1
|
Chothe PP, Argikar UA, Mitra P, Nakakariya M, Ramsden D, Rotter CJ, Sandoval P, Tohyama K. Drug transporters in drug disposition - highlights from the year 2023. Drug Metab Rev 2024; 56:318-348. [PMID: 39221672 DOI: 10.1080/03602532.2024.2399523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Drug transporter field is rapidly evolving with significant progress in in vitro and in vivo tools and, computational models to assess transporter-mediated drug disposition and drug-drug interactions (DDIs) in humans. On behalf of all coauthors, I am pleased to share the fourth annual review highlighting articles published and deemed influential in the field of drug transporters in the year 2023. Each coauthor independently selected peer-reviewed articles published or available online in the year 2023 and summarized them as shown previously (Chothe et al. 2021; Chothe et al. 2022, 2023) with unbiased perspectives. Based on selected articles, this review was categorized into four sections: (1) transporter structure and in vitro evaluation, (2) novel in vitro/ex vivo models, (3) endogenous biomarkers, and (4) PBPK modeling for evaluating transporter DDIs (Table 1). As the scope of this review is not to comprehensively review each article, readers are encouraged to consult original paper for specific details. Finally, I appreciate all the authors for their time and continued support in writing this review.
Collapse
Affiliation(s)
- Paresh P Chothe
- Drug Metabolism and Pharmacokinetics, Oncology Research and Development, AstraZeneca, Waltham, MA, USA
| | - Upendra A Argikar
- Non-clinical Development, Bill and Melinda Gates Medical Research Institute, Cambridge, MA, USA
| | - Pallabi Mitra
- Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, CT, USA
| | - Masanori Nakakariya
- Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda irinote Pharmaceutical Company Limited, Fujisawa, Japan
| | - Diane Ramsden
- Preclinical Development, Korro Bio, Inc. One Kendall Square, Cambridge, MA, USA
| | - Charles J Rotter
- Global Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, Inc. (TDCA), San Diego, CA, USA
| | - Philip Sandoval
- Global Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, Inc. (TDCA), Lexington, MA, USA
| | - Kimio Tohyama
- Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda irinote Pharmaceutical Company Limited, Fujisawa, Japan
| |
Collapse
|
2
|
Parida KK, Lahiri M, Ghosh M, Dalal A, Kalia NP. P-glycoprotein inhibitors as an adjunct therapy for TB. Drug Discov Today 2024; 29:104108. [PMID: 39032811 DOI: 10.1016/j.drudis.2024.104108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
The primary challenge in TB treatment is the emergence of multidrug-resistant TB (MDR-TB). One of the major factors responsible for MDR is the upregulation of efflux pumps. Permeation-glycoprotein (P-gp), an efflux pump, hinders the bioavailability of the administered drugs inside the infected cells. Simultaneously, angiogenesis, the formation of new blood vessels, contributes to drug delivery complexities. TB infection triggers a cascade of events that upregulates the expression of angiogenic factors and P-gp. The combined action of P-gp and angiogenesis foster the emergence of MDR-TB. Understanding these mechanisms is pivotal for developing targeted interventions to overcome MDR in TB. P-gp inhibitors, such as verapamil, and anti-angiogenic drugs, including bevacizumab, have shown improvement in TB drug delivery to granuloma. In this review, we discuss the potential of P-gp inhibitors as an adjunct therapy to shorten TB treatment.
Collapse
Affiliation(s)
- Kishan Kumar Parida
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Monali Lahiri
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Mainak Ghosh
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Aman Dalal
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Nitin Pal Kalia
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India.
| |
Collapse
|
3
|
Weaver DR, Schaefer KG, King GM. Atomic force microscope kymograph analysis: A case study of two membrane proteins. Methods 2024; 223:83-94. [PMID: 38286332 DOI: 10.1016/j.ymeth.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/31/2024] Open
Abstract
Kymograph analysis is employed across the biological atomic force microscopy (AFM) community to boost temporal resolution. The method is well suited for revealing protein dynamics at the single molecule level in near-native conditions. Yet, kymograph analysis comes with limitations that depend on several factors including protein geometry and instrumental drift. This work focuses on conformational dynamics of difficult-to-study sparse distributions of membrane proteins. We compare and contrast AFM kymograph analysis for two proteins, one of which (SecDF) exhibits conformational dynamics primarily in the vertical direction (normal to the membrane surface) and the other (Pgp) exhibits a combination of lateral dynamics and vertical motion. Common experimental issues are analyzed including translational and rotational drift. Conformational transition detection is evaluated via kymograph simulations followed by state detection algorithms. We find that kymograph analysis is largely robust to lateral drift. Displacement of the AFM line scan trajectory away from the protein center of mass by a few nanometers, roughly half of the molecule diameter, does not significantly affect transition detection nor generate undue dwell time errors. On the other hand, for proteins like Pgp that exhibit significant azimuthal maximum height dependence, rotational drift can potentially produce artifactual transitions. Measuring the height of a membrane protein protrusion is generally superior to measurement of width, confirming intuition based on vertical resolution superiority. In low signal-to-noise scenarios, common state detection algorithms struggle with transition detection as opposed to infinite hidden Markov models. AFM kymography represents a valuable addition to the membrane biophysics toolkit; continued hardware and software improvements are poised to expand the method's impact in the field.
Collapse
Affiliation(s)
- Dylan R Weaver
- Department of Physics and Astronomy, University of Missouri-Columbia, Columbia MO 65211 USA
| | - Katherine G Schaefer
- Department of Physics and Astronomy, University of Missouri-Columbia, Columbia MO 65211 USA
| | - Gavin M King
- Department of Physics and Astronomy, University of Missouri-Columbia, Columbia MO 65211 USA; Joint with Department of Biochemistry, University of Missouri-Columbia, Columbia MO 65211 USA.
| |
Collapse
|
4
|
Mensah GAK, Schaefer KG, Bartlett MG, Roberts AG, King GM. Drug-Induced Conformational Dynamics of P-Glycoprotein Underlies the Transport of Camptothecin Analogs. Int J Mol Sci 2023; 24:16058. [PMID: 38003248 PMCID: PMC10671697 DOI: 10.3390/ijms242216058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/24/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023] Open
Abstract
P-glycoprotein (Pgp) plays a pivotal role in drug bioavailability and multi-drug resistance development. Understanding the protein's activity and designing effective drugs require insight into the mechanisms underlying Pgp-mediated transport of xenobiotics. In this study, we investigated the drug-induced conformational changes in Pgp and adopted a conformationally-gated model to elucidate the Pgp-mediated transport of camptothecin analogs (CPTs). While Pgp displays a wide range of conformations, we simplified it into three model states: 'open-inward', 'open-outward', and 'intermediate'. Utilizing acrylamide quenching of Pgp fluorescence as a tool to examine the protein's tertiary structure, we observed that topotecan (TPT), SN-38, and irinotecan (IRT) induced distinct conformational shifts in the protein. TPT caused a substantial shift akin to AMPPNP, suggesting ATP-independent 'open-outward' conformation. IRT and SN-38 had relatively moderate effects on the conformation of Pgp. Experimental atomic force microscopy (AFM) imaging supports these findings. Further, the rate of ATPase hydrolysis was correlated with ligand-induced Pgp conformational changes. We hypothesize that the separation between the nucleotide-binding domains (NBDs) creates a conformational barrier for substrate transport. Substrates that reduce the conformational barrier, like TPT, are better transported. The affinity for ATP extracted from Pgp-mediated ATP hydrolysis kinetics curves for TPT was about 2-fold and 3-fold higher than SN-38 and IRT, respectively. On the contrary, the dissociation constants (KD) determined by fluorescence quenching for these drugs were not significantly different. Saturation transfer double difference (STDD) NMR of TPT and IRT with Pgp revealed that similar functional groups of the CPTs are accountable for Pgp-CPTs interactions. Efforts aimed at modifying these functional groups, guided by available structure-activity relationship data for CPTs and DNA-Topoisomerase-I complexes, could pave the way for the development of more potent next-generation CPTs.
Collapse
Affiliation(s)
- Gershon A. K. Mensah
- Department of Pharmaceutical and Biomedical Science, University of Georgia, Athens, GA 30602, USA; (G.A.K.M.)
| | - Katherine G. Schaefer
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA;
| | - Michael G. Bartlett
- Department of Pharmaceutical and Biomedical Science, University of Georgia, Athens, GA 30602, USA; (G.A.K.M.)
| | - Arthur G. Roberts
- Department of Pharmaceutical and Biomedical Science, University of Georgia, Athens, GA 30602, USA; (G.A.K.M.)
| | - Gavin M. King
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA;
- Joint with Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
5
|
Schaefer KG, Roberts AG, King GM. Advantages and potential limitations of applying AFM kymograph analysis to pharmaceutically relevant membrane proteins in lipid bilayers. Sci Rep 2023; 13:11427. [PMID: 37454132 PMCID: PMC10349840 DOI: 10.1038/s41598-023-37910-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023] Open
Abstract
Membrane proteins play critical roles in disease and in the disposition of many pharmaceuticals. A prime example is P-glycoprotein (Pgp) which moves a diverse range of drugs across membranes and out of the cell before a therapeutic payload can be delivered. Conventional structural biology methods have provided a valuable framework for comprehending the complex conformational changes underlying Pgp function, which also includes ATPase activity, but the lack of real-time information hinders understanding. Atomic force microscopy (AFM) is a single-molecule technique that is well-suited for studying active membrane proteins in bilayers and is poised to advance the field beyond static snapshots. After verifying Pgp activity in surface-support bilayers, we used kymograph analysis in conjunction with AFM imaging and simulations to study structural transitions at the 100 ms timescale. Though kymographs are frequently employed to boost temporal resolution, the limitations of the method have not been well characterized, especially for sparse non-crystalline distributions of pharmaceutically relevant membrane proteins like Pgp. Common experimental challenges are analyzed, including protein orientation, instrument noise, and drift. Surprisingly, a lateral drift of 75% of the protein dimension leads to only a 12% probability of erroneous state transition detection; average dwell time error achieves a maximum value of 6%. Rotational drift of proteins like Pgp, with azimuthally-dependent maximum heights, can lead to artifactual transitions. Torsional constraints can alleviate this potential pitfall. Confidence in detected transitions can be increased by adding conformation-altering ligands such as non-hydrolysable analogs. Overall, the data indicate that AFM kymographs are a viable method to access conformational dynamics for Pgp, but generalizations of the method should be made with caution.
Collapse
Affiliation(s)
- Katherine G Schaefer
- Department of Physics and Astronomy, University of Missouri, Columbia, MO, 65211, USA
| | - Arthur G Roberts
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, 30602, USA.
| | - Gavin M King
- Department of Physics and Astronomy, University of Missouri, Columbia, MO, 65211, USA.
- Joint With Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
6
|
Badiee SA, Isu UH, Khodadadi E, Moradi M. The Alternating Access Mechanism in Mammalian Multidrug Resistance Transporters and Their Bacterial Homologs. MEMBRANES 2023; 13:568. [PMID: 37367772 PMCID: PMC10305233 DOI: 10.3390/membranes13060568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/28/2023]
Abstract
Multidrug resistance (MDR) proteins belonging to the ATP-Binding Cassette (ABC) transporter group play a crucial role in the export of cytotoxic drugs across cell membranes. These proteins are particularly fascinating due to their ability to confer drug resistance, which subsequently leads to the failure of therapeutic interventions and hinders successful treatments. One key mechanism by which multidrug resistance (MDR) proteins carry out their transport function is through alternating access. This mechanism involves intricate conformational changes that enable the binding and transport of substrates across cellular membranes. In this extensive review, we provide an overview of ABC transporters, including their classifications and structural similarities. We focus specifically on well-known mammalian multidrug resistance proteins such as MRP1 and Pgp (MDR1), as well as bacterial counterparts such as Sav1866 and lipid flippase MsbA. By exploring the structural and functional features of these MDR proteins, we shed light on the roles of their nucleotide-binding domains (NBDs) and transmembrane domains (TMDs) in the transport process. Notably, while the structures of NBDs in prokaryotic ABC proteins, such as Sav1866, MsbA, and mammalian Pgp, are identical, MRP1 exhibits distinct characteristics in its NBDs. Our review also emphasizes the importance of two ATP molecules for the formation of an interface between the two binding sites of NBD domains across all these transporters. ATP hydrolysis occurs following substrate transport and is vital for recycling the transporters in subsequent cycles of substrate transportation. Specifically, among the studied transporters, only NBD2 in MRP1 possesses the ability to hydrolyze ATP, while both NBDs of Pgp, Sav1866, and MsbA are capable of carrying out this reaction. Furthermore, we highlight recent advancements in the study of MDR proteins and the alternating access mechanism. We discuss the experimental and computational approaches utilized to investigate the structure and dynamics of MDR proteins, providing valuable insights into their conformational changes and substrate transport. This review not only contributes to an enhanced understanding of multidrug resistance proteins but also holds immense potential for guiding future research and facilitating the development of effective strategies to overcome multidrug resistance, thus improving therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | - Mahmoud Moradi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA; (S.A.B.); (U.H.I.); (E.K.)
| |
Collapse
|
7
|
Galazzo L, Bordignon E. Electron paramagnetic resonance spectroscopy in structural-dynamic studies of large protein complexes. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2023; 134-135:1-19. [PMID: 37321755 DOI: 10.1016/j.pnmrs.2022.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Macromolecular protein assemblies are of fundamental importance for many processes inside the cell, as they perform complex functions and constitute central hubs where reactions occur. Generally, these assemblies undergo large conformational changes and cycle through different states that ultimately are connected to specific functions further regulated by additional small ligands or proteins. Unveiling the 3D structural details of these assemblies at atomic resolution, identifying the flexible parts of the complexes, and monitoring with high temporal resolution the dynamic interplay between different protein regions under physiological conditions is key to fully understanding their properties and to fostering biomedical applications. In the last decade, we have seen remarkable advances in cryo-electron microscopy (EM) techniques, which deeply transformed our vision of structural biology, especially in the field of macromolecular assemblies. With cryo-EM, detailed 3D models of large macromolecular complexes in different conformational states became readily available at atomic resolution. Concomitantly, nuclear magnetic resonance (NMR) and electron paramagnetic resonance spectroscopy (EPR) have benefited from methodological innovations which also improved the quality of the information that can be achieved. Such enhanced sensitivity widened their applicability to macromolecular complexes in environments close to physiological conditions and opened a path towards in-cell applications. In this review we will focus on the advantages and challenges of EPR techniques with an integrative approach towards a complete understanding of macromolecular structures and functions.
Collapse
Affiliation(s)
- Laura Galazzo
- Department of Physical Chemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1211 Genève 4, Switzerland.
| | - Enrica Bordignon
- Department of Physical Chemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1211 Genève 4, Switzerland.
| |
Collapse
|
8
|
Interaction of a Homologous Series of Amphiphiles with P-glycoprotein in a Membrane Environment-Contributions of Polar and Non-Polar Interactions. Pharmaceutics 2023; 15:pharmaceutics15010174. [PMID: 36678803 PMCID: PMC9862096 DOI: 10.3390/pharmaceutics15010174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/06/2022] [Accepted: 12/26/2022] [Indexed: 01/05/2023] Open
Abstract
The transport of drugs by efflux transporters in biomembranes limits their bioavailability and is a major determinant of drug resistance development by cancer cells and pathogens. A large number of chemically dissimilar drugs are transported, and despite extensive studies, the molecular determinants of substrate specificity are still not well understood. In this work, we explore the role of polar and non-polar interactions on the interaction of a homologous series of fluorescent amphiphiles with the efflux transporter P-glycoprotein. The interaction of the amphiphiles with P-glycoprotein is evaluated through effects on ATPase activity, efficiency in inhibition of [125I]-IAAP binding, and partition to the whole native membranes containing the transporter. The results were complemented with partition to model membranes with a representative lipid composition, and details on the interactions established were obtained from MD simulations. We show that when the total concentration of amphiphile is considered, the binding parameters obtained are apparent and do not reflect the affinity for P-gp. A new formalism is proposed that includes sequestration of the amphiphiles in the lipid bilayer and the possible binding of several molecules in P-gp's substrate-binding pocket. The intrinsic binding affinity thus obtained is essentially independent of amphiphile hydrophobicity, highlighting the importance of polar interactions. An increase in the lipophilicity and amphiphilicity led to a more efficient association with the lipid bilayer, which maintains the non-polar groups of the amphiphiles in the bilayer, while the polar groups interact with P-gp's binding pocket. The presence of several amphiphiles in this orientation is proposed as a mechanism for inhibition of P-pg function.
Collapse
|
9
|
Mahanimbine isolated from Murraya koenigii inhibits P-glycoprotein involved in lung cancer chemoresistance. Bioorg Chem 2022; 129:106170. [PMID: 36174443 DOI: 10.1016/j.bioorg.2022.106170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/13/2022] [Accepted: 09/17/2022] [Indexed: 11/24/2022]
Abstract
P-glycoprotein (P-gp), a transmembrane glycoprotein, is mainly involved in lung cancer multidrug resistance. Several P-gp inhibitors have been developed to enhance the efficacy of chemotherapeutics and overcome drug resistance. However, most of them failed in the clinical stages due to undesirable side effects. Therefore, there is a requirement to develop P-gp inhibitors from natural sources. Dietary spice bioactives have been well-known for their anticancer activities. However, their role in modulating the P-gp activity has not been well investigated. Therefore, we have screened for the potential bioactives from various spice plants with P-gp modulatory activity using computational molecular docking analysis. The computational analysis revealed several key bioactives from curry leaves, specifically mahanimbine, exhibited a strong binding affinity with P-gp. Unfortunately, mahanimbine is available with few commercial sources at very high prices. Therefore, we prepared a curry leaves extract and isolated mahanimbine by a novel, yet simple, extraction method that requires less time and causes minimum environmental hazards. After purification, structure, and mass were confirmed for the isolated compound by IR spectrum and LC-MS/MS analysis, respectively. In the mechanistic study, hydrolysis of ATP and substrate efflux by P-gp are coupled. Hence, ATP binding at the ATPase-binding site is one of the fundamental steps for the P-gp efflux cycle. We found that mahanimbine demonstrated to stimulate P-gp ATPase activity. Concurrently, it enhanced the intracellular accumulation of P-gp substrates Rhodamine 123 and Hoechst stain, which indicates that mahanimbine modulates the function of P-gp. In addition, we have analyzed the complementary effect of mahanimbine with the chemotherapeutic drug gefitinib. We found that mahanimbine synergistically enhanced gefitinib efficiency by increasing its intracellular accumulation in lung cancer cells. Overall, mahanimbine has been shown to be a potent P-gp modulator. Therefore, mahanimbine can be further developed as a potential candidate to overcome chemoresistance in lung cancer.
Collapse
|
10
|
Kim S, Lee SS, Park JG, Kim JW, Ju S, Choi SH, Kim S, Kim NJ, Hong S, Kang JY, Jin MS. Structural Insights into Porphyrin Recognition by the Human ATP-Binding Cassette Transporter ABCB6. Mol Cells 2022; 45:575-587. [PMID: 35950458 PMCID: PMC9385563 DOI: 10.14348/molcells.2022.0040] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 11/27/2022] Open
Abstract
Human ABCB6 is an ATP-binding cassette transporter that regulates heme biosynthesis by translocating various porphyrins from the cytoplasm into the mitochondria. Here we report the cryo-electron microscopy (cryo-EM) structures of human ABCB6 with its substrates, coproporphyrin III (CPIII) and hemin, at 3.5 and 3.7 Å resolution, respectively. Metalfree porphyrin CPIII binds to ABCB6 within the central cavity, where its propionic acids form hydrogen bonds with the highly conserved Y550. The resulting structure has an overall fold similar to the inward-facing apo structure, but the two nucleotide-binding domains (NBDs) are slightly closer to each other. In contrast, when ABCB6 binds a metal-centered porphyrin hemin in complex with two glutathione molecules (1 hemin: 2 glutathione), the two NBDs end up much closer together, aligning them to bind and hydrolyze ATP more efficiently. In our structures, a glycine-rich and highly flexible "bulge" loop on TM helix 7 undergoes significant conformational changes associated with substrate binding. Our findings suggest that ABCB6 utilizes at least two distinct mechanisms to fine-tune substrate specificity and transport efficiency.
Collapse
Affiliation(s)
- Songwon Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Sang Soo Lee
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Jun Gyou Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Ji Won Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Seulgi Ju
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Seung Hun Choi
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Subin Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Na Jin Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Semi Hong
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Jin Young Kang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Mi Sun Jin
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| |
Collapse
|
11
|
Tordai H, Suhajda E, Sillitoe I, Nair S, Varadi M, Hegedus T. Comprehensive Collection and Prediction of ABC Transmembrane Protein Structures in the AI Era of Structural Biology. Int J Mol Sci 2022; 23:8877. [PMID: 36012140 PMCID: PMC9408558 DOI: 10.3390/ijms23168877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 02/06/2023] Open
Abstract
The number of unique transmembrane (TM) protein structures doubled in the last four years, which can be attributed to the revolution of cryo-electron microscopy. In addition, AlphaFold2 (AF2) also provided a large number of predicted structures with high quality. However, if a specific protein family is the subject of a study, collecting the structures of the family members is highly challenging in spite of existing general and protein domain-specific databases. Here, we demonstrate this and assess the applicability and usability of automatic collection and presentation of protein structures via the ABC protein superfamily. Our pipeline identifies and classifies transmembrane ABC protein structures using the PFAM search and also aims to determine their conformational states based on special geometric measures, conftors. Since the AlphaFold database contains structure predictions only for single polypeptide chains, we performed AF2-Multimer predictions for human ABC half transporters functioning as dimers. Our AF2 predictions warn of possibly ambiguous interpretation of some biochemical data regarding interaction partners and call for further experiments and experimental structure determination. We made our predicted ABC protein structures available through a web application, and we joined the 3D-Beacons Network to reach the broader scientific community through platforms such as PDBe-KB.
Collapse
Affiliation(s)
- Hedvig Tordai
- Department of Biophysics and Radiation Biology, Semmelweis University, 1085 Budapest, Hungary
| | - Erzsebet Suhajda
- Department of Biophysics and Radiation Biology, Semmelweis University, 1085 Budapest, Hungary
- Faculty of Electrical Engineering and Informatics, Budapest University of Technology and Economics, 1111 Budapest, Hungary
- Wigner Research Centre for Physics, 1121 Budapest, Hungary
| | - Ian Sillitoe
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - Sreenath Nair
- European Bioinformatics Institute, European Molecular Biology Laboratory, Hinxton CB10 1SD, UK
| | - Mihaly Varadi
- European Bioinformatics Institute, European Molecular Biology Laboratory, Hinxton CB10 1SD, UK
| | - Tamas Hegedus
- Department of Biophysics and Radiation Biology, Semmelweis University, 1085 Budapest, Hungary
- ELKH-SE Biophysical Virology Research Group, Eötvös Loránd Research Network, 1052 Budapest, Hungary
| |
Collapse
|
12
|
Ahmed Juvale II, Abdul Hamid AA, Abd Halim KB, Che Has AT. P-glycoprotein: new insights into structure, physiological function, regulation and alterations in disease. Heliyon 2022; 8:e09777. [PMID: 35789865 PMCID: PMC9249865 DOI: 10.1016/j.heliyon.2022.e09777] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/04/2022] [Accepted: 06/17/2022] [Indexed: 01/01/2023] Open
Abstract
The multidrug resistance phenomenon presents a major threat to the pharmaceutical industry. This resistance is a common occurrence in several diseases and is mediated by multidrug transporters that actively pump substances out of the cell and away from their target regions. The most well-known multidrug transporter is the P-glycoprotein transporter. The binding sites within P-glycoprotein can accommodate a variety of compounds with diverse structures. Hence, numerous drugs are P-glycoprotein substrates, with new ones being identified every day. For many years, the mechanisms of action of P-glycoprotein have been shrouded in mystery, and scientists have only recently been able to elucidate certain structural and functional aspects of this protein. Although P-glycoprotein is highly implicated in multidrug resistant diseases, this transporter also performs various physiological roles in the human body and is expressed in several tissues, including the brain, kidneys, liver, gastrointestinal tract, testis, and placenta. The expression levels of P-glycoprotein are regulated by different enzymes, inflammatory mediators and transcription factors; alterations in which can result in the generation of a disease phenotype. This review details the discovery, the recently proposed structure and the regulatory functions of P-glycoprotein, as well as the crucial role it plays in health and disease.
Collapse
Affiliation(s)
- Iman Imtiyaz Ahmed Juvale
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, Kota Bharu, 16150, Kelantan, Malaysia
| | - Azzmer Azzar Abdul Hamid
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200, Kuantan, Pahang, Malaysia
| | - Khairul Bariyyah Abd Halim
- Research Unit for Bioinformatics and Computational Biology (RUBIC), Kulliyyah of Science, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200, Kuantan, Pahang, Malaysia
| | - Ahmad Tarmizi Che Has
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, Kota Bharu, 16150, Kelantan, Malaysia
| |
Collapse
|
13
|
Clouser AF, Atkins WM. Long Range Communication between the Drug-Binding Sites and Nucleotide Binding Domains of the Efflux Transporter ABCB1. Biochemistry 2022; 61:730-740. [PMID: 35384651 PMCID: PMC9022228 DOI: 10.1021/acs.biochem.2c00056] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The ABC efflux pump
P-glycoprotein (P-gp) transports a wide variety
of drugs and is inhibited by others. Some drugs stimulate ATP hydrolysis
at the nucleotide binding domains (NBDs) and are transported, others
uncouple ATP hydrolysis and transport, and others inhibit ATP hydrolysis.
The molecular basis for the different behavior of these drugs is not
well understood despite the availability of several structural models
of P-gp complexes with ligands bound. Hypothetically, ligands differentially
alter the conformational dynamics of peptide segments that mediate
the coupling between the drug binding sites and the NBDs. Here, we
explore by hydrogen-deuterium exchange mass spectrometry the dynamic
consequences of a classic substrate and inhibitor, vinblastine and
zosuquidar, binding to mouse P-gp (mdr1a) in lipid nanodiscs. The
dynamics of P-gp in nucleotide-free, pre-hydrolysis, and post-hydrolysis
states in the presence of each drug reveal distinct mechanisms of
ATPase stimulation and implications for transport. For both drugs,
there are common regions affected in a similar manner, suggesting
that particular networks are the key to stimulating ATP hydrolysis.
However, drug binding effects diverge in the post-hydrolysis state,
particularly in the intracellular helices (ICHs 3 and 4) and neighboring
transmembrane helices. The local dynamics and conformational equilibria
in this region are critical for the coupling of drug binding and ATP
hydrolysis and are differentially modulated in the catalytic cycle.
Collapse
Affiliation(s)
- Amanda F Clouser
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195-7610, United States
| | - William M Atkins
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195-7610, United States
| |
Collapse
|
14
|
Structural insights into the catalytic cycle of a bacterial multidrug ABC efflux pump. J Mol Biol 2022; 434:167541. [DOI: 10.1016/j.jmb.2022.167541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 12/19/2022]
|
15
|
Frozen motion: how cryo-EM changes the way we look at ABC transporters. Trends Biochem Sci 2021; 47:136-148. [PMID: 34930672 DOI: 10.1016/j.tibs.2021.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 12/18/2022]
Abstract
ATP-binding cassette (ABC) transporters are widely present molecular machines that transfer substrates across the cell membrane. ABC transporters are involved in numerous physiological processes and are often clinical targets. Structural biology is fundamental to obtain the molecular details underlying ABC transporter function and suggest approaches to modulate it. Until recently, X-ray crystallography has been the only method capable of providing high-resolution structures of ABC transporters. However, modern cryo-electron microscopy (cryo-EM) opens entirely new ways of studying these dynamic membrane proteins. Cryo-EM enables analyses of targets that resist X-ray crystallography, challenging multicomponent complexes, and the exploration of conformational dynamics. These unique capacities have turned cryo-EM into the dominant technique for structural studies of membrane proteins, including ABC transporters.
Collapse
|
16
|
Structure of ABCB1/P-Glycoprotein in the Presence of the CFTR Potentiator Ivacaftor. MEMBRANES 2021; 11:membranes11120923. [PMID: 34940424 PMCID: PMC8703531 DOI: 10.3390/membranes11120923] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/16/2021] [Accepted: 11/23/2021] [Indexed: 12/26/2022]
Abstract
ABCB1/P-glycoprotein is an ATP binding cassette transporter that is involved in the clearance of xenobiotics, and it affects the disposition of many drugs in the body. Conformational flexibility of the protein within the membrane is an intrinsic part of its mechanism of action, but this has made structural studies challenging. Here, we have studied different conformations of P-glycoprotein simultaneously in the presence of ivacaftor, a known competitive inhibitor. In order to conduct this, we used high contrast cryo-electron microscopy imaging with a Volta phase plate. We associate the presence of ivacaftor with the appearance of an additional density in one of the conformational states detected. The additional density is in the central aqueous cavity and is associated with a wider separation of the two halves of the transporter in the inward-facing state. Conformational changes to the nucleotide-binding domains are also observed and may help to explain the stimulation of ATPase activity that occurs when transported substrate is bound in many ATP binding cassette transporters.
Collapse
|
17
|
Teng YN, Huang BH, Huang SY, Wu IT, Wu TS, Lee TE, Hung CC. Cinnamophilin overcomes cancer multi-drug resistance via allosterically modulating human P-glycoprotein on both drug binding sites and ATPase binding sites. Biomed Pharmacother 2021; 144:112379. [PMID: 34794239 DOI: 10.1016/j.biopha.2021.112379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 11/17/2022] Open
Abstract
Cancer multi-drug resistance (MDR) caused by P-glycoprotein (P-gp) efflux is a critical unresolved clinical concern. The present study analyzed the effect of cinnamophilin on P-gp inhibition and MDR reversion. The effect of cinnamophilin on P-gp was investigated through drug efflux assay, ATPase assay, MDR1 shift assay, and molecular docking. The cancer MDR-reversing ability and mechanisms were analyzed through cytotoxicity and combination index (CI), cell cycle, and apoptosis experiments. P-gp efflux function was significantly inhibited by cinnamophilin without influencing the drug's expression or conformation. Cinnamophilin uncompetitively inhibited the efflux of doxorubicin and rhodamine 123 and exhibited a distinct binding behavior compared with verapamil, the P-gp standard inhibitor. The half maximal inhibitory concentration of cinnamophilin for doxorubicin and rhodamine 123 efflux was 12.47 and 11.59 μM, respectively. In regard to P-gp energy consumption, verapamil-stimulated ATPase activity was further enhanced by cinnamophilin at concentrations of 0.1, 1, 10, and 20 μM. In terms of MDR reversion, cinnamophilin demonstrated synergistic cytotoxic effects when combined with docetaxel, vincristine, or paclitaxel. The CI was < 0.7 in all experimental combination treatments. The present study showed that cinnamophilin possesses P-gp-modulating effects and cancer MDR resensitizing ability.
Collapse
Affiliation(s)
- Yu-Ning Teng
- School of Medicine, College of Medicine, I-Shou University, 8 Yida Road, Kaohsiung 82445, Taiwan, ROC.
| | - Bo-Hau Huang
- Department of Pharmacy, China Medical University Hsinchu Hospital, No. 199, Section1, Xinglong Rd., Zhubei City, Hsinchu Country 302056, Taiwan, ROC.
| | - Shih-Ya Huang
- Department of Pharmacy, College of Pharmacy, China Medical University, 100, Section 1, Jingmao Rd., Beitun Dist., Taichung City 406040, Taiwan, ROC.
| | - I-Ting Wu
- Department of Pharmacy, College of Pharmacy, China Medical University, 100, Section 1, Jingmao Rd., Beitun Dist., Taichung City 406040, Taiwan, ROC.
| | - Tian-Shung Wu
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan, ROC; Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung 907, Taiwan, ROC.
| | - Tsui-Er Lee
- Office of Physical Education, Asia University, 500, Lioufeng Rd., Wufeng, Taichung 41354, Taiwan, ROC.
| | - Chin-Chuan Hung
- Department of Pharmacy, College of Pharmacy, China Medical University, 100, Section 1, Jingmao Rd., Beitun Dist., Taichung City 406040, Taiwan, ROC; Department of Pharmacy, China Medical University Hospital, 2 Yude Road, Taichung 40447, Taiwan, ROC; Department of Healthcare Administration, Asia University, 500, Lioufeng Rd., Wufeng, Taichung 41354, Taiwan, ROC.
| |
Collapse
|
18
|
Liang BJ, Lusvarghi S, Ambudkar SV, Huang HC. Use of photoimmunoconjugates to characterize ABCB1 in cancer cells. NANOPHOTONICS 2021; 10:3049-3061. [PMID: 35070633 PMCID: PMC8773461 DOI: 10.1515/nanoph-2021-0252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Accurate detection of ATP-binding cassette drug transporter ABCB1 expression is imperative for precise identification of drug-resistant tumors. Existing detection methods fail to provide the necessary molecular details regarding the functional state of the transporter. Photo-immunoconjugates are a unique class of antibody-dye conjugates for molecular diagnosis and therapeutic treatment. However, conjugating hydrophobic photosensitizers to hydrophilic antibodies is quite challenging. Here, we devise a photoimmunoconjugate that combines a clinically approved benzoporphyrin derivative (BPD) photosensitizer and the conformational-sensitive UIC2 monoclonal antibody to target functionally active human ABCB1 (i.e., ABCB1 in the inward-open conformation). We show that PEGylation of UIC2 enhances the BPD conjugation efficiency and reduces the amount of non-covalently conjugated BPD molecules by 17%. Size exclusion chromatography effectively separates the different molecular weight species found in the UIC2-BPD sample. The binding of UIC2-BPD to ABCB1 was demonstrated in lipidic nanodiscs and ABCB1-overexpressing triple negative breast cancer (TNBC) cells. UIC2-BPD was found to retain the conformation sensitivity of UIC2, as the addition of ABCB1 modulators increases the antibody reactivity in vitro. Thus, the inherent fluorescence capability of BPD can be used to label ABCB1-overexpressing TNBC cells using UIC2-BPD. Our findings provide insight into conjugation of hydrophobic photosensitizers to conformation-sensitive antibodies to target proteins expressed on the surface of cancer cells.
Collapse
Affiliation(s)
- Barry J. Liang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; and Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sabrina Lusvarghi
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Suresh V. Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Room 2120, Bldg 37, 37 Convent Drive, Bethesda, MD 20892-4256, USA
| | - Huang-Chiao Huang
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD 20742-5031, USA; and Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201-1595, USA
| |
Collapse
|
19
|
Yu Q, Ni D, Kowal J, Manolaridis I, Jackson SM, Stahlberg H, Locher KP. Structures of ABCG2 under turnover conditions reveal a key step in the drug transport mechanism. Nat Commun 2021; 12:4376. [PMID: 34282134 PMCID: PMC8289821 DOI: 10.1038/s41467-021-24651-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/24/2021] [Indexed: 11/12/2022] Open
Abstract
ABCG2 is a multidrug transporter that affects drug pharmacokinetics and contributes to multidrug resistance of cancer cells. In previously reported structures, the reaction cycle was halted by the absence of substrates or ATP, mutation of catalytic residues, or the presence of small-molecule inhibitors or inhibitory antibodies. Here we present cryo-EM structures of ABCG2 under turnover conditions containing either the endogenous substrate estrone-3-sulfate or the exogenous substrate topotecan. We find two distinct conformational states in which both the transport substrates and ATP are bound. Whereas the state turnover-1 features more widely separated NBDs and an accessible substrate cavity between the TMDs, turnover-2 features semi-closed NBDs and an almost fully occluded substrate cavity. Substrate size appears to control which turnover state is mainly populated. The conformational changes between turnover-1 and turnover-2 states reveal how ATP binding is linked to the closing of the cytoplasmic side of the TMDs. The transition from turnover-1 to turnover-2 is the likely bottleneck or rate-limiting step of the reaction cycle, where the discrimination of substrates and inhibitors occurs. ABCG2 is a transporter contributing to multidrug resistance of cancer cells. Here, structures of human ABCG2 under turnover conditions reveal distinct conformational states, provide insight into the transport cycle and suggest a mechanism of discrimination between substrates and inhibitors.
Collapse
Affiliation(s)
- Qin Yu
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Dongchun Ni
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Basel, Switzerland.,Laboratory of Biological Electron Microscopy, Institute of Physics, SB, EPFL, Lausanne, Switzerland
| | - Julia Kowal
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Ioannis Manolaridis
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Scott M Jackson
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Henning Stahlberg
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Basel, Switzerland.,Laboratory of Biological Electron Microscopy, Institute of Physics, SB, EPFL, and Dep. Fund. Microbiol., Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Kaspar P Locher
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
20
|
Kapoor K, Pant S, Tajkhorshid E. Active participation of membrane lipids in inhibition of multidrug transporter P-glycoprotein. Chem Sci 2021; 12:6293-6306. [PMID: 34084427 PMCID: PMC8115088 DOI: 10.1039/d0sc06288j] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 03/31/2021] [Indexed: 01/04/2023] Open
Abstract
P-glycoprotein (Pgp) is a major efflux pump in humans, overexpressed in a variety of cancers and associated with the development of multi-drug resistance. Allosteric modulation by various ligands (e.g., transport substrates, inhibitors, and ATP) has been biochemically shown to directly influence structural dynamics, and thereby, the function of Pgp. However, the molecular details of such effects, particularly with respect to the role and involvement of the surrounding lipids, are not well established. Here, we employ all-atom molecular dynamics (MD) simulations to study the conformational landscape of Pgp in the presence of a high-affinity, third-generation inhibitor, tariquidar, in comparison to the nucleotide-free (APO) and the ATP-bound states, in order to characterize the mechanical effects of the inhibitor that might be of relevance to its blocking mechanism of Pgp. Simulations in a multi-component lipid bilayer show a dynamic equilibrium between open(er) and more closed inward-facing (IF) conformations in the APO state, with binding of ATP shifting the equilibrium towards conformations more prone to ATP hydrolysis and subsequent events in the transport cycle. In the presence of the inhibitor bound to the drug-binding pocket within the transmembrane domain (TMD), Pgp samples more open IF conformations, and the nucleotide binding domains (NBDs) become highly dynamic. Interestingly, and reproduced in multiple independent simulations, the inhibitor is observed to facilitate recruitment of lipid molecules into the Pgp lumen through the two proposed drug-entry portals, where the lipid head groups from the cytoplasmic leaflet penetrate into and, in some cases, translocate inside the TMD, while the lipid tails remain extended into the bulk lipid environment. These "wedge" lipids likely enhance the inhibitor-induced conformational restriction of the TMD leading to the differential modulation of coupling pathways observed with the NBDs downstream. We suggest a novel inhibitory mechanism for tariquidar, and potentially for related third-generation Pgp inhibitors, where lipids are seen to enhance the inhibitory role in the catalytic cycle of membrane transporters.
Collapse
Affiliation(s)
- Karan Kapoor
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Shashank Pant
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| |
Collapse
|
21
|
Smolinski MP, Urgaonkar S, Pitzonka L, Cutler M, Lee G, Suh KH, Lau JYN. Discovery of Encequidar, First-in-Class Intestine Specific P-glycoprotein Inhibitor. J Med Chem 2021; 64:3677-3693. [PMID: 33729781 DOI: 10.1021/acs.jmedchem.0c01826] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Many chemotherapeutics, such as paclitaxel, are administered intravenously as they suffer from poor oral bioavailability, partly because of efflux mechanism of P-glycoprotein in the intestinal epithelium. To date, no drug has been approved by the U.S. Food and Drug Administration (FDA) that selectively blocks this efflux pump. We sought to identify a compound that selectively inhibits P-glycoprotein in the gastrointestinal mucosa with poor oral bioavailability, thus eliminating the issues such as bone marrow toxicity associated with systemic inhibition of P-glycoprotein. Here, we describe the discovery of highly potent, selective, and poorly orally bioavailable P-glycoprotein inhibitor 14 (encequidar). Clinically, encequidar was found to be well tolerated and minimally absorbed; and importantly, it enabled the oral delivery of paclitaxel.
Collapse
Affiliation(s)
- Michael P Smolinski
- Athenex Inc., Conventus Building, 1001 Main Street, Suite 600, Buffalo, New York 14203, United States
| | - Sameer Urgaonkar
- Athenex Inc., Conventus Building, 1001 Main Street, Suite 600, Buffalo, New York 14203, United States
| | - Laura Pitzonka
- Athenex Inc., Conventus Building, 1001 Main Street, Suite 600, Buffalo, New York 14203, United States
| | - Murray Cutler
- Athenex Inc., Conventus Building, 1001 Main Street, Suite 600, Buffalo, New York 14203, United States
| | - GwanSun Lee
- Hanmi Pharmaceutical Co. Ltd., 14, Wiryeseong-daero, Songpa-gu, Seoul, 05545, Korea
| | - Kwee Hyun Suh
- Hanmi Pharmaceutical Co. Ltd., 14, Wiryeseong-daero, Songpa-gu, Seoul, 05545, Korea
| | - Johnson Y N Lau
- Athenex Inc., Conventus Building, 1001 Main Street, Suite 600, Buffalo, New York 14203, United States
| |
Collapse
|
22
|
Moreno MJ, Teles Martins PA, Bernardino EF, Abel B, Ambudkar SV. Characterization of the Lipidome and Biophysical Properties of Membranes from High Five Insect Cells Expressing Mouse P-Glycoprotein. Biomolecules 2021; 11:biom11030426. [PMID: 33799403 PMCID: PMC8001469 DOI: 10.3390/biom11030426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/31/2022] Open
Abstract
The lipid composition of biomembranes influences the properties of the lipid bilayer and that of the proteins. In this study, the lipidome and the lipid/protein ratio of membranes from High Five™ insect cells overexpressing mouse P-glycoprotein was characterized. This provides a better understanding of the lipid environment in which P-glycoprotein is embedded, and thus of its functional and structural properties. The relative abundance of the distinct phospholipid classes and their acyl chain composition was characterized. A mass ratio of 0.57 ± 0.11 phospholipids to protein was obtained. Phosphatidylethanolamines are the most abundant phospholipids, followed by phosphatidylcholines. Membranes are also enriched in negatively charged lipids (phosphatidylserines, phosphatidylinositols and phosphatidylglycerols), and contain small amounts of sphingomyelins, ceramides and monoglycosilatedceramides. The most abundant acyl chains are monounsaturated, with significant amounts of saturated chains. The characterization of the phospholipids by HPLC-MS allowed identification of the combination of acyl chains, with palmitoyl-oleoyl being the most representative for all major phospholipid classes except for phosphatidylserines, which are mostly saturated. A mixture of POPE:POPC:POPS in the ratio 45:35:20 is proposed for the preparation of simple representative model membranes. The adequacy of the model membranes was further evaluated by characterizing their surface potential and fluidity.
Collapse
Affiliation(s)
- Maria João Moreno
- Coimbra Chemistry Center, Chemistry Department, FCTUC, University of Coimbra, 3004-535 Coimbra, Portugal; (P.A.T.M.); (E.F.B.)
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-535 Coimbra, Portugal
- Correspondence:
| | | | - Eva F. Bernardino
- Coimbra Chemistry Center, Chemistry Department, FCTUC, University of Coimbra, 3004-535 Coimbra, Portugal; (P.A.T.M.); (E.F.B.)
| | - Biebele Abel
- Laboratory of Cell Biology, CCR, National Cancer Institute, NIH, Bethesda, MD 20892, USA; (B.A.); (S.V.A.)
| | - Suresh V. Ambudkar
- Laboratory of Cell Biology, CCR, National Cancer Institute, NIH, Bethesda, MD 20892, USA; (B.A.); (S.V.A.)
| |
Collapse
|
23
|
Lusvarghi S, Durell SR, Ambudkar SV. Does the ATP-bound EQ mutant reflect the pre- or post-ATP hydrolysis state in the catalytic cycle of human P-glycoprotein (ABCB1)? FEBS Lett 2021; 595:750-762. [PMID: 33547668 DOI: 10.1002/1873-3468.14054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/14/2021] [Accepted: 01/28/2021] [Indexed: 12/15/2022]
Abstract
P-glycoprotein (P-gp, ABCB1) is an ABC transporter associated with the development of multidrug resistance to chemotherapy. During its catalytic cycle, P-gp undergoes significant conformational changes. Recently, atomic structures of some of these conformations have been resolved using cryo-electron microscopy. The ATP hydrolysis-defective mutant of the catalytic glutamate residue of the Walker B motif (E556Q/E1201Q) has been used to determine the structure of the ATP-bound inward-closed conformation of P-gp. Here, we show that this mutant does not appear to undergo the same steps as wild-type P-gp. We discuss conformational differences in the EQ mutant that may lead to a better understanding of the catalytic cycle of P-gp and propose that additional structural studies with wild-type P-gp are required.
Collapse
Affiliation(s)
- Sabrina Lusvarghi
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stewart R Durell
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
24
|
Abstract
Drug transporters are integral membrane proteins that play a critical role in drug disposition by affecting absorption, distribution, and excretion. They translocate drugs, as well as endogenous molecules and toxins, across membranes using ATP hydrolysis, or ion/concentration gradients. In general, drug transporters are expressed ubiquitously, but they function in drug disposition by being concentrated in tissues such as the intestine, the kidneys, the liver, and the brain. Based on their primary sequence and their mechanism, transporters can be divided into the ATP-binding cassette (ABC), solute-linked carrier (SLC), and the solute carrier organic anion (SLCO) superfamilies. Many X-ray crystallography and cryo-electron microscopy (cryo-EM) structures have been solved in the ABC and SLC transporter superfamilies or of their bacterial homologs. The structures have provided valuable insight into the structural basis of transport. This chapter will provide particular focus on the promiscuous drug transporters because of their effect on drug disposition and the challenges associated with them.
Collapse
Affiliation(s)
- Arthur G Roberts
- Pharmaceutical and Biomedical Sciences Department, University of Georgia, Athens, GA, USA.
| |
Collapse
|
25
|
Tangella LP, Arooj M, Deplazes E, Gray ES, Mancera RL. Identification and characterisation of putative drug binding sites in human ATP-binding cassette B5 (ABCB5) transporter. Comput Struct Biotechnol J 2020; 19:691-704. [PMID: 33510870 PMCID: PMC7817430 DOI: 10.1016/j.csbj.2020.12.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/25/2020] [Accepted: 12/26/2020] [Indexed: 12/24/2022] Open
Abstract
The human ATP-binding cassette B5 (ABCB5) transporter, a member of the ABC transporter superfamily, is linked to chemoresistance in tumour cells by drug effluxion. However, little is known about its structure and drug-binding sites. In this study, we generated an atomistic model of the full-length human ABCB5 transporter with the highest quality using the X-ray crystal structure of mouse ABCB1 (Pgp1), a close homologue of ABCB5 and a well-studied member of the ABC family. Molecular dynamics simulations were used to validate the atomistic model of ABCB5 and characterise its structural properties in model cell membranes. Molecular docking simulations of known ABCB5 substrates such as taxanes, anthracyclines, camptothecin and etoposide were then used to identify at least three putative binding sites for chemotherapeutic drugs transported by ABCB5. The location of these three binding sites is predicted to overlap with the corresponding binding sites in Pgp1. These findings will serve as the basis for future in vitro studies to validate the nature of the identified substrate-binding sites in the full-length ABCB5 transporter.
Collapse
Affiliation(s)
- Lokeswari P Tangella
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA 6027, Australia
| | - Mahreen Arooj
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Evelyne Deplazes
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute and Curtin Institute for Computation, Curtin University, GPO Box U1987, Perth, WA 6845, Australia.,School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Elin S Gray
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA 6027, Australia
| | - Ricardo L Mancera
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute and Curtin Institute for Computation, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| |
Collapse
|
26
|
Callaghan R, Gelissen IC, George AM, Hartz AMS. Mamma Mia, P-glycoprotein binds again. FEBS Lett 2020; 594:4076-4084. [PMID: 33022784 PMCID: PMC8731231 DOI: 10.1002/1873-3468.13951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/09/2020] [Accepted: 09/29/2020] [Indexed: 01/03/2023]
Abstract
The levels of amyloid peptides in the brain are regulated by a clearance pathway from neurons to the blood-brain barrier. The first step is thought to involve diffusion from the plasma membrane to the interstitium. However, amyloid peptides are hydrophobic and avidly intercalate within membranes. The ABC transporter P-glycoprotein is implicated in the clearance of amyloid peptides across the blood-brain, but its role at neurons is undetermined. We here propose that P-glycoprotein mediates 'exit' of amyloid peptides from neurons. Indeed, amyloid peptides have physicochemical similarities to substrates of P-glycoprotein, but their larger size represents a conundrum. This review probes the plausibility of a mechanism for amyloid peptide transport by P-glycoprotein exploiting evolving biochemical and structural models.
Collapse
Affiliation(s)
- Richard Callaghan
- Research School of Biology, and the Medical School, Australian National University, Canberra, ACT, Australia
| | - Ingrid C Gelissen
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Anthony M George
- School of Life Sciences, University of Technology Sydney, Broadway, NSW, Australia
| | - Anika M S Hartz
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
27
|
Methods to optimize CNS exposure of drug candidates. Bioorg Med Chem Lett 2020; 30:127503. [DOI: 10.1016/j.bmcl.2020.127503] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/12/2020] [Accepted: 08/16/2020] [Indexed: 02/07/2023]
|
28
|
Ford RC, Hellmich UA. What monomeric nucleotide binding domains can teach us about dimeric ABC proteins. FEBS Lett 2020; 594:3857-3875. [PMID: 32880928 DOI: 10.1002/1873-3468.13921] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/06/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022]
Abstract
The classic conceptualization of ATP binding cassette (ABC) transporter function is an ATP-dependent conformational change coupled to transport of a substrate across a biological membrane via the transmembrane domains (TMDs). The binding of two ATP molecules within the transporter's two nucleotide binding domains (NBDs) induces their dimerization. Despite retaining the ability to bind nucleotides, isolated NBDs frequently fail to dimerize. ABC proteins without a TMD, for example ABCE and ABCF, have NBDs tethered via elaborate linkers, further supporting that NBD dimerization does not readily occur for isolated NBDs. Intriguingly, even in full-length transporters, the NBD-dimerized, outward-facing state is not as frequently observed as might be expected. This leads to questions regarding what drives NBD interaction and the role of the TMDs or linkers. Understanding the NBD-nucleotide interaction and the subsequent NBD dimerization is thus pivotal for understanding ABC transporter activity in general. Here, we hope to provide new insights into ABC protein function by discussing the perplexing issue of (missing) NBD dimerization in isolation and in the context of full-length ABC proteins.
Collapse
Affiliation(s)
- Robert C Ford
- Faculty of Biology Medicine and Health, The University of Manchester, UK
| | - Ute A Hellmich
- Department of Chemistry, Johannes Gutenberg-University, Mainz, Germany.,Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe-University, Frankfurt, Germany
| |
Collapse
|
29
|
ATP-dependent thermostabilization of human P-glycoprotein (ABCB1) is blocked by modulators. Biochem J 2020; 476:3737-3750. [PMID: 31774117 DOI: 10.1042/bcj20190736] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/13/2019] [Accepted: 11/27/2019] [Indexed: 11/17/2022]
Abstract
P-glycoprotein (P-gp), an ATP-binding cassette transporter associated with multidrug resistance in cancer cells, is capable of effluxing a number of xenobiotics as well as anticancer drugs. The transport of molecules through the transmembrane (TM) region of P-gp involves orchestrated conformational changes between inward-open and inward-closed forms, the details of which are still being worked out. Here, we assessed how the binding of transport substrates or modulators in the TM region and the binding of ATP to the nucleotide-binding domains (NBDs) affect the thermostability of P-gp in a membrane environment. P-gp stability after exposure at high temperatures (37-80°C) was assessed by measuring ATPase activity and loss of monomeric P-gp. Our results show that P-gp is significantly thermostabilized (>22°C higher IT50) by the binding of ATP under non-hydrolyzing conditions (in the absence of Mg2+). By using an ATP-binding-deficient mutant (Y401A) and a hydrolysis-deficient mutant (E556Q/E1201Q), we show that thermostabilization of P-gp requires binding of ATP to both NBDs and their dimerization. Additionally, we found that transport substrates do not affect the thermal stability of P-gp either in the absence or presence of ATP; in contrast, inhibitors of P-gp including tariquidar and zosuquidar prevent ATP-dependent thermostabilization in a concentration-dependent manner, by stabilizing the inward-open conformation. Altogether, our data suggest that modulators, which bind in the TM regions, inhibit ATP hydrolysis and drug transport by preventing the ATP-dependent dimerization of the NBDs of P-gp.
Collapse
|
30
|
Carey Hulyer AR, Briggs DA, O'Mara ML, Kerr ID, Harmer JR, Callaghan R. Cross-linking, DEER-spectroscopy and molecular dynamics confirm the inward facing state of P-glycoprotein in a lipid membrane. J Struct Biol 2020; 211:107513. [PMID: 32339763 DOI: 10.1016/j.jsb.2020.107513] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/09/2020] [Accepted: 04/23/2020] [Indexed: 02/07/2023]
Abstract
The drug efflux pump P-glycoprotein (P-gp) displays a complex transport mechanism involving multiple drug binding sites and two centres for nucleotide hydrolysis. Elucidating the molecular mechanism of transport remains elusive and the availability of P-gp structures in distinct natural and ligand trapped conformations will accelerate our understanding. The present investigation sought to provide biochemical data to validate specific features of these structures; with particular focus on the transmembrane domain that provides the transport conduit. Hence our focus was on transmembrane helices six and twelve (TM6/TM12), which are believed to participate in drug binding, as they line the central transport conduit and provide a direct link to the catalytic centres. A series of P-gp mutants were generated with a single cysteine in both TM6 and TM12 to facilitate measurement of inter-helical distances using cross-linking and DEER strategies. Experimental results were compared to published structures per se and those refined by MD simulations. This analysis revealed that the refined inward-facing murine structure (4M1M) of P-gp provides a good representation of the proximity, topography and relative motions of TM6 and TM12 in reconstituted human P-gp.
Collapse
Affiliation(s)
- Alex R Carey Hulyer
- Research School of Biology, and the Medical School, Australian National University, Canberra, ACT 2601, Australia
| | - Deborah A Briggs
- Centre for Biochemistry and Cell Biology, School of Biomedical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Megan L O'Mara
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Ian D Kerr
- Centre for Biochemistry and Cell Biology, School of Biomedical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Jeffrey R Harmer
- The Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Richard Callaghan
- Research School of Biology, and the Medical School, Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
31
|
Robinson K, Tiriveedhi V. Perplexing Role of P-Glycoprotein in Tumor Microenvironment. Front Oncol 2020; 10:265. [PMID: 32195185 PMCID: PMC7066112 DOI: 10.3389/fonc.2020.00265] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/17/2020] [Indexed: 12/22/2022] Open
Abstract
Development of multidrug resistance (MDR) still remains a major obstacle to the long-term success of cancer therapy. P-glycoprotein (P-gp) is a well-identified membrane transporter with capability to efflux drug molecules out of the cancer cell leading to reduced efficiency of chemotherapy. Cancer cells upregulate P-gp expression as an adaptive response to evade chemotherapy mediated cell death. While several P-gp inhibitors have been discovered by in silico and pre-clinical studies, very few have successfully passed all phases of the clinical trials. Studies show that application of P-gp inhibitors in cancer therapy regimen following development of MDR achieved limited beneficial outcomes. While, the non-specific substrate binding to P-gp has made the drug-design a challenge, a bigger perplexing challenge comes from its role in tumor immunology. Expression of P-gp was noted immune cell phenotypes with apparently antagonistic functionality. Both pro-tumor MΦ2-macrophages and, anti-tumor NK-cell and Th17/CD4+T cell subsets have shown enhanced expression of P-gp. While drug based inhibition of P-gp in pro-tumor immune cell phenotypes could promote tumor elimination, however, it would not be a rational choice to exert inhibition of P-gp on anti-tumor immune cell phenotypes. This mutually exclusive paradigm of P-gp functionality requires a more comprehensive and detailed understanding of its role in tumor microenvironment with active interplay of cancer and immune cells in the tumor mileu. In this review, we focus on the current understanding of the role of P-gp in cancer cells and immune cells and finally attempt to highlight some caveats in the current understanding of its role in comprehensive tumor microenvironment along with challenges in the development of P-gp inhibitors toward anti-cancer therapy.
Collapse
Affiliation(s)
- Kianna Robinson
- Department of Biological Sciences, Tennessee State University, Nashville, TN, United States
| | - Venkataswarup Tiriveedhi
- Department of Biological Sciences, Tennessee State University, Nashville, TN, United States.,Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
32
|
The effects of anthracycline drugs on the conformational distribution of mouse P-glycoprotein explains their transport rate differences. Biochem Pharmacol 2020; 174:113813. [PMID: 31954717 DOI: 10.1016/j.bcp.2020.113813] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/13/2020] [Indexed: 01/14/2023]
Abstract
P-glycoprotein (Pgp) is an ATP-dependent efflux transporter and plays a major role in anti-cancer drug resistance by pumping a chemically diverse range of cytotoxic drugs from cancerous tumors. Despite numerous studies with the transporter, the molecular features that drive anti-cancer drug efflux are not well understood. Even subtle differences in the anti-cancer drug molecular structure can lead to dramatic differences in their transport rates. To unmask these structural differences, this study focused on two closely-related anthracycline drugs, daunorubicin (DNR), and doxorubicin (DOX), with mouse Pgp. While only differing by a single hydroxyl functional group, DNR has a 4 to 5-fold higher transport rate than DOX. They both non-competitively inhibited Pgp-mediated ATP hydrolysis below basal levels. The Km of Pgp-mediated ATP hydrolysis extracted from the kinetics curves was lower for DOX than DNR. However, the dissociation constants (KDs) for these drugs determined by fluorescence quenching were virtually identical. Acrylamide quenching of Pgp tryptophan fluorescence to probe the tertiary structure of Pgp suggested that DNR shifts Pgp to a "closed" conformation, while DOX shifts Pgp to an "intermediate" conformation. The effects of these drugs on the Pgp conformational distributions in a lipid bilayer were also examined by atomic force microscopy (AFM). Analysis of AFM images revealed that DNR and DOX cause distinct and significant shifts in the conformational distribution of Pgp. The results were combined to build a conformational distribution model for anthracycline transport by Pgp.
Collapse
|
33
|
Lusvarghi S, Robey RW, Gottesman MM, Ambudkar SV. Multidrug transporters: recent insights from cryo-electron microscopy-derived atomic structures and animal models. F1000Res 2020; 9. [PMID: 32055397 PMCID: PMC6961416 DOI: 10.12688/f1000research.21295.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/06/2020] [Indexed: 12/12/2022] Open
Abstract
P-glycoprotein, ABCG2, and MRP1 are members of the ATP-binding cassette (ABC) transporter superfamily that utilize energy from ATP-binding and hydrolysis to efflux a broad range of chemically dissimilar substrates including anticancer drugs. As a consequence, they play an important role in the pharmacokinetics and bioavailability of many drugs; in particular, their role in multidrug resistance in cancer cells as well as at the blood-brain barrier has been the subject of studies for decades. However, the atomic structures of these transporters in the presence of substrates or modulators and at different stages of the ATP-hydrolysis cycle have only recently been resolved by using cryo-electron microscopy. In addition, new animal models have shed new light on our understanding of the role of these transporters at the blood-brain barrier. This new information should open doors for the design of novel chemotherapeutics and treatments to bypass recognition by ABC drug pumps to overcome clinical drug resistance. In this review, we discuss the most recent advances in our understanding of ligand interactions and mechanistic aspects of drug transport based on atomic structures of these transporters as well as the development of new in vivo models to study their role in clinical drug resistance in cancer.
Collapse
Affiliation(s)
- Sabrina Lusvarghi
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Dr., Bethesda, MD, 20892, USA
| | - Robert W Robey
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Dr., Bethesda, MD, 20892, USA
| | - Michael M Gottesman
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Dr., Bethesda, MD, 20892, USA
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Dr., Bethesda, MD, 20892, USA
| |
Collapse
|
34
|
Wise JG, Nanayakkara AK, Aljowni M, Chen G, De Oliveira MC, Ammerman L, Olengue K, Lippert AR, Vogel PD. Optimizing Targeted Inhibitors of P-Glycoprotein Using Computational and Structure-Guided Approaches. J Med Chem 2019; 62:10645-10663. [PMID: 31702922 PMCID: PMC7031812 DOI: 10.1021/acs.jmedchem.9b00966] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Overexpression of ABC transporters like P-glycoprotein (P-gp) has been correlated with resistances in cancer chemotherapy. Intensive efforts to identify P-gp inhibitors for use in combination therapy have not led to clinically approved inhibitors to date. Here, we describe computational approaches combined with structure-based design to improve the characteristics of a P-gp inhibitor previously identified by us. This hit compound represents a novel class of P-gp inhibitors that specifically targets and inhibits P-gp ATP hydrolysis while not being transported by the pump. We describe here a new program for virtual chemical synthesis and computational assessment, ChemGen, to produce hit compound variants with improved binding characteristics. The chemical syntheses of several variants, efficacy in reversing multidrug resistance in cell culture, and biochemical assessment of the inhibition mechanism are described. The usefulness of the computational predictions of binding characteristics of the inhibitor variants is discussed and compared to more traditional structure-based approaches.
Collapse
Affiliation(s)
- John G. Wise
- Department of Biological Sciences, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
- The Center for Drug Discovery, Design and Delivery, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
- The Center for Scientific Computation, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
| | - Amila K. Nanayakkara
- Department of Biological Sciences, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
- The Center for Drug Discovery, Design and Delivery, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
- The Center for Scientific Computation, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
| | - Maha Aljowni
- The Center for Drug Discovery, Design and Delivery, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
- Department of Chemistry, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
| | - Gang Chen
- Department of Biological Sciences, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
- The Center for Drug Discovery, Design and Delivery, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
- The Center for Scientific Computation, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
| | - Maisa C. De Oliveira
- Department of Biological Sciences, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
- The Center for Drug Discovery, Design and Delivery, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
- The Center for Scientific Computation, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
| | - Lauren Ammerman
- Department of Biological Sciences, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
- The Center for Drug Discovery, Design and Delivery, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
- The Center for Scientific Computation, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
| | - Ketetha Olengue
- Department of Biological Sciences, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
- The Center for Drug Discovery, Design and Delivery, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
- The Center for Scientific Computation, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
| | - Alexander R. Lippert
- The Center for Drug Discovery, Design and Delivery, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
- Department of Chemistry, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
| | - Pia D. Vogel
- Department of Biological Sciences, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
- The Center for Drug Discovery, Design and Delivery, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
- The Center for Scientific Computation, Southern Methodist University, 6501 Airline Rd., Dallas, Texas 75205, United States
| |
Collapse
|
35
|
Kopcho N, Chang G, Komives EA. Dynamics of ABC Transporter P-glycoprotein in Three Conformational States. Sci Rep 2019; 9:15092. [PMID: 31641149 PMCID: PMC6805939 DOI: 10.1038/s41598-019-50578-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/10/2019] [Indexed: 12/25/2022] Open
Abstract
We used hydrogen-deuterium exchange mass spectrometry (HDX-MS) to obtain a comprehensive view of transporter dynamics (85.8% sequence coverage) occurring throughout the multidrug efflux transporter P-glycoprotein (P-gp) in three distinct conformational states: predominantly inward-facing apo P-gp, pre-hydrolytic (E552Q/E1197Q) P-gp bound to Mg+2-ATP, and outward-facing P-gp bound to Mg+2-ADP-VO4−3. Nucleotide affinity was measured with bio-layer interferometry (BLI), which yielded kinetics data that fit a two Mg+2-ATP binding-site model. This model has one high affinity site (3.2 ± 0.3 µM) and one low affinity site (209 ± 25 µM). Comparison of deuterium incorporation profiles revealed asymmetry between the changes undergone at the critical interfaces where nucleotide binding domains (NBDs) contact intracellular helices (ICHs). In the pre-hydrolytic state, both interfaces between ICHs and NBDs decreased exchange to similar extents relative to inward-facing P-gp. In the outward-facing state, the ICH-NBD1 interface showed decreased exchange, while the ICH-NBD2 interface showed less of an effect. The extracellular loops (ECLs) showed reduced deuterium uptake in the pre-hydrolytic state, consistent with an occluded conformation. While in the outward-facing state, increased ECL exchange corresponding to EC domain opening was observed. These findings point toward asymmetry between both NBDs, and they suggest that pre-hydrolytic P-gp occupies an occluded conformation.
Collapse
Affiliation(s)
- Noah Kopcho
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0378, USA
| | - Geoffrey Chang
- School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Dr, La Jolla, AC, 92093-0754, USA.,Department of Pharmacology, School of Medicine, University of California, San Diego, 9500 Gilman Dr, La Jolla, AC, 92093-0754, USA
| | - Elizabeth A Komives
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0378, USA.
| |
Collapse
|
36
|
Praest P, Liaci AM, Förster F, Wiertz EJ. New insights into the structure of the MHC class I peptide-loading complex and mechanisms of TAP inhibition by viral immune evasion proteins. Mol Immunol 2019; 113:103-114. [DOI: 10.1016/j.molimm.2018.03.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/16/2018] [Accepted: 03/22/2018] [Indexed: 01/08/2023]
|
37
|
Srikant S, Gaudet R. Mechanics and pharmacology of substrate selection and transport by eukaryotic ABC exporters. Nat Struct Mol Biol 2019; 26:792-801. [PMID: 31451804 DOI: 10.1038/s41594-019-0280-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 07/17/2019] [Indexed: 01/27/2023]
Abstract
Much structural information has been amassed on ATP-binding cassette (ABC) transporters, including hundreds of structures of isolated domains and an increasing array of full-length transporters. The structures capture different steps in the transport cycle and have aided in the design and interpretation of computational simulations and biophysics experiments. These data provide a maturing, although still incomplete, elucidation of the protein dynamics and mechanisms of substrate selection and transit through the transporters. We present an updated view of the classical alternating-access mechanism as it applies to eukaryotic ABC transporters, focusing on type I exporters. Our model helps frame the progress in, and remaining questions about, transporter energetics, how substrates are selected and how ATP is consumed to perform work at the molecular scale. Many human ABC transporters are associated with disease; we highlight progress in understanding their pharmacology through the lens of structural biology and describe how this knowledge suggests approaches to pharmacologically targeting these transporters.
Collapse
Affiliation(s)
- Sriram Srikant
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
38
|
Nandigama K, Lusvarghi S, Shukla S, Ambudkar SV. Large-scale purification of functional human P-glycoprotein (ABCB1). Protein Expr Purif 2019; 159:60-68. [PMID: 30851394 DOI: 10.1016/j.pep.2019.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/21/2019] [Accepted: 03/02/2019] [Indexed: 12/27/2022]
Abstract
Human P-glycoprotein (P-gp) is an ATP-binding cassette transporter that has been implicated in altering the pharmacokinetics of anticancer drugs in normal tissues and development of multidrug resistance in tumor cells via drug efflux. There is still no definitive explanation of the mechanism by which P-gp effluxes drugs. One of the challenges of large-scale purification of membrane transporters is the selection of a suitable detergent for its optimal extraction from cell membranes. In addition, further steps of purification can often lead to inactivation and aggregation, decreasing the yield of purified protein. Here we report the large-scale purification of human P-gp expressed in High-Five insect cells using recombinant baculovirus. The purification strategies we present yield homogeneous functionally active wild type P-gp and its E556Q/E1201Q mutant, which is defective in carrying out ATP hydrolysis. Three detergents (1,2-diheptanoyol-sn-glycero-3-phosphocholine, dodecyl maltoside and n-octyl-β-d-glucopyranoside) were used to solubilize and purify P-gp from insect cell membranes. P-gp purification was performed first using immobilized metal affinity chromatography, then followed by a second step of either anion exchange chromatography or size exclusion chromatography to yield protein in concentrations of 2-12 mg/mL. Size exclusion chromatography was the preferred method, as it allows separation of monomeric transporters from aggregates. We show that the purified protein, when reconstituted in proteoliposomes and nanodiscs, exhibits both basal and substrate or inhibitor-modulated ATPase activity. This report thus provides a convenient and robust method to obtain large amounts of active homogeneously purified human P-gp that is suitable for biochemical, biophysical and structural characterization.
Collapse
Affiliation(s)
- Krishnamachary Nandigama
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sabrina Lusvarghi
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Suneet Shukla
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
39
|
Hydrogen-deuterium exchange mass spectrometry of membrane proteins in lipid nanodiscs. Chem Phys Lipids 2019; 220:14-22. [PMID: 30802434 DOI: 10.1016/j.chemphyslip.2019.02.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 12/31/2022]
Abstract
Hydrogen deuterium exchange mass spectrometry (H/DX MS) provides a quantitative comparison of the relative rates of exchange of amide protons for solvent deuterons. In turn, the rate of amide exchange depends on a complex combination of the stability of local secondary structure, solvent accessibility, and dynamics. H/DX MS has, therefore, been widely used to probe structure and function of soluble proteins, but its application to membrane proteins was limited previously to detergent solubilized samples. The large excess of lipids from model membranes, or from membrane fractions derived from in vivo samples, presents challenges with mass spectrometry. The lipid nanodisc platform, consisting of apolipoprotein A-derived membrane scaffold proteins, provides a native like membrane environment in which to capture analyte membrane proteins with a well defined, and low, ratio of lipid to protein. Membrane proteins in lipid nanodiscs are amenable to H/DX MS, and this is expected to lead to a rapid increase in the number of membrane proteins subjected to this analysis. Here we review the few literature examples of the application of H/DX MS to membrane proteins in nanodiscs. The incremental improvements in the experimental workflow of the H/DX MS are described and potential applications of this approach to study membrane proteins are described.
Collapse
|
40
|
Zhang YT, Yu YQ, Yan XX, Wang WJ, Tian XT, Wang L, Zhu WL, Gong LK, Pan GY. Different structures of berberine and five other protoberberine alkaloids that affect P-glycoprotein-mediated efflux capacity. Acta Pharmacol Sin 2019; 40:133-142. [PMID: 30442987 DOI: 10.1038/s41401-018-0183-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/10/2018] [Indexed: 11/09/2022] Open
Abstract
Berberine, berberrubine, thalifendine, demethyleneberberine, jatrorrhizine, and columbamine are six natural protoberberine alkaloid (PA) compounds that display extensive pharmacological properties and share the same protoberberine molecular skeleton with only slight substitution differences. The oral delivery of most PAs is hindered by their poor bioavailability, which is largely caused by P-glycoprotein (P-gp)-mediated drug efflux. Meanwhile, P-gp undergoes large-scale conformational changes (from an inward-facing to an outward-facing state) when transporting substrates, and these changes might strongly affect the P-gp-binding specificity. To confirm whether these six compounds are substrates of P-gp, to investigate the differences in efflux capacity caused by their trivial structural differences and to reveal the key to increasing their binding affinity to P-gp, we conducted a series of in vivo, in vitro, and in silico assays. Here, we first confirmed that all six compounds were substrates of P-gp by comparing the drug concentrations in wild-type and P-gp-knockout mice in vivo. The efflux capacity (net efflux) ranked as berberrubine > berberine > columbamine ~ jatrorrhizine > thalifendine > demethyleneberberine based on in vitro transport studies in Caco-2 monolayers. Using molecular dynamics simulation and molecular docking techniques, we determined the transport pathways of the six compounds and their binding affinities to P-gp. The results suggested that at the early binding stage, different hydrophobic and electrostatic interactions collectively differentiate the binding affinities of the compounds to P-gp, whereas electrostatic interactions are the main determinant at the late release stage. In addition to hydrophobic interactions, hydrogen bonds play an important role in discriminating the binding affinities.
Collapse
|
41
|
Thonghin N, Collins RF, Barbieri A, Shafi T, Siebert A, Ford RC. Novel features in the structure of P-glycoprotein (ABCB1) in the post-hydrolytic state as determined at 7.9 Å resolution. BMC STRUCTURAL BIOLOGY 2018; 18:17. [PMID: 30545335 PMCID: PMC6293506 DOI: 10.1186/s12900-018-0098-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 12/04/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND P-glycoprotein (ABCB1) is an ATP-binding cassette transporter that plays an important role in the clearance of drugs and xenobiotics and is associated with multi-drug resistance in cancer. Although several P-glycoprotein structures are available, these are either at low resolution, or represent mutated and/or quiescent states of the protein. RESULTS In the post-hydrolytic state the structure of the wild-type protein has been resolved at about 8 Å resolution. The cytosolic nucleotide-binding domains (NBDs) are separated but ADP remains bound, especially at the first NBD. Gaps in the transmembrane domains (TMDs) that connect to an inner hydrophilic cavity are filled by density emerging from the annular detergent micelle. The NBD-TMD linker is partly resolved, being located between the NBDs and close to the Signature regions involved in cooperative NBD dimerization. This, and the gap-filling detergent suggest steric impediment to NBD dimerization in the post-hydrolytic state. Two central regions of density lie in two predicted drug-binding sites, implying that the protein may adventitiously bind hydrophobic substances even in the post-hydrolytic state. The previously unresolved N-terminal extension was observed, and the data suggests these 30 residues interact with the headgroup region of the lipid bilayer. CONCLUSION The structural data imply that (i) a low basal ATPase activity is ensured by steric blockers of NBD dimerization and (ii) allocrite access to the central cavity may be structurally linked to NBD dimerization, giving insights into the mechanism of drug-stimulation of P-glycoprotein activity.
Collapse
Affiliation(s)
- Nopnithi Thonghin
- School of Biology, Faculty of Biology Medicine and Health, Michael Smith Building, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Richard F Collins
- School of Biology, Faculty of Biology Medicine and Health, Michael Smith Building, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Alessandro Barbieri
- School of Biology, Faculty of Biology Medicine and Health, Michael Smith Building, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Talha Shafi
- School of Biology, Faculty of Biology Medicine and Health, Michael Smith Building, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Alistair Siebert
- eBIC, Diamond Light Source Ltd, Diamond House, Harwell Science & Innovation Campus, Oxfordshire, Didcot, OX11 0DE, UK
| | - Robert C Ford
- School of Biology, Faculty of Biology Medicine and Health, Michael Smith Building, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| |
Collapse
|
42
|
Fay JF, Aleksandrov LA, Jensen TJ, Cui LL, Kousouros JN, He L, Aleksandrov AA, Gingerich DS, Riordan JR, Chen JZ. Cryo-EM Visualization of an Active High Open Probability CFTR Anion Channel. Biochemistry 2018; 57:6234-6246. [PMID: 30281975 DOI: 10.1021/acs.biochem.8b00763] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) anion channel, crucial to epithelial salt and water homeostasis, and defective due to mutations in its gene in patients with cystic fibrosis, is a unique member of the large family of ATP-binding cassette transport proteins. Regulation of CFTR channel activity is stringently controlled by phosphorylation and nucleotide binding. Structural changes that underlie transitions between active and inactive functional states are not yet fully understood. Indeed the first 3D structures of dephosphorylated, ATP-free, and phosphorylated ATP-bound states were only recently reported. Here we have determined the structure of inactive and active states of a thermally stabilized CFTR, the latter with a very high channel open probability, confirmed after reconstitution into proteoliposomes. These structures, obtained at nominal resolution of 4.3 and 6.6 Å, reveal a unique repositioning of the transmembrane helices and regulatory domain density that provide insights into the structural transition between active and inactive functional states of CFTR. Moreover, we observe an extracellular vestibule that may provide anion access to the pore due to the conformation of transmembrane helices 7 and 8 that differs from the previous orthologue CFTR structures. In conclusion, our work contributes detailed structural information on an active, open state of the CFTR anion channel.
Collapse
Affiliation(s)
- Jonathan F Fay
- University of North Carolina , Chapel Hill , North Carolina 27515 , United States
| | - Luba A Aleksandrov
- University of North Carolina , Chapel Hill , North Carolina 27515 , United States
| | - Timothy J Jensen
- University of North Carolina , Chapel Hill , North Carolina 27515 , United States
| | - Liying L Cui
- University of North Carolina , Chapel Hill , North Carolina 27515 , United States
| | - Joseph N Kousouros
- University of North Carolina , Chapel Hill , North Carolina 27515 , United States
| | - Lihua He
- University of North Carolina , Chapel Hill , North Carolina 27515 , United States
| | - Andrei A Aleksandrov
- University of North Carolina , Chapel Hill , North Carolina 27515 , United States
| | - Drew S Gingerich
- Oregon Health & Science University , Portland , Oregon 97239 , United States
| | - John R Riordan
- University of North Carolina , Chapel Hill , North Carolina 27515 , United States
| | - James Z Chen
- Oregon Health & Science University , Portland , Oregon 97239 , United States
| |
Collapse
|
43
|
Sajid A, Lusvarghi S, Chufan EE, Ambudkar SV. Evidence for the critical role of transmembrane helices 1 and 7 in substrate transport by human P-glycoprotein (ABCB1). PLoS One 2018; 13:e0204693. [PMID: 30265721 PMCID: PMC6161881 DOI: 10.1371/journal.pone.0204693] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/12/2018] [Indexed: 12/15/2022] Open
Abstract
P-glycoprotein (P-gp) is an ABC transporter that exports many amphipathic or hydrophobic compounds, including chemically and functionally dissimilar anticancer drugs, from cells. To understand the role of transmembrane helices (TMH) 1 and 7 in drug-binding and transport, we selected six residues from both TMH1 (V53, I59, I60, L65, M68 and F72) and TMH7 (V713, I719, I720, Q725, F728 and F732); and substituted them with alanine by gene synthesis to generate a variant termed "TMH1,7 mutant P-gp". The expression and function of TMH1,7 mutant P-gp with twelve mutations was characterized using the BacMam baculovirus-HeLa cell expression system. The expression and conformation of TMH1,7 mutant P-gp was not altered by the introduction of the twelve mutations, as confirmed by using the human P-gp-specific antibodies UIC2, MRK16 and 4E3. We tested 25 fluorescently-labeled substrates and found that only three substrates, NBD-cyclosporine A, Rhod-2-AM and X-Rhod-1-AM were transported by the TMH1,7 mutant. The basal ATPase activity of TMH1,7 mutant P-gp was lower (40-50%) compared to wild-type (WT) P-gp, despite similar level of expression. Although most of the substrates modulate ATPase activity of P-gp, the activity of TMH1,7 mutant transporter was not significantly modulated by any of the tested substrates. Docking of selected substrates in homology models showed comparable docking scores for the TMH1,7 mutant and WT P-gp, although the binding conformations were different. Both the ATPase assay and in silico docking analyses suggest that the interactions with residues in the drug-binding pocket are altered as a consequence of the mutations. We demonstrate that it is possible to generate a variant of P-gp with a loss of broad substrate specificity and propose that TMH1 and TMH7 play a critical role in the drug efflux function of this multidrug transporter.
Collapse
Affiliation(s)
- Andaleeb Sajid
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sabrina Lusvarghi
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Eduardo E. Chufan
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Suresh V. Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
44
|
Sigdel KP, Wilt LA, Marsh BP, Roberts AG, King GM. The conformation and dynamics of P-glycoprotein in a lipid bilayer investigated by atomic force microscopy. Biochem Pharmacol 2018; 156:302-311. [PMID: 30121251 DOI: 10.1016/j.bcp.2018.08.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/14/2018] [Indexed: 12/17/2022]
Abstract
The membrane-bound P-glycoprotein (Pgp) transporter plays a major role in human disease and drug disposition because of its ability to efflux a chemically diverse range of drugs through ATP hydrolysis and ligand-induced conformational changes. Deciphering these structural changes is key to understanding the molecular basis of transport and to developing molecules that can modulate efflux. Here, atomic force microscopy (AFM) is used to directly image individual Pgp transporter molecules in a lipid bilayer under physiological pH and ambient temperature. Analysis of the Pgp AFM images revealed "small" and "large" protrusions from the lipid bilayer with significant differences in protrusion height and volume. The geometry of these "small" and "large" protrusions correlated to the predicted extracellular (EC) and cytosolic (C) domains of the Pgp X-ray crystal structure, respectively. To assign these protrusions, simulated AFM images were produced from the Pgp X-ray crystal structures with membrane planes defined by three computational approaches, and a simulated 80 Å AFM cantilever tip. The theoretical AFM images of the EC and C domains had similar heights and volumes to the "small" and "large" protrusions in the experimental AFM images, respectively. The assignment of the protrusions in the AFM images to the EC and C domains was confirmed by changes in protrusion volume by Pgp-specific antibodies. The Pgp domains showed a considerable degree of conformational dynamics in time resolved AFM images. With this information, a model of Pgp conformational dynamics in a lipid bilayer is proposed within the context of the known Pgp X-ray crystal structures.
Collapse
Affiliation(s)
- K P Sigdel
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, United States
| | - L A Wilt
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, United States
| | - B P Marsh
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, United States
| | - A G Roberts
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, United States.
| | - G M King
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, United States; Joint with Department of Biochemistry, University of Missouri, Columbia, MO 65211, United States.
| |
Collapse
|
45
|
Scapin G, Potter CS, Carragher B. Cryo-EM for Small Molecules Discovery, Design, Understanding, and Application. Cell Chem Biol 2018; 25:1318-1325. [PMID: 30100349 DOI: 10.1016/j.chembiol.2018.07.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/11/2018] [Accepted: 07/05/2018] [Indexed: 12/13/2022]
Abstract
We present a perspective of our view of the application of cryoelectron microscopy (cryo-EM) to structure-based drug design (SBDD). We discuss the basic needs and requirements for SBDD, the current state of cryo-EM, and the challenges that need to be overcome for this technique to reach its full potential in facilitating the process of drug discovery.
Collapse
Affiliation(s)
- Giovanna Scapin
- Department of Biochemical Engineering & Structure, Merck & Co., Inc., 2000 Galloping Hill Rd., Kenilworth, NJ 07033, USA
| | - Clinton S Potter
- Simons Electron Microscopy Center, National Resource for Automated Molecular Microscopy, New York Structural Biology Center, 89 Convent Avenue, New York NY 10027, USA; NanoImaging Services, 4940 Carroll Canyon Road, Suite 115, San Diego, CA 92121, USA
| | - Bridget Carragher
- Simons Electron Microscopy Center, National Resource for Automated Molecular Microscopy, New York Structural Biology Center, 89 Convent Avenue, New York NY 10027, USA; NanoImaging Services, 4940 Carroll Canyon Road, Suite 115, San Diego, CA 92121, USA.
| |
Collapse
|
46
|
Thonghin N, Collins RF, Barbieri A, Shafi T, Siebert A, Ford. RC. Novel features in the structure of P-glycoprotein (ABCB1) in the post-hydrolytic state as determined at 7.9Å resolution.. [DOI: 10.1101/308114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
AbstractP-glycoprotein (ABCB1) is a ATP-binding cassette transporter that plays an important role in the removal of drugs and xenobiotic compounds from the cell. It is also associated with multi-drug resistance in cancer. Here we report novel features of the cryo-EM-derived structure of P-glycoprotein in the post-hydrolytic state: The cytosolic nucleotide-binding domains (NBDs) are separated despite ADP remaining bound to the NBDs. Gaps in the TMDs that connect to the inner hydrophilic cavity are back-filled by detergent head-groups from the annular detergent micelle and are close to two regions predicted to delineate two pseudo-symmetry-related drug-binding sites. In this conformation, the (newly-resolved) N-terminal extension, NBD-TMD linker region and gap-filling detergents all appear to impede NBD dimerisation. We propose a model for the mechanism of action of the exporter where ATP will be bound to the protein for most of the time, consistent with the high physiological ATP concentrationsin vivo.
Collapse
|
47
|
Li MJ, Guttman M, Atkins WM. Conformational dynamics of P-glycoprotein in lipid nanodiscs and detergent micelles reveal complex motions on a wide time scale. J Biol Chem 2018; 293:6297-6307. [PMID: 29511086 DOI: 10.1074/jbc.ra118.002190] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/26/2018] [Indexed: 11/06/2022] Open
Abstract
P-glycoprotein (P-gp) is a highly substrate-promiscuous efflux transporter that plays a critical role in drug disposition. P-gp utilizes ATP hydrolysis by nucleotide-binding domains (NBDs) to drive transitions between inward-facing (IF) conformations that bind drugs and outward-facing (OF) conformations that release them to the extracellular solution. However, the details of the protein dynamics within either macroscopic IF or OF conformation remain uncharacterized, and the functional role of local dynamics has not been determined. In this work we measured the local dynamics of the IF state of P-gp in lipid nanodiscs and in detergent solution by hydrogen-deuterium (H/D) exchange MS. We observed "EX1 exchange kinetics," or bimodal kinetics, for several peptides distributed in both NBDs, particularly for P-gp in the lipid nanodiscs. Remarkably, the EX1 kinetics occurred on several time scales, ranging from seconds to hours, suggesting highly complex, and correlated, motions. The results indicate at least three distinct conformational states in the ligand-free P-gp and suggest a rough conformational landscape. Addition of excess ATP and vanadate, to favor the OF conformations, caused a generalized, but modest, decrease in H/D exchange throughout the NBDs and slowed the EX1 kinetic transitions of several peptides. The functional implications of the results are consistent with the possibility that conformational selection provides a source of substrate promiscuity.
Collapse
Affiliation(s)
- Mavis Jiarong Li
- From the Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195-7610
| | - Miklos Guttman
- From the Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195-7610
| | - William M Atkins
- From the Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195-7610
| |
Collapse
|
48
|
Gibbs ME, Wilt LA, Ledwitch KV, Roberts AG. A Conformationally Gated Model of Methadone and Loperamide Transport by P-Glycoprotein. J Pharm Sci 2018; 107:1937-1947. [PMID: 29499278 DOI: 10.1016/j.xphs.2018.02.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/18/2018] [Accepted: 02/21/2018] [Indexed: 01/16/2023]
Abstract
P-glycoprotein (Pgp) is a multidrug resistance transporter that limits the penetration of a wide range of neurotherapeutics into the brain including opioids. The diphenylpropylamine opioids methadone and loperamide are structurally similar, but loperamide has about a 4-fold higher Pgp-mediated transport rate. In addition to these differences, they showed significant differences in their effects on Pgp-mediated adenosine triphosphate (ATP) hydrolysis. The activation of Pgp-mediated ATP hydrolysis by methadone was monophasic, whereas loperamide activation of ATP hydrolysis was biphasic implying methadone has a single binding site and loperamide has 2 binding sites on Pgp. Quenching of tryptophan fluorescence with these drugs and digoxin showed competition between the opioids and that loperamide does not compete for the digoxin-binding site. Acrylamide quenching of tryptophan fluorescence to probe Pgp conformational changes revealed that methadone- and loperamide-induced conformational changes were distinct. These results were used to develop a model for Pgp-mediated transport of methadone and loperamide where opioid binding and conformational changes are used to explain the differences in the opioid transport rates between methadone and loperamide.
Collapse
Affiliation(s)
- Morgan E Gibbs
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia 30602
| | - Laura A Wilt
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia 30602
| | - Kaitlyn V Ledwitch
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235
| | - Arthur G Roberts
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia 30602.
| |
Collapse
|
49
|
Abstract
The ATP binding cassette transporter ABCB1 (also termed P-glycoprotein) is a physiologically essential multidrug efflux transporter of key relevance to biomedicine. Here, we report the conformational trapping and structural analysis of ABCB1 in complex with the antigen-binding fragment of UIC2, a human ABCB1-specific inhibitory antibody, and zosuquidar, a third-generation ABCB1 inhibitor. The structures outline key features underlining specific ABCB1 inhibition by antibodies and small molecules, including a dual mode of inhibitor binding in a fully occluded ABCB1 cavity. Finally, our analysis sheds light on the conformational transitions undergone by the transporter to reach the inhibitor-bound state. The multidrug transporter ABCB1 (P-glycoprotein) is an ATP-binding cassette transporter that has a key role in protecting tissues from toxic insult and contributes to multidrug extrusion from cancer cells. Here, we report the near-atomic resolution cryo-EM structure of nucleotide-free ABCB1 trapped by an engineered disulfide cross-link between the nucleotide-binding domains (NBDs) and bound to the antigen-binding fragment of the human-specific inhibitory antibody UIC2 and to the third-generation ABCB1 inhibitor zosuquidar. Our structure reveals the transporter in an occluded conformation with a central, enclosed, inhibitor-binding pocket lined by residues from all transmembrane (TM) helices of ABCB1. The pocket spans almost the entire width of the lipid membrane and is occupied exclusively by two closely interacting zosuquidar molecules. The external, conformational epitope facilitating UIC2 binding is also visualized, providing a basis for its inhibition of substrate efflux. Additional cryo-EM structures suggest concerted movement of TM helices from both halves of the transporters associated with closing the NBD gap, as well as zosuquidar binding. Our results define distinct recognition interfaces of ABCB1 inhibitory agents, which may be exploited for therapeutic purposes.
Collapse
|
50
|
Kim Y, Chen J. Molecular structure of human P-glycoprotein in the ATP-bound, outward-facing conformation. Science 2018; 359:915-919. [PMID: 29371429 DOI: 10.1126/science.aar7389] [Citation(s) in RCA: 319] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 01/16/2018] [Indexed: 12/28/2022]
Abstract
The multidrug transporter permeability (P)-glycoprotein is an adenosine triphosphate (ATP)-binding cassette exporter responsible for clinical resistance to chemotherapy. P-glycoprotein extrudes toxic molecules and drugs from cells through ATP-powered conformational changes. Despite decades of effort, only the structures of the inward-facing conformation of P-glycoprotein are available. Here we present the structure of human P-glycoprotein in the outward-facing conformation, determined by cryo-electron microscopy at 3.4-angstrom resolution. The two nucleotide-binding domains form a closed dimer occluding two ATP molecules. The drug-binding cavity observed in the inward-facing structures is reorientated toward the extracellular space and compressed to preclude substrate binding. This observation indicates that ATP binding, not hydrolysis, promotes substrate release. The structure evokes a model in which the dynamic nature of P-glycoprotein enables translocation of a large variety of substrates.
Collapse
Affiliation(s)
- Youngjin Kim
- Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Jue Chen
- Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|