure of synaptic density in physiological and pathological conditions. The use of SV2A as a biomarker of synaptic density raises important questions. Despite numerous studies over the last decades, the biological function and the expressional properties of SV2A remain poorly understood. Some functions of SV2A were claimed, but have not been fully elucidated. While the expression of SV2A is ubiquitous, stronger associations between SV2A and Υ amino butyric acid (GABA)-ergic rather than glutamatergic synapses were observed in some brain structures. A further issue is the unclear interaction between SV2A and its tracers, which reflects a need to clarify what really is detected with neuroimaging tools. Here, we summarize the current knowledge of the SV2A protein and we discuss uncertain aspects of SV2A biology and physiology. As SV2A expression is ubiquitous, but likely more strongly related to a certain type of neurotransmission in particular circumstances, a more extensive knowledge of the protein would greatly facilitate the analysis and interpretation of neuroimaging results by allowing the evaluation not only of an increase or decrease of the protein level, but also of the type of neurotransmission involved.
Collapse
Affiliation(s)
- Rachele Rossi
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| | - Shokouh Arjmand
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Simone Larsen Bærentzen
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| | - Albert Gjedde
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Anne M Landau
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
10
|
Contreras-García IJ, Cárdenas-Rodríguez N, Romo-Mancillas A, Bandala C, Zamudio SR, Gómez-Manzo S, Hernández-Ochoa B, Mendoza-Torreblanca JG, Pichardo-Macías LA. Levetiracetam Mechanisms of Action: From Molecules to Systems. Pharmaceuticals (Basel) 2022; 15:ph15040475. [PMID: 35455472 PMCID: PMC9030752 DOI: 10.3390/ph15040475] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
Epilepsy is a chronic disease that affects millions of people worldwide. Antiepileptic drugs (AEDs) are used to control seizures. Even though parts of their mechanisms of action are known, there are still components that need to be studied. Therefore, the search for novel drugs, new molecular targets, and a better understanding of the mechanisms of action of existing drugs is still crucial. Levetiracetam (LEV) is an AED that has been shown to be effective in seizure control and is well-tolerable, with a novel mechanism of action through an interaction with the synaptic vesicle protein 2A (SV2A). Moreover, LEV has other molecular targets that involve calcium homeostasis, the GABAergic system, and AMPA receptors among others, that might be integrated into a single mechanism of action that could explain the antiepileptogenic, anti-inflammatory, neuroprotective, and antioxidant properties of LEV. This puts it as a possible multitarget drug with clinical applications other than for epilepsy. According to the above, the objective of this work was to carry out a comprehensive and integrative review of LEV in relation to its clinical uses, structural properties, therapeutical targets, and different molecular, genetic, and systemic action mechanisms in order to consider LEV as a candidate for drug repurposing.
Collapse
Affiliation(s)
| | - Noemí Cárdenas-Rodríguez
- Laboratorio de Neurociencias, Subdirección de Medicina Experimental, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico;
| | - Antonio Romo-Mancillas
- Laboratorio de Diseño Asistido por Computadora y Síntesis de Fármacos, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, Querétaro 76010, Mexico;
| | - Cindy Bandala
- Neurociencia Básica, Instituto Nacional de Rehabilitación LGII, Secretaría de Salud, Ciudad de México 14389, Mexico;
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Sergio R. Zamudio
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico;
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México 04530, Mexico;
| | - Beatriz Hernández-Ochoa
- Laboratorio de Inmunoquímica, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Ciudad de México 06720, Mexico;
| | - Julieta Griselda Mendoza-Torreblanca
- Laboratorio de Neurociencias, Subdirección de Medicina Experimental, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico;
- Correspondence: (J.G.M.-T.); (L.A.P.-M.); Tel.: +52-55-1084-0900 (ext. 1441) (J.G.M.-T.)
| | - Luz Adriana Pichardo-Macías
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico;
- Correspondence: (J.G.M.-T.); (L.A.P.-M.); Tel.: +52-55-1084-0900 (ext. 1441) (J.G.M.-T.)
| |
Collapse
|
11
|
Jin N, Gureviciene I, Atalay AN, Häkli S, Ziyatdinova S, Tanila H. Preclinical evaluation of drug treatment options for sleep-related epileptiform spiking in Alzheimer's disease. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12291. [PMID: 35415205 PMCID: PMC8982322 DOI: 10.1002/trc2.12291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/20/2022] [Accepted: 03/03/2022] [Indexed: 11/29/2022]
Abstract
Introduction There are no published data on prospective clinical studies on drug treatment options for sleep-related epileptiform spiking in Alzheimer's disease (AD). Methods Using video-EEG with hippocampal electrodes in 17 APP/PS1 transgenic male mice we assessed the effects of donepezil and memantine, anti-seizure drugs levetiracetam and lamotrigine, gamma-secretase inhibitor semagacestat, anti-inflammatory minocycline and adenosine receptor antagonist istradephylline on density of cortical and hippocampal spikes during sleep. Results Levetiracetam decreased the density of hippocampal giant spikes and cortical spikes. Lamotrigine reduced cortical single spikes and spike-wave discharges but dramatically increased hippocampal giant spikes. Memantine increased cortical single spikes and spike-wave discharges dose-dependently. Memantine and istradephylline decreased total sleep time while levetiracetam increased it. Lamotrigine decreased REM sleep duration. Other drugs had no significant effects. Discussion Levetiracetam appears promising for treating sleep-related epileptiform spiking in AD while lamotrigine should be used with caution. Donepezil at low doses appeared neutral but the memantine effects warrant further studies.
Collapse
Affiliation(s)
- Nanxiang Jin
- A. I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFinland
| | - Irina Gureviciene
- A. I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFinland
| | - Aysu Naz Atalay
- A. I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFinland
| | - Sara Häkli
- A. I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFinland
| | - Sofya Ziyatdinova
- A. I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFinland
| | - Heikki Tanila
- A. I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFinland
| |
Collapse
|
12
|
Alavi MS, Fanoudi S, Hosseini M, Sadeghnia HR. Beneficial effects of levetiracetam in streptozotocin-induced rat model of Alzheimer's disease. Metab Brain Dis 2022; 37:689-700. [PMID: 35098412 DOI: 10.1007/s11011-021-00888-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/05/2021] [Indexed: 10/19/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder among the elderly. In the light of increasing AD prevalence and lack of effective treatment, new strategies to prevent or reverse this condition are needed. Levetiracetam (LEV) is a newer antiepileptic drug that is commonly used to treat certain types of seizures. Researches indicated that LEV has several other pharmacological activities, including improvement of cognitive function. In this study, the recovery effects of chronic (28 days) administration of LEV (50, 100, and 150 mg/kg, ip) on cognitive deficits caused by the intracerebroventricular (icv) injection of streptozotocin (STZ), as a model for sporadic AD, were evaluated in rats. We also considered the protective effects of LEV against hippocampal cell loss, oxidative damage, acetylcholinesterase (AChE) activity, neuroinflammation, and tauopathy caused by STZ. LEV (100 and 150 mg/kg) significantly attenuated the STZ-induced learning and memory impairments in the passive avoidance and Morris water maze (MWM) tasks. In addition, LEV suppressed STZ-induced hippocampal neuronal loss, while restored alterations in the redox status (lipid peroxides and glutathione), AChE activity, proinflammatory cytokines (IL-1β, IL-6, TNF-α), and hyperphosphorylation of tau linked to STZ administration. In conclusion, our study demonstrated that LEV alleviated hippocampal cell death and memory deficits in STZ-AD rats, through mitigating oxidative damage, suppression of proinflammatory cytokines expression, and inhibition of abnormal tau hyperphosphorylation.
Collapse
Affiliation(s)
- Mohaddeseh Sadat Alavi
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sahar Fanoudi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid R Sadeghnia
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
13
|
Alan T. Antiseizure medication discovery: Recent and future paradigm shifts. Epilepsia Open 2022; 7 Suppl 1:S133-S141. [PMID: 35090197 PMCID: PMC9340309 DOI: 10.1002/epi4.12581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 11/06/2022] Open
Abstract
Despite the ever-increasing number of available options for the treatment of epilepsies and the remarkable advances on the understanding of their pathophysiology, the proportion of refractory patients has remained approximately unmodified during the last 100 years. How efficient are we translating positive outcomes from basic research to clinical trials and/or the clinical scenario? It is possible that fresh thinking and exploration of new paradigms is required to arrive at truly novel therapeutic solutions, as seemingly proven by recently approved first-in-class antiseizure medications and drug candidates undergoing late clinical trials. Here, the author discusses some approximations in line with the network pharmacology philosophy, which may result in highly innovative (and, hopefully, safer and/or more efficacious) medications for the control of seizures, as embodied with some recent examples in the field, namely tailored multi-target agents and low-affinity ligands.
Collapse
Affiliation(s)
- Talevi Alan
- Laboratory of Bioactive Research and Development (LIDeB), Faculty of exact Sciences, University of La Plata (UNLP), 47 & 15, La Plata (B1900AJK), Buenos Aires, Argentina
| |
Collapse
|
14
|
Keshavarzi A, Sharifi A, Jahangard L, Soltanian A, Brühl AB, Ahmadpanah M, Brand S. Levetiracetam as an Adjunctive Treatment for Mania: A Double-Blind, Randomized, Placebo-Controlled Trial. Neuropsychobiology 2022; 81:192-203. [PMID: 34979513 PMCID: PMC9227682 DOI: 10.1159/000520457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/07/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Levetiracetam is an anticonvulsant with a low side effect profile and favorable properties for individuals with bipolar I disorder during their manic phase. Despite initial promising results until about 2008, it appears that this track of research has not been followed-up. To counter this, we tested the influence of adjuvant levetiracetam on acute mania, compared to placebo. More specifically, we performed a randomized, double-blind, placebo-controlled clinical trial among inpatients with bipolar disorder I during their acute phase of mania. METHODS A total of 72 inpatients (mean age: 33.98 years; 23.6% females) with diagnosed bipolar disorder I and during their acute manic phase were randomly assigned either to the adjuvant levetiracetam (250 mg to a maximum of 1,500 mg) or to the placebo condition. Standard medication was lithium at therapeutic dosages. At baseline, participants completed a series of self-rating questionnaires covering sociodemographic information and subjective sleep. Subjective sleep was re-assessed 24 days later at the end of the study. Experts rated participants' acute state of mania with the Young Mania Rating Scale at baseline and at day 12 and day 24. Participants' cognitive performance was assessed at baseline and at day 24 at the end of the study. RESULTS Over time, mania scores significantly decreased (large effect size), but more so in the levetiracetam condition, compared to the placebo condition (medium effect size). Likewise, over time, subjective sleep improved (large effect size), but more so in the levetiracetam condition, compared to the placebo condition (large effect size). Over time, cognitive performance improved (large effect size), irrespective of the study condition. CONCLUSIONS Compared to placebo, adjuvant levetiracetam to lithium improved symptoms of mania, as rated by experts, and subjective sleep quality. Adjuvant levetiracetam had no further favorable (or detrimental) impact on cognitive performance.
Collapse
Affiliation(s)
- Amir Keshavarzi
- Behavioral Disorders and Substances Abuse Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Aziz Sharifi
- Behavioral Disorders and Substances Abuse Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Leila Jahangard
- Behavioral Disorders and Substances Abuse Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Soltanian
- Department of Biostatistics, School of Public Health, Modeling of Non-Communicable Diseases Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Annette Beatrix Brühl
- Center for Affective, Stress and Sleep Disorders (ZASS), Psychiatric University Hospital Basel, Basel, Switzerland
| | - Mohammad Ahmadpanah
- Behavioral Disorders and Substances Abuse Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Serge Brand
- Center for Affective, Stress and Sleep Disorders (ZASS), Psychiatric University Hospital Basel, Basel, Switzerland
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Substance Abuse Prevention Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Division of Sport Science and Psychosocial Health, Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Seystahl K, Oppong FB, Le Rhun E, Hertler C, Stupp R, Nabors B, Chinot O, Preusser M, Gorlia T, Weller M. Associations of levetiracetam use with the safety and tolerability profile of chemoradiotherapy for patients with newly diagnosed glioblastoma. Neurooncol Adv 2022; 4:vdac112. [PMID: 35950086 PMCID: PMC9356690 DOI: 10.1093/noajnl/vdac112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Background
Levetiracetam (LEV) is one of the most frequently used antiepileptic drugs (AED) for brain tumor patients with seizures. We hypothesized that toxicity of LEV and temozolomide-based chemoradiotherapy may overlap.
Methods
Using a pooled cohort of patients with newly diagnosed glioblastoma included in clinical trials prior to chemoradiotherapy (CENTRIC, CORE, AVAglio) or prior to maintenance therapy (ACT-IV), we tested associations of hematologic toxicity, nausea or emesis, fatigue, and psychiatric adverse events during concomitant and maintenance treatment with the use of LEV alone or with other AED versus other AED alone or in combination versus no AED use at the start of chemoradiotherapy and of maintenance treatment.
Results
Of 1681 and 2020 patients who started concomitant chemoradiotherapy and maintenance temozolomide, respectively, 473 and 714 patients (28.1% and 35.3%) were treated with a LEV-containing regimen, 538 and 475 patients (32.0% and 23.5%) with other AED, and 670 and 831 patients (39.9% and 41.1%) had no AED. LEV was associated with higher risk of psychiatric adverse events during concomitant treatment in univariable and multivariable analyses (RR 1.86 and 1.88, P < .001) while there were no associations with hematologic toxicity, nausea or emesis, or fatigue. LEV was associated with reduced risk of nausea or emesis during maintenance treatment in multivariable analysis (HR = 0.80, P = .017) while there were no associations with hematologic toxicity, fatigue, or psychiatric adverse events.
Conclusions
LEV is not associated with reduced tolerability of chemoradiotherapy in patients with glioblastoma regarding hematologic toxicity and fatigue. Antiemetic properties of LEV may be beneficial during maintenance temozolomide.
Collapse
Affiliation(s)
- Katharina Seystahl
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich , Zurich , Switzerland
| | | | - Emilie Le Rhun
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich , Zurich , Switzerland
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich , Zurich , Switzerland
| | - Caroline Hertler
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich , Zurich , Switzerland
| | - Roger Stupp
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center and Departments of Neurosurgery and Neurology, Northwestern University Feinberg School of Medicine , Chicago, IL, USA
| | - Burt Nabors
- University of Alabama at Birmingham, Department of Neurology, Division of Neuro-Oncology , Birmingham, AL , USA
| | - Olivier Chinot
- Aix-Marseille University, AP-HM, Service de Neuro-Oncologie , CHU Timone, Marseille , France
| | - Matthias Preusser
- Division of Oncology, Department of Medicine 1, Medical University of Vienna , Vienna , Austria
| | | | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich , Zurich , Switzerland
| |
Collapse
|
16
|
Guan PP, Cao LL, Yang Y, Wang P. Calcium Ions Aggravate Alzheimer's Disease Through the Aberrant Activation of Neuronal Networks, Leading to Synaptic and Cognitive Deficits. Front Mol Neurosci 2021; 14:757515. [PMID: 34924952 PMCID: PMC8674839 DOI: 10.3389/fnmol.2021.757515] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/04/2021] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease that is characterized by the production and deposition of β-amyloid protein (Aβ) and hyperphosphorylated tau, leading to the formation of β-amyloid plaques (APs) and neurofibrillary tangles (NFTs). Although calcium ions (Ca2+) promote the formation of APs and NFTs, no systematic review of the mechanisms by which Ca2+ affects the development and progression of AD has been published. Therefore, the current review aimed to fill the gaps between elevated Ca2+ levels and the pathogenesis of AD. Specifically, we mainly focus on the molecular mechanisms by which Ca2+ affects the neuronal networks of neuroinflammation, neuronal injury, neurogenesis, neurotoxicity, neuroprotection, and autophagy. Furthermore, the roles of Ca2+ transporters located in the cell membrane, endoplasmic reticulum (ER), mitochondria and lysosome in mediating the effects of Ca2+ on activating neuronal networks that ultimately contribute to the development and progression of AD are discussed. Finally, the drug candidates derived from herbs used as food or seasoning in Chinese daily life are summarized to provide a theoretical basis for improving the clinical treatment of AD.
Collapse
Affiliation(s)
- Pei-Pei Guan
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Long-Long Cao
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yi Yang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Pu Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
17
|
The potential roles of excitatory-inhibitory imbalances and the repressor element-1 silencing transcription factor in aging and aging-associated diseases. Mol Cell Neurosci 2021; 117:103683. [PMID: 34775008 DOI: 10.1016/j.mcn.2021.103683] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 12/28/2022] Open
Abstract
Disruptions to the central excitatory-inhibitory (E/I) balance are thought to be related to aging and underlie a host of neural pathologies, including Alzheimer's disease. Aging may induce an increase in excitatory signaling, causing an E/I imbalance, which has been linked to shorter lifespans in mice, flies, and worms. In humans, extended longevity correlates to greater repression of genes involved in excitatory neurotransmission. The repressor element-1 silencing transcription factor (REST) is a master regulator in neural cells and is believed to be upregulated with senescent stimuli, whereupon it counters hyperexcitability, insulin/insulin-like signaling pathway activity, oxidative stress, and neurodegeneration. This review examines the putative mechanisms that distort the E/I balance with aging and neurodegeneration, and the putative roles of REST in maintaining neuronal homeostasis.
Collapse
|
18
|
Xu R, Xie ME, Jackson CM. Trigeminal Neuralgia: Current Approaches and Emerging Interventions. J Pain Res 2021; 14:3437-3463. [PMID: 34764686 PMCID: PMC8572857 DOI: 10.2147/jpr.s331036] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/13/2021] [Indexed: 12/22/2022] Open
Abstract
Trigeminal neuralgia (TN) has been described in the literature as one of the most debilitating presentations of orofacial pain. This review summarizes over 150 years of collective clinical experience in the medical and surgical treatment of TN. Fundamentally, TN remains a clinical diagnosis that must be distinguished from other types of trigeminal neuropathic pain and/or facial pain associated with other neuralgias or headache syndromes. What is increasingly clear is that there is no catch-all medical or surgical intervention that is effective for all patients with trigeminal neuralgia, likely reflective of the fact that TN is likely a heterogenous group of disorders that jointly manifests in facial pain. The first-line treatment for TN remains anticonvulsant medical therapy. Patients who fail this have a range of surgical options available to them. In general, microvascular decompression is a safe and effective procedure with immediate and durable outcomes. Patients who are unable to tolerate general anesthesia or whose medical comorbidities preclude a suboccipital craniectomy may benefit from percutaneous methodologies including glycerol or radiofrequency ablation, or both. For patients with bleeding diathesis due to blood thinning medications who are ineligible for invasive procedures, or for those who are unwilling to undergo open surgical procedures, radiosurgery may be an excellent option-provided the patient understands that maximum pain relief will take on the order of months to achieve. Finally, peripheral neurectomies continue to provide an inexpensive and resource-sparing alternative to pain relief for patients in locations with limited economic and medical resources. Ultimately, elucidation of the molecular mechanisms underlying trigeminal neuralgia will pave the way for novel, more effective and less invasive therapies.
Collapse
Affiliation(s)
- Risheng Xu
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael E Xie
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher M Jackson
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
19
|
Sanad MH, Eyssa HM, Marzook FA, Farag AB, Rizvi SFA, Mandal SK, Patnaik SS, Fouzy ASM, Bassem SA, Verpoort F. Radiosynthesis and Biological Evaluation of 99mTc Nitrido-Levetiracetam as a Brain Imaging Agent. RADIOCHEMISTRY 2021. [DOI: 10.1134/s106636222105012x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
20
|
Suo G, Cao X, Zheng Y, Li H, Zhang Q, Tang J, Wu Y. A de novo nonsense mutation of STXBP1 causes early-onset epileptic encephalopathy. Epilepsy Behav 2021; 123:108245. [PMID: 34390894 DOI: 10.1016/j.yebeh.2021.108245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 01/16/2023]
Abstract
Mutations in syntaxin-binding protein 1, STXBP1 (also known as MUNC18-1), are linked to multiple neurodevelopmental disorders, including severe early-onset epileptic encephalopathies (EOEEs). A de novo nonsense mutation of STXBP1 (c. 863G > A, p. W288X) was found in a patient diagnosed with EOEE at the age of 17 days. The electroencephalogram (EEG) showed sharp waves and spikes, while brain magnetic resonance imaging was normal. We generated a zebrafish EOEE model by overexpressing mutant STXBP1(W288X) and studied the behavioral changes further to understand the mechanism of W288X mutation in epileptogenesis. In addition, effective antiepileptic drugs were screened in the zebrafish model. Zebrafish STXBP1 homologs were highly conserved and prominently expressed in the larval zebrafish brain. The Tg(hSTXBP1W288X) zebrafish larvae exhibited hyperactivity compared with the wild-type (WT) controls. The expression of STXBP1 decreased during the development course from 1 to 5 days post fertilization. Spontaneous seizures and increased c-fos expression were observed in the mutant zebrafish larvae. The susceptibility of Tg(hSTXBP1W288X) zebrafish to pentylenetetrazol challenge also dramatically increased. Levetiracetam, clonazepam, and topiramate showed antiepileptic effects in the Tg(hSTXBP1W288X) larvae to different extents. Our findings in the newly generated mutant line of zebrafish suggested that zebrafish recapitulated clinical phenotypes associated with human STXBP1 mutation, which provided an appropriate in vivo model for epilepsy research.
Collapse
Affiliation(s)
- Guihai Suo
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, China; Department of Neurology, Children's Hospital of Soochow University, Suzhou, China
| | - Xing Cao
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, China
| | - Yuqin Zheng
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, China
| | - Haiying Li
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, China
| | - Qi Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jihong Tang
- Department of Neurology, Children's Hospital of Soochow University, Suzhou, China
| | - Youjia Wu
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
21
|
Thomsen MB, Jacobsen J, Lillethorup TP, Schacht AC, Simonsen M, Romero-Ramos M, Brooks DJ, Landau AM. In vivo imaging of synaptic SV2A protein density in healthy and striatal-lesioned rats with [11C]UCB-J PET. J Cereb Blood Flow Metab 2021; 41:819-830. [PMID: 32538280 PMCID: PMC7983510 DOI: 10.1177/0271678x20931140] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 12/30/2022]
Abstract
The number of functionally active synapses provides a measure of neural integrity, with reductions observed in neurodegenerative disorders. [11C]UCB-J binds to synaptic vesicle 2A (SV2A) transmembrane protein located in secretory vesicles. We aimed to assess [11C]UCB-J PET as an in vivo biomarker of regional cerebral synaptic SV2A density in rat lesion models of neurodegeneration. Healthy anesthetized rats had [11C]UCB-J PET and arterial blood sampling. We compared different models describing [11C]UCB-J brain uptake kinetics to determine its regional distribution. Blocking studies were performed with levetiracetam (LEV), an antiepileptic SV2A antagonist. Tracer binding was measured in rodent unilateral acute lesion models of Parkinsonism and Huntington's disease, induced with 6-hydroxydopamine (6-OHDA) and quinolinic acid (QA), respectively. [3H]UCB-J autoradiography was performed in postmortem tissue. Rat brain showed high and fast [11C]UCB-J uptake and washout with up to 80% blockade by LEV. [11C]UCB-J PET showed a 6.2% decrease in ipsilateral striatal SV2A binding after 6-OHDA and 39.3% and 55.1% decreases after moderate and high dose QA confirmed by autoradiography. In conclusion, [11C]UCB-J PET provides a good in vivo marker of synaptic SV2A density which can potentially be followed longitudinally along with synaptic responses to putative neuroprotective agents in models of neurodegeneration.
Collapse
Affiliation(s)
- Majken B Thomsen
- Department of Nuclear Medicine and PET Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jan Jacobsen
- Department of Nuclear Medicine and PET Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Thea P Lillethorup
- Department of Nuclear Medicine and PET Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anna C Schacht
- Department of Nuclear Medicine and PET Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mette Simonsen
- Department of Nuclear Medicine and PET Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - David J Brooks
- Department of Nuclear Medicine and PET Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Translational and Clinical Research Institute, Newcastle upon Tyne University, Newcastle upon Tyne, UK
| | - Anne M Landau
- Department of Nuclear Medicine and PET Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
22
|
Calame DG, Herman I, Riviello JJ. A de novo heterozygous rare variant in SV2A causes epilepsy and levetiracetam-induced drug-resistant status epilepticus. Epilepsy Behav Rep 2021; 15:100425. [PMID: 33554103 PMCID: PMC7844124 DOI: 10.1016/j.ebr.2020.100425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 11/01/2022] Open
Abstract
SV2A encodes a neuronal synaptic vesicle glycoprotein essential for neurotransmitter release. Altered SV2A function leads to epilepsy in animal models, yet only two reports of human variants have linked SV2A to syndromic drug-resistant epileptic encephalopathies and epilepsy. SV2A is also the binding site for the commonly used antiseizure medication levetiracetam (LEV). However, information about how rare SV2A variants influence LEV response is lacking. Here, we report a two-year-old child with new-onset epilepsy found to have a de novo heterozygous rare variant in SV2A (NM_014849.5:c.1978G>A;p.Gly660Arg) who developed refractory status epilepticus after escalation of LEV treatment for initial baseline seizure control. This report provides additional evidence that monoallelic pathogenic SV2A variants cause epilepsy and that genetic variation in SV2A could lead to paradoxical seizure worsening when treated with LEV.
Collapse
Affiliation(s)
- Daniel G Calame
- Department of Pediatrics, Section of Pediatric Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX 77030, United States
| | - Isabella Herman
- Department of Pediatrics, Section of Pediatric Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX 77030, United States
| | - James J Riviello
- Department of Pediatrics, Section of Pediatric Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX 77030, United States
| |
Collapse
|
23
|
Hector A, Brouillette J. Hyperactivity Induced by Soluble Amyloid-β Oligomers in the Early Stages of Alzheimer's Disease. Front Mol Neurosci 2021; 13:600084. [PMID: 33488358 PMCID: PMC7817907 DOI: 10.3389/fnmol.2020.600084] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022] Open
Abstract
Soluble amyloid-beta oligomers (Aβo) start to accumulate in the human brain one to two decades before any clinical symptoms of Alzheimer's disease (AD) and are implicated in synapse loss, one of the best predictors of memory decline that characterize the illness. Cognitive impairment in AD was traditionally thought to result from a reduction in synaptic activity which ultimately induces neurodegeneration. More recent evidence indicates that in the early stages of AD synaptic failure is, at least partly, induced by neuronal hyperactivity rather than hypoactivity. Here, we review the growing body of evidence supporting the implication of soluble Aβo on the induction of neuronal hyperactivity in AD animal models, in vitro, and in humans. We then discuss the impact of Aβo-induced hyperactivity on memory performance, cell death, epileptiform activity, gamma oscillations, and slow wave activity. We provide an overview of the cellular and molecular mechanisms that are emerging to explain how Aβo induce neuronal hyperactivity. We conclude by providing an outlook on the impact of hyperactivity for the development of disease-modifying interventions at the onset of AD.
Collapse
Affiliation(s)
- Audrey Hector
- Department of Pharmacology and Physiology, Hôpital du Sacré-Cœur de Montréal Research Center, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal (CIUSSS-NIM), Université de Montréal, Montreal, QC, Canada
| | - Jonathan Brouillette
- Department of Pharmacology and Physiology, Hôpital du Sacré-Cœur de Montréal Research Center, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal (CIUSSS-NIM), Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
24
|
Abstract
Diagnosis and treatment of disease demand a sound understanding of the underlying mechanisms, determining any Achilles' heel that can be targeted in effective therapies. Throughout history, this endeavour to decipher the origin and mechanism of transformation of a normal cell into cancer has led to various theories-from cancer as a curse to an understanding at the level of single-cell heterogeneity, meaning even among a single sub-type of cancer there are myriad molecular challenges to overcome. With increasing insight into cancer genetics and biology, the disease has become ever more complex to understand. The complexity of cancer as a disease was distilled into key traits by Hanahan and Weinberg in their seminal 'Hallmarks of Cancer' reviews. This lucid conceptualization of complex cancer biology is widely accepted and has helped advance cancer therapeutics by targeting the various hallmarks but, with the advancement in technologies, there is greater granularity in how we view cancer as a disease, and the additional understanding over the past decade requires us to revisit the hallmarks of cancer. Based on extensive study of the cancer research literature, we propose four novel hallmarks of cancer, namely, the ability of cells to regress from a specific specialized functional state, epigenetic changes that can affect gene expression, the role of microorganisms and neuronal signalling, to be included in the hallmark conceptualization along with evidence of various means to exploit them therapeutically.
Collapse
Affiliation(s)
- Sasi S. Senga
- Centre for Tumour Biology, Barts Cancer Institute, Queen
Mary University of London, London EC1M
6BQ, UK
| | - Richard P. Grose
- Centre for Tumour Biology, Barts Cancer Institute, Queen
Mary University of London, London EC1M
6BQ, UK
| |
Collapse
|
25
|
Ca 2+ Dyshomeostasis Disrupts Neuronal and Synaptic Function in Alzheimer's Disease. Cells 2020; 9:cells9122655. [PMID: 33321866 PMCID: PMC7763805 DOI: 10.3390/cells9122655] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023] Open
Abstract
Ca2+ homeostasis is essential for multiple neuronal functions and thus, Ca2+ dyshomeostasis can lead to widespread impairment of cellular and synaptic signaling, subsequently contributing to dementia and Alzheimer's disease (AD). While numerous studies implicate Ca2+ mishandling in AD, the cellular basis for loss of cognitive function remains under investigation. The process of synaptic degradation and degeneration in AD is slow, and constitutes a series of maladaptive processes each contributing to a further destabilization of the Ca2+ homeostatic machinery. Ca2+ homeostasis involves precise maintenance of cytosolic Ca2+ levels, despite extracellular influx via multiple synaptic Ca2+ channels, and intracellular release via organelles such as the endoplasmic reticulum (ER) via ryanodine receptor (RyRs) and IP3R, lysosomes via transient receptor potential mucolipin channel (TRPML) and two pore channel (TPC), and mitochondria via the permeability transition pore (PTP). Furthermore, functioning of these organelles relies upon regulated inter-organelle Ca2+ handling, with aberrant signaling resulting in synaptic dysfunction, protein mishandling, oxidative stress and defective bioenergetics, among other consequences consistent with AD. With few effective treatments currently available to mitigate AD, the past few years have seen a significant increase in the study of synaptic and cellular mechanisms as drivers of AD, including Ca2+ dyshomeostasis. Here, we detail some key findings and discuss implications for future AD treatments.
Collapse
|
26
|
Osuntokun OS, Akinsomisoye SO, Olayiwola G, Adedokun KI, Oladokun OO. Carbamazepine adversely altered the pituitary-testicular axis with resultant reproductive dysfunctions than levetiracetam or carbamazepine-levetiracetam adjuvant treatment in male Wistar rat. Andrologia 2020; 52:e13871. [PMID: 33126292 DOI: 10.1111/and.13871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/06/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022] Open
Abstract
This study investigated the on-toward reactions of individual or adjunctive treatment with carbamazepine (CBZ) and levetiracetam (LEV) on the pituitary-testicular axis in male rats. Twenty-four male Wistar rats were randomised into 4 groups (n = 6) and received daily intraperitoneal (i.p) treatment of normal saline (0.1 ml/day); CBZ (25 mg/kg i.p); LEV (50 mg/kg i.p); or combination of CBZ (12.5 mg/kg) and LEV (25 mg/kg) for 4 weeks. The serum concentration of luteinising hormone (LH), follicle-stimulating hormone (FSH), and testosterone was determined. Also, the seminal profile and histomorphological status of the testis were determined. Data were analysed using descriptive and inferential statistics. The control and test groups were compared using Student's t test, analysis of variance (ANOVA), and Student-Newman-Keuls post hoc analysis where appropriate, while the results presented as mean ± SEM in graphs or tables. The level of significance was taken at p < .05. The percentage motility, viability, and concentration of FSH decreased significantly in all the treatment groups, while the testis was presented with various forms of histomorphological aberrations. This study concludes that CBZ, and CBZ + LEV adjunctive treatments alter the pituitary-testicular axis with evidence of hormonal deregulation and alteration in the reproductive functions' indices, while LEV treatment remains the safest.
Collapse
Affiliation(s)
- Opeyemi Samson Osuntokun
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Osun State University, Osogbo, Nigeria
| | - Stephen Olumide Akinsomisoye
- Department of Physiological Sciences, Faculty of Basic Medical Sciences, College of Health Sciences, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Gbola Olayiwola
- Department of Clinical Pharmacy and Pharmacy Administration, Faculty of Pharmacy Obafemi, Awolowo University, Ile-Ife, Nigeria
| | - Kabiru Isola Adedokun
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Osun State University, Osogbo, Nigeria
| | - Olayemi Olutobi Oladokun
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Osun State University, Osogbo, Nigeria
| |
Collapse
|
27
|
Klee JL, Kiliaan AJ, Lipponen A, Battaglia FP. Reduced firing rates of pyramidal cells in the frontal cortex of APP/PS1 can be restored by acute treatment with levetiracetam. Neurobiol Aging 2020; 96:79-86. [PMID: 32950781 DOI: 10.1016/j.neurobiolaging.2020.08.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 08/03/2020] [Accepted: 08/19/2020] [Indexed: 12/27/2022]
Abstract
In recent years, aberrant neural oscillations in various cortical areas have emerged as a common physiological hallmark across mouse models of amyloid pathology and patients with Alzheimer's disease. However, much less is known about the underlying effect of amyloid pathology on single cell activity. Here, we used high-density silicon probe recordings from frontal cortex area of 9-month-old APP/PS1 mice to show that local field potential power in the theta and beta band is increased in transgenic animals, whereas single-cell firing rates, specifically of putative pyramidal cells, are significantly reduced. At the same time, these sparsely firing pyramidal cells phase-lock their spiking activity more strongly to the ongoing theta and beta rhythms. Furthermore, we demonstrated that the antiepileptic drug, levetiracetam, counteracts these effects by increasing pyramidal cell firing rates in APP/PS1 mice and uncoupling pyramidal cells and interneurons. Overall, our results highlight reduced firing rates of cortical pyramidal cells as a pathophysiological phenotype in APP/PS1 mice and indicate a potentially beneficial effect of acute levetiracetam treatment.
Collapse
Affiliation(s)
- Jan L Klee
- Department of Neuroinformatics, Radboud University, Nijmegen, the Netherlands
| | - Amanda J Kiliaan
- Department of Anatomy, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Arto Lipponen
- Department of Psychology, University of Jyväskylä, Finland.
| | | |
Collapse
|
28
|
Jin N, Ziyatdinova S, Gureviciene I, Tanila H. Response of spike-wave discharges in aged APP/PS1 Alzheimer model mice to antiepileptic, metabolic and cholinergic drugs. Sci Rep 2020; 10:11851. [PMID: 32678276 PMCID: PMC7366932 DOI: 10.1038/s41598-020-68845-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/02/2020] [Indexed: 01/19/2023] Open
Abstract
Epileptic nonconvulsive spike-wave discharges (SWDs) are commonly seen in amyloid plaque bearing transgenic mice but only rarely in their wild-type littermates. To shed light on their possible treatment options, we assessed the effect of drugs with variable and known mechanisms of action on the occurrence of SWDs in aged APPswe/PS1dE9 mice. The treatments included prototypic antiepileptic drugs (ethosuximide and levetiracetam), donepezil as the typical Alzheimer drug and atropine as an antagonistic effect, GABAB antagonist CGP-35348, and alternate energy substrates beta-hydroxybutyrate (BHB), pyruvate and lactate on the occurrence of SWDs in aged APPswe/PS1dE9 mice. All agents were administered by single intraperitoneal injections at doses earlier documented to be effective and response was assessed by recording 3 h of video-EEG. Atropine at 25 mg/kg significantly decreased SWD occurrence in all behavioral states, and also resulted in altered frequency composition of SWDs and general EEG slowing during sleep. Ethosuximide at 200 mg/kg and levetiracetam at 75 mg/kg effectively suppressed SWDs only during a period of mixed behavioral states, but levetiracetam also increased SWDs in sleep. BHB at 1 g/kg decreased SWDs in sleep, while both pyruvate and lactate at the same dose tended to increase SWD number and total duration. Unexpectantly, donepezil at 0.3 mg/kg CGP-35348 at 100 mg/kg had no effect on SWDs. These findings call for re-evaluation of some prevailing theories on neural circuit alternations that underlie SWD generation and show the utility of APP/PS1 mice for testing potential new treatments for nonconvulsive epileptic activity related to Alzheimer pathology.
Collapse
Affiliation(s)
- Nanxiang Jin
- A. I. Virtanen Institute, University of Eastern Finland, PO Box 1627, 70211, Kuopio, Finland.
| | - Sofya Ziyatdinova
- A. I. Virtanen Institute, University of Eastern Finland, PO Box 1627, 70211, Kuopio, Finland
| | - Irina Gureviciene
- A. I. Virtanen Institute, University of Eastern Finland, PO Box 1627, 70211, Kuopio, Finland
| | - Heikki Tanila
- A. I. Virtanen Institute, University of Eastern Finland, PO Box 1627, 70211, Kuopio, Finland
| |
Collapse
|
29
|
Tsymbalyuk S, Smith M, Gore C, Tsymbalyuk O, Ivanova S, Sansur C, Gerzanich V, Simard JM. Brivaracetam attenuates pain behaviors in a murine model of neuropathic pain. Mol Pain 2020; 15:1744806919886503. [PMID: 31615323 PMCID: PMC6880061 DOI: 10.1177/1744806919886503] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Background The antiseizure racetams may provide novel molecular insights into
neuropathic pain due to their unique mechanism involving synaptic vesicle
glycoprotein 2A. Anti-allodynic effects of levetiracetam have been shown in
animal models of neuropathic pain. Here, we studied the effect of
brivaracetam, which binds to synaptic vesicle glycoprotein 2A with 20-fold
greater affinity, and has fewer off-target effects. Methods Mice underwent unilateral sciatic nerve cuffing and were evaluated for
mechanical sensitivity using von Frey filaments. Pain behaviors were
assessed with prophylactic treatment using levetiracetam (100 or 10 mg/kg)
or brivaracetam (10 or 1 mg/kg) beginning after surgery and continuing for
21 days, or with therapeutic treatment using brivaracetam (10 or 1 mg/kg)
beginning on day 14, after allodynia was established, and continuing for 28
or 63 days. Spinal cord tissues from the prophylaxis experiment with10 mg/kg
brivaracetam were examined for neuroinflammation (Iba1 and tumor necrosis
factor), T-lymphocyte (CD3) infiltration, and synaptic vesicle glycoprotein
2A expression. Results When used prophylactically, levetiracetam, 100 mg/kg, and brivaracetam,
10 mg/kg, prevented the development of allodynia, with lower doses of each
being less effective. When used therapeutically, brivaracetam extinguished
allodynia, requiring 10 days with 10 mg/kg, and six weeks with 1 mg/kg.
Brivaracetam was associated with reduced neuroinflammation and reduced
T-lymphocyte infiltration in the dorsal horn. After sciatic nerve cuffing,
synaptic vesicle glycoprotein 2A expression was identified in neurons,
activated astrocytes, microglia/macrophages, and T lymphocytes in the dorsal
horn. Conclusion Synaptic vesicle glycoprotein 2A may represent a novel target for neuropathic
pain. Brivaracetam may warrant study in humans with neuropathic pain due to
peripheral nerve injury.
Collapse
Affiliation(s)
- Solomiya Tsymbalyuk
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Madeleine Smith
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Charles Gore
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Orest Tsymbalyuk
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Svetlana Ivanova
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Charles Sansur
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - J Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
30
|
Alshuaib S, Mosaddeghi J, Lin JW. Effects of levetiracetam on axon excitability and synaptic transmission at the crayfish neuromuscular junction. Synapse 2020; 74:e22154. [PMID: 32189403 DOI: 10.1002/syn.22154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/24/2020] [Accepted: 03/15/2020] [Indexed: 11/06/2022]
Abstract
Levetiracetam (LEV) is a widely prescribed antiepileptic drug, but its actions on neuronal function are not fully characterized. Since this drug is believed to enter neurons by binding to a vesicular protein during endocytosis, we used motor axons of the crayfish opener neuromuscular junction to examine potential impacts of LEV on axon excitability. Two electrode current clamp from the inhibitory axon of the opener showed that LEV reduced action potential (AP) amplitude (APamp ) and suppressed synaptic transmission, although the latter occurred with a longer delay than the reduction in APamp . Comparison of antidromic and orthodromic conducting APs in LEV suggested that this drug preferentially reduced excitability of the proximal axon, despite the expectation that it entered the axon at the terminals and should affect the distal branches first. Results presented here suggest that LEV modulates axonal excitability, which may in turn contribute to its antiepileptic effects.
Collapse
Affiliation(s)
| | | | - Jen-We Lin
- Department of Biology, Boston University, Boston, MA, USA
| |
Collapse
|
31
|
Lévesque M, Ragsdale D, Avoli M. Evolving Mechanistic Concepts of Epileptiform Synchronization and their Relevance in Curing Focal Epileptic Disorders. Curr Neuropharmacol 2020; 17:830-842. [PMID: 30479217 PMCID: PMC7052840 DOI: 10.2174/1570159x17666181127124803] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/26/2018] [Accepted: 11/17/2018] [Indexed: 01/01/2023] Open
Abstract
The synchronized activity of neuronal networks under physiological conditions is mirrored by specific oscillatory patterns of the EEG that are associated with different behavioral states and cognitive functions. Excessive synchronization can, however, lead to focal epileptiform activity characterized by interictal and ictal discharges in epileptic patients and animal models. This review focusses on studies that have addressed epileptiform synchronization in temporal lobe regions by employing in vitro and in vivo recording techniques. First, we consider the role of ionotropic and metabotropic excitatory glutamatergic transmission in seizure generation as well as the paradoxical role of GABAA signaling in initiating and perhaps maintaining focal seizure activity. Second, we address non-synaptic mechanisms (which include voltage-gated ionic currents and gap junctions) in the generation of epileptiform synchronization. For each mechanism, we discuss the actions of antiepileptic drugs that are presumably modulating excitatory or inhibitory signaling and voltage-gated currents to prevent seizures in epileptic patients. These findings provide insights into the mechanisms of seizure initiation and maintenance, thus leading to the development of specific pharmacological treatments for focal epileptic disorders.
Collapse
Affiliation(s)
- Maxime Lévesque
- Montreal Neurological Institute, McGill University, Montreal, H3A 2B4 Quebec, Canada
| | - David Ragsdale
- Montreal Neurological Institute, McGill University, Montreal, H3A 2B4 Quebec, Canada
| | - Massimo Avoli
- Montreal Neurological Institute, McGill University, Montreal, H3A 2B4 Quebec, Canada.,Departments of Neurology & Neurosurgery, and of Physiology, McGill University, Montréal, H3A 2B4 Québec, Canada.,Department of Experimental Medicine, Facoltà di Medicina e Odontoiatria, Sapienza University of Rome, 00185 Roma, Italy
| |
Collapse
|
32
|
Cybulska K, Perk L, Booij J, Laverman P, Rijpkema M. Huntington's Disease: A Review of the Known PET Imaging Biomarkers and Targeting Radiotracers. Molecules 2020; 25:molecules25030482. [PMID: 31979301 PMCID: PMC7038198 DOI: 10.3390/molecules25030482] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/19/2022] Open
Abstract
Huntington’s disease (HD) is a fatal neurodegenerative disease caused by a CAG expansion mutation in the huntingtin gene. As a result, intranuclear inclusions of mutant huntingtin protein are formed, which damage striatal medium spiny neurons (MSNs). A review of Positron Emission Tomography (PET) studies relating to HD was performed, including clinical and preclinical data. PET is a powerful tool for visualisation of the HD pathology by non-invasive imaging of specific radiopharmaceuticals, which provide a detailed molecular snapshot of complex mechanistic pathways within the brain. Nowadays, radiochemists are equipped with an impressive arsenal of radioligands to accurately recognise particular receptors of interest. These include key biomarkers of HD: adenosine, cannabinoid, dopaminergic and glutamateric receptors, microglial activation, phosphodiesterase 10 A and synaptic vesicle proteins. This review aims to provide a radiochemical picture of the recent developments in the field of HD PET, with significant attention devoted to radiosynthetic routes towards the tracers relevant to this disease.
Collapse
Affiliation(s)
- Klaudia Cybulska
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Geert Grooteplein-Zuid 10, 6525 EZ Nijmegen, The Netherlands; (J.B.); (P.L.); (M.R.)
- Radboud Translational Medicine B.V., Radboud University Medical Center, Geert Grooteplein 21 (route 142), 6525 EZ Nijmegen, The Netherlands;
- Correspondence:
| | - Lars Perk
- Radboud Translational Medicine B.V., Radboud University Medical Center, Geert Grooteplein 21 (route 142), 6525 EZ Nijmegen, The Netherlands;
| | - Jan Booij
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Geert Grooteplein-Zuid 10, 6525 EZ Nijmegen, The Netherlands; (J.B.); (P.L.); (M.R.)
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Peter Laverman
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Geert Grooteplein-Zuid 10, 6525 EZ Nijmegen, The Netherlands; (J.B.); (P.L.); (M.R.)
| | - Mark Rijpkema
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Geert Grooteplein-Zuid 10, 6525 EZ Nijmegen, The Netherlands; (J.B.); (P.L.); (M.R.)
| |
Collapse
|
33
|
SIRT3 Haploinsufficiency Aggravates Loss of GABAergic Interneurons and Neuronal Network Hyperexcitability in an Alzheimer's Disease Model. J Neurosci 2019; 40:694-709. [PMID: 31818974 DOI: 10.1523/jneurosci.1446-19.2019] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/26/2019] [Accepted: 11/05/2019] [Indexed: 01/17/2023] Open
Abstract
Impaired mitochondrial function and aberrant neuronal network activity are believed to be early events in the pathogenesis of Alzheimer's disease (AD), but how mitochondrial alterations contribute to aberrant activity in neuronal circuits is unknown. In this study, we examined the function of mitochondrial protein deacetylase sirtuin 3 (SIRT3) in the pathogenesis of AD. Compared with AppPs1 mice, Sirt3-haploinsufficient AppPs1 mice (Sirt3+/-AppPs1) exhibit early epileptiform EEG activity and seizure. Both male and female Sirt3+/-AppPs1 mice were observed to die prematurely before 5 months of age. When comparing male mice among different genotypes, Sirt3 haploinsufficiency renders GABAergic interneurons in the cerebral cortex vulnerable to degeneration and associated neuronal network hyperexcitability. Feeding Sirt3+/-AppPs1 AD mice with a ketone ester-rich diet increases SIRT3 expression and prevents seizure-related death and the degeneration of GABAergic neurons, indicating that the aggravated GABAergic neuron loss and neuronal network hyperexcitability in Sirt3+/-AppPs1 mice are caused by SIRT3 reduction and can be rescued by increase of SIRT3 expression. Consistent with a protective role in AD, SIRT3 levels are reduced in association with cerebral cortical Aβ pathology in AD patients. In summary, SIRT3 preserves GABAergic interneurons and protects cerebral circuits against hyperexcitability, and this neuroprotective mechanism can be bolstered by dietary ketone esters.SIGNIFICANCE STATEMENT GABAergic neurons provide the main inhibitory control of neuronal activity in the brain. By preserving mitochondrial function, SIRT3 protects parvalbumin and calretinin interneurons against Aβ-associated dysfunction and degeneration in AppPs1 Alzheimer's disease mice, thus restraining neuronal network hyperactivity. The neuronal network dysfunction that occurs in Alzheimer's disease can be partially reversed by physiological, dietary, and pharmacological interventions to increase SIRT3 expression and enhance the functionality of GABAergic interneurons.
Collapse
|
34
|
Gureviciene I, Ishchenko I, Ziyatdinova S, Jin N, Lipponen A, Gurevicius K, Tanila H. Characterization of Epileptic Spiking Associated With Brain Amyloidosis in APP/PS1 Mice. Front Neurol 2019; 10:1151. [PMID: 31781019 PMCID: PMC6861424 DOI: 10.3389/fneur.2019.01151] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 10/14/2019] [Indexed: 12/22/2022] Open
Abstract
Epileptic activity without visible convulsions is common in Alzheimer's disease (AD) and may contribute adversely to the disease progress and symptoms. Transgenic mice with amyloid plaque pathology also display epileptic seizures, but those are too infrequent to assess the effect of anti-epileptic treatments. Besides spontaneous seizures, these mice also display frequent epileptic spiking in epidural EEG recordings, and these have provided a means to test potential drug treatment to AD-related epilepsy. However, the origin of EEG spikes in transgenic AD model mice has remained elusive, which makes it difficult to relate electrophysiology with underlying pathology at the cellular and molecular level. Using multiple cortical and subcortical electrodes in freely moving APP/PS1 transgenic mice and their wild-type littermates, we identified several types of epileptic spikes among over 15 800 spikes visible with cortical screw electrodes based on their source localization. Cortical spikes associated with muscle twitches, cortico-hippocampal spikes, and spindle and fast-spindle associated spikes were present equally often in both APP/PS1 and wild-type mice, whereas pure cortical spikes were slightly more common in APP/PS1 mice. In contrast, spike-wave discharges, cortico-hippocampal spikes with after hyperpolarization and giant spikes were seen almost exclusively in APP/PS1 mice but only in a subset of them. Interestingly, different subtypes of spikes responded differently to anti-epileptic drugs ethosuximide and levetiracetam. From the translational point most relevant may be the giant spikes generated in the hippocampus that reached an amplitude up to ± 5 mV in the hippocampal channel. As in AD patients, they occurred exclusively during sleep. Further, we could demonstrate that a high number of giant spikes in APP/PS1 mice predicts seizures. These data show that by only adding a pair of hippocampal deep electrodes and EMG to routine cortical epidural screw electrodes and by taking into account underlying cortical oscillations, one can drastically refine the analysis of cortical spike data. This new approach provides a powerful tool to preclinical testing of potential new treatment options for AD related epilepsy.
Collapse
Affiliation(s)
- Irina Gureviciene
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Irina Ishchenko
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Sofya Ziyatdinova
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Nanxiang Jin
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Arto Lipponen
- Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
| | | | - Heikki Tanila
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
35
|
Steinhoff BJ, Staack AM. Levetiracetam and brivaracetam: a review of evidence from clinical trials and clinical experience. Ther Adv Neurol Disord 2019; 12:1756286419873518. [PMID: 31523280 PMCID: PMC6734620 DOI: 10.1177/1756286419873518] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/12/2019] [Indexed: 01/15/2023] Open
Abstract
Until the early 1990s, a limited number of antiepileptic drugs (AEDs) were available. Since then, a large variety of new AEDs have been developed and introduced, several of them offering new modes of action. One of these new AED families is described and reviewed in this article. Levetiracetam (LEV) and brivaracetam (BRV) are pyrrolidone derivate compounds binding at the presynaptic SV2A receptor site and are thus representative of AEDs with a unique mode of action. LEV was extensively investigated in randomized controlled trials and has a very promising efficacy both in focal and generalized epilepsies. Its pharmacokinetic profile is favorable and LEV does not undergo clinically relevant interactions. Adverse reactions comprise mainly asthenia, somnolence, and behavioral symptoms. It has now been established as a first-line antiepileptic drug. BRV has been recently introduced as an adjunct antiepileptic drug in focal epilepsy with a similarly promising pharmacokinetic profile and possibly increased tolerability concerning psychiatric adverse events. This review summarizes the essential preclinical and clinical data of LEV and BRV that is currently available and includes the experiences at a large tertiary referral epilepsy center.
Collapse
|
36
|
Pozdnyakova N, Dudarenko M, Borisova T. Age-Dependency of Levetiracetam Effects on Exocytotic GABA Release from Nerve Terminals in the Hippocampus and Cortex in Norm and After Perinatal Hypoxia. Cell Mol Neurobiol 2019; 39:701-714. [PMID: 31006090 DOI: 10.1007/s10571-019-00676-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/10/2019] [Indexed: 10/27/2022]
Abstract
Perinatal hypoxia can lead to multiple chronic neurological deficits, e.g., mental retardation, behavioral abnormalities, and epilepsy. Levetiracetam (LEV), 2S-(2-oxo-1-pyrrolidiny1) butanamide, is an anticonvulsant drug with proven efficiency in treating patients with focal and generalized seizures. Rats were underwent hypoxia and seizures at the age of 10-12 postnatal days (pd). The ambient level and depolarization-induced exocytotic release of [3H]GABA (γ-aminobutyric acid) were analyzed in nerve terminals in the hippocampus and cortex during development at the age of pd 17-19 and pd 24-26 (infantile stage), pd 38-40 (puberty) and pd 66-73 (young adults) in norm and after perinatal hypoxia. LEV had no effects on the ambient [3H]GABA level. The latter increased during development and was further elevated after perinatal hypoxia in nerve terminals in the hippocampus during the whole period and in the cortex in young adults. Exocytotic [3H]GABA release from nerve terminals increased after perinatal hypoxia during development in the hippocampus and cortex, however this effect was preserved at all ages during blockage of GABA transporters by NO-711 in the hippocampus only. LEV realized its anticonvulsant effects at the presynaptic site through an increase in exocytotic release of GABA. LEV exerted more significant effect after perinatal hypoxia than in norm. Action of LEV was strongly age-dependent and can be registered in puberty and young adults, but the drug was inert at the infantile stage.
Collapse
Affiliation(s)
- Natalia Pozdnyakova
- The Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha Str, Kiev, 01030, Ukraine
| | - Marina Dudarenko
- The Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha Str, Kiev, 01030, Ukraine
| | - Tatiana Borisova
- The Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha Str, Kiev, 01030, Ukraine.
| |
Collapse
|
37
|
Ciruelas K, Marcotulli D, Bajjalieh SM. Synaptic vesicle protein 2: A multi-faceted regulator of secretion. Semin Cell Dev Biol 2019; 95:130-141. [PMID: 30826548 DOI: 10.1016/j.semcdb.2019.02.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/11/2019] [Accepted: 02/21/2019] [Indexed: 01/01/2023]
Abstract
Synaptic Vesicle Protein 2 (SV2) comprises a recently evolved family of proteins unique to secretory vesicles that undergo calcium-regulated exocytosis. In this review we consider SV2s' structural features, evolution, and function and discuss its therapeutic potential as the receptors for an expanding class of drugs used to treat epilepsy and cognitive decline.
Collapse
Affiliation(s)
- Kristine Ciruelas
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Daniele Marcotulli
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Sandra M Bajjalieh
- Department of Pharmacology, University of Washington, Seattle, WA, United States.
| |
Collapse
|
38
|
Persico AM, Ricciardello A, Cucinotta F. The psychopharmacology of autism spectrum disorder and Rett syndrome. HANDBOOK OF CLINICAL NEUROLOGY 2019; 165:391-414. [DOI: 10.1016/b978-0-444-64012-3.00024-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
39
|
Kumar J, Solaiman A, Mahakkanukrauh P, Mohamed R, Das S. Sleep Related Epilepsy and Pharmacotherapy: An Insight. Front Pharmacol 2018; 9:1088. [PMID: 30319421 PMCID: PMC6171479 DOI: 10.3389/fphar.2018.01088] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/07/2018] [Indexed: 01/26/2023] Open
Abstract
In the last several decades, sleep-related epilepsy has drawn considerable attention among epileptologists and neuroscientists in the interest of new paradigms of the disease etiology, pathogenesis and management. Sleep-related epilepsy is nocturnal seizures that manifest solely during the sleep state. Sleep comprises two distinct stages i.e., non-rapid eye movement (NREM) and rapid eye movement (REM) that alternate every 90 min with NREM preceding REM. Current findings indicate that the sleep-related epilepsy manifests predominantly during the synchronized stages of sleep; NREM over REM stage. Sleep related hypermotor epilepsy (SHE), benign partial epilepsy with centrotemporal spikes or benign rolandic epilepsy (BECTS), and Panayiotopoulos Syndrome (PS) are three of the most frequently implicated epilepsies occurring during the sleep state. Although some familial types are described, others are seemingly sporadic occurrences. In the present review, we aim to discuss the predominance of sleep-related epilepsy during NREM, established familial links to the pathogenesis of SHE, BECTS and PS, and highlight the present available pharmacotherapy options.
Collapse
Affiliation(s)
- Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Amro Solaiman
- Department of Anatomy, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Pasuk Mahakkanukrauh
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Excellence Centre in Forensic Osteology Research Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Rashidi Mohamed
- Department of Familty Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Srijit Das
- Department of Anatomy, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
40
|
|
41
|
Inflammasome-derived cytokine IL18 suppresses amyloid-induced seizures in Alzheimer-prone mice. Proc Natl Acad Sci U S A 2018; 115:9002-9007. [PMID: 30127003 DOI: 10.1073/pnas.1801802115] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by the progressive destruction and dysfunction of central neurons. AD patients commonly have unprovoked seizures compared with age-matched controls. Amyloid peptide-related inflammation is thought to be an important aspect of AD pathogenesis. We previously reported that NLRP3 inflammasome KO mice, when bred into APPswe/PS1ΔE9 (APP/PS1) mice, are completely protected from amyloid-induced AD-like disease, presumably because they cannot produce mature IL1β or IL18. To test the role of IL18, we bred IL18KO mice with APP/PS1 mice. Surprisingly, IL18KO/APP/PS1 mice developed a lethal seizure disorder that was completely reversed by the anticonvulsant levetiracetam. IL18-deficient AD mice showed a lower threshold in chemically induced seizures and a selective increase in gene expression related to increased neuronal activity. IL18-deficient AD mice exhibited increased excitatory synaptic proteins, spine density, and basal excitatory synaptic transmission that contributed to seizure activity. This study identifies a role for IL18 in suppressing aberrant neuronal transmission in AD.
Collapse
|
42
|
Chronic levetiracetam decreases hippocampal and testicular aromatase expression in normal but not kainic acid-induced experimental model of acute seizures in rats. Neuroreport 2018; 28:903-909. [PMID: 28777257 DOI: 10.1097/wnr.0000000000000843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Reproductive disorders are more common in men with epilepsy taking anticonvulsant medications. Antiseizure/anticonvulsant drugs and seizures in medial temporal lobe structures may cause gonadal dysfunction, including infertility, decreased libido, and potency. Levels of circulating bioavailable testosterone are affected by the aromatase enzyme, which converts testosterone into estrogen and may be affected by seizure medications. However, the relationship of anticonvulsant drugs with central aromatase levels is not clear. This study investigated the possible effects of the highly efficient, new-generation antiseizure/anticonvulsant drug levetiracetam on central and gonadal aromatase expression and gonadal tissue functionality at 27 and 54 mg/kg/day doses. Epileptogenesis was generated in male Wistar rats by an intraperitoneal injection of the excitotoxic agent kainic acid. Aromatase levels were 1.5 times higher in the brain cortex of the kainic acid groups after 4 weeks and the hippocampus after 4 and 8 weeks compared with the controls. Decreased basal aromatase levels were observed after 1 week of levetiracetam treatment (27 mg/kg/day). Administration of 27 mg/kg/day levetiracetam did not alter vas deferens contractions at 1, 4, or 8 weeks compared with the controls. No histological changes were observed in the vas deferens, epididymis, or testis after 8 weeks of levetiracetam administration at both doses. Administration of 27 and 54 mg/kg/day levetiracetam downregulated testis aromatase expression at 8 weeks compared with the controls. These results suggest that levetiracetam decreases aromatase levels in the testis and increases the seizure threshold by a possible decrease in systemic estradiol levels.
Collapse
|
43
|
Development and validation of a HPLC-UV assay for quantification of levetiracetam concentrations in critically ill patients undergoing continuous renal replacement therapy. Biomed Chromatogr 2018; 32:e4257. [DOI: 10.1002/bmc.4257] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/21/2018] [Accepted: 03/29/2018] [Indexed: 11/07/2022]
|
44
|
Dunn R, Queenan BN, Pak DTS, Forcelli PA. Divergent effects of levetiracetam and tiagabine against spontaneous seizures in adult rats following neonatal hypoxia. Epilepsy Res 2017; 140:1-7. [PMID: 29227795 DOI: 10.1016/j.eplepsyres.2017.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 10/09/2017] [Accepted: 12/02/2017] [Indexed: 01/03/2023]
Abstract
Animal models are valuable tools for screening novel therapies for patients who suffer from epilepsy. However, a wide array of models are necessary to cover the diversity of human epilepsies. In humans, neonatal hypoxia (or hypoxia-ischemia) is one of the most common causes of epilepsy early in life. Hypoxia-induced seizures (HS) during the neonatal period can also lead to spontaneous seizures in adulthood. This phenomenon, i.e., early-life hypoxia leading to adult epilepsy - is also seen in experimental models, including rats. However, it is not known which anti-seizure medications are most effective at managing adult epilepsy resulting from neonatal HS. Here, we examined the efficacy of three anti-seizure medications against spontaneous seizures in adult rats with a history of neonatal HS: (1) phenobarbital (PHB), the oldest epilepsy medicine still in use today; (2) levetiracetam (LEV); and (3) tiagabine (TGB). Both LEV and TGB are relatively new anticonvulsant drugs that are ineffective in traditional seizure models, but strikingly effective in other models. We found that PHB and LEV decreased seizures in adult rats with a history of HS, whereas TGB exacerbated seizures. These divergent drug effects indicate that the HS model may be useful for differentiating the clinical efficacy of putative epilepsy therapies.
Collapse
Affiliation(s)
- Raymond Dunn
- Department of Pharmacology and Physiology, United States
| | - Bridget N Queenan
- Department of Pharmacology and Physiology, United States; Interdisciplinary Program in Neuroscience, Georgetown University, Washington DC, United States; Neuroscience Research Institute, Department of Mechanical Engineering; Department of Physics, University sof California, Santa Barbara, Santa Barbara, CA, United States
| | - Daniel T S Pak
- Department of Pharmacology and Physiology, United States; Interdisciplinary Program in Neuroscience, Georgetown University, Washington DC, United States.
| | - Patrick A Forcelli
- Department of Pharmacology and Physiology, United States; Department of Neuroscience, United States; Interdisciplinary Program in Neuroscience, Georgetown University, Washington DC, United States.
| |
Collapse
|
45
|
Luchian R, Vinţeler E, Chiş C, Vasilescu M, Leopold N, Prates Ramalho JP, Chiş V. Conformational Preference and Spectroscopical Characteristics of the Active Pharmaceutical Ingredient Levetiracetam. J Pharm Sci 2017; 106:3564-3573. [PMID: 28842298 DOI: 10.1016/j.xphs.2017.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/01/2017] [Accepted: 08/14/2017] [Indexed: 11/19/2022]
Abstract
The analysis of the possible conformers and the conformational change between solid and liquid states of a particular drug molecule are mandatory not only for describing reliably its spectroscopical properties but also for understanding the interaction with the receptor and its mechanism of action. Therefore, here we investigated the free-energy conformational landscape of levetiracetam (LEV) in gas phase as well as in water and ethanol, aiming to describe the 3-dimensional structure and energetic stability of its conformers. Twenty-two unique conformers were identified, and their energetic stability was determined at density functional theory B3LYP/6-31+G(2d,2p) level of theory. The 6 most stable monomers in water, within a relative free-energy window of 0.71 kcal mol-1 and clearly separated in energy from the remaining subset of 16 conformers, as well as the 3 most stable dimers were then used to compute the Boltzmann populations-averaged UV-Vis and NMR spectra of LEV. The conformational landscape in solution is distinctly different from that corresponding to gas phase, particularly due to the relative orientations of the butanamide group. Aiming to clarify the stability of the possible dimers of LEV, we also investigated computationally the structure of a set of 11 nonhydrated and hydrated homochiral hydrogen-bonded LEV dimers.
Collapse
Affiliation(s)
- Raluca Luchian
- Faculty of Physics, Babeş-Bolyai University, 1 Kogălniceanu, RO-400084 Cluj-Napoca, Romania
| | - Emil Vinţeler
- Faculty of Physics, Babeş-Bolyai University, 1 Kogălniceanu, RO-400084 Cluj-Napoca, Romania
| | - Cosmina Chiş
- Pediatric Neurology Department, Children Emergency Hospital, Cluj-Napoca, Romania
| | - Mihai Vasilescu
- Faculty of Physics, Babeş-Bolyai University, 1 Kogălniceanu, RO-400084 Cluj-Napoca, Romania
| | - Nicolae Leopold
- Faculty of Physics, Babeş-Bolyai University, 1 Kogălniceanu, RO-400084 Cluj-Napoca, Romania
| | - João P Prates Ramalho
- Department of Chemistry, School of Science and Technology, University of Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal; CGE-Centro de Geofisica de Evora, University of Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal
| | - Vasile Chiş
- Faculty of Physics, Babeş-Bolyai University, 1 Kogălniceanu, RO-400084 Cluj-Napoca, Romania.
| |
Collapse
|
46
|
Sterkel S, Akinyemi A, Sanchez-Gonzalez MA, Michel G. Preserving brain function in a comatose patient with septic hyperpyrexia (41.6 °C): a case report. J Med Case Rep 2017; 11:40. [PMID: 28190402 PMCID: PMC5304390 DOI: 10.1186/s13256-017-1204-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/06/2017] [Indexed: 11/12/2022] Open
Abstract
Background Pyrexia is a physiological response through which the immune system responds to infectious processes. Hyperpyrexia is known to be neurodegenerative leading to brain damage. Some of the neurotoxic effects of hyperpyrexia on the brain include seizures, decreased cognitive speed, mental status changes, coma, and even death. In the clinical management of hyperpyrexia, the goal is to treat the underlying cause of elevated temperature and prevent end organ damage. Case presentation This case illustrates a 39-year-old white American man referred from another medical facility where he had undergone an upper gastrointestinal tract diagnostic procedure which became complicated by blood aspiration and respiratory distress. During hospitalization, he developed a core body temperature of 41.6 °C (106.9 °F) leading to cognitive decline and coma with a Glasgow Coma Score of 3. Levetiracetam and amantadine were utilized effectively for preserving and restoring neurocognitive function. Prior studies have shown that glutamate levels can increase during an infectious process. Glutamate is an excitatory neurotransmitter that is utilized by the organum vasculosum laminae terminalis through the neuronal excitatory system and causes an increase in body temperature which can lead to hyperpyrexia. Similar to neurogenic fevers, hyperpyrexia can lead to neurological decline and irreversible cognitive dysfunction. Inhibition of the glutamate aids a decrease in excitatory states, and improves the brain’s regulatory mechanism, including temperature control. To further improve cognitive function, dopamine levels were increased with a dopamine agonist. Conclusions We propose that a combination of levetiracetam and amantadine may provide neuroprotective and neurorestorative properties when administered during a period of hyperpyrexia accompanied by any form of mental status changes, particularly if there is a decline in Glasgow Coma Score.
Collapse
Affiliation(s)
- Samantha Sterkel
- Department of Internal Medicine, Larkin Community Hospital, Graduate Medical Education, 7000 SW 62nd Avenue, Suite 401, South Miami, FL, 33142, USA
| | - Akinboyede Akinyemi
- Department of Psychiatry, Larkin Community Hospital, Graduate Medical Education, 7000 SW 62nd Avenue, Suite 401, South Miami, FL, 33142, USA.
| | | | - George Michel
- Department of Internal Medicine, Larkin Community Hospital, Graduate Medical Education, 7000 SW 62nd Avenue, Suite 401, South Miami, FL, 33142, USA
| |
Collapse
|
47
|
Sterkel S, Akinyemi A, Sanchez-Gonzalez MA, Michel G. Preserving brain function in a comatose patient with septic hyperpyrexia (41.6 °C): a case report. J Med Case Rep 2017. [PMID: 28190402 DOI: 10.1186/s13256--017--1204--8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2022] Open
Abstract
BACKGROUND Pyrexia is a physiological response through which the immune system responds to infectious processes. Hyperpyrexia is known to be neurodegenerative leading to brain damage. Some of the neurotoxic effects of hyperpyrexia on the brain include seizures, decreased cognitive speed, mental status changes, coma, and even death. In the clinical management of hyperpyrexia, the goal is to treat the underlying cause of elevated temperature and prevent end organ damage. CASE PRESENTATION This case illustrates a 39-year-old white American man referred from another medical facility where he had undergone an upper gastrointestinal tract diagnostic procedure which became complicated by blood aspiration and respiratory distress. During hospitalization, he developed a core body temperature of 41.6 °C (106.9 °F) leading to cognitive decline and coma with a Glasgow Coma Score of 3. Levetiracetam and amantadine were utilized effectively for preserving and restoring neurocognitive function. Prior studies have shown that glutamate levels can increase during an infectious process. Glutamate is an excitatory neurotransmitter that is utilized by the organum vasculosum laminae terminalis through the neuronal excitatory system and causes an increase in body temperature which can lead to hyperpyrexia. Similar to neurogenic fevers, hyperpyrexia can lead to neurological decline and irreversible cognitive dysfunction. Inhibition of the glutamate aids a decrease in excitatory states, and improves the brain's regulatory mechanism, including temperature control. To further improve cognitive function, dopamine levels were increased with a dopamine agonist. CONCLUSIONS We propose that a combination of levetiracetam and amantadine may provide neuroprotective and neurorestorative properties when administered during a period of hyperpyrexia accompanied by any form of mental status changes, particularly if there is a decline in Glasgow Coma Score.
Collapse
Affiliation(s)
- Samantha Sterkel
- Department of Internal Medicine, Larkin Community Hospital, Graduate Medical Education, 7000 SW 62nd Avenue, Suite 401, South Miami, FL, 33142, USA
| | - Akinboyede Akinyemi
- Department of Psychiatry, Larkin Community Hospital, Graduate Medical Education, 7000 SW 62nd Avenue, Suite 401, South Miami, FL, 33142, USA.
| | | | - George Michel
- Department of Internal Medicine, Larkin Community Hospital, Graduate Medical Education, 7000 SW 62nd Avenue, Suite 401, South Miami, FL, 33142, USA
| |
Collapse
|
48
|
Lowrie M, Thomson S, Bessant C, Sparkes A, Harvey RJ, Garosi L. Levetiracetam in the management of feline audiogenic reflex seizures: a randomised, controlled, open-label study. J Feline Med Surg 2017; 19:200-206. [PMID: 26690830 PMCID: PMC10816574 DOI: 10.1177/1098612x15622806] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Objectives Currently, there are no published randomised, controlled veterinary trials evaluating the efficacy of antiepileptic medication in the treatment of myoclonic seizures. Myoclonic seizures are a hallmark of feline audiogenic seizures (FARS). Methods This prospective, randomised, open-label trial compared the efficacy and tolerability of levetiracetam (20-25 mg/kg q8h) with phenobarbital (3-5 mg/kg q12h) in cats with suspected FARS that experienced myoclonic seizures. Cats were included that had ⩾12 myoclonic seizure days during a prospective 12 week baseline period. This was followed by a 4 week titration phase (until a therapeutic serum concentration of phenobarbital was achieved) and a 12 week treatment phase. Results Fifty-seven cats completed the study: 28 in the levetiracetam group and 29 in the phenobarbital group. A reduction of ⩾50% in the number of myoclonic seizure days was seen in 100% of patients in the levetiracetam group and in 3% of patients in the phenobarbital group ( P <0.001) during the treatment period. Levetiracetam-treated cats had higher freedom from myoclonic seizures (50.0% vs 0%; P <0.001) during the treatment period. The most common adverse events were lethargy, inappetence and ataxia, with no difference in incidence between levetiracetam and phenobarbital. Adverse events were mild and transient with levetiracetam but persistent with phenobarbital. Conclusions and relevance These results suggest that levetiracetam is an effective and well tolerated treatment for cats with myoclonic seizures and is more effective than phenobarbital. Whether it will prevent the occurrence of generalised tonic-clonic seizures and other forebrain signs if used early in the course of FARS is not yet clear.
Collapse
Affiliation(s)
- Mark Lowrie
- Davies Veterinary Specialists, Hitchin, Hertfordshire, UK
- Current address: Dovecote Veterinary Hospital, Castle Donington, Derby, UK
| | - Sarah Thomson
- Davies Veterinary Specialists, Hitchin, Hertfordshire, UK
| | | | | | - Robert J Harvey
- Department of Pharmacology, UCL School of Pharmacy, London, UK
| | - Laurent Garosi
- Davies Veterinary Specialists, Hitchin, Hertfordshire, UK
| |
Collapse
|
49
|
Browning M, Shear DA, Bramlett HM, Dixon CE, Mondello S, Schmid KE, Poloyac SM, Dietrich WD, Hayes RL, Wang KKW, Povlishock JT, Tortella FC, Kochanek PM. Levetiracetam Treatment in Traumatic Brain Injury: Operation Brain Trauma Therapy. J Neurotrauma 2016; 33:581-94. [PMID: 26671550 DOI: 10.1089/neu.2015.4131] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Levetiracetam (LEV) is an antiepileptic agent targeting novel pathways. Coupled with a favorable safety profile and increasing empirical clinical use, it was the fifth drug tested by Operation Brain Trauma Therapy (OBTT). We assessed the efficacy of a single 15 min post-injury intravenous (IV) dose (54 or 170 mg/kg) on behavioral, histopathological, and biomarker outcomes after parasagittal fluid percussion brain injury (FPI), controlled cortical impact (CCI), and penetrating ballistic-like brain injury (PBBI) in rats. In FPI, there was no benefit on motor function, but on Morris water maze (MWM), both doses improved latencies and path lengths versus vehicle (p < 0.05). On probe trial, the vehicle group was impaired versus sham, but both LEV treated groups did not differ versus sham, and the 54 mg/kg group was improved versus vehicle (p < 0.05). No histological benefit was seen. In CCI, there was a benefit on beam balance at 170 mg/kg (p < 0.05 vs. vehicle). On MWM, the 54 mg/kg dose was improved and not different from sham. Probe trial did not differ between groups for either dose. There was a reduction in hemispheric tissue loss (p < 0.05 vs. vehicle) with 170 mg/kg. In PBBI, there was no motor, cognitive, or histological benefit from either dose. Regarding biomarkers, in CCI, 24 h glial fibrillary acidic protein (GFAP) blood levels were lower in the 170 mg/kg group versus vehicle (p < 0.05). In PBBI, GFAP blood levels were increased in vehicle and 170 mg/kg groups versus sham (p < 0.05) but not in the 54 mg/kg group. No treatment effects were seen for ubiquitin C-terminal hydrolase-L1 across models. Early single IV LEV produced multiple benefits in CCI and FPI and reduced GFAP levels in PBBI. LEV achieved 10 points at each dose, is the most promising drug tested thus far by OBTT, and the only drug to improve cognitive outcome in any model. LEV has been advanced to testing in the micropig model in OBTT.
Collapse
Affiliation(s)
- Megan Browning
- 1 Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Deborah A Shear
- 2 Brain Trauma Neuroprotection/Neurorestoration, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Helen M Bramlett
- 3 Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami , Miami, Florida.,4 Bruce W. Carter Department of Veterans Affairs Medical Center , Miami, Florida
| | - C Edward Dixon
- 5 Department of Neurological Surgery, Brain Trauma Research Center, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Stefania Mondello
- 6 Department of Neurosciences, University of Messina , Messina, Italy
| | - Kara E Schmid
- 2 Brain Trauma Neuroprotection/Neurorestoration, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Samuel M Poloyac
- 7 Center for Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy , Pittsburgh, Pennsylvania
| | - W Dalton Dietrich
- 3 Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami , Miami, Florida
| | - Ronald L Hayes
- 8 Center for Innovative Research, Center for Neuroproteomics and Biomarkers Research , Banyan Biomarkers, Inc., Alachua, Florida
| | - Kevin K W Wang
- 9 Center of Neuroproteomics and Biomarkers Research, Department of Psychiatry and Neuroscience, University of Florida. Gainesville, Florida
| | - John T Povlishock
- 10 Department of Anatomy and Neurobiology, Virginia Commonwealth University , Richmond, Virginia
| | - Frank C Tortella
- 2 Brain Trauma Neuroprotection/Neurorestoration, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Patrick M Kochanek
- 1 Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| |
Collapse
|
50
|
Levetiracetam prophylaxis ameliorates seizure epileptogenesis after fluid percussion injury. Brain Res 2016; 1642:581-589. [DOI: 10.1016/j.brainres.2016.04.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 11/20/2022]
|