1
|
Zernov N, Ghamaryan V, Melenteva D, Makichyan A, Hunanyan L, Popugaeva E. Discovery of a novel piperazine derivative, cmp2: a selective TRPC6 activator suitable for treatment of synaptic deficiency in Alzheimer's disease hippocampal neurons. Sci Rep 2024; 14:23512. [PMID: 39384900 PMCID: PMC11464757 DOI: 10.1038/s41598-024-73849-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/20/2024] [Indexed: 10/11/2024] Open
Abstract
Alzheimer disease (AD) is characterized by progressive loss of memory. Synaptic loss is now the best correlate of cognitive dysfunction in patients with Alzheimer's disease. Thus, restoration or limitation of synapse loss is a promising strategy for pharmacotherapy of AD. N-N substituted piperazines are widely used chemical compounds for drug interventions to treat different illnesses including CNS diseases such as drug abuse, mental and anxiety disorders. Piperazine derivatives are small molecules that are usually well tolerated and cross blood brain barrier (BBB). Thus, disubstituted piperazines are good tools for searching and developing novel disease-modifying drugs. Previously, we have determined the piperazine derivative, 51164, as an activator of TRPC6 in dendritic spines. We have demonstrated synaptoprotective properties of 51164 in AD mouse models. However, 51164 was not able to cross BBB. Within the current study, we identified a novel piperazine derivative, cmp2, that is structurally similar to 51164 but is able to cross BBB. Cmp2 binds central part of monomeric TRPC6 in similar way as hypeforin does. Cmp2 selectively activates TRPC6 but not structurally related TRPC3 and TRPC7. Novel piperazine derivative exhibits synaptoprotective properties in culture and slices and penetrates the BBB. In vivo study indicated cmp2 (10 mg/kg I.P.) reversed deficits in synaptic plasticity in the 5xFAD mice. Thus, we suggest that cmp2 is a novel lead compound for drug development. The mechanism of cmp2 action is based on selective TRPC6 stimulation and it is expected to treat synaptic deficiency in hippocampal neurons.
Collapse
Affiliation(s)
- Nikita Zernov
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251, Russia
| | - Viktor Ghamaryan
- Laboratory of Structural Bioinformatics, Institute of Biomedicine and Pharmacy, Russian-Armenian University, Yerevan, 0051, Armenia
| | - Daria Melenteva
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251, Russia
| | - Ani Makichyan
- Laboratory of Structural Bioinformatics, Institute of Biomedicine and Pharmacy, Russian-Armenian University, Yerevan, 0051, Armenia
| | - Lernik Hunanyan
- Laboratory of Structural Bioinformatics, Institute of Biomedicine and Pharmacy, Russian-Armenian University, Yerevan, 0051, Armenia
| | - Elena Popugaeva
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251, Russia.
| |
Collapse
|
2
|
Kohashi H, Nagata R, Tamenori Y, Amatani T, Ueda Y, Mori Y, Kasahara Y, Obika S, Shimojo M. A novel transient receptor potential C3/C6 selective activator induces the cellular uptake of antisense oligonucleotides. Nucleic Acids Res 2024; 52:4784-4798. [PMID: 38621757 PMCID: PMC11109983 DOI: 10.1093/nar/gkae245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/12/2024] [Accepted: 03/27/2024] [Indexed: 04/17/2024] Open
Abstract
Antisense oligonucleotide (ASO) therapy is a novel therapeutic approach in which ASO specifically binds target mRNA, resulting in mRNA degradation; however, cellular uptake of ASOs remains critically low, warranting improvement. Transient receptor potential canonical (TRPC) channels regulate Ca2+ influx and are activated upon stimulation by phospholipase C-generated diacylglycerol. Herein, we report that a novel TRPC3/C6/C7 activator, L687, can induce cellular ASO uptake. L687-induced ASO uptake was enhanced in a dose- and incubation-time-dependent manner. L687 enhanced the knockdown activity of various ASOs both in vitro and in vivo. Notably, suppression of TRPC3/C6 by specific siRNAs reduced ASO uptake in A549 cells. Application of BAPTA-AM, a Ca2+ chelator, and SKF96365, a TRPC3/C6 inhibitor, suppressed Ca2+ influx via TRPC3/C6, resulting in reduced ASO uptake, thereby suggesting that Ca2+ influx via TRPC3/C6 is critical for L687-mediated increased ASO uptake. L687 also induced dextran uptake, indicating that L687 increased endocytosis. Adding ASO to L687 resulted in endosome accumulation; however, the endosomal membrane disruptor UNC7938 facilitated endosomal escape and enhanced knockdown activity. We discovered a new function for TRPC activators regarding ASO trafficking in target cells. Our findings provide an opportunity to formulate an innovative drug delivery system for the therapeutic development of ASO.
Collapse
Affiliation(s)
- Hiroto Kohashi
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Ryu Nagata
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Yusuke Tamenori
- School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Tomorrow Amatani
- Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Yoshifumi Ueda
- Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Yasuo Mori
- Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Yuuya Kasahara
- National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka 565-0871, Japan
| | - Masahito Shimojo
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
3
|
Liu H, Fu M, Zhang Y, You Q, Wang L. Small molecules targeting canonical transient receptor potential channels: an update. Drug Discov Today 2024; 29:103951. [PMID: 38514041 DOI: 10.1016/j.drudis.2024.103951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 03/23/2024]
Abstract
Transient receptor potential canonical (TRPC) channels belong to an important class of non-selective cation channels. This channel family consists of multiple members that widely participate in various physiological and pathological processes. Previous studies have uncovered the intricate regulation of these channels, as well as the spatial arrangement of TRPCs and the binding sites for various small molecule compounds. Multiple small molecules have been identified as selective agonists or inhibitors targeting different subtypes of TRPC, including potential preclinical drug candidates. This review covers recent advancements in the understanding of TRPC regulation and structure and the discovery of TRPC small molecules over the past few years, with the aim of facilitating research on TRPCs and small-molecule drug discovery.
Collapse
Affiliation(s)
- Hua Liu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Min Fu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yifan Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
4
|
Nishiyama K, Kato Y, Nishimura A, Mi X, Nagata R, Mori Y, Azuma YT, Nishida M. Pharmacological Activation of TRPC6 Channel Prevents Colitis Progression. Int J Mol Sci 2024; 25:2401. [PMID: 38397074 PMCID: PMC10889536 DOI: 10.3390/ijms25042401] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
We recently reported that transient receptor potential canonical (TRPC) 6 channel activity contributes to intracellular Zn2+ homeostasis in the heart. Zn2+ has also been implicated in the regulation of intestinal redox and microbial homeostasis. This study aims to investigate the role of TRPC6-mediated Zn2+ influx in the stress resistance of the intestine. The expression profile of TRPC1-C7 mRNAs in the actively inflamed mucosa from inflammatory bowel disease (IBD) patients was analyzed using the GEO database. Systemic TRPC3 knockout (KO) and TRPC6 KO mice were treated with dextran sulfate sodium (DSS) to induce colitis. The Zn2+ concentration and the mRNA expression levels of oxidative/inflammatory markers in colon tissues were quantitatively analyzed, and gut microbiota profiles were compared. TRPC6 mRNA expression level was increased in IBD patients and DSS-treated mouse colon tissues. DSS-treated TRPC6 KO mice, but not TRPC3 KO mice, showed severe weight loss and increased disease activity index compared with DSS-treated WT mice. The mRNA abundances of antioxidant proteins were basically increased in the TRPC6 KO colon, with changes in gut microbiota profiles. Treatment with TRPC6 activator prevented the DSS-induced colitis progression accompanied by increasing Zn2+ concentration. We suggest that TRPC6-mediated Zn2+ influx activity plays a key role in stress resistance against IBD, providing a new strategy for treating colitis.
Collapse
Affiliation(s)
- Kazuhiro Nishiyama
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.N.); (Y.K.); (X.M.)
- Laboratory of Prophylactic Pharmacology, Osaka Metropolitan University Graduate School of Veterinary Science, Osaka 598-8531, Japan;
| | - Yuri Kato
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.N.); (Y.K.); (X.M.)
| | - Akiyuki Nishimura
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki 444-8787, Japan;
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- SOKENDAI (Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies), Okazaki 444-8787, Japan
| | - Xinya Mi
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.N.); (Y.K.); (X.M.)
| | - Ryu Nagata
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan;
| | - Yasuo Mori
- Graduate School of Engineering, Kyoto University, Kyoto 615-8530, Japan;
| | - Yasu-Taka Azuma
- Laboratory of Prophylactic Pharmacology, Osaka Metropolitan University Graduate School of Veterinary Science, Osaka 598-8531, Japan;
| | - Motohiro Nishida
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.N.); (Y.K.); (X.M.)
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki 444-8787, Japan;
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- SOKENDAI (Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies), Okazaki 444-8787, Japan
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
5
|
Zernov N, Popugaeva E. Role of Neuronal TRPC6 Channels in Synapse Development, Memory Formation and Animal Behavior. Int J Mol Sci 2023; 24:15415. [PMID: 37895105 PMCID: PMC10607207 DOI: 10.3390/ijms242015415] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
The transient receptor potential cation channel, subfamily C, member 6 (TRPC6), has been believed to adjust the formation of an excitatory synapse. The positive regulation of TRPC6 engenders synapse enlargement and improved learning and memory in animal models. TRPC6 is involved in different synaptoprotective signaling pathways, including antagonism of N-methyl-D-aspartate receptor (NMDAR), activation of brain-derived neurotrophic factor (BDNF) and postsynaptic store-operated calcium entry. Positive regulation of TRPC6 channels has been repeatedly shown to be good for memory formation and storage. TRPC6 is mainly expressed in the hippocampus, particularly in the dentate granule cells, cornu Ammonis 3 (CA3) pyramidal cells and gamma-aminobutyric acid (GABA)ergic interneurons. It has been observed that TRPC6 agonists have a great influence on animal behavior including memory formation and storage The purpose of this review is to collect the available information on the role of TRPC6 in memory formation in various parts of the brain to understand how TRPC6-specific pharmaceutical agents will affect memory in distinct parts of the central nervous system (CNS).
Collapse
Affiliation(s)
| | - Elena Popugaeva
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| |
Collapse
|
6
|
Oda S, Nishiyama K, Furumoto Y, Yamaguchi Y, Nishimura A, Tang X, Kato Y, Numaga-Tomita T, Kaneko T, Mangmool S, Kuroda T, Okubo R, Sanbo M, Hirabayashi M, Sato Y, Nakagawa Y, Kuwahara K, Nagata R, Iribe G, Mori Y, Nishida M. Myocardial TRPC6-mediated Zn 2+ influx induces beneficial positive inotropy through β-adrenoceptors. Nat Commun 2022; 13:6374. [PMID: 36289215 PMCID: PMC9606288 DOI: 10.1038/s41467-022-34194-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 10/12/2022] [Indexed: 12/25/2022] Open
Abstract
Baroreflex control of cardiac contraction (positive inotropy) through sympathetic nerve activation is important for cardiocirculatory homeostasis. Transient receptor potential canonical subfamily (TRPC) channels are responsible for α1-adrenoceptor (α1AR)-stimulated cation entry and their upregulation is associated with pathological cardiac remodeling. Whether TRPC channels participate in physiological pump functions remains unclear. We demonstrate that TRPC6-specific Zn2+ influx potentiates β-adrenoceptor (βAR)-stimulated positive inotropy in rodent cardiomyocytes. Deletion of trpc6 impairs sympathetic nerve-activated positive inotropy but not chronotropy in mice. TRPC6-mediated Zn2+ influx boosts α1AR-stimulated βAR/Gs-dependent signaling in rat cardiomyocytes by inhibiting β-arrestin-mediated βAR internalization. Replacing two TRPC6-specific amino acids in the pore region with TRPC3 residues diminishes the α1AR-stimulated Zn2+ influx and positive inotropic response. Pharmacological enhancement of TRPC6-mediated Zn2+ influx prevents chronic heart failure progression in mice. Our data demonstrate that TRPC6-mediated Zn2+ influx with α1AR stimulation enhances baroreflex-induced positive inotropy, which may be a new therapeutic strategy for chronic heart failure.
Collapse
Affiliation(s)
- Sayaka Oda
- grid.250358.90000 0000 9137 6732National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki, 444-8787 Japan ,grid.250358.90000 0000 9137 6732Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, 444-8787 Japan ,grid.275033.00000 0004 1763 208XDepartment of Physiological Sciences, SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Aichi, 444-8787 Japan
| | - Kazuhiro Nishiyama
- grid.177174.30000 0001 2242 4849Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582 Japan
| | - Yuka Furumoto
- grid.177174.30000 0001 2242 4849Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582 Japan
| | - Yohei Yamaguchi
- grid.252427.40000 0000 8638 2724Asahikawa Medical University, Hokkaido, 078-8510 Japan
| | - Akiyuki Nishimura
- grid.250358.90000 0000 9137 6732National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki, 444-8787 Japan ,grid.250358.90000 0000 9137 6732Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, 444-8787 Japan ,grid.275033.00000 0004 1763 208XDepartment of Physiological Sciences, SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Aichi, 444-8787 Japan
| | - Xiaokang Tang
- grid.250358.90000 0000 9137 6732National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki, 444-8787 Japan ,grid.250358.90000 0000 9137 6732Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, 444-8787 Japan ,grid.275033.00000 0004 1763 208XDepartment of Physiological Sciences, SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Aichi, 444-8787 Japan
| | - Yuri Kato
- grid.177174.30000 0001 2242 4849Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582 Japan
| | - Takuro Numaga-Tomita
- grid.250358.90000 0000 9137 6732National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki, 444-8787 Japan ,grid.250358.90000 0000 9137 6732Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, 444-8787 Japan ,grid.263518.b0000 0001 1507 4692Shinshu University School of Medicine, Matsumoto, 390-8621 Japan
| | - Toshiyuki Kaneko
- grid.252427.40000 0000 8638 2724Asahikawa Medical University, Hokkaido, 078-8510 Japan
| | - Supachoke Mangmool
- grid.10223.320000 0004 1937 0490Faculty of Science, Mahidol University, Bangkok, 10400 Thailand
| | - Takuya Kuroda
- grid.410797.c0000 0001 2227 8773National Institute of Health Sciences, Kanagawa, 210-9501 Japan
| | - Reishin Okubo
- grid.177174.30000 0001 2242 4849Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582 Japan
| | - Makoto Sanbo
- grid.250358.90000 0000 9137 6732National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki, 444-8787 Japan
| | - Masumi Hirabayashi
- grid.250358.90000 0000 9137 6732National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki, 444-8787 Japan
| | - Yoji Sato
- grid.410797.c0000 0001 2227 8773National Institute of Health Sciences, Kanagawa, 210-9501 Japan
| | - Yasuaki Nakagawa
- grid.258799.80000 0004 0372 2033Kyoto University Graduate School of Medicine, Kyoto, 606-8507 Japan
| | - Koichiro Kuwahara
- grid.263518.b0000 0001 1507 4692Shinshu University School of Medicine, Matsumoto, 390-8621 Japan
| | - Ryu Nagata
- grid.136593.b0000 0004 0373 3971Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871 Japan
| | - Gentaro Iribe
- grid.252427.40000 0000 8638 2724Asahikawa Medical University, Hokkaido, 078-8510 Japan
| | - Yasuo Mori
- grid.258799.80000 0004 0372 2033Graduate School of Engineering, Kyoto University, Kyoto, 615-8510 Japan
| | - Motohiro Nishida
- grid.250358.90000 0000 9137 6732National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Okazaki, 444-8787 Japan ,grid.250358.90000 0000 9137 6732Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, 444-8787 Japan ,grid.275033.00000 0004 1763 208XDepartment of Physiological Sciences, SOKENDAI (School of Life Science, The Graduate University for Advanced Studies), Aichi, 444-8787 Japan ,grid.177174.30000 0001 2242 4849Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582 Japan
| |
Collapse
|
7
|
Hunanyan L, Ghamaryan V, Makichyan A, Popugaeva E. Computer-Based Drug Design of Positive Modulators of Store-Operated Calcium Channels to Prevent Synaptic Dysfunction in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms222413618. [PMID: 34948414 PMCID: PMC8707499 DOI: 10.3390/ijms222413618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 11/25/2022] Open
Abstract
Store-operated calcium entry (SOCE) constitutes a fine-tuning mechanism responsible for the replenishment of intracellular stores. Hippocampal SOCE is regulated by store-operated channels (SOC) organized in tripartite complex TRPC6/ORAI2/STIM2. It is suggested that in neurons, SOCE maintains intracellular homeostatic Ca2+ concentration at resting conditions and is needed to support the structure of dendritic spines. Recent evidence suggests that positive modulators of SOC are prospective drug candidates to treat Alzheimer’s disease (AD) at early stages. Although STIM2 and ORAI2 are definitely involved in the regulation of nSOC amplitude and a play major role in AD pathogenesis, growing evidence suggest that it is not easy to target these proteins pharmacologically. Existing positive modulators of TRPC6 are unsuitable for drug development due to either bad pharmacokinetics or side effects. Thus, we concentrate the review on perspectives to develop specific nSOC modulators based on available 3D structures of TRPC6, ORAI2, and STIM2. We shortly describe the structural features of existing models and the methods used to prepare them. We provide commonly used steps applied for drug design based on 3D structures of target proteins that might be used to develop novel AD preventing therapy.
Collapse
Affiliation(s)
- Lernik Hunanyan
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia;
- Laboratory of Structural Bioinformatics, Institute of Biomedicine and Pharmacy, Russian-Armenian University, Yerevan 0051, Armenia; (V.G.); (A.M.)
| | - Viktor Ghamaryan
- Laboratory of Structural Bioinformatics, Institute of Biomedicine and Pharmacy, Russian-Armenian University, Yerevan 0051, Armenia; (V.G.); (A.M.)
| | - Ani Makichyan
- Laboratory of Structural Bioinformatics, Institute of Biomedicine and Pharmacy, Russian-Armenian University, Yerevan 0051, Armenia; (V.G.); (A.M.)
| | - Elena Popugaeva
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia;
- Correspondence:
| |
Collapse
|
8
|
Yang PL, Li XH, Wang J, Ma XF, Zhou BY, Jiao YF, Wang WH, Cao P, Zhu MX, Li PW, Xiao ZH, Li CZ, Guo CR, Lei YT, Yu Y. GSK1702934A and M085 directly activate TRPC6 via a mechanism of stimulating the extracellular cavity formed by the pore helix and transmembrane helix S6. J Biol Chem 2021; 297:101125. [PMID: 34461094 PMCID: PMC8458982 DOI: 10.1016/j.jbc.2021.101125] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/22/2021] [Accepted: 08/26/2021] [Indexed: 01/20/2023] Open
Abstract
Transient receptor potential canonical (TRPC) channels, as important membrane proteins regulating intracellular calcium (Ca2+i) signaling, are involved in a variety of physiological and pathological processes. Activation and regulation of TRPC are more dependent on membrane or intracellular signals. However, how extracellular signals regulate TRPC6 function remains to be further investigated. Here, we suggest that two distinct small molecules, M085 and GSK1702934A, directly activate TRPC6, both through a mechanism of stimulation of extracellular sites formed by the pore helix (PH) and transmembrane (TM) helix S6. In silico docking scanning of TRPC6 identified three extracellular sites that can bind small molecules, of which only mutations on residues of PH and S6 helix significantly reduced the apparent affinity of M085 and GSK1702934A and attenuated the maximal response of TRPC6 to these two chemicals by altering channel gating of TRPC6. Combing metadynamics, molecular dynamics simulations, and mutagenesis, we revealed that W679, E671, E672, and K675 in the PH and N701 and Y704 in the S6 helix constitute an orthosteric site for the recognition of these two agonists. The importance of this site was further confirmed by covalent modification of amino acid residing at the interface of the PH and S6 helix. Given that three structurally distinct agonists M085, GSK1702934A, and AM-0883, act at this site, as well as the occupancy of lipid molecules at this position found in other TRP subfamilies, it is suggested that the cavity formed by the PH and S6 has an important role in the regulation of TRP channel function by extracellular signals.
Collapse
Affiliation(s)
- Pei-Lin Yang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xing-Hua Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jin Wang
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xue-Fei Ma
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Bo-Ying Zhou
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yuan-Feng Jiao
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wen-Hui Wang
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Peng Cao
- Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Michael Xi Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Pei-Wang Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| | - Zhi-Hong Xiao
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| | - Chang-Zhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| | - Chang-Run Guo
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Yun-Tao Lei
- School of Science, China Pharmaceutical University, Nanjing, China.
| | - Ye Yu
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
9
|
Miao B, Yin Y, Mao G, Zhao B, Wu J, Shi H, Fei S. The implication of transient receptor potential canonical 6 in BDNF-induced mechanical allodynia in rat model of diabetic neuropathic pain. Life Sci 2021; 273:119308. [PMID: 33667520 DOI: 10.1016/j.lfs.2021.119308] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/18/2021] [Accepted: 02/21/2021] [Indexed: 02/01/2023]
Abstract
AIMS Brain-derived neurotrophic factor (BDNF) is vital in the pathogenesis of mechanical allodynia with a paucity of reports available regarding diabetic neuropathy pain (DNP). Herein we identified the involvement of BDNF in driving mechanical allodynia in DNP rats via the activation of transient receptor potential canonical 6 (TRPC6) channel. MATERIALS AND METHODS The DNP rat model was established via streptozotocin (STZ) injection, and allodynia was assessed by paw withdrawal mechanical threshold (PWMT) and paw withdrawal thermal latency (PWTL). The expression profiles of BDNF and TRPC6 in dorsal root ganglia (DRG) and spinal cord were illustrated by immunofluorescence and Western blotting. Intrathecal administration of K252a or TrkB-Fc was performed to inhibit BNDF/TrkB expression, and respective injection of GsMTX-4, BTP2 and TRPC6 antisense oligodeoxynucleotides (TRPC6-AS) was likewise conducted to inhibit TRPC6 expression in DNP rats. Calcium influx in DRG was monitored by calcium imaging. KEY FINDINGS The time-dependent increase of BDNF and TRPC6 expression in DRG and spinal cord was observed since the 7th post-STZ day, correlated with the development of mechanical allodynia in DNP rats. Intrathecal administration of K252a, TrkB-Fc, GsMTX-4 and BTP2 prevented mechanical allodynia in DNP rats. Pre-treatment of TRPC6-AS reversed the BDNF-induced pain-like responses in DNP rats rather than the naïve rats. In addition, the TRPC6-AS reversed BDNF-induced increase of calcium influx in DRG neurons in DNP rats. SIGNIFICANCE The intrathecal inhibition of TRPC6 alleviated the BDNF-induced mechanical allodynia in DNP rat model. This finding may validate the application of TRPC6 antagonists as interesting strategy for DNP management.
Collapse
Affiliation(s)
- Bei Miao
- Department of Gastroenterology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221002, Jiangsu Province, China; Institute of Digestive Diseases, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou 221002, Jiangsu Province, China
| | - Yue Yin
- Department of Anesthesiology, Xuzhou Central Hospital, 199 Jiefang South Road, Xuzhou 221009, Jiangsu Province, China
| | - Guangtong Mao
- Department of Pathology, Xinyi People's Hospital, 16 Renmin Road, Xinyi 221400, Jiangsu Province, China
| | - Benhuo Zhao
- Department of Gastroenterology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221002, Jiangsu Province, China
| | - Jiaojiao Wu
- Department of Gastroenterology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221002, Jiangsu Province, China
| | - Hengliang Shi
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221002, Jiangsu Province, China.
| | - Sujuan Fei
- Department of Gastroenterology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221002, Jiangsu Province, China; Institute of Digestive Diseases, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou 221002, Jiangsu Province, China.
| |
Collapse
|
10
|
Shekhar S, Liu Y, Wang S, Zhang H, Fang X, Zhang J, Fan L, Zheng B, Roman RJ, Wang Z, Fan F, Booz GW. Novel Mechanistic Insights and Potential Therapeutic Impact of TRPC6 in Neurovascular Coupling and Ischemic Stroke. Int J Mol Sci 2021; 22:2074. [PMID: 33669830 PMCID: PMC7922996 DOI: 10.3390/ijms22042074] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 12/13/2022] Open
Abstract
Ischemic stroke is one of the most disabling diseases and a leading cause of death globally. Despite advances in medical care, the global burden of stroke continues to grow, as no effective treatments to limit or reverse ischemic injury to the brain are available. However, recent preclinical findings have revealed the potential role of transient receptor potential cation 6 (TRPC6) channels as endogenous protectors of neuronal tissue. Activating TRPC6 in various cerebral ischemia models has been found to prevent neuronal death, whereas blocking TRPC6 enhances sensitivity to ischemia. Evidence has shown that Ca2+ influx through TRPC6 activates the cAMP (adenosine 3',5'-cyclic monophosphate) response element-binding protein (CREB), an important transcription factor linked to neuronal survival. Additionally, TRPC6 activation may counter excitotoxic damage resulting from glutamate release by attenuating the activity of N-methyl-d-aspartate (NMDA) receptors of neurons by posttranslational means. Unresolved though, are the roles of TRPC6 channels in non-neuronal cells, such as astrocytes and endothelial cells. Moreover, TRPC6 channels may have detrimental effects on the blood-brain barrier, although their exact role in neurovascular coupling requires further investigation. This review discusses evidence-based cell-specific aspects of TRPC6 in the brain to assess the potential targets for ischemic stroke management.
Collapse
Affiliation(s)
- Shashank Shekhar
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Yedan Liu
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.L.); (S.W.); (H.Z.); (X.F.); (J.Z.); (L.F.); (B.Z.); (R.J.R.); (F.F.); (G.W.B.)
| | - Shaoxun Wang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.L.); (S.W.); (H.Z.); (X.F.); (J.Z.); (L.F.); (B.Z.); (R.J.R.); (F.F.); (G.W.B.)
| | - Huawei Zhang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.L.); (S.W.); (H.Z.); (X.F.); (J.Z.); (L.F.); (B.Z.); (R.J.R.); (F.F.); (G.W.B.)
| | - Xing Fang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.L.); (S.W.); (H.Z.); (X.F.); (J.Z.); (L.F.); (B.Z.); (R.J.R.); (F.F.); (G.W.B.)
| | - Jin Zhang
- School of Medicine, I.M. Sechenov First Moscow State Medical University, Moscow 119048, Russia
| | - Letao Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.L.); (S.W.); (H.Z.); (X.F.); (J.Z.); (L.F.); (B.Z.); (R.J.R.); (F.F.); (G.W.B.)
| | - Baoying Zheng
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.L.); (S.W.); (H.Z.); (X.F.); (J.Z.); (L.F.); (B.Z.); (R.J.R.); (F.F.); (G.W.B.)
| | - Richard J. Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.L.); (S.W.); (H.Z.); (X.F.); (J.Z.); (L.F.); (B.Z.); (R.J.R.); (F.F.); (G.W.B.)
| | - Zhen Wang
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA;
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.L.); (S.W.); (H.Z.); (X.F.); (J.Z.); (L.F.); (B.Z.); (R.J.R.); (F.F.); (G.W.B.)
| | - George W. Booz
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.L.); (S.W.); (H.Z.); (X.F.); (J.Z.); (L.F.); (B.Z.); (R.J.R.); (F.F.); (G.W.B.)
| |
Collapse
|
11
|
Lisek M, Zylinska L, Boczek T. Ketamine and Calcium Signaling-A Crosstalk for Neuronal Physiology and Pathology. Int J Mol Sci 2020; 21:ijms21218410. [PMID: 33182497 PMCID: PMC7665128 DOI: 10.3390/ijms21218410] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/31/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022] Open
Abstract
Ketamine is a non-competitive antagonist of NMDA (N-methyl-D-aspartate) receptor, which has been in clinical practice for over a half century. Despite recent data suggesting its harmful side effects, such as neuronal loss, synapse dysfunction or disturbed neural network formation, the drug is still applied in veterinary medicine and specialist anesthesia. Several lines of evidence indicate that structural and functional abnormalities in the nervous system caused by ketamine are crosslinked with the imbalanced activity of multiple Ca2+-regulated signaling pathways. Due to its ubiquitous nature, Ca2+ is also frequently located in the center of ketamine action, although the precise mechanisms underlying drug’s negative or therapeutic properties remain mysterious for the large part. This review seeks to delineate the relationship between ketamine-triggered imbalance in Ca2+ homeostasis and functional consequences for downstream processes regulating key aspects of neuronal function.
Collapse
|
12
|
Prikhodko V, Chernyuk D, Sysoev Y, Zernov N, Okovityi S, Popugaeva E. Potential Drug Candidates to Treat TRPC6 Channel Deficiencies in the Pathophysiology of Alzheimer's Disease and Brain Ischemia. Cells 2020; 9:cells9112351. [PMID: 33114455 PMCID: PMC7692306 DOI: 10.3390/cells9112351] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/28/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease and cerebral ischemia are among the many causative neurodegenerative diseases that lead to disabilities in the middle-aged and elderly population. There are no effective disease-preventing therapies for these pathologies. Recent in vitro and in vivo studies have revealed the TRPC6 channel to be a promising molecular target for the development of neuroprotective agents. TRPC6 channel is a non-selective cation plasma membrane channel that is permeable to Ca2+. Its Ca2+-dependent pharmacological effect is associated with the stabilization and protection of excitatory synapses. Downregulation as well as upregulation of TRPC6 channel functions have been observed in Alzheimer’s disease and brain ischemia models. Thus, in order to protect neurons from Alzheimer’s disease and cerebral ischemia, proper TRPC6 channels modulators have to be used. TRPC6 channels modulators are an emerging research field. New chemical structures modulating the activity of TRPC6 channels are being currently discovered. The recent publication of the cryo-EM structure of TRPC6 channels should speed up the discovery process even more. This review summarizes the currently available information about potential drug candidates that may be used as basic structures to develop selective, highly potent TRPC6 channel modulators to treat neurodegenerative disorders, such as Alzheimer’s disease and cerebral ischemia.
Collapse
Affiliation(s)
- Veronika Prikhodko
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia; (V.P.); (D.C.); (Y.S.); (N.Z.)
- Department of Pharmacology and Clinical Pharmacology, Saint Petersburg State Chemical Pharmaceutical University, 197022 St. Petersburg, Russia;
- N.P. Bechtereva Institute of the Human Brain of the Russian Academy of Sciences, 197376 St. Petersburg, Russia
| | - Daria Chernyuk
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia; (V.P.); (D.C.); (Y.S.); (N.Z.)
| | - Yurii Sysoev
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia; (V.P.); (D.C.); (Y.S.); (N.Z.)
- Department of Pharmacology and Clinical Pharmacology, Saint Petersburg State Chemical Pharmaceutical University, 197022 St. Petersburg, Russia;
- N.P. Bechtereva Institute of the Human Brain of the Russian Academy of Sciences, 197376 St. Petersburg, Russia
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 St. Petersburg, Russia
| | - Nikita Zernov
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia; (V.P.); (D.C.); (Y.S.); (N.Z.)
| | - Sergey Okovityi
- Department of Pharmacology and Clinical Pharmacology, Saint Petersburg State Chemical Pharmaceutical University, 197022 St. Petersburg, Russia;
- N.P. Bechtereva Institute of the Human Brain of the Russian Academy of Sciences, 197376 St. Petersburg, Russia
| | - Elena Popugaeva
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia; (V.P.); (D.C.); (Y.S.); (N.Z.)
- Correspondence:
| |
Collapse
|
13
|
Wang Q, Tian X, Zhou W, Wang Y, Zhao H, Li J, Zhou X, Zhang H, Zhao T, Li P. Protective Role of Tangshen Formula on the Progression of Renal Damage in db/db Mice by TRPC6/Talin1 Pathway in Podocytes. J Diabetes Res 2020; 2020:3634974. [PMID: 33015191 PMCID: PMC7519445 DOI: 10.1155/2020/3634974] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 08/11/2020] [Accepted: 08/29/2020] [Indexed: 12/16/2022] Open
Abstract
Tangshen Formula (TSF) is a Chinese Medicine formula that has been reported to alleviate proteinuria and protect renal function in humans and animals with diabetic kidney disease (DKD). However, little is known about its mechanism in improving proteinuria. The dysregulation of podocyte cell-matrix adhesion has been demonstrated to play an important role in the pathogenesis and progression of proteinuric kidney diseases including DKD. In the present study, the underlying protective mechanism of TSF on podocytes was investigated using the murine model of type 2 DKD db/db mice in vivo and advanced glycation end products (AGEs)-stimulated primary mice podocytes in vitro. Results revealed that TSF treatment could significantly mitigate reduction of podocyte numbers and foot process effacement, reduce proteinuria, and protect renal function in db/db mice. There was a significant increase in expression of transient receptor potential canonical channel 6 (TRPC6) and a decrease in expression of talin1 in podocytes of db/db mice. The results of AGEs-stimulated primary mice podocytes showed increased cell migration and actin-cytoskeleton rearrangement. Moreover, primary mice podocytes stimulated by AGEs displayed an increase in TRPC6-dependent Ca2+ influx, a loss of talin1, and translocation of nuclear factor of activated T cell (NFATC) 2. These dysregulations in mice primary podocytes stimulated by AGEs could be significantly attenuated after TSF treatment. 1-Oleoyl-2-acetyl-sn-glycerol (OAG), a TRPC6 agonist, blocked the protective role of TSF on podocyte cell-matrix adherence. In conclusion, TSF could protect podocytes from injury and reduce proteinuria in DKD, which may be mediated by the regulation of the TRPC6/Talin1 pathway in podocytes.
Collapse
Affiliation(s)
- Qian Wang
- Beijing University of Chinese Medicine, Beijing 100029, China
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xuefei Tian
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Wei'e Zhou
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yan Wang
- Beijing Key Laboratory of Diabetes Research and Care, Center for Endocrine Metabolism and Immune Diseases, Lu He Hospital, Capital Medical University, Beijing 101149, China
| | - Hailing Zhao
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jialin Li
- Beijing University of Chinese Medicine, Beijing 100029, China
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xuefeng Zhou
- Beijing University of Chinese Medicine, Beijing 100029, China
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Haojun Zhang
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Tingting Zhao
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Ping Li
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
14
|
Wang H, Cheng X, Tian J, Xiao Y, Tian T, Xu F, Hong X, Zhu MX. TRPC channels: Structure, function, regulation and recent advances in small molecular probes. Pharmacol Ther 2020; 209:107497. [PMID: 32004513 DOI: 10.1016/j.pharmthera.2020.107497] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/14/2020] [Indexed: 02/08/2023]
Abstract
Transient receptor potential canonical (TRPC) channels constitute a group of receptor-operated calcium-permeable nonselective cation channels of the TRP superfamily. The seven mammalian TRPC members, which can be further divided into four subgroups (TRPC1, TRPC2, TRPC4/5, and TRPC3/6/7) based on their amino acid sequences and functional similarities, contribute to a broad spectrum of cellular functions and physiological roles. Studies have revealed complexity of their regulation involving several components of the phospholipase C pathway, Gi and Go proteins, and internal Ca2+ stores. Recent advances in cryogenic electron microscopy have provided several high-resolution structures of TRPC channels. Growing evidence demonstrates the involvement of TRPC channels in diseases, particularly the link between genetic mutations of TRPC6 and familial focal segmental glomerulosclerosis. Because TRPCs were discovered by the molecular identity first, their pharmacology had lagged behind. This is rapidly changing in recent years owning to great efforts from both academia and industry. A number of potent tool compounds from both synthetic and natural products that selective target different subtypes of TRPC channels have been discovered, including some preclinical drug candidates. This review will cover recent advancements in the understanding of TRPC channel regulation, structure, and discovery of novel TRPC small molecular probes over the past few years, with the goal of facilitating drug discovery for the study of TRPCs and therapeutic development.
Collapse
Affiliation(s)
- Hongbo Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education; Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| | - Xiaoding Cheng
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Jinbin Tian
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yuling Xiao
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Tian Tian
- Innovation Center for Traditional Tibetan Medicine Modernization and Quality Control, Medical College, Department of Chemistry and Environmental Science, School of Science, Tibet University, Lhasa 850000, China
| | - Fuchun Xu
- Innovation Center for Traditional Tibetan Medicine Modernization and Quality Control, Medical College, Department of Chemistry and Environmental Science, School of Science, Tibet University, Lhasa 850000, China
| | - Xuechuan Hong
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China; Innovation Center for Traditional Tibetan Medicine Modernization and Quality Control, Medical College, Department of Chemistry and Environmental Science, School of Science, Tibet University, Lhasa 850000, China.
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
15
|
Yang G, Ma H, Wu Y, Zhou B, Zhang C, Chai C, Cao Z. Activation of TRPC6 channels contributes to (+)-conocarpan-induced apoptotic cell death in HK-2 cells. Food Chem Toxicol 2019; 129:281-290. [PMID: 31054997 DOI: 10.1016/j.fct.2019.04.061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/25/2019] [Accepted: 04/30/2019] [Indexed: 10/26/2022]
Abstract
(+)-Conocarpan (CNCP), a neolignan frequently found in many medicinal and edible plants displays a broad spectrum of bioactivity. Here, we demonstrated that CNCP induced apoptotic cell death in human kidney-2 (HK-2) cells in a concentration-dependent manner (IC50 = 19.3 μM) and led to the sustained elevation of intracellular Ca2+ ([Ca2+]i). Lower extracellular Ca2+ concentrations from 2.3 mM to 0 mM significantly suppressed the CNCP-induced Ca2+ response by 69.1%. Moreover, the depletion of intracellular Ca2+ stores using thapsigargin normalized CNCP-induced Ca2+ release from intracellular Ca2+ stores, suggesting that the CNCP-induced Ca2+ response involved both extracellular Ca2+ influx and Ca2+ release from intracellular Ca2+ stores. SAR7334, a TRPC3/6/7 channel inhibitor, but neither Pyr3, a selective TRPC3 channel inhibitor, nor Pico145, a TRPC1/4/5 inhibitor, suppressed the CNCP-induced Ca2+ response by 57.2% and decreased CNCP-induced cell death by 53.4%, suggesting a critical role for TRPC6 channels in CNCP-induced Ca2+ influx and apoptotic cell death. Further electrophysiological recording demonstrated that CNCP directly activated TRPC6 channels by increasing channel open probability with an EC50 value of 6.01 μM. Considered together, these data demonstrate that the direct activation of TRPC6 channels contributes to CNCP-induced apoptotic cell death in HK-2 cells. Our data point out the potential risk of renal toxicity from CNCP if used as a therapeutic agent.
Collapse
Affiliation(s)
- Guoling Yang
- State Key Laboratory of Natural Medicines & Jiangsu Provincial Key Laboratory of TCM Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Hui Ma
- State Key Laboratory of Natural Medicines & Jiangsu Provincial Key Laboratory of TCM Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Yanliang Wu
- State Key Laboratory of Natural Medicines & Jiangsu Provincial Key Laboratory of TCM Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Baoping Zhou
- State Key Laboratory of Natural Medicines & Jiangsu Provincial Key Laboratory of TCM Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Chunlei Zhang
- State Key Laboratory of Natural Medicines & Jiangsu Provincial Key Laboratory of TCM Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Chengzhi Chai
- State Key Laboratory of Natural Medicines & Jiangsu Provincial Key Laboratory of TCM Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Zhengyu Cao
- State Key Laboratory of Natural Medicines & Jiangsu Provincial Key Laboratory of TCM Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
16
|
Popugaeva E, Chernyuk D, Zhang H, Postnikova TY, Pats K, Fedorova E, Poroikov V, Zaitsev AV, Bezprozvanny I. Derivatives of Piperazines as Potential Therapeutic Agents for Alzheimer's Disease. Mol Pharmacol 2019; 95:337-348. [PMID: 30696719 DOI: 10.1124/mol.118.114348] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 01/06/2019] [Indexed: 11/22/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that is the major cause of dementia in the elderly. There is no cure against AD. We have recently discovered a novel transient receptor potential canonical 6 (TRPC6)-mediated intracellular signaling pathway that regulates the stability of dendritic spines and plays a role in memory formation. We have previously shown that TRPC6 agonists exert beneficial effects in models of AD and may serve as lead compounds for development of AD therapeutic agents. In the current study, we used the Clarivate Analytics Integrity database to search for additional TRPC6 agonists. We selected four compounds to study as potential neuroprotective agents. We applied bioinformatics analyses to test the basic pharmacological properties of the selected compounds. We performed in vitro screening of these compounds to validate their ability to protect mushroom spines from amyloid toxicity and determined that two of these compounds exert neuroprotective effects in the nanomolar concentration range. We have chosen one of these compounds [piperazine (PPZ)] for further testing. In agreement with previously published data, we have shown that PPZ potentiates TRPC6 channels. We demonstrated that the neuroprotective mechanism of the investigated PPZ is based on activation of neuronal store-operated calcium entry in spines. We have shown that PPZ restores long-term potentiation induction in 6-month-old 5xFAD mouse hippocampal slices. The obtained results suggest that PPZ and its derivatives are potential lead molecules for development of AD therapeutic agents.
Collapse
Affiliation(s)
- Elena Popugaeva
- Laboratory of Molecular Neurodegeneration, Department of Medical Physics, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation (E.P., D.C., I.B.); Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas (H.Z., I.B.); Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russian Federation (T.Y.P., A.V.Z.); VVS Laboratory Inc., Ulica Dostoevskogo 44, St. Petersburg, Russian Federation (K.P., E.F.); Institute of Biomedical Chemistry, Moscow, Russian Federation (V.P.)
| | - Daria Chernyuk
- Laboratory of Molecular Neurodegeneration, Department of Medical Physics, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation (E.P., D.C., I.B.); Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas (H.Z., I.B.); Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russian Federation (T.Y.P., A.V.Z.); VVS Laboratory Inc., Ulica Dostoevskogo 44, St. Petersburg, Russian Federation (K.P., E.F.); Institute of Biomedical Chemistry, Moscow, Russian Federation (V.P.)
| | - Hua Zhang
- Laboratory of Molecular Neurodegeneration, Department of Medical Physics, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation (E.P., D.C., I.B.); Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas (H.Z., I.B.); Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russian Federation (T.Y.P., A.V.Z.); VVS Laboratory Inc., Ulica Dostoevskogo 44, St. Petersburg, Russian Federation (K.P., E.F.); Institute of Biomedical Chemistry, Moscow, Russian Federation (V.P.)
| | - Tatyana Y Postnikova
- Laboratory of Molecular Neurodegeneration, Department of Medical Physics, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation (E.P., D.C., I.B.); Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas (H.Z., I.B.); Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russian Federation (T.Y.P., A.V.Z.); VVS Laboratory Inc., Ulica Dostoevskogo 44, St. Petersburg, Russian Federation (K.P., E.F.); Institute of Biomedical Chemistry, Moscow, Russian Federation (V.P.)
| | - Karina Pats
- Laboratory of Molecular Neurodegeneration, Department of Medical Physics, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation (E.P., D.C., I.B.); Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas (H.Z., I.B.); Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russian Federation (T.Y.P., A.V.Z.); VVS Laboratory Inc., Ulica Dostoevskogo 44, St. Petersburg, Russian Federation (K.P., E.F.); Institute of Biomedical Chemistry, Moscow, Russian Federation (V.P.)
| | - Elena Fedorova
- Laboratory of Molecular Neurodegeneration, Department of Medical Physics, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation (E.P., D.C., I.B.); Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas (H.Z., I.B.); Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russian Federation (T.Y.P., A.V.Z.); VVS Laboratory Inc., Ulica Dostoevskogo 44, St. Petersburg, Russian Federation (K.P., E.F.); Institute of Biomedical Chemistry, Moscow, Russian Federation (V.P.)
| | - Vladimir Poroikov
- Laboratory of Molecular Neurodegeneration, Department of Medical Physics, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation (E.P., D.C., I.B.); Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas (H.Z., I.B.); Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russian Federation (T.Y.P., A.V.Z.); VVS Laboratory Inc., Ulica Dostoevskogo 44, St. Petersburg, Russian Federation (K.P., E.F.); Institute of Biomedical Chemistry, Moscow, Russian Federation (V.P.)
| | - Aleksey V Zaitsev
- Laboratory of Molecular Neurodegeneration, Department of Medical Physics, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation (E.P., D.C., I.B.); Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas (H.Z., I.B.); Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russian Federation (T.Y.P., A.V.Z.); VVS Laboratory Inc., Ulica Dostoevskogo 44, St. Petersburg, Russian Federation (K.P., E.F.); Institute of Biomedical Chemistry, Moscow, Russian Federation (V.P.)
| | - Ilya Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Department of Medical Physics, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation (E.P., D.C., I.B.); Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas (H.Z., I.B.); Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russian Federation (T.Y.P., A.V.Z.); VVS Laboratory Inc., Ulica Dostoevskogo 44, St. Petersburg, Russian Federation (K.P., E.F.); Institute of Biomedical Chemistry, Moscow, Russian Federation (V.P.)
| |
Collapse
|
17
|
Discovery and characterization of a positive allosteric modulator of transient receptor potential canonical 6 (TRPC6) channels. Cell Calcium 2018; 78:26-34. [PMID: 30594060 DOI: 10.1016/j.ceca.2018.12.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/20/2018] [Accepted: 12/20/2018] [Indexed: 01/13/2023]
Abstract
The non-selective second messenger-gated cation channel TRPC6 (transient receptor potential canonical 6) is activated by diacylglycerols (DAG) in a PKC-independent manner and plays important roles in a variety of physiological processes and diseases. In order to facilitate novel therapies, the development of potent inhibitors as well as channel-activating agents is of great interest. The screening of a chemical library, comprising about 17,000 small molecule compounds, revealed an agent, which induced increases in intracellular Ca2+ concentrations ([Ca2+]i) in a concentration-dependent manner (EC50 = 2.37 ± 0.25 μM) in stably TRPC6-expressing HEK293 cells. This new compound (C20) selectively acts on TRPC6, unlike OAG (1-oleoyl-1-acetyl-sn-glycerol), which also activates PKC and does not discriminate between TRPC6 and the closely related channels TRPC3 and TRPC7. Further evaluation by Ca2+ assays and electrophysiological studies revealed that C20 rather operated as an enhancer of channel activation than as an activator by itself and led to the assumption that the compound C20 is an allosteric modulator of TRPC6, enabling low basal concentrations of DAG to induce activation of the ion channel. Furthermore, C20 was tested in human platelets that express TRPC6. A combined activation of TRPC6 with C20 and OAG elicited a robust increase in [Ca2+]i in human platelets. This potentiated channel activation was sensitive to TRPC6 channel blockers. To achieve sufficient amounts of C20 for biological studies, we applied a one-pot synthesis strategy. With regard to studies in native systems, the sensitizing ability of C20 can be a valuable pharmacological tool to selectively exaggerate TRPC6-dependent signals.
Collapse
|
18
|
Abstract
Neurotrophins, including nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), bind to their high-affinity receptors to promote neuronal survival during brain development. One of the key downstream pathways is the phospholipase C (PLC) pathway, which not only plays a central role in calcium release from internal store but also in activation of TRPC channels coupled with neurotrophin receptors. TRPC channels are required for the neurotrophin-mediated neuronal protective effects. In addition, activation of TRPC channels is able to protect neurons in the absence of neurotrophin. In some circumstances, TRPC channels coupled with metabotropic glutamate receptor may mediate the excitotoxicity by calcium overload. One of the key questions in the field is the channel gating mechanisms; understanding of which would help design compounds to modulate the channel properties. The development and identification of TRPC channel agonists or blockers are promising and may unveil new therapeutic drugs for the treatment of neurodegenerative diseases and epilepsy.
Collapse
|
19
|
The Emerging Roles of the Calcineurin-Nuclear Factor of Activated T-Lymphocytes Pathway in Nervous System Functions and Diseases. J Aging Res 2016; 2016:5081021. [PMID: 27597899 PMCID: PMC5002468 DOI: 10.1155/2016/5081021] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/21/2016] [Indexed: 12/27/2022] Open
Abstract
The ongoing epidemics of metabolic diseases and increase in the older population have increased the incidences of neurodegenerative diseases. Evidence from murine and cell line models has implicated calcineurin-nuclear factor of activated T-lymphocytes (NFAT) signaling pathway, a Ca2+/calmodulin-dependent major proinflammatory pathway, in the pathogenesis of these diseases. Neurotoxins such as amyloid-β, tau protein, and α-synuclein trigger abnormal calcineurin/NFAT signaling activities. Additionally increased activities of endogenous regulators of calcineurin like plasma membrane Ca2+-ATPase (PMCA) and regulator of calcineurin 1 (RCAN1) also cause neuronal and glial loss and related functional alterations, in neurodegenerative diseases, psychotic disorders, epilepsy, and traumatic brain and spinal cord injuries. Treatment with calcineurin/NFAT inhibitors induces some degree of neuroprotection and decreased reactive gliosis in the central and peripheral nervous system. In this paper, we summarize and discuss the current understanding of the roles of calcineurin/NFAT signaling in physiology and pathologies of the adult and developing nervous system, with an emphasis on recent reports and cutting-edge findings. Calcineurin/NFAT signaling is known for its critical roles in the developing and adult nervous system. Its role in physiological and pathological processes is still controversial. However, available data suggest that its beneficial and detrimental effects are context-dependent. In view of recent reports calcineurin/NFAT signaling is likely to serve as a potential therapeutic target for neurodegenerative diseases and conditions. This review further highlights the need to characterize better all factors determining the outcome of calcineurin/NFAT signaling in diseases and the downstream targets mediating the beneficial and detrimental effects.
Collapse
|