1
|
Hou J, Feng Y, Yang Z, Ding Y, Cheng D, Shi Z, Li R, Xue L. Primary Sjögren's syndrome: new perspectives on salivary gland epithelial cells. Eur J Med Res 2024; 29:371. [PMID: 39014509 PMCID: PMC11253495 DOI: 10.1186/s40001-024-01967-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 07/09/2024] [Indexed: 07/18/2024] Open
Abstract
Primary Sjögren's syndrome (pSS) is a chronic autoimmune disease primarily affecting exocrine glands such as the salivary glands, leading to impaired secretion and sicca symptoms. As the mainstay of salivation, salivary gland epithelial cells (SGECs) have an important role in the pathology of pSS. Emerging evidence suggests that the interplay between immunological factors and SGECs may not be the initial trigger or the sole mechanism responsible for xerostomia in pSS, challenging conventional perceptions. To deepen our understanding, current research regarding SGECs in pSS was reviewed. Among the extensive aberrations in cellular architecture and function, this review highlighted certain alterations of SGECs that were identified to occur independently of or in absence of lymphocytic infiltration. In particular, some of these alterations may serve as upstream factors of immuno-inflammatory responses. These findings underscore the significance of introspecting the pathogenesis of pSS and developing interventions targeting SGECs in the early stages of the disease.
Collapse
Affiliation(s)
- Jiaqi Hou
- Rheumatology Department, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai, 200437, China
| | - Yiyi Feng
- Rheumatology Department, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai, 200437, China
| | - Zhixia Yang
- Rheumatology Department, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai, 200437, China
| | - Yimei Ding
- Rheumatology Department, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai, 200437, China
| | - Dandan Cheng
- Shanghai Skin Diseases Hospital, 200 Wuyi Road, Changning District, Shanghai, 200050, China
| | - Zhonghao Shi
- Rheumatology Department, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai, 200437, China
| | - Rouxin Li
- Rheumatology Department, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai, 200437, China
| | - Luan Xue
- Rheumatology Department, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai, 200437, China.
| |
Collapse
|
2
|
Yanuar R, Semba S, Nezu A, Tanimura A. Muscarinic acetylcholine receptor-mediated phosphorylation of extracellular signal-regulated kinase in HSY salivary ductal cells involves distinct signaling pathways. J Oral Biosci 2024; 66:447-455. [PMID: 38336259 DOI: 10.1016/j.job.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
OBJECTIVES Typical agonists of G protein-coupled receptors (GPCRs), including muscarinic acetylcholine receptors (mAChRs), activate both G-protein and β-arrestin signaling systems, and are termed balanced agonists. In contrast, biased agonists selectively activate a single pathway, thereby offering therapeutic potential for the specific activation of that pathway. The mAChR agonists carbachol and pilocarpine are known to induce phosphorylation of extracellular signal-regulated kinase-1/2 (ERK1/2) via G-protein-dependent and -independent pathways, respectively. We investigated the involvement of β-arrestin and its downstream mechanisms in the ERK1/2 phosphorylation induced by carbachol and pilocarpine in the human salivary ductal cell line, HSY cells. METHODS HSY cells were stimulated with pilocarpine or carbachol, with or without various inhibitors. The cell lysates were analyzed by western blotting using the antibodies p44/p42MAPK and phosphor-p44/p42MAPK. RESULTS Western blot analysis revealed that carbachol elicited greater stimulation of ERK1/2 phosphorylation compared to pilocarpine. ERK1/2 phosphorylation was inhibited by atropine and gefitinib, suggesting that mAChR activation induces transactivation of epidermal growth factor receptors (EGFR). Moreover, inhibition of carbachol-mediated ERK1/2 phosphorylation was achieved by GF-109203X (a PKC inhibitor), a βARK1/GRK2 inhibitor, barbadin (a β-arrestin inhibitor), pitstop 2 (a clathrin inhibitor), and dynole 34-2 (a dynamin inhibitor). In contrast, pilocarpine-mediated ERK1/2 phosphorylation was only inhibited by barbadin (a β-arrestin inhibitor) and PP2 (a Src inhibitor). CONCLUSION Carbachol activates both G-protein and β-arrestin pathways, whereas pilocarpine exclusively activates the β-arrestin pathway. Additionally, downstream of β-arrestin, carbachol activates clathrin-dependent internalization, while pilocarpine activates Src.
Collapse
Affiliation(s)
- Rezon Yanuar
- Division of Pharmacology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Shingo Semba
- Division of Pharmacology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Akihiro Nezu
- Division of Pharmacology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Akihiko Tanimura
- Division of Pharmacology, Department of Oral Biology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan.
| |
Collapse
|
3
|
Therapeutic and Metagenomic Potential of the Biomolecular Therapies against Periodontitis and the Oral Microbiome: Current Evidence and Future Perspectives. Int J Mol Sci 2022; 23:ijms232213708. [PMID: 36430182 PMCID: PMC9693164 DOI: 10.3390/ijms232213708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022] Open
Abstract
The principles of periodontal therapy are based on the control of microbial pathogens and host factors that contribute to biofilm dysbiosis, with the aim of modulating the progression of periodontitis and periodontal tissue destruction. It is currently known how differently each individual responds to periodontal treatment, depending on both the bacterial subtypes that make up the dysbiotic biofilm and interindividual variations in the host inflammatory response. This has allowed the current variety of approaches for the management of periodontitis to be updated by defining the goals of target strategies, which consist of reducing the periodontopathogenic microbial flora and/or modulating the host-mediated response. Therefore, this review aims to update the current variety of approaches for the management of periodontitis based on recent target therapies. Recently, encouraging results have been obtained from several studies exploring the effects of some targeted therapies in the medium- and long-term. Among the most promising target therapies analyzed and explored in this review include: cell-based periodontal regeneration, mediators against bone resorption, emdogain (EMD), platelet-rich plasma, and growth factors. The reviewed evidence supports the hypothesis that the therapeutic combination of epigenetic modifications of periodontal tissues, interacting with the dysbiotic biofilm, is a key step in significantly reducing the development and progression of disease in periodontal patients and improving the therapeutic response of periodontal patients. However, although studies indicate promising results, these need to be further expanded and studied to truly realize the benefits that targeted therapies could bring in the treatment of periodontitis.
Collapse
|
4
|
Lan L, Wang H, Yang R, Liu F, Bi Q, Wang S, Wei X, Yan H, Su R. R2-8018 reduces the proliferation and migration of non-small cell lung cancer cells by disturbing transactivation between M3R and EGFR. Life Sci 2019; 234:116742. [PMID: 31401315 DOI: 10.1016/j.lfs.2019.116742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/03/2019] [Accepted: 08/07/2019] [Indexed: 01/23/2023]
Abstract
AIMS The M3 muscarinic acetylcholine receptor (M3R) is a G protein-coupled receptor that is expressed in cases of non-small cell lung cancer (NSCLC). Previous studies demonstrated that M3R antagonists reduce the proliferation of NSCLC. However, how antagonists inhibit the NSCLC proliferation and migration is still little known. This study aims to investigate the mechanism of M3R involved in the growth of NSCLC. MAIN METHODS The CRISPR/Cas9 was used to knock out (KO) the M3R gene. A real-time cell analyzer (RTCA) was used to record the proliferation of NSCLC cells. The migration and cell cycle of NSCLC cells were evaluated with scratch test and flow cytometry (FCM), respectively. Antibody microarray analysis was performed to detect the expression of proteins after antagonizing M3R and knocking out of M3R, subsequently some of these important proteins were verified by western blot. KEY FINDINGS The proliferation and migration of NSCLC cells were inhibited by M3R antagonist R2-8018 and knocking out of M3R. Antagonism or knocking out of M3R reduced the phosphorylation of EGFR. Moreover, c-Src and β-arrestin-1 are involved in the mechanism of how the inhibition of M3R affects EGFR in NSCLC. Further study demonstrated that PI3K/AKT and MEK/ERK signal pathways are involved in M3R-induced EGFR transactivation in NSCLC, and the molecules involved in the cell cycle progression and migration of NSCLC cells were identified. SIGNIFICANCE This further understanding of the relationship between M3R and NSCLC facilitates the design of therapeutic strategy with M3R antagonist as an adjuvant drug for NSCLC treatment.
Collapse
Affiliation(s)
- Liting Lan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China
| | - Hua Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China; 69242 Force Health Center, No. 1, Hongxing Road, Turpan, Xinjiang 838000, China
| | - Rui Yang
- National Institutes for Food and Drug Control, No. 31, Huatuo Road, Daxing District, Beijing 102629, China
| | - Fengqi Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China; Department of Medical Laboratory, Changzhi Medical College, No.161 Jiefang East Street, Changzhi, Shanxi, 046000, China
| | - Qingshang Bi
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China; Department of Medical Laboratory, Changzhi Medical College, No.161 Jiefang East Street, Changzhi, Shanxi, 046000, China
| | - Shiqi Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China; Center for Drug Evaluation, NMPA. No. 128, Jianguo Road, Chaoyang District, Beijing 100022, China
| | - Xiaoli Wei
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China
| | - Haitao Yan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China.
| | - Ruibin Su
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China.
| |
Collapse
|
5
|
Xie P, Zheng Z, Jiang L, Wu S. Penehyclidine effects the angiogenic potential of pulmonary microvascular endothelial cells. Pulm Pharmacol Ther 2019; 55:5-16. [PMID: 30641132 DOI: 10.1016/j.pupt.2019.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/25/2018] [Accepted: 01/09/2019] [Indexed: 02/06/2023]
Abstract
The present study sought to determine the pharmacological effects of penehyclidine, an anticholinergic agent, on the angiogenic capacity of pulmonary microvascular endothelial cells (PMVECs). In vitro Matrigel network formation assay, cell proliferation assay, cell-matrix adhesion assay, and wound-healing assay were performed in PMVECs with or without exposure to penehyclidine or, in some cases, glycopyrrolate or acetylcholine, over a concentration range. In addition, the phosphorylation state of Akt and ERK, as well as the endogenous level of mTOR and RICTOR were examined in PMVECs by Western blot following the cells exposure to penehyclidine or, for some proteins, glycopyrrolate or acetylcholine. Finally, Western blot for Akt phosphorylation and in vitro Matrigel network formation assay were performed in PMVECs following their exposure to penehyclidine with or without phosphoinositide 3-kinase (PI3K) inhibitor LY294002 or mTOR inhibitor torin-1. We found that, in PMVECs, penehyclidine affected the network formation and cell migration, but not proliferation or cell-matrix adhesion, in a concentration-specific manner, i.e., penehyclidine increased the network formation and cell migration at lower concentrations but increased these processes at higher concentrations. Coincidentally, we observed that penehyclidine concentration-specifically affected the phosphorylation state of Akt in PMVECs, i.e., increased Akt phosphorylation at lower concentrations and decreased it at higher concentrations. In contrast, glycopyrrolate was found straightly to decrease network formation and Akt phosphorylation in a concentration-dependent manner. Further, we demonstrated that PI3K or mTOR blockade abolished both the enhanced network formation and the increased Akt phosphorylation by penehyclidine. Hence, penehyclidine may differentially alter the angiogenic capacity of PMVECs through affecting the Akt signaling pathway downstream of PI3K and mTOR. Findings from this study suggest a unique pharmacological feature of penehyclidine, which may imply its clinical and therapeutic value in modulating angiogenesis.
Collapse
Affiliation(s)
- Peilin Xie
- Department of Anesthesiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zhen Zheng
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lihua Jiang
- Department of Anesthesiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Songwei Wu
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
6
|
Motoike S, Kajiya M, Komatsu N, Takewaki M, Horikoshi S, Matsuda S, Ouhara K, Iwata T, Takeda K, Fujita T, Kurihara H. Cryopreserved clumps of mesenchymal stem cell/extracellular matrix complexes retain osteogenic capacity and induce bone regeneration. Stem Cell Res Ther 2018; 9:73. [PMID: 29562931 PMCID: PMC5863484 DOI: 10.1186/s13287-018-0826-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/16/2018] [Accepted: 03/06/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Three-dimensional (3D) cultured clumps of mesenchymal stem cell (MSC)/extracellular matrix (ECM) complexes (C-MSCs) consist of cells and self-produced ECM. C-MSCs can regulate cellular functions in vitro and can be grafted into a defect site without an artificial scaffold to induce bone regeneration. Long-term cryopreservation of C-MSCs, which can enable them to serve as a ready-to-use cell preparation, may be helpful in developing beneficial cell therapy for bone regeneration. Therefore, the aim of this study was to investigate the effect of cryopreservation on C-MSCs. METHODS MSCs isolated from rat femurs were cultured in growth medium supplemented with ascorbic acid. To obtain C-MSCs, confluent cells that had formed on the cellular sheet were scratched using a micropipette tip and were then torn off. The sheet was rolled to make a round clumps of cells. The C-MSCs were cryopreserved in cryomedium including 10% dimethyl sulfoxide. RESULTS Cryopreserved C-MSCs retained their 3D structure and did not exhibit a decrease in cell viability. In addition, stem cell marker expression levels and the osteogenic differentiation properties of C-MSCs were not reduced by cryopreservation. However, C-MSCs pretreated with collagenase before cryopreservation showed a lower level of type I collagen and could not retain their 3D structure, and their rates of cell death increased during cryopreservation. Both C-MSC and cryopreserved C-MSC transplantation into rat calvarial defects induced successful bone regeneration. CONCLUSION These data indicate that cryopreservation does not reduce the biological properties of C-MSCs because of its abundant type I collagen. More specifically, cryopreserved C-MSCs could be applicable for novel bone regenerative therapies.
Collapse
Affiliation(s)
- Souta Motoike
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical & Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan
| | - Mikihito Kajiya
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical & Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan.
| | - Nao Komatsu
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical & Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan
| | - Manabu Takewaki
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical & Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan
| | - Susumu Horikoshi
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical & Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan
| | - Shinji Matsuda
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical & Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan
| | - Kazuhisa Ouhara
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical & Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan
| | - Tomoyuki Iwata
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical & Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan
| | - Katsuhiro Takeda
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical & Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan
| | - Tsuyoshi Fujita
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical & Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan
| | - Hidemi Kurihara
- Department of Periodontal Medicine, Applied Life Sciences, Institute of Biomedical & Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan
| |
Collapse
|
7
|
Han X, Liu Y, Kam WR, Sullivan DA. Effect of brimonidine, an α2 adrenergic agonist, on human meibomian gland epithelial cells. Exp Eye Res 2018; 170:20-28. [PMID: 29452108 DOI: 10.1016/j.exer.2018.02.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/09/2018] [Accepted: 02/12/2018] [Indexed: 01/15/2023]
Abstract
We recently discovered that the anti-glaucoma pharmaceuticals timolol, a β adrenergic antagonist, and pilocarpine, a cholinergic compound, negatively influence the morphology, proliferative capacity and survival of human meibomian gland epithelial cells (HMGECs). We hypothesize that another class of anti-glaucoma drugs, the α2 adrenergic agonists, also acts directly on HMGECs to affect their structure and function. We tested this hypothesis. Immortalized (i) HMGECs were cultured with brimonidine, as well as clonidine (α2 agonist), phenylephrine (α1 agonist), RX821002 (inverse α2 agonist) and MK912 (neutral α2 agonist) for up to 7 days. Cells were counted with a hemocytometer, and evaluated for morphology, signaling pathway activity, protein biomarker expression, and the accumulation of neutral lipids, phospholipids and lysosomes. Our findings demonstrate that brimondine treatment induces a dose-dependent decrease in Akt signaling and proliferation of iHMGECs. In contrast, brimonidine also promotes a dose-dependent differentiation of iHMGECs, including an increase in neutral lipid, phospholipid and lysosome levels. These effects were paralleled by an inhibition of p38 signaling, and duplicated by cellular exposure to clonidine, but not phenylephrine. Brimonidine also enhanced the cellular content of sterol regulatory binding protein-1, a master regulator of lipid synthesis. Of particular interest, the putative α2 antagonists, RX821002 and MK912, did not interfere with brimonidine action, but rather stimulated IHMGEC differentiation. Our results support our hypothesis and demonstrate that α2 adrenergic agonists act directly on iHMGECs. However, these compounds do not elicit an overall negative effect. Rather, the α2 agonists promote the differentiation of iHMGECs.
Collapse
Affiliation(s)
- Xi Han
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA; Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Liu
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Wendy R Kam
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - David A Sullivan
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Sulforaphane Improves Ischemia-Induced Detrusor Overactivity by Downregulating the Enhancement of Associated Endoplasmic Reticulum Stress, Autophagy, and Apoptosis in Rat Bladder. Sci Rep 2016; 6:36110. [PMID: 27824068 PMCID: PMC5099933 DOI: 10.1038/srep36110] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/05/2016] [Indexed: 01/13/2023] Open
Abstract
Atherosclerosis-associated pelvic ischemia has been reported to be a risk factor for bladder dysfunction and subsequent lower urinary tract symptoms (LUTS) in the elderly population. However, the molecular mechanisms of this association remain unclear. We hypothesized that stress-induced cellular responses might play a role in the pathogenesis of ischemia-induced bladder dysfunction. In the present study, the animal model of bladder ischemia was induced by bilateral partial arterial occlusion (BPAO) in rats. We found that BPAO significantly induced the presence of detrusor overactivity (DO) and upregulated the expression of several molecular reactions, including biomarkers in endoplasmic reticulum stress (78 kDa glucose-regulated protein, GRP78 and C/EBP-homologous protein, CHOP), autophagy (Beclin-1, p62 and LC3 II) and apoptosis (caspase 3). BPAO also disturbed the Kelch-like ECH-associated protein 1–nuclear factor erythroid-2-related factor 2 (Keap1–Nrf2) pathways. These responses might collectively alter muscarinic and purinergic signaling and contribute to the presence of DO in the ischemic bladder. Therapeutically, treatment with neither a muscarinic nor purinergic receptor antagonist restored bladder function. Interestingly, sulforaphane effectively attenuated ischemia-enhanced endoplasmic reticulum stress, autophagy and apoptosis in the bladder, subsequently ameliorated ischemia-induced bladder dysfunction and might emerge as a novel strategy to protect the bladder against ischemia-induced oxidative damage.
Collapse
|
9
|
Yang L, Wang Y, Xing R, Bai L, Li C, Li Z, Liu X. Mimotope mimicking epidermal growth factor receptor alleviates mononuclear cell infiltration in exocrine glands induced by muscarinic acetylcholine 3 receptor. Clin Immunol 2016; 163:111-9. [PMID: 26794912 DOI: 10.1016/j.clim.2016.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 01/13/2016] [Accepted: 01/16/2016] [Indexed: 01/12/2023]
Abstract
The muscarinic type 3 receptor (M3R) plays a pivotal role in the pathogenesis of Sjögren's syndrome (SS). Characterization of the crosstalk between M3R and EGFR has been investigated in some human malignancies. In the current study, we sought to investigate whether EGFR mimic immunization could alleviate the abnormal immune responses in an experimental SS-like model triggered by M3R peptides. After immunization with the combination of mimotope and M3R peptide, the active immunization targeting EGFR induced by the mimotope could reduce the marked infiltration of mononuclear cells, the high titer of antibodies against M3R and the accumulation of crucial pro-inflammatory cytokines in mice immunized with M3R peptide. Mechanistic analysis showed that mimotope immunization could alleviate the autoimmune response through inhibiting mitochondrion-mediated anti-apoptosis and up-regulating the FAS apoptosis pathway. These results may help to clarify the role of M3R in the pathogenesis of SS and suggested that transactivation of the EGFR signaling pathway may help M3R activate the autoimmune response in the pathogenesis of SS.
Collapse
Affiliation(s)
- Lin Yang
- Department of Rheumatology and Immunology, Peking University Third Hospital, No.49, HuaYuan (North) Road, Beijing 100191, PR China
| | - Yongfu Wang
- Department of Rheumatology, The First Affiliated Hospital of Baotou Medical College, No.41, LinYin Road, Baotou 014010, PR China
| | - Rui Xing
- Department of Rheumatology and Immunology, Peking University Third Hospital, No.49, HuaYuan (North) Road, Beijing 100191, PR China
| | - Li Bai
- Department of Rheumatology, The First Affiliated Hospital of Baotou Medical College, No.41, LinYin Road, Baotou 014010, PR China
| | - Changhong Li
- Department of Rheumatology and Immunology, Peking University Third Hospital, No.49, HuaYuan (North) Road, Beijing 100191, PR China
| | - Zhengqian Li
- Department of Anesthesiology, Peking University Third Hospital, No.49, HuaYuan (North) Road, Beijing 100191, PR China
| | - Xiangyuan Liu
- Department of Rheumatology and Immunology, Peking University Third Hospital, No.49, HuaYuan (North) Road, Beijing 100191, PR China.
| |
Collapse
|
10
|
Zhou J, Jin JO, Patel ES, Yu Q. Interleukin-6 inhibits apoptosis of exocrine gland tissues under inflammatory conditions. Cytokine 2015; 76:244-252. [PMID: 26255211 PMCID: PMC4605873 DOI: 10.1016/j.cyto.2015.07.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 07/27/2015] [Accepted: 07/29/2015] [Indexed: 01/12/2023]
Abstract
Interleukin (IL)-6 is a multi-functional cytokine that can either promote or suppress tissue inflammation depending on the specific disease context. IL-6 is elevated in the exocrine glands and serum of patients with Sjögren's syndrome (SS), but the specific role of IL-6 in the pathogenesis of this disease has not been defined. In this study, we showed that IL-6 expression levels were increased with age in C56BL/6.NOD-Aec1Aec2 mice, a primary SS model, and higher than the control C57BL/6 mice. To assess the role of IL-6 during the immunological phase of SS development, a neutralizing anti-IL-6 antibody was administered into 16 week-old female C56BL/6.NOD-Aec1Aec2 mice, 3 times weekly for a consecutive 8 weeks. Neutralization of endogenous IL-6 throughout the immunological phase of SS development led to increased apoptosis, caspase-3 activation, leukocytic infiltration, and IFN-γ- and TNF-α production in the salivary gland. To further determine the effect of IL-6 on the apoptosis of exocrine gland cells, recombinant human IL-6 or the neutralizing anti-IL-6 antibody was injected into female C57BL/6 mice that received concurrent injection of anti-CD3 antibody to induce the apoptosis of exocrine gland tissues. Neutralization of IL-6 enhanced, whereas administration of IL-6 inhibited apoptosis and caspase-3 activation in salivary and lacrimal glands in this model. The apoptosis-suppressing effect of IL-6 was associated with up-regulation of Bcl-xL and Mcl-1 in both glands. Moreover, IL-6 treatment induced activation of STAT3 and up-regulated Bcl-xL and Mcl-1 gene expression in a human salivary gland epithelial cell line. In conclusion, IL-6 inhibits the apoptosis of exocrine gland tissues and exerts a tissue-protective effect under inflammatory conditions including SS. These findings suggest the possibility of using this property of IL-6 to preserve exocrine gland tissue integrity and function under autoimmune and inflammatory conditions.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA; Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA.
| | - Jun-O Jin
- Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA.
| | - Ekta S Patel
- Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA; Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA.
| | - Qing Yu
- Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA; Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
11
|
Xu R, Shang C, Zhao J, Han Y, Liu J, Chen K, Shi W. Activation of M3 muscarinic receptor by acetylcholine promotes non-small cell lung cancer cell proliferation and invasion via EGFR/PI3K/AKT pathway. Tumour Biol 2015; 36:4091-100. [DOI: 10.1007/s13277-014-2911-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 11/27/2014] [Indexed: 11/28/2022] Open
|
12
|
Effect of the M1 Muscarinic Acetylcholine Receptor on Retinal Neuron Number Studied with Gene-Targeted Mice. J Mol Neurosci 2015; 56:472-9. [PMID: 25720339 DOI: 10.1007/s12031-015-0524-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 02/11/2015] [Indexed: 01/04/2023]
Abstract
Pharmacological activation of the M1 muscarinic receptor subtype was suggested to promote the survival of retinal neurons. We examined the hypothesis that the M1 receptor is crucial for retinal neuron survival in vivo by using mice devoid of the M1 receptor gene. Muscarinic receptor gene expression was determined in the retina using real-time PCR. The amount of neurons in the retinal ganglion cell layer and of axons in the optic nerve was determined in retinal wholemounts stained with cresyl blue and in optic nerve cross-sections stained with toluidine blue, respectively. mRNA of all five muscarinic receptor subtypes (M1-M5) was detected in the retina from wild-type mice. Remarkably, M2 and M3 receptor mRNA were most abundant. In retinas from M1 receptor-deficient mice, M4 receptor mRNA expression was increased compared to that of wild-type mice, while no marked changes in the mRNA expression levels of the other muscarinic receptor subtypes were observed. The amount of cells in the retinal ganglion cell layer and the amount of axons in the optic nerve did not differ between M1 receptor-deficient and wild-type mice. The present findings suggest that the M1 receptor is not essential for the survival of retinal neurons in vivo.
Collapse
|
13
|
Vakalopoulos C. The effect of deficient muscarinic signaling on commonly reported biochemical effects in schizophrenia and convergence with genetic susceptibility loci in explaining symptom dimensions of psychosis. Front Pharmacol 2014; 5:277. [PMID: 25566074 PMCID: PMC4266038 DOI: 10.3389/fphar.2014.00277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 11/27/2014] [Indexed: 11/13/2022] Open
Abstract
With the advent of DSM 5 criticism has generally centered on a lack of biological validity of the diagnostic criteria. Part of the problem in describing a nosology of psychosis is the tacit assumption of multiple genetic causes each with an incremental loading on the clinical picture that fails to differentiate a clear underlying pathophysiology of high impact. The aim of this paper is to consolidate a primary theory of deficient muscarinic signaling underlying key clinical features of schizophrenia and its regulation by several important genetic associations including neuregulin, DISC and dysbindin. Secondary reductions in markers for GABAergic function and changes in the levels of interneuron calcium binding proteins parvalbumin and calbindin can be attributed to dysfunctional muscarinic transduction. A parallel association exists for cytokine production. The convergent pathway hypothesis is likewise used to model dopaminergic and glutamatergic theories of schizophrenia. The negative symptom dimension is correlated with dysfunction of Akt and ERK transduction, a major point of convergence. The present paradigm predicts the importance of a recent finding of a deletion in a copy number variant of PLCB1 and its potential use if replicated, as one of the first testable biological markers differentiating schizophrenia from bipolar disorder and further subtyping of schizophrenia into deficit and non-deficit. Potential limitations of PLCB1 as a prospective marker are also discussed.
Collapse
|
14
|
Ockenga W, Kühne S, Bocksberger S, Banning A, Tikkanen R. Epidermal growth factor receptor transactivation is required for mitogen-activated protein kinase activation by muscarinic acetylcholine receptors in HaCaT keratinocytes. Int J Mol Sci 2014; 15:21433-54. [PMID: 25421240 PMCID: PMC4264234 DOI: 10.3390/ijms151121433] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 11/13/2014] [Accepted: 11/17/2014] [Indexed: 01/03/2023] Open
Abstract
Non-neuronal acetylcholine plays a substantial role in the human skin by influencing adhesion, migration, proliferation and differentiation of keratinocytes. These processes are regulated by the Mitogen-Activated Protein (MAP) kinase cascade. Here we show that in HaCaT keratinocytes all five muscarinic receptor subtypes are expressed, but M1 and M3 are the subtypes involved in mitogenic signaling. Stimulation with the cholinergic agonist carbachol leads to activation of the MAP kinase extracellular signal regulated kinase, together with the protein kinase Akt. The activation is fully dependent on the transactivation of the epidermal growth factor receptor (EGFR), which even appears to be the sole pathway for the muscarinic receptors to facilitate MAP kinase activation in HaCaT cells. The transactivation pathway involves a triple-membrane-passing process, based on activation of matrix metalloproteases, and extracellular ligand release; whereas phosphatidylinositol 3-kinase, Src family kinases or protein kinase C do not appear to be involved in MAP kinase activation. Furthermore, phosphorylation, ubiquitination and endocytosis of the EGF receptor after cholinergic transactivation are different from that induced by a direct stimulation with EGF, suggesting that ligands other than EGF itself mediate the cholinergic transactivation.
Collapse
Affiliation(s)
- Wymke Ockenga
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, D-35392 Giessen, Germany.
| | - Sina Kühne
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, D-35392 Giessen, Germany.
| | - Simone Bocksberger
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, D-35392 Giessen, Germany.
| | - Antje Banning
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, D-35392 Giessen, Germany.
| | - Ritva Tikkanen
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, D-35392 Giessen, Germany.
| |
Collapse
|
15
|
BDNF mimetic compound LM22A-4 regulates cementoblast differentiation via the TrkB–ERK/Akt signaling cascade. Int Immunopharmacol 2014; 19:245-52. [DOI: 10.1016/j.intimp.2014.01.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 01/11/2014] [Accepted: 01/30/2014] [Indexed: 11/21/2022]
|
16
|
Xu ZP, Song Y, Yang K, Zhou W, Hou LN, Zhu L, Chen HZ, Cui YY. M3 mAChR-mediated IL-8 expression through PKC/NF-κB signaling pathways. Inflamm Res 2014; 63:463-73. [PMID: 24522860 DOI: 10.1007/s00011-014-0718-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 01/02/2014] [Accepted: 01/22/2014] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE M3 muscarinic acetylcholine receptor (mAChR) plays an important role in the regulation of cytokine production in inflammatory diseases. In this study, we explored the precise role of M3 mAChR under stimulation with agonist in IL-8 expression and of the signaling pathway involved in this process. MATERIALS AND METHODS Recombinant U2OS cells stably expressing M3 mAChR as a model system were stimulated by carbachol to evaluate the role of M3 mAChR in the expression of IL-8. RESULTS Activation of M3 mAChR with carbachol increased both IL-8 mRNA and protein expression in a concentration-dependent manner. Elevated IL-8 expression was completely antagonized by atropine, 4-DAMP and tiotropium. M3 mAChR-mediated IL-8 expression was almost completely inhibited by the NF-κB inhibitor BAY11-7082 and, to a lesser extent, by U0126, SB203580, and SP600125, which are inhibitors for ERK1/2, p38, and JNK, respectively. Furthermore, M3 mAChR-mediated NF-κB activation and IL-8 expression were simultaneously attenuated by the PKC inhibitor calphostin C, whereas PMA, a PKC activator, mimicked the effects of carbachol, inducing IL-8 expression. CONCLUSIONS Our findings offer insights into the specific and critical role of M3 mAChR in regulating inflammatory response and indicate M3 mAChR/PKC/NF-κB signaling axis driven by endogenous acetylcholine as a potential therapeutic targets for inflammatory diseases.
Collapse
Affiliation(s)
- Zu-Peng Xu
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
PKD1 mediates negative feedback of PI3K/Akt activation in response to G protein-coupled receptors. PLoS One 2013; 8:e73149. [PMID: 24039875 PMCID: PMC3767810 DOI: 10.1371/journal.pone.0073149] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 07/22/2013] [Indexed: 12/15/2022] Open
Abstract
We examined whether protein kinase D1 (PKD1) mediates negative feeback of PI3K/Akt signaling in intestinal epithelial cells stimulated with G protein-coupled receptor (GPCR) agonists. Exposure of intestinal epithelial IEC-18 cells to increasing concentrations of the PKD family inhibitor kb NB 14270, at concentrations that inhibited PKD1 activation, strikingly potentiated Akt phosphorylation at Thr308 and Ser473 in response to the mitogenic GPCR agonist angiotensin II (ANG II). Enhancement of Akt activation by kb NB 142-70 was also evident in cells with other GPCR agonists, including vasopressin and lysophosphatidic acid. Cell treatment rovincial Hospital Affiliated to Shandong University, Jinan, China with the structurally unrelated PKD family inhibitor CRT0066101 increased Akt phosphorylation as potently as kb NB 142–70. Knockdown of PKD1 with two different siRNAs strikingly enhanced Akt phosphorylation in response to ANG II stimulation in IEC-18 cells. To determine whether treatment with kb NB 142–70 enhances accumulation of phosphatidylinositol (3,4,5)-trisphosphate (PIP3) in the plasma membrane, we monitored the redistribution of Akt-pleckstrin homology domain-green fluorescent protein (Akt-PH-GFP) in single IEC-18 cells. Exposure to kb NB 142–70 strikingly increased membrane accumulation of Akt-PH-GFP in response to ANG II. The translocation of the PIP3 sensor to the plasma membrane and the phosphorylation of Akt was completed prevented by prior exposure to the class I p110α specific inhibitor A66. ANG II markedly increased the phosphorylation of p85α detected by a PKD motif-specific antibody and enhanced the association of p85α with PTEN. Transgenic mice overexpressing PKD1 showed a reduced phosphorylation of Akt at Ser473 in intestinal epithelial cells compared to wild type littermates. Collectively these results indicate that PKD1 activation mediates feedback inhibition of PI3K/Akt signaling in intestinal epithelial cells in vitro and in vivo.
Collapse
|