1
|
Friebel J, Wegner M, Blöbaum L, Schencke PA, Jakobs K, Puccini M, Ghanbari E, Lammel S, Thevathasan T, Moos V, Witkowski M, Landmesser U, Rauch-Kröhnert U. Characterization of Biomarkers of Thrombo-Inflammation in Patients with First-Diagnosed Atrial Fibrillation. Int J Mol Sci 2024; 25:4109. [PMID: 38612918 PMCID: PMC11012942 DOI: 10.3390/ijms25074109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/26/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
Patients with first-diagnosed atrial fibrillation (FDAF) exhibit major adverse cardiovascular events (MACEs) during follow-up. Preclinical models have demonstrated that thrombo-inflammation mediates adverse cardiac remodeling and atherothrombotic events. We have hypothesized that thrombin activity (FIIa) links coagulation with inflammation and cardiac fibrosis/dysfunction. Surrogate markers of the thrombo-inflammatory response in plasma have not been characterized in FDAF. In this prospective longitudinal study, patients presenting with FDAF (n = 80), and 20 matched controls, were included. FIIa generation and activity in plasma were increased in the patients with early AF compared to the patients with chronic cardiovascular disease without AF (controls; p < 0.0001). This increase was accompanied by elevated biomarkers (ELISA) of platelet and endothelial activation in plasma. Pro-inflammatory peripheral immune cells (TNF-α+ or IL-6+) that expressed FIIa-activated protease-activated receptor 1 (PAR1) (flow cytometry) circulated more frequently in patients with FDAF compared to the controls (p < 0.0001). FIIa activity correlated with cardiac fibrosis (collagen turnover) and cardiac dysfunction (NT-pro ANP/NT-pro BNP) surrogate markers. FIIa activity in plasma was higher in patients with FDAF who experienced MACE. Signaling via FIIa might be a presumed link between the coagulation system (tissue factor-FXa/FIIa-PAR1 axis), inflammation, and pro-fibrotic pathways (thrombo-inflammation) in FDAF.
Collapse
Affiliation(s)
- Julian Friebel
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, 12203 Berlin, Germany; (J.F.); (P.-A.S.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Max Wegner
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, 12203 Berlin, Germany; (J.F.); (P.-A.S.)
| | - Leon Blöbaum
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, 12203 Berlin, Germany; (J.F.); (P.-A.S.)
| | - Philipp-Alexander Schencke
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, 12203 Berlin, Germany; (J.F.); (P.-A.S.)
| | - Kai Jakobs
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, 12203 Berlin, Germany; (J.F.); (P.-A.S.)
| | - Marianna Puccini
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, 12203 Berlin, Germany; (J.F.); (P.-A.S.)
| | - Emily Ghanbari
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, 12203 Berlin, Germany; (J.F.); (P.-A.S.)
| | - Stella Lammel
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, 12203 Berlin, Germany; (J.F.); (P.-A.S.)
| | - Tharusan Thevathasan
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, 12203 Berlin, Germany; (J.F.); (P.-A.S.)
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Verena Moos
- Medical Department I, Gastroenterology, Infectious Diseases and Rheumatology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Marco Witkowski
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, 12203 Berlin, Germany; (J.F.); (P.-A.S.)
- Friede Springer Cardiovascular Prevention Center at Charité, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Ulf Landmesser
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, 12203 Berlin, Germany; (J.F.); (P.-A.S.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
- Friede Springer Cardiovascular Prevention Center at Charité, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Ursula Rauch-Kröhnert
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, 12203 Berlin, Germany; (J.F.); (P.-A.S.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
- Friede Springer Cardiovascular Prevention Center at Charité, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| |
Collapse
|
2
|
Renda G, Bucciarelli V, Barbieri G, Lanuti P, Berteotti M, Malatesta G, Cesari F, Salvatore T, Giusti B, Gori AM, Marcucci R, De Caterina R. Ex Vivo Antiplatelet Effects of Oral Anticoagulants. J Cardiovasc Dev Dis 2024; 11:111. [PMID: 38667729 PMCID: PMC11049965 DOI: 10.3390/jcdd11040111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND The impact of non-vitamin K antagonist oral anticoagulants (NOACs) on platelet function is still unclear. We conducted a comprehensive ex vivo study aimed at assessing the effect of the four currently marketed NOACs on platelet function. METHODS We incubated blood samples from healthy donors with concentrations of NOACs (50, 150 and 250 ng/mL), in the range of those achieved in the plasma of patients during therapy. We evaluated generation of thrombin; light transmittance platelet aggregation (LTA) in response to adenosine diphosphate (ADP), thrombin receptor-activating peptide (TRAP), human γ-thrombin (THR) and tissue factor (TF); generation of thromboxane (TX)B2; and expression of protease-activated receptor (PAR)-1 and P-selectin on the platelet surface. RESULTS All NOACs concentration-dependently reduced thrombin generation compared with control. THR-induced LTA was suppressed by the addition of dabigatran at any concentration, while TF-induced LTA was reduced by factor-Xa inhibitors. ADP- and TRAP-induced LTA was not modified by NOACs. TXB2 generation was reduced by all NOACs, particularly at the highest concentrations. We found a concentration-dependent increase in PAR-1 expression after incubation with dabigatran, mainly at the highest concentrations, but not with FXa inhibitors; P-selectin expression was not changed by any drugs. CONCLUSIONS Treatment with the NOACs is associated with measurable ex vivo changes in platelet function, arguing for antiplatelet effects beyond the well-known anticoagulant activities of these drugs. There are differences, however, among the NOACs, especially between dabigatran and the FXa inhibitors.
Collapse
Affiliation(s)
- Giulia Renda
- Department of Neuroscience, Imaging and Clinical Sciences and Center for Advanced Studies and Technology, G. d’Annunzio University Chieti-Pescara, 66100 Chieti, Italy;
| | - Valentina Bucciarelli
- Cardiovascular Sciences Department, Azienda Ospedaliero-Universitaria delle Marche, 60121 Ancona, Italy;
| | - Giulia Barbieri
- Department of Experimental and Clinical Medicine, University of Florence, 50121 Florence, Italy; (G.B.); (M.B.); (F.C.); (B.G.); (A.M.G.); (R.M.)
| | - Paola Lanuti
- Department of Medicine and Aging Sciences and Center for Advanced Studies and Technology, G. d’Annunzio University Chieti-Pescara, 66100 Chieti, Italy;
| | - Martina Berteotti
- Department of Experimental and Clinical Medicine, University of Florence, 50121 Florence, Italy; (G.B.); (M.B.); (F.C.); (B.G.); (A.M.G.); (R.M.)
| | - Gelsomina Malatesta
- Cardiology Unit, National Institute of Health and Science on Aging (INRCA), 64125 Ancona, Italy;
| | - Francesca Cesari
- Department of Experimental and Clinical Medicine, University of Florence, 50121 Florence, Italy; (G.B.); (M.B.); (F.C.); (B.G.); (A.M.G.); (R.M.)
| | - Tanya Salvatore
- Department of Neuroscience, Imaging and Clinical Sciences and Center for Advanced Studies and Technology, G. d’Annunzio University Chieti-Pescara, 66100 Chieti, Italy;
| | - Betti Giusti
- Department of Experimental and Clinical Medicine, University of Florence, 50121 Florence, Italy; (G.B.); (M.B.); (F.C.); (B.G.); (A.M.G.); (R.M.)
| | - Anna Maria Gori
- Department of Experimental and Clinical Medicine, University of Florence, 50121 Florence, Italy; (G.B.); (M.B.); (F.C.); (B.G.); (A.M.G.); (R.M.)
| | - Rossella Marcucci
- Department of Experimental and Clinical Medicine, University of Florence, 50121 Florence, Italy; (G.B.); (M.B.); (F.C.); (B.G.); (A.M.G.); (R.M.)
| | - Raffaele De Caterina
- Cardiology Division 1-Pisa University Hospital, University of Pisa, 56124 Pisa, Italy;
- Fondazione Villa Serena per la Ricerca, 37011 Città Sant’Angelo, Italy
| |
Collapse
|
3
|
Beura SK, Dhapola R, Panigrahi AR, Yadav P, Kumar R, Reddy DH, Singh SK. Antiplatelet drugs: Potential therapeutic options for the management of neurodegenerative diseases. Med Res Rev 2023; 43:1835-1877. [PMID: 37132460 DOI: 10.1002/med.21965] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 03/13/2023] [Accepted: 04/12/2023] [Indexed: 05/04/2023]
Abstract
The blood platelet plays an important role but often remains under-recognized in several vascular complications and associated diseases. Surprisingly, platelet hyperactivity and hyperaggregability have often been considered the critical risk factors for developing vascular dysfunctions in several neurodegenerative diseases (NDDs) like Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis. In addition, platelet structural and functional impairments promote prothrombotic and proinflammatory environment that can aggravate the progression of several NDDs. These findings provide the rationale for using antiplatelet agents not only to prevent morbidity but also to reduce mortality caused by NDDs. Therefore, we thoroughly review the evidence supporting the potential pleiotropic effects of several novel classes of synthetic antiplatelet drugs, that is, cyclooxygenase inhibitors, adenosine diphosphate receptor antagonists, protease-activated receptor blockers, and glycoprotein IIb/IIIa receptor inhibitors in NDDs. Apart from this, the review also emphasizes the recent developments of selected natural antiplatelet phytochemicals belonging to key classes of plant-based bioactive compounds, including polyphenols, alkaloids, terpenoids, and flavonoids as potential therapeutic candidates in NDDs. We believe that the broad analysis of contemporary strategies and specific approaches for plausible therapeutic treatment for NDDs presented in this review could be helpful for further successful research in this area.
Collapse
Affiliation(s)
- Samir K Beura
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Rishika Dhapola
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Abhishek R Panigrahi
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Pooja Yadav
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Reetesh Kumar
- Department of Agricultural Sciences, Institute of Applied Sciences and Humanities, GLA University, Mathura, Uttar Pradesh, India
| | - Dibbanti H Reddy
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Sunil K Singh
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| |
Collapse
|
4
|
Atzemian N, Kareli D, Ragia G, Manolopoulos VG. Distinct pleiotropic effects of direct oral anticoagulants on cultured endothelial cells: a comprehensive review. Front Pharmacol 2023; 14:1244098. [PMID: 37841935 PMCID: PMC10576449 DOI: 10.3389/fphar.2023.1244098] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023] Open
Abstract
Direct Oral Anticoagulants (DOACs) have simplified the treatment of thromboembolic disease. In addition to their established anticoagulant effects, there are indications from clinical and preclinical studies that DOACs exhibit also non-anticoagulant actions, such as anti-inflammatory and anti-oxidant actions, advocating overall cardiovascular protection. In the present study, we provide a comprehensive overview of the existing knowledge on the pleiotropic effects of DOACs on endothelial cells (ECs) in vitro and their underlying mechanisms, while also identifying potential differences among DOACs. DOACs exhibit pleiotropic actions on ECs, such as anti-inflammatory, anti-atherosclerotic, and anti-fibrotic effects, as well as preservation of endothelial integrity. These effects appear to be mediated through inhibition of the proteinase-activated receptor signaling pathway. Furthermore, we discuss the potential differences among the four drugs in this class. Further research is needed to fully understand the pleiotropic effects of DOACs on ECs, their underlying mechanisms, as well as the heterogeneity between various DOACs. Such studies can pave the way for identifying biomarkers that can help personalize pharmacotherapy with this valuable class of drugs.
Collapse
Affiliation(s)
- Natalia Atzemian
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
- Individualised Medicine and Pharmacological Research Solutions Center (IMPReS), Alexandroupolis, Greece
| | - Dimitra Kareli
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
- Individualised Medicine and Pharmacological Research Solutions Center (IMPReS), Alexandroupolis, Greece
| | - Georgia Ragia
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
- Individualised Medicine and Pharmacological Research Solutions Center (IMPReS), Alexandroupolis, Greece
| | - Vangelis G. Manolopoulos
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
- Individualised Medicine and Pharmacological Research Solutions Center (IMPReS), Alexandroupolis, Greece
- Clinical Pharmacology Unit, Academic General Hospital of Alexandroupolis, Alexandroupolis, Greece
| |
Collapse
|
5
|
Dólleman SC, Agten SM, Spronk HMH, Hackeng TM, Bos MHA, Versteeg HH, van Zonneveld AJ, de Boer HC. Thrombin in complex with dabigatran can still interact with PAR-1 via exosite-I and instigate loss of vascular integrity. J Thromb Haemost 2022; 20:996-1007. [PMID: 35037739 PMCID: PMC9306515 DOI: 10.1111/jth.15642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/23/2021] [Accepted: 01/10/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND Atrial fibrillation (AF) can lead to the loss of microvascular integrity thereby enhancing AF progression. Mechanistically, the pro-coagulant state that drives the risk of stroke in patients with AF may also play a causal role in microvascular loss. Direct oral anticoagulants (DOACs), the preferred anticoagulants for AF, can target factors upstream (factor Xa [FXa]) or downstream (thrombin) in the coagulation cascade and mediate differential vascular effects through interaction with protease-activated receptors (PARs). OBJECTIVE To investigate the potential effect of different DOACs on vascular integrity. METHODS To model the impact of DOACs on vascular integrity, we utilized platelet-free plasma in thrombin generation assays and endothelial barrier assays under identical experimental conditions. These multifactorial systems provide all coagulation factors and their respective natural inhibitors in physiological ratios in combination with the pro-coagulant endothelial surface on which coagulation is initiated. Furthermore, the system provides pro- and anti-barrier factors and monitoring both assays simultaneously permits coupling of thrombin kinetics to endothelial barrier dynamics. RESULTS We provide evidence that the anti-FXa DOAC rivaroxaban and the anti-thrombin DOAC dabigatran are efficient in blocking their target proteases. However, while rivaroxaban could preserve endothelial barrier function, dabigatran failed to protect endothelial integrity over time, which could be prevented in the presence of a custom-made peptide that blocks thrombin's exosite-I. CONCLUSIONS Proteolytically inactive thrombin in complex with dabigatran evokes loss of barrier function that can be prevented by a protease-activated receptor-1 mimicking peptide blocking thrombin's exosite-I.
Collapse
Affiliation(s)
- Sophie C. Dólleman
- Department of Internal Medicine (Nephrology)Einthoven Laboratory for Vascular and Regenerative MedicineLeidenthe Netherlands
| | - Stijn M. Agten
- Department of BiochemistryCardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtthe Netherlands
| | - Henri M. H. Spronk
- Department of BiochemistryCardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtthe Netherlands
| | - Tilman M. Hackeng
- Department of BiochemistryCardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtthe Netherlands
| | - Mettine H. A. Bos
- Division of Thrombosis and HemostasisLeiden University Medical CenterLeidenthe Netherlands
| | - Henri H. Versteeg
- Division of Thrombosis and HemostasisLeiden University Medical CenterLeidenthe Netherlands
| | - Anton Jan van Zonneveld
- Department of Internal Medicine (Nephrology)Einthoven Laboratory for Vascular and Regenerative MedicineLeidenthe Netherlands
| | - Hetty C. de Boer
- Department of Internal Medicine (Nephrology)Einthoven Laboratory for Vascular and Regenerative MedicineLeidenthe Netherlands
| |
Collapse
|
6
|
Ho BL, Hsieh SW, Chou PS, Yang YH. Effects of Dabigatran on Dementia Pathogenesis and Neuropsychological Function: A Review. J Alzheimers Dis 2022; 86:1589-1601. [PMID: 35213379 DOI: 10.3233/jad-215513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Patients with atrial fibrillation (AF) carry higher risks of cognitive consequences and psychological burden. An optimal anticoagulant therapy would be expected to better preserve neuropsychological function in addition to effective prevention of stroke and systemic thromboembolism. OBJECTIVE The aim of this review is to explore the effects of the non-vitamin K antagonist oral anticoagulant (NOAC) dabigatran, a direct thrombin inhibitor, on cognitive and psychological function as well as dementia pathogenesis. METHODS We performed a comprehensive search of PubMed/Medline for all types of relevant articles using a combination of dabigatran and associated keywords updated to August 31, 2021. All titles and abstracts were screened for eligibility, and potentially relevant papers were collected for inclusion. RESULTS The pooled results demonstrated neutral to positive impacts of dabigatran on cognitive and psychological outcomes, including laboratory results in animal models of Alzheimer's disease, and reduced incidences of anxiety/depression and dementia for AF patients. Dabigatran also exhibited better therapeutic profiles than warfarin in preclinical and observational research. CONCLUSION Given limited strength of evidence from heterogeneous studies, our review proposed modest beneficial effects of dabigatran on neuropsychological function. Further clinical trials are warranted to affirm the pleiotropic protective effects of NOACs on dementia treatment.
Collapse
Affiliation(s)
- Bo-Lin Ho
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of and Master's Program in Neurology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Sun-Wung Hsieh
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of and Master's Program in Neurology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Neurology, Kaohsiung Municipal Siao-Gang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ping-Song Chou
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of and Master's Program in Neurology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yuan-Han Yang
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of and Master's Program in Neurology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Neurology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan.,Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
7
|
Lucchesi A, Napolitano R, Bochicchio MT, Giordano G, Napolitano M. Platelets Contribution to Thrombin Generation in Philadelphia-Negative Myeloproliferative Neoplasms: The "Circulating Wound" Model. Int J Mol Sci 2021; 22:ijms222111343. [PMID: 34768772 PMCID: PMC8583863 DOI: 10.3390/ijms222111343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022] Open
Abstract
Current cytoreductive and antithrombotic strategies in MPNs are mostly based on cell counts and on patient's demographic and clinical history. Despite the numerous studies conducted on platelet function and on the role of plasma factors, an accurate and reliable method to dynamically quantify the hypercoagulability states of these conditions is not yet part of clinical practice. Starting from our experience, and after having sifted through the literature, we propose an in-depth narrative report on the contribution of the clonal platelets of MPNs-rich in tissue factor (TF)-in promoting a perpetual procoagulant mechanism. The whole process results in an unbalanced generation of thrombin and is self-maintained by Protease Activated Receptors (PARs). We chose to define this model as a "circulating wound", as it indisputably links the coagulation, inflammation, and fibrotic progression of the disease, in analogy with what happens in some solid tumours. The platelet contribution to thrombin generation results in triggering a vicious circle supported by the PARs/TGF-beta axis. PAR antagonists could therefore be a good option for target therapy, both to contain the risk of vascular events and to slow the progression of the disease towards end-stage forms. Both the new and old strategies, however, will require tools capable of measuring procoagulant or prohaemorrhagic states in a more extensive and dynamic way to favour a less empirical management of MPNs and their potential clinical complications.
Collapse
MESH Headings
- Animals
- Biological Assay
- Blood Platelets/metabolism
- Humans
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/drug therapy
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/metabolism
- Models, Biological
- Receptors, Fibrinogen/metabolism
- Thrombin/antagonists & inhibitors
- Thrombin/biosynthesis
- Thrombophilia/physiopathology
Collapse
Affiliation(s)
- Alessandro Lucchesi
- Hematology Unit, IRCCS Istituto Scientifico Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy;
| | - Roberta Napolitano
- Biosciences Laboratory, IRCCS Istituto Scientifico Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy;
- Correspondence:
| | - Maria Teresa Bochicchio
- Biosciences Laboratory, IRCCS Istituto Scientifico Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy;
| | - Giulio Giordano
- Internal Medicine Division, Hematology Service, Regional Hospital “A. Cardarelli”, 86100 Campobasso, Italy;
| | - Mariasanta Napolitano
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties and Infectious Disease Unit, University Hospital “P. Giaccone”, 90127 Palermo, Italy;
| |
Collapse
|
8
|
McRae HL, Militello L, Refaai MA. Updates in Anticoagulation Therapy Monitoring. Biomedicines 2021; 9:262. [PMID: 33800804 PMCID: PMC8001784 DOI: 10.3390/biomedicines9030262] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/27/2021] [Accepted: 03/03/2021] [Indexed: 11/29/2022] Open
Abstract
In the past six decades, heparin and warfarin were the primary anticoagulants prescribed for treatment and prophylaxis of venous thromboembolism worldwide. This has been accompanied by extensive clinical knowledge regarding dosing, monitoring, and reversal of these anticoagulants, and the resources required to do so have largely been readily available at small and large centers alike. However, with the advent of newer oral and parenteral anticoagulants such as low molecular weight heparins, factor Xa inhibitors, and direct thrombin inhibitors in recent years, new corresponding practice guidelines have also emerged. A notable shift in the need for monitoring and reversal agents has evolved as well. While this has perhaps streamlined the process for physicians and is often desirable for patients, it has also left a knowledge and resource gap in clinical scenarios for which urgent reversal and monitoring is necessary. An overview of the currently available anticoagulants with a focus on the guidelines and available tests for anticoagulant monitoring will be discussed in this article.
Collapse
Affiliation(s)
| | | | - Majed A. Refaai
- Department of Pathology and Laboratory Medicine, Transfusion Medicine Division, Hemostasis and Thrombosis Unit, University of Rochester Medical Center, Rochester, NY 14642, USA; (H.L.M.); (L.M.)
| |
Collapse
|
9
|
Oi K, Shimizu M, Natori T, Tsuda K, Yoshida M, Kamada A, Ishigaku Y, Narumi S, Oura K, Maeda T, Terayama Y. Influence of PAR-1 in patients with non-valvular atrial fibrillation: The antiplatelet effect of dabigatran. Thromb Res 2021; 201:123-130. [PMID: 33667955 DOI: 10.1016/j.thromres.2021.02.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/25/2021] [Accepted: 02/12/2021] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Dabigatran, a direct thrombin inhibitor, has been widely used in patients with non-valvular atrial fibrillation (NVAF) and is considered to have an antiplatelet effect. However, the mechanisms remain unclear. We evaluated protease-activated receptor-1 (PAR-1) expression and activation by thrombin on platelets from NVAF patients, before and after dabigatran treatment, in addition to the expression of platelet activation marker CD62P. MATERIALS AND METHODS The study included 18 NVAF patients. We used flow cytometry to measure the binding of PAR-1 monoclonal antibodies (SPAN12 and WEDE15) and the expression of CD62P with and without thrombin stimulation, before, 14 days after, and 28 days after treatment with dabigatran. Coagulation fibrinolysis markers were also measured. RESULTS PAR-1 expression was significantly lower in NVAF patients than in healthy controls (HC); it was further reduced by thrombin stimulation. CD62P expression was almost absent on the platelets in NVAF patients, but was significantly increased by thrombin stimulation. PAR-1 expression was not significantly different before and after treatment; CD62P expression was inhibited by dabigatran. The levels of coagulation markers were significantly higher in NVAF patients than in HC, and decreased after treatment. CONCLUSIONS Lower expression of PAR-1 in NVAF patients resulted from the cleavage of PAR-1 on some platelets, by exposure to small amounts of thrombin in vivo. The therapeutic effect of dabigatran in NVAF patients was demonstrated by inhibition of CD62P expression on the platelet upon thrombin stimulation in vitro. Our results indicate that dabigatran may reveal antithrombotic activity with antiplatelet and anticoagulant effects.
Collapse
Affiliation(s)
- Kiyotaka Oi
- Division of Neurology and Gerontology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Japan
| | - Mie Shimizu
- Division of Neurology and Gerontology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Japan.
| | - Tatsunori Natori
- Division of Neurology and Gerontology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Japan
| | - Keisuke Tsuda
- Division of Neurology and Gerontology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Japan
| | - Makiko Yoshida
- Division of Neurology and Gerontology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Japan
| | - Asami Kamada
- Division of Neurology and Gerontology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Japan
| | - Yoko Ishigaku
- Division of Neurology and Gerontology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Japan
| | - Shinsuke Narumi
- Division of Neurology and Gerontology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Japan
| | - Kazumasa Oura
- Division of Neurology and Gerontology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Japan
| | - Tetsuya Maeda
- Division of Neurology and Gerontology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Japan
| | | |
Collapse
|
10
|
Lee C, Viswanathan G, Choi I, Jassal C, Kohlmann T, Rajagopal S. Beta-Arrestins and Receptor Signaling in the Vascular Endothelium. Biomolecules 2020; 11:biom11010009. [PMID: 33374806 PMCID: PMC7824595 DOI: 10.3390/biom11010009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/13/2020] [Accepted: 12/19/2020] [Indexed: 12/17/2022] Open
Abstract
The vascular endothelium is the innermost layer of blood vessels and is a key regulator of vascular tone. Endothelial function is controlled by receptor signaling through G protein-coupled receptors, receptor tyrosine kinases and receptor serine-threonine kinases. The β-arrestins, multifunctional adapter proteins, have the potential to regulate all of these receptor families, although it is unclear as to whether they serve to integrate signaling across all of these different axes. Notably, the β-arrestins have been shown to regulate signaling by a number of receptors important in endothelial function, such as chemokine receptors and receptors for vasoactive substances such as angiotensin II, endothelin-1 and prostaglandins. β-arrestin-mediated signaling pathways have been shown to play central roles in pathways that control vasodilation, cell proliferation, migration, and immune function. At this time, the physiological impact of this signaling has not been studied in detail, but a deeper understanding of it could lead to the development of novel therapies for the treatment of vascular disease.
Collapse
Affiliation(s)
- Claudia Lee
- Department of Biochemistry, School of Medicine, Duke University, Durham, NC 27710, USA;
| | - Gayathri Viswanathan
- Medical Center, Department of Medicine, Division of Cardiology, Duke University, Durham, NC 27710, USA; (G.V.); (I.C.)
| | - Issac Choi
- Medical Center, Department of Medicine, Division of Cardiology, Duke University, Durham, NC 27710, USA; (G.V.); (I.C.)
| | - Chanpreet Jassal
- College of Arts and Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Taylor Kohlmann
- Trinity College of Arts and Sciences, Duke University, Durham, NC 27708, USA;
| | - Sudarshan Rajagopal
- Department of Biochemistry, School of Medicine, Duke University, Durham, NC 27710, USA;
- Medical Center, Department of Medicine, Division of Cardiology, Duke University, Durham, NC 27710, USA; (G.V.); (I.C.)
- Correspondence:
| |
Collapse
|
11
|
Bicker J, Alves G, Fonseca C, Falcão A, Fortuna A. Repairing blood-CNS barriers: Future therapeutic approaches for neuropsychiatric disorders. Pharmacol Res 2020; 162:105226. [PMID: 33007420 DOI: 10.1016/j.phrs.2020.105226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/19/2022]
Abstract
Central nervous system (CNS) drug development faces significant difficulties that translate into high rates of failure and lack of innovation. The pathophysiology of neurological and psychiatric disorders often results in the breakdown of blood-CNS barriers, disturbing the CNS microenvironment and worsening disease progression. Therefore, restoring the integrity of blood-CNS barriers may have a beneficial influence in several CNS disorders and improve treatment outcomes. In this review, pathways that may be modulated to protect blood-CNS barriers from neuroinflammatory and oxidative insults are featured. First, the participation of the brain endothelium and glial cells in disruption processes is discussed. Then, the relevance of regulatory systems is analysed, specifically the hypothalamic-pituitary axis, the renin-angiotensin system, sleep and circadian rhythms, and glutamate neurotransmission. Lastly, compounds of endogenous and exogenous origin that are known to mediate the repair of blood-CNS barriers are presented. We believe that enhancing the protection of blood-CNS barriers is a promising therapeutic strategy to pursue in the future.
Collapse
Affiliation(s)
- Joana Bicker
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal; University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal.
| | - Gilberto Alves
- CICS-UBI, Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal
| | - Carla Fonseca
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal
| | - Amílcar Falcão
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal; University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal
| | - Ana Fortuna
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal; University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal
| |
Collapse
|
12
|
Polzin A, Dannenberg L, Thienel M, Orban M, Wolff G, Hohlfeld T, Zeus T, Kelm M, Petzold T. Noncanonical Effects of Oral Thrombin and Factor Xa Inhibitors in Platelet Activation and Arterial Thrombosis. Thromb Haemost 2020; 121:122-130. [PMID: 32942315 DOI: 10.1055/s-0040-1716750] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nonvitamin K oral anticoagulants (NOACs) or direct oral anticoagulants comprise inhibitors of factor Xa (rivaroxaban, apixaban, edoxaban) or factor IIa (dabigatran). Both classes efficiently interfere with the final or penultimate step of the coagulation cascade and showed superior net clinical benefit compared with vitamin K antagonists for prevention of thromboembolic events in patients with AF and for prevention and therapy of deep vein thrombosis and pulmonary embolism. None the less, accumulating data suggested, that there may be differences regarding the frequency of atherothrombotic cardiovascular events between NOACs. Thus, the optimal individualized NOAC for each patient remains a matter of debate. Against this background, some basic and translational analyses emphasized NOAC effects that impact on platelet activity and arterial thrombus formation beyond inhibition of plasmatic coagulation. In this review, we will provide an overview of the available clinical and translational evidence for so-called noncanonical NOAC effects on platelet activation and arterial thrombosis.
Collapse
Affiliation(s)
- Amin Polzin
- Department of Cardiology, Pulmonology, and Vascular Medicine, Cardiovascular Research Institute Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lisa Dannenberg
- Department of Cardiology, Pulmonology, and Vascular Medicine, Cardiovascular Research Institute Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Manuela Thienel
- Department of Cardiology, LMU München, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Munich Heart Alliance, Munich, Germany
| | - Martin Orban
- Department of Cardiology, LMU München, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Munich Heart Alliance, Munich, Germany
| | - Georg Wolff
- Department of Cardiology, Pulmonology, and Vascular Medicine, Cardiovascular Research Institute Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Thomas Hohlfeld
- Instituton of Pharmacology and Clinical Pharmacology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tobias Zeus
- Department of Cardiology, Pulmonology, and Vascular Medicine, Cardiovascular Research Institute Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Malte Kelm
- Department of Cardiology, Pulmonology, and Vascular Medicine, Cardiovascular Research Institute Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tobias Petzold
- Department of Cardiology, LMU München, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Munich Heart Alliance, Munich, Germany
| |
Collapse
|
13
|
Andreae EA, Warejcka DJ, Twining SS. Thrombin alters the synthesis and processing of CYR61/CCN1 in human corneal stromal fibroblasts and myofibroblasts through multiple distinct mechanisms. Mol Vis 2020; 26:540-562. [PMID: 32818017 PMCID: PMC7406864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 07/27/2020] [Indexed: 11/08/2022] Open
Abstract
Purpose Previous research in our laboratory indicated that prothrombin and other coagulation enzymes required to activate prothrombin to thrombin are synthesized by the cornea and that apoptotic human corneal stromal cells can provide a surface for prothrombin activation through the intrinsic and extrinsic coagulation pathways. The purpose of the work reported here is to study the role of thrombin activity in the regulation of matricellular protein Cyr61 (CCN1) produced by wounded phenotype human corneal stromal fibroblasts and myofibroblasts. Methods Stromal cells from human donor corneas were converted to defined wounded phenotype fibroblasts and myofibroblasts with fetal bovine serum, followed by basic fibroblast growth factor (bFGF) and transforming growth factor beta-1 (TGFβ-1), respectively, and stimulated with varying concentrations (0-10.0 units (U)/ml) of thrombin from 1-7 h. Cyr61 transcript levels were determined using reverse transcriptase-PCR (RT-PCR) and quantitative PCR (qPCR) while protein forms were analyzed using western blot data. Protease activities were characterized via protease class-specific inhibitors and western blot analysis. Thrombin activity was quantified using the fluorogenic peptide Phe-Pro-Arg-AFC. Protease-activated receptor (PAR) agonist peptides-1 and -4 were used to determine whether cells increased Cyr61 through PAR signaling pathways. The PAR-1 antagonist SCH 79797 was used to block the thrombin cleavage of the receptor. PCR data were analyzed using MxPro software and western blot data were analyzed using Image Lab™ and Image J software. Student t test and one- and two-way ANOVA (with or without ranking, depending on sample distribution), together with Dunnett's test or Tukey comparison tests for post-hoc analysis, were used to determine statistical significance. Results: Full-length Cyr61 is expressed by human corneal stromal fibroblasts and myofibroblasts and is significantly upregulated by active thrombin stimulation at the message (p<0.03) and protein (p<0.03) levels for fibroblasts and myofibroblasts. Inhibition by the allosteric thrombin-specific inhibitor hirudin prevented the thrombin-associated increase in the Cyr61 protein expression, indicating that the proteolytic activity of thrombin is required for the increase of the Cyr61 protein level. PAR-1 agonist stimulation of fibroblasts and myofibroblasts significantly increased cell-associated Cyr61 protein levels (p<0.04), and PAR-1 antagonist SCH 79797 significantly inhibited the thrombin stimulated increase of Cyr61 in fibroblasts but not in myofibroblasts. In the fibroblast and myofibroblast conditioned media, Cyr61 was detected as the full-length 40 kDa protein in the absence of thrombin, and mainly at 24 kDa in the presence of thrombin at ≥0.5 U/ml, using an antibody directed toward the internal linker region between the von Willebrand factor type C and thrombospondin type-1 domains. Although known to undergo alternative splicing, Cyr61 that is synthesized by corneal fibroblasts and myofibroblasts is not alternatively spliced in response to thrombin stimulation nor is Cyr61 directly cleaved by thrombin to generate its 24 kDa form; instead, Cyr61 is proteolytically processed into 24 kDa N- and 16 kDa C-terminal fragments by a thrombin activated leupeptin-sensitive protease present in conditioned media with activity distinct from the proteolytic activity of thrombin. Conclusions In cultured human corneal stromal fibroblasts and myofibroblasts, thrombin regulates Cyr61 through two mechanisms: 1) thrombin increases the Cyr61 expression at the message and protein levels, and 2) thrombin increases the activation of a leupeptin-sensitive protease that stimulates the cleavage of Cyr61 into N- and C-terminal domain populations in or near the thrombospondin type-1 domain. Generation of Cyr61 peptides during corneal injury stimulation may reveal additional functions of the protein, which modulate corneal wound healing activities or decrease activities of the full-length Cyr61 form.
Collapse
Affiliation(s)
- Emily A Andreae
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI
- Marshfield Clinic Research Institute, Marshfield, WI
| | - Debra J Warejcka
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI
| | - Sally S Twining
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
14
|
Scicchitano P, Tucci M, Bellino MC, Cortese F, Cecere A, De Palo M, Massari F, Caldarola P, Silvestris F, Ciccone MM. The Impairment in Kidney Function in the Oral Anticoagulation Era. A Pathophysiological Insight. Cardiovasc Drugs Ther 2020; 35:505-519. [PMID: 32535717 DOI: 10.1007/s10557-020-07004-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The need for anticoagulation in patients with atrial fibrillation (AF) is fundamental to prevent thromboembolic events. Direct oral anticoagulants (DOACs) recently demonstrated to be superior, or at least equal, to Warfarin in reducing the risk for stroke/systemic embolism and preventing major bleeding and intracranial hemorrhages. The AF population often suffers from chronic kidney disease (CKD). Indeed, the relationship between AF and renal function is bidirectional: AF can trigger kidney failure, while kidney impairment can promote alterations able to enhance AF. Therefore, there are concerns regarding prescriptions of anticoagulants to patients with AF and CKD. The worsening in kidney function can be effectively due to anticoagulants administration. Warfarin has been recognized to promote acute kidney injury in case of excessive anticoagulation levels. Nevertheless, further mechanisms can induce the chronic worsening of renal function, thus leading to terminal kidney failure as observed in post-hoc analysis from registration trials and dedicated observational studies. By contrast, DOACs seem to protect kidneys from injuries more efficiently than Warfarin, although they still continue to play a role in promoting some kidney lesions. However, the exact mechanisms remain unknown. This narrative review aimed to discuss the influence of oral anticoagulants on renal impairment as well as to overview potential pathophysiological mechanisms related to this clinical complication.
Collapse
Affiliation(s)
- Pietro Scicchitano
- Cardiology Department, Hospital "F. Perinei", SS. 96 Altamura - Gravina in Puglia Km. 73,800, 70022, Altamura, BA, Italy. .,Cardiology Department, University of Bari, Bari, Italy.
| | - Marco Tucci
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy.,National Cancer Research Center, Tumori Institute Giovanni Paolo II, Bari, Italy
| | | | | | | | | | - Francesco Massari
- Cardiology Department, Hospital "F. Perinei", SS. 96 Altamura - Gravina in Puglia Km. 73,800, 70022, Altamura, BA, Italy
| | | | - Francesco Silvestris
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | | |
Collapse
|
15
|
Petzold T, Thienel M, Dannenberg L, Mourikis P, Helten C, Ayhan A, M'Pembele R, Achilles A, Trojovky K, Konsek D, Zhang Z, Regenauer R, Pircher J, Ehrlich A, Lüsebrink E, Nicolai L, Stocker TJ, Brandl R, Röschenthaler F, Strecker J, Saleh I, Spannagl M, Mayr CH, Schiller HB, Jung C, Gerdes N, Hoffmann T, Levkau B, Hohlfeld T, Zeus T, Schulz C, Kelm M, Polzin A. Rivaroxaban Reduces Arterial Thrombosis by Inhibition of FXa-Driven Platelet Activation via Protease Activated Receptor-1. Circ Res 2019; 126:486-500. [PMID: 31859592 DOI: 10.1161/circresaha.119.315099] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
RATIONALE A reduced rate of myocardial infarction has been reported in patients with atrial fibrillation treated with FXa (factor Xa) inhibitors including rivaroxaban compared with vitamin K antagonists. At the same time, low-dose rivaroxaban has been shown to reduce mortality and atherothrombotic events in patients with coronary artery disease. Yet, the mechanisms underlying this reduction remain unknown. OBJECTIVE In this study, we hypothesized that rivaroxaban's antithrombotic potential is linked to a hitherto unknown rivaroxaban effect that impacts on platelet reactivity and arterial thrombosis. METHODS AND RESULTS In this study, we identified FXa as potent, direct agonist of the PAR-1 (protease-activated receptor 1), leading to platelet activation and thrombus formation, which can be inhibited by rivaroxaban. We found that rivaroxaban reduced arterial thrombus stability in a mouse model of arterial thrombosis using intravital microscopy. For in vitro studies, atrial fibrillation patients on permanent rivaroxaban treatment for stroke prevention, respective controls, and patients with new-onset atrial fibrillation before and after first intake of rivaroxaban (time series analysis) were recruited. Platelet aggregation responses, as well as thrombus formation under arterial flow conditions on collagen and atherosclerotic plaque material, were attenuated by rivaroxaban. We show that rivaroxaban's antiplatelet effect is plasma dependent but independent of thrombin and rivaroxaban's anticoagulatory capacity. CONCLUSIONS Here, we identified FXa as potent platelet agonist that acts through PAR-1. Therefore, rivaroxaban exerts an antiplatelet effect that together with its well-known potent anticoagulatory capacity might lead to reduced frequency of atherothrombotic events and improved outcome in patients.
Collapse
Affiliation(s)
- Tobias Petzold
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität München (T.P., M.T., Z.Z., R.R., J.P., A.E., E.L., L.N., T.J.S., J.S., I.S., C.S.), Ludwig-Maximilians-University Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (T.P., M.T., J.P., A.E., E.L., L.N., T.J.S., C.S.)
| | - Manuela Thienel
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität München (T.P., M.T., Z.Z., R.R., J.P., A.E., E.L., L.N., T.J.S., J.S., I.S., C.S.), Ludwig-Maximilians-University Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (T.P., M.T., J.P., A.E., E.L., L.N., T.J.S., C.S.)
| | - Lisa Dannenberg
- Cardiology, Pulmonology and Vascular Medicine, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf (L.D., P.M., C.H., A. Ayhan, R.M., A. Achilles, K.T., D.K., C.J., N.G., T.Z., M.K., A.P.)
| | - Philipp Mourikis
- Cardiology, Pulmonology and Vascular Medicine, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf (L.D., P.M., C.H., A. Ayhan, R.M., A. Achilles, K.T., D.K., C.J., N.G., T.Z., M.K., A.P.)
| | - Carolin Helten
- Cardiology, Pulmonology and Vascular Medicine, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf (L.D., P.M., C.H., A. Ayhan, R.M., A. Achilles, K.T., D.K., C.J., N.G., T.Z., M.K., A.P.)
| | - Aysel Ayhan
- Cardiology, Pulmonology and Vascular Medicine, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf (L.D., P.M., C.H., A. Ayhan, R.M., A. Achilles, K.T., D.K., C.J., N.G., T.Z., M.K., A.P.)
| | - René M'Pembele
- Cardiology, Pulmonology and Vascular Medicine, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf (L.D., P.M., C.H., A. Ayhan, R.M., A. Achilles, K.T., D.K., C.J., N.G., T.Z., M.K., A.P.)
| | - Alina Achilles
- Cardiology, Pulmonology and Vascular Medicine, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf (L.D., P.M., C.H., A. Ayhan, R.M., A. Achilles, K.T., D.K., C.J., N.G., T.Z., M.K., A.P.)
| | - Kajetan Trojovky
- Cardiology, Pulmonology and Vascular Medicine, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf (L.D., P.M., C.H., A. Ayhan, R.M., A. Achilles, K.T., D.K., C.J., N.G., T.Z., M.K., A.P.)
| | - Daniel Konsek
- Cardiology, Pulmonology and Vascular Medicine, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf (L.D., P.M., C.H., A. Ayhan, R.M., A. Achilles, K.T., D.K., C.J., N.G., T.Z., M.K., A.P.)
| | - Zhe Zhang
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität München (T.P., M.T., Z.Z., R.R., J.P., A.E., E.L., L.N., T.J.S., J.S., I.S., C.S.), Ludwig-Maximilians-University Munich, Germany
| | - Ron Regenauer
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität München (T.P., M.T., Z.Z., R.R., J.P., A.E., E.L., L.N., T.J.S., J.S., I.S., C.S.), Ludwig-Maximilians-University Munich, Germany
| | - Joachim Pircher
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität München (T.P., M.T., Z.Z., R.R., J.P., A.E., E.L., L.N., T.J.S., J.S., I.S., C.S.), Ludwig-Maximilians-University Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (T.P., M.T., J.P., A.E., E.L., L.N., T.J.S., C.S.)
| | - Andreas Ehrlich
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität München (T.P., M.T., Z.Z., R.R., J.P., A.E., E.L., L.N., T.J.S., J.S., I.S., C.S.), Ludwig-Maximilians-University Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (T.P., M.T., J.P., A.E., E.L., L.N., T.J.S., C.S.)
| | - Enzo Lüsebrink
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität München (T.P., M.T., Z.Z., R.R., J.P., A.E., E.L., L.N., T.J.S., J.S., I.S., C.S.), Ludwig-Maximilians-University Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (T.P., M.T., J.P., A.E., E.L., L.N., T.J.S., C.S.)
| | - Leo Nicolai
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität München (T.P., M.T., Z.Z., R.R., J.P., A.E., E.L., L.N., T.J.S., J.S., I.S., C.S.), Ludwig-Maximilians-University Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (T.P., M.T., J.P., A.E., E.L., L.N., T.J.S., C.S.)
| | - Thomas J Stocker
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität München (T.P., M.T., Z.Z., R.R., J.P., A.E., E.L., L.N., T.J.S., J.S., I.S., C.S.), Ludwig-Maximilians-University Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (T.P., M.T., J.P., A.E., E.L., L.N., T.J.S., C.S.)
| | - Richard Brandl
- St Mary's Square Institute for Vascular Surgery and Phlebology, Munich (R.B.)
| | - Franz Röschenthaler
- German Heart Center, Institute for Laboratory Medicine, Technical University Munich (F.R.)
| | - Jan Strecker
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität München (T.P., M.T., Z.Z., R.R., J.P., A.E., E.L., L.N., T.J.S., J.S., I.S., C.S.), Ludwig-Maximilians-University Munich, Germany
| | - Inas Saleh
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität München (T.P., M.T., Z.Z., R.R., J.P., A.E., E.L., L.N., T.J.S., J.S., I.S., C.S.), Ludwig-Maximilians-University Munich, Germany
| | - Michael Spannagl
- Anesthesiology and Transfusion Medicine, Cell Therapeutics and Hemostaseology (M.S.), Ludwig-Maximilians-University Munich, Germany
| | - Christoph H Mayr
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Group Systems Medicine of Chronic Lung Disease, Munich, Germany, Member of the German Center for Lung Research (DZL) (C.H.M., H.B.S.)
| | - Herbert B Schiller
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Group Systems Medicine of Chronic Lung Disease, Munich, Germany, Member of the German Center for Lung Research (DZL) (C.H.M., H.B.S.)
| | - Christian Jung
- Cardiology, Pulmonology and Vascular Medicine, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf (L.D., P.M., C.H., A. Ayhan, R.M., A. Achilles, K.T., D.K., C.J., N.G., T.Z., M.K., A.P.)
| | - Norbert Gerdes
- Cardiology, Pulmonology and Vascular Medicine, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf (L.D., P.M., C.H., A. Ayhan, R.M., A. Achilles, K.T., D.K., C.J., N.G., T.Z., M.K., A.P.)
| | - Till Hoffmann
- Institute of Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Medical Center Düsseldorf (T. Hoffmann)
| | - Bodo Levkau
- Institute of Pathophysiology, West German Heart and Vascular Center, University Hospital Essen, University of Duisburg-Essen (B.L.)
| | - Thomas Hohlfeld
- Cardiovascular Research Institute Düsseldorf (CARID), Institute of Pharmacology and Clinical Pharmacology, Medical Faculty of the Heinrich Heine University Düsseldorf (T. Hohlfeld)
| | - Tobias Zeus
- Cardiology, Pulmonology and Vascular Medicine, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf (L.D., P.M., C.H., A. Ayhan, R.M., A. Achilles, K.T., D.K., C.J., N.G., T.Z., M.K., A.P.)
| | - Christian Schulz
- From the Medizinische Klinik und Poliklinik I, Klinikum der Universität München (T.P., M.T., Z.Z., R.R., J.P., A.E., E.L., L.N., T.J.S., J.S., I.S., C.S.), Ludwig-Maximilians-University Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (T.P., M.T., J.P., A.E., E.L., L.N., T.J.S., C.S.)
| | - Malte Kelm
- Cardiology, Pulmonology and Vascular Medicine, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf (L.D., P.M., C.H., A. Ayhan, R.M., A. Achilles, K.T., D.K., C.J., N.G., T.Z., M.K., A.P.)
| | - Amin Polzin
- Cardiology, Pulmonology and Vascular Medicine, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf (L.D., P.M., C.H., A. Ayhan, R.M., A. Achilles, K.T., D.K., C.J., N.G., T.Z., M.K., A.P.)
| |
Collapse
|
16
|
Puech C, Delavenne X, He Z, Forest V, Mismetti P, Perek N. Direct oral anticoagulants are associated with limited damage of endothelial cells of the blood-brain barrier mediated by the thrombin/PAR-1 pathway. Brain Res 2019; 1719:57-63. [DOI: 10.1016/j.brainres.2019.05.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/26/2019] [Accepted: 05/19/2019] [Indexed: 12/01/2022]
|
17
|
Polzin A, Dannenberg L, Wolff G, Helten C, Achilles A, Hohlfeld T, Zeus T, Kelm M, Massberg S, Petzold T. Non-vitamin K oral anticoagulants (NOAC) and the risk of myocardial infarction: Differences between factor IIa and factor Xa inhibition? Pharmacol Ther 2018; 195:1-4. [PMID: 30321554 DOI: 10.1016/j.pharmthera.2018.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Guidelines already recommend non-vitamin K oral anticoagulants (NOAC) over vitamin-K antagonists (VKA) for stroke prevention in patients with atrial fibrillation. However, recommendations are lacking with respect to which NOAC to use. At the moment, NOACs may employ two different molecular mechanisms: Factor IIa inhibition (dabigatran) and factor Xa inhibition (apixaban, edoxaban, rivaroxaban). The focus of this review is to compare and contrast potential differences between factor IIa- and factor Xa inhibition with respect to risk of myocardial infarction and to detail underlying mechanisms.
Collapse
Affiliation(s)
- Amin Polzin
- Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Cardiovascular Research Institute Düsseldorf (CARID), Düsseldorf, Germany
| | - Lisa Dannenberg
- Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Cardiovascular Research Institute Düsseldorf (CARID), Düsseldorf, Germany.
| | - Georg Wolff
- Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Cardiovascular Research Institute Düsseldorf (CARID), Düsseldorf, Germany
| | - Carolin Helten
- Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Cardiovascular Research Institute Düsseldorf (CARID), Düsseldorf, Germany
| | - Alina Achilles
- Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Cardiovascular Research Institute Düsseldorf (CARID), Düsseldorf, Germany
| | - Thomas Hohlfeld
- Instituton of Pharmacology and Clinical Pharmacology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tobias Zeus
- Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Cardiovascular Research Institute Düsseldorf (CARID), Düsseldorf, Germany
| | - Malte Kelm
- Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Cardiovascular Research Institute Düsseldorf (CARID), Düsseldorf, Germany
| | - Steffen Massberg
- Department of Cardiology, LMU München, Munich, Germany; DZHK (German Centre for Cardiovascular Research), Munich Heart Alliance, Munich, Germany
| | - Tobias Petzold
- Department of Cardiology, LMU München, Munich, Germany; DZHK (German Centre for Cardiovascular Research), Munich Heart Alliance, Munich, Germany
| |
Collapse
|
18
|
Altieri P, Bertolotto M, Fabbi P, Sportelli E, Balbi M, Santini F, Brunelli C, Canepa M, Montecucco F, Ameri P. Thrombin induces protease-activated receptor 1 signaling and activation of human atrial fibroblasts and dabigatran prevents these effects. Int J Cardiol 2018; 271:219-227. [PMID: 29801760 DOI: 10.1016/j.ijcard.2018.05.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/24/2018] [Accepted: 05/10/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND Data with animal cells and models suggest that thrombin activates cardiac fibroblasts (Fib) to myofibroblasts (myoFib) via protease-activated receptor 1 (PAR1) cleavage, and in this way promotes adverse atrial remodeling and, thereby, atrial fibrillation (AF). OBJECTIVE Here, we explored the effects of thrombin on human atrial Fib and whether they are antagonized by the clinically available direct thrombin inhibitor, dabigatran. METHODS Fib isolated from atrial appendages of patients without AF undergoing elective cardiac surgery were evaluated for PAR expression and treated with thrombin with or without dabigatran. PAR1 cleavage, downstream signaling and myoFib markers were investigated by immunofluorescence and Western blot. Collagen synthesis, activity of matrix metalloprotease (MMP)-2 and proliferation were assessed by Picro-Sirius red staining, gelatinolytic zymography and BrdU incorporation, respectively. Fib function was studied as capability to contract a collagen gel and stimulate the chemotaxis of peripheral blood monocytes from healthy volunteers. RESULTS Primary human atrial Fib expressed PAR1, while levels of the other PARs were very low. Thrombin triggered PAR1 cleavage and phosphorylation of ERK1/2, p38 and Akt, elicited a switch to myoFib enriched for αSMA, fibronectin and type I collagen, and induced paracrine/autocrine transforming growth factor beta-1, cyclooxygenase-2, endothelin-1 and chemokine (C-C motif) ligand 2 (CCL2); conversely, MMP-2 activity decreased. Thrombin-primed cells displayed enhanced proliferation, formed discrete collagen-containing cellular nodules, and stimulated the contraction of a collagen gel. Furthermore, their conditioned medium caused monocytes to migrate. All these effects were prevented by dabigatran. CONCLUSION These results with human cells complete the knowledge about thrombin actions on cardiac Fib and strengthen the translational potential of the emerging paradigm that pharmacological blockade of thrombin may counteract molecular and cellular events underlying AF.
Collapse
Affiliation(s)
- Paola Altieri
- Laboratory of Cardiovascular Biology, Department of Internal Medicine, University of Genova, Genova, Italy
| | - Maria Bertolotto
- Department of Internal Medicine, University of Genova, Genova, Italy; First Clinic of Internal Medicine, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Patrizia Fabbi
- Laboratory of Cardiovascular Biology, Department of Internal Medicine, University of Genova, Genova, Italy
| | - Elena Sportelli
- Department of Diagnostic and Surgical Sciences, University of Genova, Genova, Italy; Cardiovascular Surgery Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Manrico Balbi
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Francesco Santini
- Department of Diagnostic and Surgical Sciences, University of Genova, Genova, Italy; Cardiovascular Surgery Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Claudio Brunelli
- Laboratory of Cardiovascular Biology, Department of Internal Medicine, University of Genova, Genova, Italy; Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Marco Canepa
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Fabrizio Montecucco
- Department of Internal Medicine, University of Genova, Genova, Italy; Centre of Excellence for Biomedical Research (CEBR), University of Genova, Genova, Italy; First Clinic of Internal Medicine, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Pietro Ameri
- Laboratory of Cardiovascular Biology, Department of Internal Medicine, University of Genova, Genova, Italy; Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| |
Collapse
|
19
|
Franchi F, Rollini F, Cho JR, King R, Phoenix F, Bhatti M, DeGroat C, Tello-Montoliu A, Zenni MM, Guzman LA, Bass TA, Ajjan RA, Angiolillo DJ. Effects of dabigatran on the cellular and protein phase of coagulation in patients with coronary artery disease on dual antiplatelet therapy with aspirin and clopidogrel. Thromb Haemost 2018; 115:622-31. [DOI: 10.1160/th15-06-0467] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 10/29/2015] [Indexed: 01/12/2023]
Abstract
SummaryThere is growing interest in understanding the effects of adding an oral anticoagulant in patients on dual antiplatelet therapy (DAPT). Vitamin K antagonists (VKAs) and clopidogrel represent the most broadly utilised oral anticoagulant and P2Y12 receptor inhibitor, respectively. However, VKAs can interfere with clopidogrel metabolism via the cytochrome P450 (CYP) system which in turn may result in an increase in platelet reactivity. Dabigatran is a direct acting (anti-II) oral anticoagulant which does not interfere with CYP and has favourable safety and efficacy profiles compared with VKAs. The pharmacodynamic (PD) effects on platelet reactivity and clot kinetic of adjunctive dabigatran therapy in patients on DAPT are poorly explored. In this prospective, randomised, double-blind, placebo-controlled PD study, patients (n=30) on maintenance DAPT with aspirin and clopidogrel were randomised to either dabigatran 150 mg bid or placebo for seven days. PD testing was performed before and after treatment using four different assays exploring multiple pathways of platelet aggregation and fibrin clot kinetics: light transmittance aggregometry (LTA), multiple electrode aggregometry (MEA), kaolin-activated thromboelastography (TEG) and turbidimetric assays. There were no differences in multiple measures of platelet reactivity investigating purinergic and non-purinergic signaling pathways assessed by LTA, MEA and TEG platelet mapping. Dabigatran significantly increased parameters related to thrombin activity and thrombus generation, and delayed fibrin clot formation, without affecting clot structure or fibrinolysis. In conclusion, in patients on DAPT with aspirin and clopidogrel, adjunctive dabigatran therapy is not associated with modulation of profiles of platelet reactivity as determined by several assays assessing multiple platelet signalling pathways. However, dabigatran significantly interferes with parameters related to thrombin activity and delays fibrin clot formation.
Collapse
|
20
|
Oikonomopoulou K, Diamandis EP, Hollenberg MD, Chandran V. Proteinases and their receptors in inflammatory arthritis: an overview. Nat Rev Rheumatol 2018; 14:170-180. [PMID: 29416136 DOI: 10.1038/nrrheum.2018.17] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Proteinases are enzymes with established roles in physiological and pathological processes such as digestion and the homeostasis, destruction and repair of tissues. Over the past few years, the hormone-like properties of circulating proteinases have become increasingly appreciated. Some proteolytic enzymes trigger cell signalling via proteinase-activated receptors, a family of G protein-coupled receptors that have been implicated in inflammation and pain in inflammatory arthritis. Proteinases can also regulate ion flux owing to the cross-sensitization of transient receptor potential cation channel subfamily V members 1 and 4, which are associated with mechanosensing and pain. In this Review, the idea that proteinases have the potential to orchestrate inflammatory signals by interacting with receptors on cells within the synovial microenvironment of an inflamed joint is revisited in three arthritic diseases: osteoarthritis, spondyloarthritis and rheumatoid arthritis. Unanswered questions are highlighted and the therapeutic potential of modulating this proteinase-receptor axis for the management of disease in patients with these types of arthritis is also discussed.
Collapse
Affiliation(s)
- Katerina Oikonomopoulou
- Centre for Prognosis Studies in Rheumatic Diseases, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Clinical Biochemistry, University Health Network, Toronto, Ontario, Canada
| | - Morley D Hollenberg
- Department of Physiology & Pharmacology, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada.,Department of Medicine, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - Vinod Chandran
- Centre for Prognosis Studies in Rheumatic Diseases, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada.,Division of Rheumatology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
21
|
Bonello L, Laine M, Camoin-Jau L, Frere C. Dabigatran enhances platelet reactivity and platelet thrombin receptor expression in patients with atrial fibrillation: comment. J Thromb Haemost 2017; 15:1522-1523. [PMID: 28426920 DOI: 10.1111/jth.13705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Indexed: 01/15/2023]
Affiliation(s)
- L Bonello
- Department of Cardiology, Assistance Publique-Hôpitaux de Marseille, Hôpital Nord
- Mediterranean Academic association for Research and Studies in Cardiology (MARS Cardio)
- Aix-Marseille University, INSERM UMRS 1076
| | - M Laine
- Department of Cardiology, Assistance Publique-Hôpitaux de Marseille, Hôpital Nord
- Mediterranean Academic association for Research and Studies in Cardiology (MARS Cardio)
- Aix-Marseille University, INSERM UMRS 1076
| | - L Camoin-Jau
- Department of Hematology, Assistance Publique-Hôpitaux de Marseille
- Aix Marseille University, URMITE, UM63, CNRS 7278, Inserm U1095
| | - C Frere
- Aix-Marseille University, INSERM UMRS 1076
- Department of Hematology, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| |
Collapse
|
22
|
Evans CE, Zhao YY. Impact of thrombosis on pulmonary endothelial injury and repair following sepsis. Am J Physiol Lung Cell Mol Physiol 2017; 312:L441-L451. [PMID: 28130261 PMCID: PMC5407094 DOI: 10.1152/ajplung.00441.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/20/2016] [Accepted: 01/19/2017] [Indexed: 12/19/2022] Open
Abstract
The prevailing morbidity and mortality in sepsis are largely due to multiple organ dysfunction (MOD), most commonly lung injury, as well as renal and cardiac dysfunction. Despite recent advances in defining many aspects of the pathogenesis of sepsis-related MOD, including acute respiratory distress syndrome (ARDS), there are currently no effective pharmacological or cell-based treatments for the disease. Human and animal studies have shown that pulmonary thrombosis is common in sepsis-induced ARDS, and preclinical studies have shown that anticoagulation may improve outcome following sepsis challenge. The potential beneficial effect of anticoagulation on outcome is unconvincing in clinical studies, however, and these discrepancies may arise from the multiple and sometimes opposing actions of thrombosis on the pulmonary endothelium following sepsis. It has been suggested, for example, that mild pulmonary thrombosis prevents escape of bacterial infection into the circulation, while severe thrombosis causes hypoxia and results in pulmonary endothelial damage. Evidence from both human and animal studies has demonstrated the key role of microvascular leakage in determining the outcome of sepsis. In this review, we describe thrombosis-dependent mechanisms that regulate pulmonary endothelial injury and repair following sepsis, including activation of the coagulation cascade by tissue factor and stimulation of vascular repair by hypoxia-inducible factors. Targeting such mechanisms through anticoagulant, anti-inflammatory, and reparative methods may represent a novel approach for the treatment of septic patients.
Collapse
Affiliation(s)
- Colin E Evans
- Department of Pharmacology, University of Illinois at Chicago, College of Medicine, Chicago, Illinois; and
- Center for Lung and Vascular Biology, University of Illinois at Chicago, College of Medicine, Chicago, Illinois
| | - You-Yang Zhao
- Department of Pharmacology, University of Illinois at Chicago, College of Medicine, Chicago, Illinois; and
- Center for Lung and Vascular Biology, University of Illinois at Chicago, College of Medicine, Chicago, Illinois
| |
Collapse
|
23
|
Jumeau C, Rupin A, Chieng-Yane P, Mougenot N, Zahr N, David-Dufilho M, Hatem SN. Direct Thrombin Inhibitors Prevent Left Atrial Remodeling Associated With Heart Failure in Rats. JACC Basic Transl Sci 2016; 1:328-339. [PMID: 27642643 PMCID: PMC5012373 DOI: 10.1016/j.jacbts.2016.05.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 05/02/2016] [Accepted: 05/02/2016] [Indexed: 01/31/2023]
Abstract
The present study tested the hypothesis that thrombin participates in formation of left atrial remodeling and that direct oral anticoagulants, such as direct thrombin inhibitors (DTIs), can prevent its progression. In a rat model of heart failure associated with left atrial dilation, we found that chronic treatment with DTIs reduces the atrial remodeling and the duration of atrial fibrillation (AF) episodes induced by burst pacing by inhibiting myocardial hypertrophy and fibrosis. In addition to the prevention of thromboembolism complicating AF, DTIs may be of interest to slow down the progression of the arrhythmogenic substrate.
Collapse
Key Words
- AF, atrial fibrillation
- ANP, atrial natriuretic peptide
- BNP, brain natriuretic peptide
- CTGF, connective tissue growth factor
- DTI, direct thrombin inhibitor
- MHC, myosin heavy chain
- MI, myocardial infarction
- NFATc3, nuclear factor of activated T cells 3
- PAI, plasminogen activator inhibitor
- PAR, protease-activated receptor
- anticoagulant
- atrial arrhythmia
- direct thrombin inhibitor
- heart failure
- remodeling
Collapse
Affiliation(s)
- Céline Jumeau
- Sorbonne University, Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche 1166, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
- Servier Research Institute, Suresnes, France
| | - Alain Rupin
- Servier Research Institute, Suresnes, France
| | | | - Nathalie Mougenot
- Inserm-Sorbonnes-Universités, Unité Mixte de Service 28 Université Pierre et Marie Curie, Paris, France
| | - Noël Zahr
- INSERM Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière Department of Pharmacology and Centre d'Investigation Clinique 1421, Paris, France
| | - Monique David-Dufilho
- Sorbonne University, Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche 1166, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Stéphane N. Hatem
- Sorbonne University, Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche 1166, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
- Cardiology Department, ICAN, Paris, France
| |
Collapse
|
24
|
van Gorp RH, Schurgers LJ. New Insights into the Pros and Cons of the Clinical Use of Vitamin K Antagonists (VKAs) Versus Direct Oral Anticoagulants (DOACs). Nutrients 2015; 7:9538-57. [PMID: 26593943 PMCID: PMC4663607 DOI: 10.3390/nu7115479] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 10/28/2015] [Accepted: 11/05/2015] [Indexed: 12/19/2022] Open
Abstract
Vitamin K-antagonists (VKA) are the most widely used anticoagulant drugs to treat patients at risk of arterial and venous thrombosis for the past 50 years. Due to unfavorable pharmacokinetics VKA have a small therapeutic window, require frequent monitoring, and are susceptible to drug and nutritional interactions. Additionally, the effect of VKA is not limited to coagulation, but affects all vitamin K-dependent proteins. As a consequence, VKA have detrimental side effects by enhancing medial and intimal calcification. These limitations stimulated the development of alternative anticoagulant drugs, resulting in direct oral anticoagulant (DOAC) drugs, which specifically target coagulation factor Xa and thrombin. DOACs also display non-hemostatic vascular effects via protease-activated receptors (PARs). As atherosclerosis is characterized by a hypercoagulable state indicating the involvement of activated coagulation factors in the genesis of atherosclerosis, anticoagulation could have beneficial effects on atherosclerosis. Additionally, accumulating evidence demonstrates vascular benefit from high vitamin K intake. This review gives an update on oral anticoagulant treatment on the vasculature with a special focus on calcification and vitamin K interaction.
Collapse
Affiliation(s)
- Rick H van Gorp
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands.
- Nattopharma ASA, 1363 Høvik, Norway.
| | - Leon J Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|
25
|
Liu H, Yu X, Yu S, Kou J. Molecular mechanisms in lipopolysaccharide-induced pulmonary endothelial barrier dysfunction. Int Immunopharmacol 2015; 29:937-946. [PMID: 26462590 DOI: 10.1016/j.intimp.2015.10.010] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/01/2015] [Accepted: 10/07/2015] [Indexed: 12/21/2022]
Abstract
The confluent pulmonary endothelium plays an important role as a semi-permeable barrier between the vascular space of blood vessels and the underlying tissues, and it contributes to the maintenance of circulatory fluid homeostasis. Pulmonary endothelial barrier dysfunction is a pivotal early step in the development of a variety of high mortality diseases, such as acute lung injury (ALI). Endothelium barrier dysfunction in response to inflammatory or infectious mediators, including lipopolysaccharide (LPS), is accompanied by invertible cell deformation and interendothelial gap formation. However, specific pharmacological therapies aiming at ameliorating pulmonary endothelial barrier function in patients are still lacking. A full understanding of the fundamental mechanisms that are involved in the regulation of pulmonary endothelial permeability is essential for the development of barrier protective therapeutic strategies. Therefore, this review summarizes several important molecular mechanisms involved in LPS-induced changes in pulmonary endothelial barrier function. As for barrier-disruption, the activation of myosin light chain kinase (MLCK), RhoA and tyrosine kinases; increase of calcium influx; and apoptosis of the endothelium lead to an elevation of lung endothelial permeability. Additionally, the activation of Rac1, Cdc42, protease activated receptor 1 (PAR1) and adenosine receptors (ARs), as well as the increase of cyclic AMP and sphingosine-1-phosphate (S1P) content, protect against LPS-induced lung endothelial barrier dysfunction. Furthermore, current regulatory factors and strategies against the development of LPS-induced lung endothelial hyper-permeability are discussed.
Collapse
Affiliation(s)
- Han Liu
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639, Longmian Road, Nanjing, 211198, PR China
| | - Xiu Yu
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639, Longmian Road, Nanjing, 211198, PR China
| | - Sulan Yu
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639, Longmian Road, Nanjing, 211198, PR China
| | - Junping Kou
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639, Longmian Road, Nanjing, 211198, PR China.
| |
Collapse
|