1
|
Lee SN, Yoon JH. The Role of Proprotein Convertases in Upper Airway Remodeling. Mol Cells 2022; 45:353-361. [PMID: 35611689 PMCID: PMC9200660 DOI: 10.14348/molcells.2022.0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/22/2022] [Accepted: 02/27/2022] [Indexed: 11/27/2022] Open
Abstract
Chronic rhinosinusitis (CRS) is a multifactorial, heterogeneous disease characterized by persistent inflammation of the sinonasal mucosa and tissue remodeling, which can include basal/progenitor cell hyperplasia, goblet cell hyperplasia, squamous cell metaplasia, loss or dysfunction of ciliated cells, and increased matrix deposition. Repeated injuries can stimulate airway epithelial cells to produce inflammatory mediators that activate epithelial cells, immune cells, or the epithelial-mesenchymal trophic unit. This persistent inflammation can consequently induce aberrant tissue remodeling. However, the molecular mechanisms driving disease within the different molecular CRS subtypes remain inadequately characterized. Numerous secreted and cell surface proteins relevant to airway inflammation and remodeling are initially synthesized as inactive precursor proteins, including growth/differentiation factors and their associated receptors, enzymes, adhesion molecules, neuropeptides, and peptide hormones. Therefore, these precursor proteins require post-translational cleavage by proprotein convertases (PCs) to become fully functional. In this review, we summarize the roles of PCs in CRS-associated tissue remodeling and discuss the therapeutic potential of targeting PCs for CRS treatment.
Collapse
Affiliation(s)
- Sang-Nam Lee
- The Airway Mucus Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Joo-Heon Yoon
- The Airway Mucus Institute, Yonsei University College of Medicine, Seoul 03722, Korea
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
2
|
Ramzy A, Kieffer TJ. Altered islet prohormone processing: A cause or consequence of diabetes? Physiol Rev 2021; 102:155-208. [PMID: 34280055 DOI: 10.1152/physrev.00008.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Peptide hormones are first produced as larger precursor prohormones that require endoproteolytic cleavage to liberate the mature hormones. A structurally conserved but functionally distinct family of nine prohormone convertase enzymes (PCs) are responsible for cleavage of protein precursors of which PC1/3 and PC2 are known to be exclusive to neuroendocrine cells and responsible for prohormone cleavage. Differential expression of PCs within tissues define prohormone processing; whereas glucagon is the major product liberated from proglucagon via PC2 in pancreatic α-cells, proglucagon is preferentially processed by PC1/3 in intestinal L cells to produce glucagon-like peptides 1 and 2 (GLP-1, GLP-2). Beyond our understanding of processing of islet prohormones in healthy islets, there is convincing evidence that proinsulin, proIAPP, and proglucagon processing is altered during prediabetes and diabetes. There is predictive value of elevated circulating proinsulin or proinsulin : C-peptide ratio for progression to type 2 diabetes and elevated proinsulin or proinsulin : C-peptide is predictive for development of type 1 diabetes in at risk groups. After onset of diabetes, patients have elevated circulating proinsulin and proIAPP and proinsulin may be an autoantigen in type 1 diabetes. Further, preclinical studies reveal that α-cells have altered proglucagon processing during diabetes leading to increased GLP-1 production. We conclude that despite strong associative data, current evidence is inconclusive on the potential causal role of impaired prohormone processing in diabetes, and suggest that future work should focus on resolving the question of whether altered prohormone processing is a causal driver or merely a consequence of diabetes pathology.
Collapse
Affiliation(s)
- Adam Ramzy
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Timothy J Kieffer
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
3
|
Abstract
The kexin-like proprotein convertases perform the initial proteolytic cleavages that ultimately generate a variety of different mature peptide and proteins, ranging from brain neuropeptides to endocrine peptide hormones, to structural proteins, among others. In this review, we present a general introduction to proprotein convertase structure and biochemistry, followed by a comprehensive discussion of each member of the kexin-like subfamily of proprotein convertases. We summarize current knowledge of human proprotein convertase insufficiency syndromes, including genome-wide analyses of convertase polymorphisms, and compare these to convertase null and mutant mouse models. These mouse models have illuminated our understanding of the roles specific convertases play in human disease and have led to the identification of convertase-specific substrates; for example, the identification of procorin as a specific PACE4 substrate in the heart. We also discuss the limitations of mouse null models in interpreting human disease, such as differential precursor cleavage due to species-specific sequence differences, and the challenges presented by functional redundancy among convertases in attempting to assign specific cleavages and/or physiological roles. However, in most cases, knockout mouse models have added substantively both to our knowledge of diseases caused by human proprotein convertase insufficiency and to our appreciation of their normal physiological roles, as clearly seen in the case of the furin, proprotein convertase 1/3, and proprotein convertase 5/6 mouse models. The creation of more sophisticated mouse models with tissue- or temporally-restricted expression of specific convertases will improve our understanding of human proprotein convertase insufficiency and potentially provide support for the emerging concept of therapeutic inhibition of convertases.
Collapse
Affiliation(s)
- Manita Shakya
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
4
|
Coban MA, Morrison J, Maharjan S, Hernandez Medina DH, Li W, Zhang YS, Freeman WD, Radisky ES, Le Roch KG, Weisend CM, Ebihara H, Caulfield TR. Attacking COVID-19 Progression Using Multi-Drug Therapy for Synergetic Target Engagement. Biomolecules 2021; 11:biom11060787. [PMID: 34071060 PMCID: PMC8224684 DOI: 10.3390/biom11060787] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/23/2022] Open
Abstract
COVID-19 is a devastating respiratory and inflammatory illness caused by a new coronavirus that is rapidly spreading throughout the human population. Over the past 12 months, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for COVID-19, has already infected over 160 million (>20% located in United States) and killed more than 3.3 million people around the world (>20% deaths in USA). As we face one of the most challenging times in our recent history, there is an urgent need to identify drug candidates that can attack SARS-CoV-2 on multiple fronts. We have therefore initiated a computational dynamics drug pipeline using molecular modeling, structure simulation, docking and machine learning models to predict the inhibitory activity of several million compounds against two essential SARS-CoV-2 viral proteins and their host protein interactors-S/Ace2, Tmprss2, Cathepsins L and K, and Mpro-to prevent binding, membrane fusion and replication of the virus, respectively. All together, we generated an ensemble of structural conformations that increase high-quality docking outcomes to screen over >6 million compounds including all FDA-approved drugs, drugs under clinical trial (>3000) and an additional >30 million selected chemotypes from fragment libraries. Our results yielded an initial set of 350 high-value compounds from both new and FDA-approved compounds that can now be tested experimentally in appropriate biological model systems. We anticipate that our results will initiate screening campaigns and accelerate the discovery of COVID-19 treatments.
Collapse
Affiliation(s)
- Mathew A. Coban
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL 32224, USA; (M.A.C.); (E.S.R.)
| | - Juliet Morrison
- Department of Microbiology and Plant Pathology, University of California, 900 University, Riverside, CA 92521, USA;
| | - Sushila Maharjan
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Landsdowne St, Cambridge, MA 02139, USA; (S.M.); (D.H.H.M.); (W.L.); (Y.S.Z.)
| | - David Hyram Hernandez Medina
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Landsdowne St, Cambridge, MA 02139, USA; (S.M.); (D.H.H.M.); (W.L.); (Y.S.Z.)
| | - Wanlu Li
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Landsdowne St, Cambridge, MA 02139, USA; (S.M.); (D.H.H.M.); (W.L.); (Y.S.Z.)
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Landsdowne St, Cambridge, MA 02139, USA; (S.M.); (D.H.H.M.); (W.L.); (Y.S.Z.)
| | - William D. Freeman
- Department of Neurology, Mayo Clinic, 4500 San Pablo South, Jacksonville, FL 32224, USA;
| | - Evette S. Radisky
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL 32224, USA; (M.A.C.); (E.S.R.)
| | - Karine G. Le Roch
- Department of Molecular, Cell and Systems Biology, University of California, 900 University, Riverside, CA 92521, USA;
| | - Carla M. Weisend
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (C.M.W.); (H.E.)
| | - Hideki Ebihara
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (C.M.W.); (H.E.)
| | - Thomas R. Caulfield
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL 32224, USA; (M.A.C.); (E.S.R.)
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Department of Quantitative Health Science, Division of Computational Biology, Mayo Clinic, Jacksonville, FL 32224, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence: ; Tel.: +1-904-953-6072
| |
Collapse
|
5
|
Caulfield TR, Hayes KE, Qiu Y, Coban M, Seok Oh J, Lane AL, Yoshimitsu T, Hazlehurst L, Copland JA, Tun HW. A Virtual Screening Platform Identifies Chloroethylagelastatin A as a Potential Ribosomal Inhibitor. Biomolecules 2020; 10:E1407. [PMID: 33027969 PMCID: PMC7599554 DOI: 10.3390/biom10101407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/11/2020] [Accepted: 09/29/2020] [Indexed: 12/03/2022] Open
Abstract
Chloroethylagelastatin A (CEAA) is an analogue of agelastatin A (AA), a natural alkaloid derived from a marine sponge. It is under development for therapeutic use against brain tumors as it has excellent central nervous system (CNS) penetration and pre-clinical therapeutic activity against brain tumors. Recently, AA was shown to inhibit protein synthesis by binding to the ribosomal A-site. In this study, we developed a novel virtual screening platform to perform a comprehensive screening of various AA analogues showing that AA analogues with proven therapeutic activity including CEAA have significant ribosomal binding capacity whereas therapeutically inactive analogues show poor ribosomal binding and revealing structural fingerprint features essential for drug-ribosome interactions. In particular, CEAA was found to have greater ribosomal binding capacity than AA. Biological tests showed that CEAA binds the ribosome and contributes to protein synthesis inhibition. Our findings suggest that CEAA may possess ribosomal inhibitor activity and that our virtual screening platform may be a useful tool in discovery and development of novel ribosomal inhibitors.
Collapse
Affiliation(s)
- Thomas R. Caulfield
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (Y.Q.); (M.C.); (A.L.L.); (J.A.C.)
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL 32224, USA
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Karen E. Hayes
- Modulation Therapeutics, Inc., Morgantown, WV 26506, USA;
| | - Yushi Qiu
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (Y.Q.); (M.C.); (A.L.L.); (J.A.C.)
| | - Mathew Coban
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (Y.Q.); (M.C.); (A.L.L.); (J.A.C.)
| | - Joon Seok Oh
- Department of Chemistry, University of North Florida, Jacksonville, FL 32224, USA;
| | - Amy L. Lane
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (Y.Q.); (M.C.); (A.L.L.); (J.A.C.)
- Department of Chemistry, University of North Florida, Jacksonville, FL 32224, USA;
| | - Takehiko Yoshimitsu
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan;
| | - Lori Hazlehurst
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506, USA;
| | - John A. Copland
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (Y.Q.); (M.C.); (A.L.L.); (J.A.C.)
| | - Han W. Tun
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (Y.Q.); (M.C.); (A.L.L.); (J.A.C.)
- Department of Hematology/Oncology, Mayo Clinic, Jacksonville, FL 32224, USA
| |
Collapse
|
6
|
Ramzy A, Asadi A, Kieffer TJ. Revisiting Proinsulin Processing: Evidence That Human β-Cells Process Proinsulin With Prohormone Convertase (PC) 1/3 but Not PC2. Diabetes 2020; 69:1451-1462. [PMID: 32291281 DOI: 10.2337/db19-0276] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/03/2020] [Indexed: 11/13/2022]
Abstract
Insulin is first produced in pancreatic β-cells as the precursor prohormone proinsulin. Defective proinsulin processing has been implicated in the pathogenesis of both type 1 and type 2 diabetes. Though there is substantial evidence that mouse β-cells process proinsulin using prohormone convertase 1/3 (PC1/3) and then prohormone convertase 2 (PC2), this finding has not been verified in human β-cells. Immunofluorescence with validated antibodies revealed that there was no detectable PC2 immunoreactivity in human β-cells and little PCSK2 mRNA by in situ hybridization. Similarly, rat β-cells were not immunoreactive for PC2. In all histological experiments, PC2 immunoreactivity in neighboring α-cells acted as a positive control. In donors with type 2 diabetes, β-cells had elevated PC2 immunoreactivity, suggesting that aberrant PC2 expression may contribute to impaired proinsulin processing in β-cells of patients with diabetes. To support histological findings using a biochemical approach, human islets were used for pulse-chase experiments. Despite inhibition of PC2 function by temperature blockade, brefeldin A, chloroquine, and multiple inhibitors that blocked production of mature glucagon from proglucagon, β-cells retained the ability to produce mature insulin. Conversely, suppression of PC1/3 blocked processing of proinsulin but not proglucagon. By demonstrating that healthy human β-cells process proinsulin by PC1/3 but not PC2, we suggest that there is a need to revise the long-standing theory of proinsulin processing.
Collapse
Affiliation(s)
- Adam Ramzy
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Ali Asadi
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Timothy J Kieffer
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Surgery, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
7
|
Coban MA, Fraga S, Caulfield TR. Structural And Computational Perspectives of Selectively Targeting Mutant Proteins. Curr Drug Discov Technol 2020; 18:365-378. [PMID: 32160847 DOI: 10.2174/1570163817666200311114819] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 11/22/2022]
Abstract
Diseases are often caused by mutant proteins. Many drugs have limited effectiveness and/or toxic side effects because of a failure to selectively target the disease-causing mutant variant, rather than the functional wild type protein. Otherwise, the drugs may even target different proteins with similar structural features. Designing drugs that successfully target mutant proteins selectively represents a major challenge. Decades of cancer research have led to an abundance of potential therapeutic targets, often touted to be "master regulators". For many of these proteins, there are no FDA-approved drugs available; for others, off-target effects result in dose-limiting toxicity. Cancer-related proteins are an excellent medium to carry the story of mutant-specific targeting, as the disease is both initiated and sustained by mutant proteins; furthermore, current chemotherapies generally fail at adequate selective distinction. This review discusses some of the challenges associated with selective targeting from a structural biology perspective, as well as some of the developments in algorithm approach and computational workflow that can be applied to address those issues. One of the most widely researched proteins in cancer biology is p53, a tumor suppressor. Here, p53 is discussed as a specific example of a challenging target, with contemporary drugs and methodologies used as examples of burgeoning successes. The oncogene KRAS, which has been described as "undruggable", is another extensively investigated protein in cancer biology. This review also examines KRAS to exemplify progress made towards selective targeting of diseasecausing mutant proteins. Finally, possible future directions relevant to the topic are discussed.
Collapse
Affiliation(s)
- Mathew A Coban
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, United States
| | - Sarah Fraga
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, United States
| | - Thomas R Caulfield
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, United States
| |
Collapse
|
8
|
Fifield AL, Hanavan PD, Faigel DO, Sergienko E, Bobkov A, Meurice N, Petit JL, Polito A, Caulfield TR, Castle EP, Copland JA, Mukhopadhyay D, Pal K, Dutta SK, Luo H, Ho TH, Lake DF. Molecular Inhibitor of QSOX1 Suppresses Tumor Growth In Vivo. Mol Cancer Ther 2019; 19:112-122. [PMID: 31575656 DOI: 10.1158/1535-7163.mct-19-0233] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/01/2019] [Accepted: 09/24/2019] [Indexed: 11/16/2022]
Abstract
Quiescin sulfhydryl oxidase 1 (QSOX1) is an enzyme overexpressed by many different tumor types. QSOX1 catalyzes the formation of disulfide bonds in proteins. Because short hairpin knockdowns (KD) of QSOX1 have been shown to suppress tumor growth and invasion in vitro and in vivo, we hypothesized that chemical compounds inhibiting QSOX1 enzymatic activity would also suppress tumor growth, invasion, and metastasis. High throughput screening using a QSOX1-based enzymatic assay revealed multiple potential QSOX1 inhibitors. One of the inhibitors, known as "SBI-183," suppresses tumor cell growth in a Matrigel-based spheroid assay and inhibits invasion in a modified Boyden chamber, but does not affect viability of nonmalignant cells. Oral administration of SBI-183 inhibits tumor growth in 2 independent human xenograft mouse models of renal cell carcinoma. We conclude that SBI-183 warrants further exploration as a useful tool for understanding QSOX1 biology and as a potential novel anticancer agent in tumors that overexpress QSOX1.
Collapse
Affiliation(s)
- Amber L Fifield
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | | | - Douglas O Faigel
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Phoenix, Arizona
| | - Eduard Sergienko
- Assay Development, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Andrey Bobkov
- Assay Development, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | | | | | - Alysia Polito
- Hematology/Oncology, Mayo Clinic, Scottsdale, Arizona
| | - Thomas R Caulfield
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida.,Mayo Graduate School, Neurobiology of Disease, Mayo Clinic, Jacksonville, Florida.,Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida.,Health Sciences Research, Division of Biomedical Statistics & Informatics, Mayo Clinic, Jacksonville, Florida.,Center for Individualized Medicine, Mayo Clinic, Jacksonville, Florida
| | - Erik P Castle
- Department of Urology, Mayo Clinic, Phoenix, Arizona
| | - John A Copland
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida
| | | | - Krishnendu Pal
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, Florida
| | - Shamit K Dutta
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, Florida
| | - Huijun Luo
- Division of Hematology/Oncology, Mayo Clinic, Phoenix, Arizona
| | - Thai H Ho
- Division of Hematology/Oncology, Mayo Clinic, Phoenix, Arizona.
| | - Douglas F Lake
- School of Life Sciences, Arizona State University, Tempe, Arizona.
| |
Collapse
|
9
|
Zhang T, Wang H, Wang T, Wei C, Jiang H, Jiang S, Yang J, Shao J, Ma L. Pax4 synergistically acts with Pdx1, Ngn3 and MafA to induce HuMSCs to differentiate into functional pancreatic β-cells. Exp Ther Med 2019; 18:2592-2598. [PMID: 31572507 PMCID: PMC6755441 DOI: 10.3892/etm.2019.7854] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 07/05/2019] [Indexed: 02/05/2023] Open
Abstract
It has been indicated that the combination of pancreatic and duodenal homeobox 1 (Pdx1), MAF bZIP transcription factor A (MafA) and neurogenin 3 (Ngn3) was able to reprogram various cell types towards pancreatic β-like cells (pβLCs). Paired box 4 (Pax4), a transcription factor, has a key role in regulating the maturation of pancreatic β-cells (pβCs). In the present study, it was investigated whether Pax4 is able to synergistically act with Pdx1, Ngn3 and MafA to induce human umbilical cord mesenchymal stem cells (HuMSCs) to differentiate into functional pβCs in vitro. HuMSCs were isolated, cultured and separately transfected with adenovirus (Ad) expressing enhanced green fluorescence protein, Pax4 (Ad-Pax4), Pdx1+MafA+Ngn3 (Ad-3F) or Ad-Pxa4 + Ad-3F. The expression of C-peptide, insulin and glucagon was detected by immunofluorescence. The transcription of a panel of genes was determined by reverse transcription-quantitative PCR, including glucagon (GCG), insulin (INS), NK6 homeobox 1 (NKX6-1), solute carrier family 2 member 2 (SLC2A2), glucokinase (GCK), proprotein convertase subtilisin/kexin type 1 (PCSK1), neuronal differentiation 1 (NEUROD1), ISL LIM homeobox 1 (ISL 1), Pax6 and PCSK type 2 (PCSK2). Insulin secretion stimulated by glucose was determined using ELISA. The results suggested that, compared with Ad-3F alone, cells co-transfected with Ad-Pax4 and Ad-3F expressed higher levels of INS and C-peptide, as well as genes expressed in pancreatic β precursor cells, and secreted more insulin in response to high glucose. Furthermore, the expression of GCG in cells transfected with Ad-3F was depressed by Ad-Pax4. The present study demonstrated that Pax4 was able to synergistically act with the transcription factors Pdx1, Ngn3 and MafA to convert HuMSCs to functional pβLCs. HuMSCs may be potential seed cells for generating functional pβLCs in the therapy of diabetes.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Hematology and Oncology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, P.R. China
| | - Hongwu Wang
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Tianyou Wang
- Hematological Tumor Center, Beijing Children's Hospital Affiliated to Capital Medical University, Beijing 100045, P.R. China
| | - Chiju Wei
- Multidisciplinary Research Center, Shantou University, Shantou, Guangdong 515063, P.R. China
| | - Hui Jiang
- Department of Hematology and Oncology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, P.R. China
| | - Shayi Jiang
- Department of Hematology and Oncology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, P.R. China
| | - Jingwei Yang
- Department of Hematology and Oncology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, P.R. China
| | - Jingbo Shao
- Department of Hematology and Oncology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, P.R. China
- Correspondence to: Dr Jingbo Shao, Department of Hematology and Oncology, Shanghai Children's Hospital, Shanghai Jiao Tong University, 355 Luding Road, Shanghai 200062, P.R. China, E-mail:
| | - Lian Ma
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, P.R. China
- Shenzhen Public Service Platform of Molecular Medicine in Pediatric Hematology and Oncology, Shenzhen, Guangdong 518038, P.R. China
- Dr Lian Ma, Department of Hematology and Oncology, Shenzhen Children's Hospital, 7019 Yitian Road, Shenzhen, Guangdong 518038, P.R. China, E-mail:
| |
Collapse
|
10
|
Winters A, Ramos-Molina B, Jarvela TS, Yerges-Armstrong L, Pollin TI, Lindberg I. Functional analysis of PCSK2 coding variants: A founder effect in the Old Order Amish population. Diabetes Res Clin Pract 2017; 131:82-90. [PMID: 28719828 PMCID: PMC5572827 DOI: 10.1016/j.diabres.2017.06.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 06/27/2017] [Accepted: 06/27/2017] [Indexed: 02/06/2023]
Abstract
AIMS In humans, noncoding variants of PCSK2, the gene encoding prohormone convertase 2 (PC2), have been previously associated with risk for and age of onset of type 2 diabetes (T2D). The aims of this study were to identify coding variants in PCSK2; to determine their possible association with glucose handling; and to determine functional outcomes for coding variants in biochemical studies. METHODS Exome-wide genotyping was performed on 1725 Old Order Amish (OOA) subjects. PCSK2 coding variants were tested for association with diabetes-related phenotypes. In vitro analyses using transfected human PC2-encoding constructs were performed to determine the impact of each mutation on PC2 activity. RESULTS We identified 10 rare missense coding variants in PCSK2 in various genomic databases. R430W (rs200711626) is greatly enriched in the OOA population (MAF 4.3%). This variant is almost twice as common (MAF 7.4%) in OOA individuals with T2D as in OOA individuals with normal or with normal/impaired glucose tolerance (MAF 3.9% and 2.9%, respectively; p=0.25 and p=0.10). In vitro experiments revealed a broadening of the pH optimum for the R430W variant, which may result in increased activity against PCSK2 substrates. CONCLUSIONS Although the association of the R430W variation with T2D in the OOA population did not reach significance, based upon the broadened pH profile of R430W PC2, we speculate that the presence of this substitution may result in altered processing of PCSK2 substrates, ultimately leading to increased conversion to diabetes.
Collapse
Affiliation(s)
- Alexandra Winters
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Bruno Ramos-Molina
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Timothy S Jarvela
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Laura Yerges-Armstrong
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Toni I Pollin
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States.
| |
Collapse
|
11
|
Abdul-Hay SO, Bannister TD, Wang H, Cameron MD, Caulfield TR, Masson A, Bertrand J, Howard EA, McGuire MP, Crisafulli U, Rosenberry TR, Topper CL, Thompson CR, Schürer SC, Madoux F, Hodder P, Leissring MA. Selective Targeting of Extracellular Insulin-Degrading Enzyme by Quasi-Irreversible Thiol-Modifying Inhibitors. ACS Chem Biol 2015; 10:2716-24. [PMID: 26398879 PMCID: PMC10127574 DOI: 10.1021/acschembio.5b00334] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Many therapeutically important enzymes are present in multiple cellular compartments, where they can carry out markedly different functions; thus, there is a need for pharmacological strategies to selectively manipulate distinct pools of target enzymes. Insulin-degrading enzyme (IDE) is a thiol-sensitive zinc-metallopeptidase that hydrolyzes diverse peptide substrates in both the cytosol and the extracellular space, but current genetic and pharmacological approaches are incapable of selectively inhibiting the protease in specific subcellular compartments. Here, we describe the discovery, characterization, and kinetics-based optimization of potent benzoisothiazolone-based inhibitors that, by virtue of a unique quasi-irreversible mode of inhibition, exclusively inhibit extracellular IDE. The mechanism of inhibition involves nucleophilic attack by a specific active-site thiol of the enzyme on the inhibitors, which bear an isothiazolone ring that undergoes irreversible ring opening with the formation of a disulfide bond. Notably, binding of the inhibitors is reversible under reducing conditions, thus restricting inhibition to IDE present in the extracellular space. The identified inhibitors are highly potent (IC50(app) = 63 nM), nontoxic at concentrations up to 100 μM, and appear to preferentially target a specific cysteine residue within IDE. These novel inhibitors represent powerful new tools for clarifying the physiological and pathophysiological roles of this poorly understood protease, and their unusual mechanism of action should be applicable to other therapeutic targets.
Collapse
Affiliation(s)
- Samer O. Abdul-Hay
- Department
of Neuroscience, Mayo Clinic Florida, Jacksonville, Florida 32224, United States
| | | | | | | | - Thomas R. Caulfield
- Department
of Neuroscience, Mayo Clinic Florida, Jacksonville, Florida 32224, United States
| | - Amandine Masson
- Department
of Neuroscience, Mayo Clinic Florida, Jacksonville, Florida 32224, United States
| | - Juliette Bertrand
- Department
of Neuroscience, Mayo Clinic Florida, Jacksonville, Florida 32224, United States
| | - Erin A. Howard
- Department
of Neuroscience, Mayo Clinic Florida, Jacksonville, Florida 32224, United States
| | - Michael P. McGuire
- Department
of Neuroscience, Mayo Clinic Florida, Jacksonville, Florida 32224, United States
| | - Umberto Crisafulli
- Department
of Neuroscience, Mayo Clinic Florida, Jacksonville, Florida 32224, United States
| | - Terrone R. Rosenberry
- Department
of Neuroscience, Mayo Clinic Florida, Jacksonville, Florida 32224, United States
| | - Caitlyn L. Topper
- Institute
for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, California 92697, United States
| | - Caroline R. Thompson
- Institute
for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, California 92697, United States
| | - Stephan C. Schürer
- Department
of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, Florida 33136, United States
| | | | | | - Malcolm A. Leissring
- Department
of Neuroscience, Mayo Clinic Florida, Jacksonville, Florida 32224, United States
- Institute
for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, California 92697, United States
| |
Collapse
|
12
|
Saidi M, Beaudry F. Liquid chromatography-electrospray linear ion trap mass spectrometry analysis of targeted neuropeptides in Tac1(-/-) mouse spinal cords reveals significant lower concentration of opioid peptides. Neuropeptides 2015; 52:79-87. [PMID: 26072188 DOI: 10.1016/j.npep.2015.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 05/26/2015] [Accepted: 05/27/2015] [Indexed: 12/26/2022]
Abstract
Tachykinin and opioid peptides play a central role in pain transmission, modulation and inhibition. The treatment of pain is very important in medicine and many studies using NK1 receptor antagonists failed to show significant analgesic effects in humans. Recent investigations suggest that both pronociceptive tachykinins and the analgesic opioid systems are important for normal pain sensation. The analysis of opioid peptides in Tac1(-/-) spinal cord tissues offers a great opportunity to verify the influence of the tachykinin system on specific opioid peptides. The objectives of this study were to develop an HPLC-MS/MRM assay to quantify targeted peptides in spinal cord tissues. Secondly, we wanted to verify if the Tac1(-/-) mouse endogenous opioid system is hampered and therefore affects significantly the pain modulatory pathways. Targeted neuropeptides were analyzed by high performance liquid chromatography linear ion trap mass spectrometry. Our results reveal that EM-2, Leu-Enk and Dyn A were down-regulated in Tac1(-/-) spinal cord tissues. Interestingly, Dyn A was almost 3 fold down-regulated (p<0.0001). No significant concentration differences were observed in mouse Tac1(-/-) spinal cords for Met-Enk and CGRP. The analysis of Tac1(-/-) mouse spinal cords revealed noteworthy decreases of EM-2, Leu-Enk and Dyn A concentrations which strongly suggest a significant impact on the endogenous pain-relieving mechanisms. These observations may have insightful impact on future analgesic drug developments and therapeutic strategies.
Collapse
Affiliation(s)
- Mouna Saidi
- Groupe de Recherche en Pharmacologie Animal du Québec (GREPAQ), Département de biomédecine vétérinaire, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, Québec, Canada
| | - Francis Beaudry
- Groupe de Recherche en Pharmacologie Animal du Québec (GREPAQ), Département de biomédecine vétérinaire, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, Québec, Canada
| |
Collapse
|
13
|
Ramos-Molina B, Lick AN, Nasrolahi Shirazi A, Oh D, Tiwari R, El-Sayed NS, Parang K, Lindberg I. Cationic Cell-Penetrating Peptides Are Potent Furin Inhibitors. PLoS One 2015; 10:e0130417. [PMID: 26110264 PMCID: PMC4482483 DOI: 10.1371/journal.pone.0130417] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 05/20/2015] [Indexed: 12/30/2022] Open
Abstract
Cationic cell-penetrating peptides have been widely used to enhance the intracellular delivery of various types of cargoes, such as drugs and proteins. These reagents are chemically similar to the multi-basic peptides that are known to be potent proprotein convertase inhibitors. Here, we report that both HIV-1 TAT47-57 peptide and the Chariot reagent are micromolar inhibitors of furin activity in vitro. In agreement, HIV-1 TAT47-57 reduced HT1080 cell migration, thought to be mediated by proprotein convertases, by 25%. In addition, cyclic polyarginine peptides containing hydrophobic moieties which have been previously used as transfection reagents also exhibited potent furin inhibition in vitro and also inhibited intracellular convertases. Our finding that cationic cell-penetrating peptides exert potent effects on cellular convertase activity should be taken into account when biological effects are assessed.
Collapse
Affiliation(s)
- Bruno Ramos-Molina
- Department of Anatomy and Neurobiology, School of Medicine, University of Maryland-Baltimore, Baltimore, Maryland, United States of America
| | - Adam N. Lick
- Department of Anatomy and Neurobiology, School of Medicine, University of Maryland-Baltimore, Baltimore, Maryland, United States of America
| | | | - Donghoon Oh
- Chapman University, School of Pharmacy, Irvine, California, United States of America
| | - Rakesh Tiwari
- Chapman University, School of Pharmacy, Irvine, California, United States of America
| | - Naglaa Salem El-Sayed
- Chapman University, School of Pharmacy, Irvine, California, United States of America
| | - Keykavous Parang
- Chapman University, School of Pharmacy, Irvine, California, United States of America
| | - Iris Lindberg
- Department of Anatomy and Neurobiology, School of Medicine, University of Maryland-Baltimore, Baltimore, Maryland, United States of America
| |
Collapse
|
14
|
Wang X, D'Arcy P, Caulfield TR, Paulus A, Chitta K, Mohanty C, Gullbo J, Chanan-Khan A, Linder S. Synthesis and evaluation of derivatives of the proteasome deubiquitinase inhibitor b-AP15. Chem Biol Drug Des 2015; 86:1036-48. [PMID: 25854145 DOI: 10.1111/cbdd.12571] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/16/2015] [Accepted: 04/03/2015] [Indexed: 12/20/2022]
Abstract
The ubiquitin-proteasome system (UPS) is increasingly recognized as a therapeutic target for the development of anticancer therapies. The success of the 20S proteasome core particle (20S CP) inhibitor bortezomib in the clinical management of multiple myeloma has raised the possibility of identifying other UPS components for therapeutic intervention. We previously identified the small molecule b-AP15 as an inhibitor of 19S proteasome deubiquitinase (DUB) activity. Building upon our previous data, we performed a structure-activity relationship (SAR) study on b-AP15 and identified VLX1570 as an analog with promising properties, including enhanced potency and improved solubility in aqueous solution. In silico modeling was consistent with interaction of VLX1570 with key cysteine residues located at the active sites of the proteasome DUBs USP14 and UCHL5. VLX1570 was found to inhibit proteasome deubiquitinase activity in vitro in a manner consistent with competitive inhibition. Furthermore, using active-site-directed probes, VLX1570 also inhibited proteasome DUB activity in exposed cells. Importantly, VLX1570 did not show inhibitory activity on a panel of recombinant non-proteasome DUBs, on recombinant kinases, or on caspase-3 activity, suggesting that VLX1570 is not an overtly reactive general enzyme inhibitor. Taken together, our data shows the chemical and biological properties of VLX1570 as an optimized proteasome DUB inhibitor.
Collapse
Affiliation(s)
- Xin Wang
- Department of Medical and Health Sciences, Linköping University, S-581 83, Linköping, Sweden
| | - Pádraig D'Arcy
- Department of Medical and Health Sciences, Linköping University, S-581 83, Linköping, Sweden
| | - Thomas R Caulfield
- Department of Molecular Neuroscience, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Aneel Paulus
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Kasyapa Chitta
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Chitralekha Mohanty
- Cancer Center Karolinska, Department of Oncology and Pathology, Karolinska Institute, S-171 76, Stockholm, Sweden
| | - Joachim Gullbo
- Department of Immunology, Genetics and Pathology, Section of Oncology, Uppsala University, S-75185, Uppsala, Sweden
| | - Asher Chanan-Khan
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Stig Linder
- Department of Medical and Health Sciences, Linköping University, S-581 83, Linköping, Sweden.,Cancer Center Karolinska, Department of Oncology and Pathology, Karolinska Institute, S-171 76, Stockholm, Sweden
| |
Collapse
|
15
|
Ramos-Molina B, Lick AN, Blanco EH, Posada-Salgado JA, Martinez-Mayorga K, Johnson AT, Jiao GS, Lindberg I. Identification of potent and compartment-selective small molecule furin inhibitors using cell-based assays. Biochem Pharmacol 2015; 96:107-18. [PMID: 26003844 DOI: 10.1016/j.bcp.2015.05.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/11/2015] [Indexed: 12/20/2022]
Abstract
The proprotein convertase furin is implicated in a variety of pathogenic processes such as bacterial toxin activation, viral propagation, and cancer. Several groups have identified non-peptide compounds with high inhibitory potency against furin in vitro, although their efficacy in various cell-based assays is largely unknown. In this study we show that certain guanidinylated 2,5-dideoxystreptamine derivatives exhibit interesting ex vivo properties. Compound 1b (1,1'-(4-((2,4-diguanidino-5-(4-guanidinophenoxy)cyclohexyl)oxy)-1,3-phenylene)diguanidine) is a potent and cell-permeable inhibitor of cellular furin, since it was able to retard tumor cell migration, block release of a Golgi reporter, and protect cells against Bacillus anthracis (anthrax) and Pseudomonas aeruginosa intoxication, with no evident cell toxicity. Other compounds based on the 2,5-dideoxystreptamine scaffold, such as compound 1g (1,1'-(4,6-bis(4-guanidinophenoxy)cyclohexane-1,3-diyl)diguanidine) also efficiently protected cells against anthrax, but displayed only moderate protection against Pseudomonas exotoxin A and did not inhibit cell migration, suggesting poor cell permeability. Certain bis-guanidinophenyl ether derivatives such as 2f (1,3-bis(2,4-diguanidinophenoxy) benzene) exhibited micromolar potency against furin in vitro, low cell toxicity, and highly efficient protection against anthrax toxin; this compound only slightly inhibited intracellular furin. Thus, compounds 1g and 2f both represent potent furin inhibitors at the cell surface with low intracellular inhibitory action, and these particular compounds might therefore be of preferred therapeutic interest in the treatment of certain bacterial and viral infections.
Collapse
Affiliation(s)
- Bruno Ramos-Molina
- Department of Anatomy and Neurobiology, School of Medicine, University of Maryland-Baltimore, MD, USA
| | - Adam N Lick
- Department of Anatomy and Neurobiology, School of Medicine, University of Maryland-Baltimore, MD, USA
| | - Elias H Blanco
- Department of Anatomy and Neurobiology, School of Medicine, University of Maryland-Baltimore, MD, USA
| | | | | | - Alan T Johnson
- Department of Chemistry, Hawaii Biotech, Inc., Aiea, HI, USA
| | - Guan-Sheng Jiao
- Department of Chemistry, Hawaii Biotech, Inc., Aiea, HI, USA.
| | - Iris Lindberg
- Department of Anatomy and Neurobiology, School of Medicine, University of Maryland-Baltimore, MD, USA.
| |
Collapse
|
16
|
Chitta K, Paulus A, Caulfield TR, Akhtar S, Blake MKK, Ailawadhi S, Knight J, Heckman MG, Pinkerton A, Chanan-Khan A. Nimbolide targets BCL2 and induces apoptosis in preclinical models of Waldenströms macroglobulinemia. Blood Cancer J 2014; 4:e260. [PMID: 25382610 PMCID: PMC5424099 DOI: 10.1038/bcj.2014.74] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/15/2014] [Accepted: 09/18/2014] [Indexed: 12/31/2022] Open
Abstract
Neem leaf extract (NLE) has medicinal properties, which have been attributed to its limonoid content. We identified the NLE tetranorterpenoid, nimbolide, as being the key limonoid responsible for the cytotoxicity of NLE in various preclinical models of human B-lymphocyte cancer. Of the models tested, Waldenströms macroglobulinemia (WM) cells were most sensitive to nimbolide, undergoing significant mitochondrial mediated apoptosis. Notably, nimbolide toxicity was also observed in drug-resistant (bortezomib or ibrutinib) WM cells. To identify putative targets of nimbolide, relevant in WM, we used chemoinformatics-based approaches comprised of virtual in silico screening, molecular modeling and target–ligand reverse docking. In silico analysis revealed the antiapoptotic protein BCL2 was the preferential binding partner of nimbolide. The significance of this finding was further tested in vitro in RS4;11 (BCL2-dependent) tumor cells, in which nimbolide induced significantly more apoptosis compared with BCL2 mutated (Jurkat BCL2Ser70-Ala) cells. Lastly, intraperitoneal administration of nimbolide in WM tumor xenografted mice, significantly reduced tumor growth and IgM secretion in vivo, while modulating the expression of several proteins as seen on immunohistochemistry. Overall, our data demonstrate that nimbolide is highly active in WM cells, as well as other B-cell cancers, and engages BCL2 to exert its cytotoxic activity.
Collapse
Affiliation(s)
- K Chitta
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, USA
| | - A Paulus
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, USA
| | - T R Caulfield
- Department of Molecular Neuroscience, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, USA
| | - S Akhtar
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, USA
| | - M-K K Blake
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, USA
| | - S Ailawadhi
- Division of Hematology and Oncology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, USA
| | - J Knight
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, USA
| | - M G Heckman
- Department of Health Science Research, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, USA
| | - A Pinkerton
- Conrad Prebys Center for Chemical Genomics at Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - A Chanan-Khan
- Division of Hematology and Oncology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, USA
| |
Collapse
|
17
|
Yongye AB, Vivoli M, Lindberg I, Appel JR, Houghten RA, Martinez-Mayorga K. Identification of a small molecule that selectively inhibits mouse PC2 over mouse PC1/3: a computational and experimental study. PLoS One 2013; 8:e56957. [PMID: 23451118 PMCID: PMC3579927 DOI: 10.1371/journal.pone.0056957] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 01/16/2013] [Indexed: 11/26/2022] Open
Abstract
The calcium-dependent serine endoproteases prohormone convertase 1/3 (PC1/3) and prohormone convertase 2 (PC2) play important roles in the homeostatic regulation of blood glucose levels, hence implicated in diabetes mellitus. Specifically, the absence of PC2 has been associated with chronic hypoglycemia. Since there is a reasonably good conservation of the catalytic domain between species translation of inhibitory effects is likely. In fact, similar results have been found using both mouse and human recombinant enzymes. Here, we employed computational structure-based approaches to screen 14,400 compounds from the Maybridge small molecule library towards mouse PC2. Our most remarkable finding was the identification of a potent and selective PC2 inhibitor. Kinetic data showed the compound to be an allosteric inhibitor. The compound identified is one of the few reported selective, small-molecule inhibitors of PC2. In addition, this new PC2 inhibitor is structurally different and of smaller size than those reported previously. This is advantageous for future studies where structural analogues can be built upon.
Collapse
Affiliation(s)
- Austin B. Yongye
- Torrey Pines Institute for Molecular Studies, Port St Lucie, Florida, United States of America
| | - Mirella Vivoli
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Jon R. Appel
- Torrey Pines Institute for Molecular Studies, San Diego, California, United States of America
| | - Richard A. Houghten
- Torrey Pines Institute for Molecular Studies, Port St Lucie, Florida, United States of America
- Torrey Pines Institute for Molecular Studies, San Diego, California, United States of America
| | - Karina Martinez-Mayorga
- Torrey Pines Institute for Molecular Studies, Port St Lucie, Florida, United States of America
- Instituto de Química, UNAM, Mexico City, Mexico
| |
Collapse
|
18
|
Seidah NG, Prat A. The biology and therapeutic targeting of the proprotein convertases. Nat Rev Drug Discov 2012; 11:367-83. [PMID: 22679642 DOI: 10.1038/nrd3699] [Citation(s) in RCA: 599] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The mammalian proprotein convertases constitute a family of nine secretory serine proteases that are related to bacterial subtilisin and yeast kexin. Seven of these (proprotein convertase 1 (PC1), PC2, furin, PC4, PC5, paired basic amino acid cleaving enzyme 4 (PACE4) and PC7) activate cellular and pathogenic precursor proteins by cleavage at single or paired basic residues, whereas subtilisin kexin isozyme 1 (SKI-1) and proprotein convertase subtilisin kexin 9 (PCSK9) regulate cholesterol and/or lipid homeostasis via cleavage at non-basic residues or through induced degradation of receptors. Proprotein convertases are now considered to be attractive targets for the development of powerful novel therapeutics. In this Review, we summarize the physiological functions and pathological implications of the proprotein convertases, and discuss proposed strategies to control some of their activities, including their therapeutic application and validation in selected disease states.
Collapse
Affiliation(s)
- Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal (affiliated to University of Montreal), 110 Pine Ave West, Montreal, Quebec H2W 1R7, Canada.
| | | |
Collapse
|
19
|
López-Vallejo F, Martínez-Mayorga K. Furin inhibitors: importance of the positive formal charge and beyond. Bioorg Med Chem 2012; 20:4462-71. [PMID: 22682919 DOI: 10.1016/j.bmc.2012.05.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Revised: 05/03/2012] [Accepted: 05/12/2012] [Indexed: 02/02/2023]
Abstract
Furin is the prototype member of the proprotein convertases superfamily. Proprotein convertases are associated with hormonal response, neural degeneration, viral and bacterial activation, and cancer. Several studies over the last decade have examined small molecules, natural products, peptides and peptide derivatives as furin inhibitors. Currently, subnanomolar inhibition of furin is possible. Herein, we report the analysis of 115 furin inhibitors reported in the literature. Analysis of the physicochemical properties of these compounds highlights the dependence of the inhibitory potency with the total formal charge and also shows how the most potent (peptide-based) furin inhibitors have physicochemical properties similar to drugs. In addition, we report docking studies of 26 furin inhibitors using Glide XP. Inspection of binding interactions shows that the two putative binding modes derived from our study are reasonable. Analysis of the binding modes and protein-ligand interaction fingerprints, used here as postdocking procedure, shows that electrostatic interactions predominate on S1, S2 and S4 subsites but are seldom in S3. Our models also show that the benzimidamide group, present in the most active inhibitors, can be accommodated in the S1 subsite. These results are valuable for the design of new furin inhibitors.
Collapse
Affiliation(s)
- Fabian López-Vallejo
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, FL 34987, USA
| | | |
Collapse
|