1
|
Hayes JD, Dayalan Naidu S, Dinkova-Kostova AT. Regulating Nrf2 activity: ubiquitin ligases and signaling molecules in redox homeostasis. Trends Biochem Sci 2025:S0968-0004(24)00282-2. [PMID: 39875264 DOI: 10.1016/j.tibs.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/29/2024] [Accepted: 12/13/2024] [Indexed: 01/30/2025]
Abstract
Transcription factor NF-E2 p45-related factor 2 (Nrf2) orchestrates defenses against oxidants and thiol-reactive electrophiles. It is controlled at the protein stability level by several E3 ubiquitin ligases (CRL3Keap1, CRL4DCAF11, SCFβ-TrCP, and Hrd1). CRL3Keap1 is of the greatest importance because it constitutively targets Nrf2 for proteasomal degradation under homeostatic conditions but is prevented from doing so by oxidative stressors. Repression of Nrf2 by CRL3Keap1 is attenuated by SQSTM1/p62, and this is reinforced by phosphorylation of SQSTM1/p62. Repression by SCFβ-TrCP requires phosphorylation of Nrf2 by GSK3, the activity of which is inhibited by PKB/Akt and other kinases. We discuss how Nrf2 activity is controlled by the ubiquitin ligases under different circumstances. We also describe endogenous signaling molecules that inactivate CRL3Keap1 to alleviate stress and restore homeostasis.
Collapse
Affiliation(s)
- John D Hayes
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK.
| | - Sharadha Dayalan Naidu
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK.
| |
Collapse
|
2
|
Fatty acids act on vascular endothelial cells and influence the development of cardiovascular disease. Prostaglandins Other Lipid Mediat 2023; 165:106704. [PMID: 36621562 DOI: 10.1016/j.prostaglandins.2023.106704] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/14/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Endothelial cells (ECs) maintain the health of blood vessels and prevent the development of cardiovascular disease (CVD). Free saturated fatty acids (FAs) induce EC damage and increase the risk of CVD by promoting arteriosclerosis. Conversely, polyunsaturated FAs (PUFAs), such as docosahexaenoic acid, are thought to suppress EC damage induced during the early stages of CVD. This review describes the effects of multiple dietary FAs on EC disorders involved in the development of CVD. The roles of FAs in atherosclerosis and CVD were analyzed by evaluating articles published in PubMed, Science Direct, and Web of Science. Saturated FAs were found to induce EC damage by reducing the production and action of EC-derived nitric oxide. Oxidative stress, inflammation, and the renin-angiotensin system were found to be involved in EC disorder. Furthermore, n-3 PUFAs were found to reduce EC dysfunction and prevent the development of EC disorder. These results indicate that FAs may affect EC failure induced during the early stages of CVD and reduce the risk of developing the disease.
Collapse
|
3
|
Ihunnah CA, Ghosh S, Hahn S, Straub AC, Ofori-Acquah SF. Nrf2 Activation With CDDO-Methyl Promotes Beneficial and Deleterious Clinical Effects in Transgenic Mice With Sickle Cell Anemia. Front Pharmacol 2022; 13:880834. [PMID: 35620281 PMCID: PMC9127300 DOI: 10.3389/fphar.2022.880834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/15/2022] [Indexed: 11/13/2022] Open
Abstract
Activation of Nrf2, a major transcription factor that drives the antioxidant defense system, is an emerging therapeutic strategy in Sickle Cell Disease (SCD). In this study, transgenic Sickle Cell Anemia mice (SS mice) treated with CDDO-Methyl (CDDO-Me), a potent Nrf2 activator, showed reduced progression of hemolytic anemia with aging, but surprisingly also showed reduced endothelial function. Pulmonary vessels isolated from SS mice treated for 4 months with CDDO-Me displayed a diminished response to nitric oxide (NO)-induced vasodilation compared to littermates given vehicle. It is unclear what molecular mechanism underly the vascular impairment, however, our in vitro assays revealed that CDDO-Me induced the expression of the endothelin receptor (ETA and ETB) in vascular smooth muscle cells. Endothelin signaling is associated with increased vascular tone and vasoconstriction. This study underscores the importance of pre-clinical benefit-risk investigations of Nrf2 activating compounds which may be used to treat patients with SCD.
Collapse
Affiliation(s)
- Chibueze A. Ihunnah
- Department of Medicine, Center for Translational and International Hematology, Vascular Medicine Institute, School of Medicine University of Pittsburgh, Pittsburgh, PA, United States
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Samit Ghosh
- Department of Medicine, Center for Translational and International Hematology, Vascular Medicine Institute, School of Medicine University of Pittsburgh, Pittsburgh, PA, United States
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States
- Division of Hematology/Oncology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Scott Hahn
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Adam C. Straub
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Solomon F. Ofori-Acquah
- Department of Medicine, Center for Translational and International Hematology, Vascular Medicine Institute, School of Medicine University of Pittsburgh, Pittsburgh, PA, United States
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States
- Division of Hematology/Oncology, University of Pittsburgh, Pittsburgh, PA, United States
- School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
4
|
Kumar H, Kumar RM, Bhattacharjee D, Somanna P, Jain V. Role of Nrf2 Signaling Cascade in Breast Cancer: Strategies and Treatment. Front Pharmacol 2022; 13:720076. [PMID: 35571115 PMCID: PMC9098811 DOI: 10.3389/fphar.2022.720076] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 03/31/2022] [Indexed: 12/30/2022] Open
Abstract
Breast cancer is the second leading cancer among all types of cancers. It accounts for 12% of the total cases of cancers. The complex and heterogeneous nature of breast cancer makes it difficult to treat in advanced stages. The expression of various enzymes and proteins is regulated by several molecular pathways. Oxidative stress plays a vital role in cellular events that are generally regulated by nuclear factor erythroid 2-related factor 2 (Nrf2). The exact mechanism of Nrf2 behind cytoprotective and antioxidative properties is still under investigation. In healthy cells, Nrf2 expression is lower, which maintains antioxidative stress; however, cancerous cells overexpress Nrf2, which is associated with various phenomena, such as the development of drug resistance, angiogenesis, development of cancer stem cells, and metastasis. Aberrant Nrf2 expression diminishes the toxicity and potency of therapeutic anticancer drugs and provides cytoprotection to cancerous cells. In this article, we have discussed the attributes associated with Nrf2 in the development of drug resistance, angiogenesis, cancer stem cell generation, and metastasis in the specific context of breast cancer. We also discussed the therapeutic strategies employed against breast cancer exploiting Nrf2 signaling cascades.
Collapse
Affiliation(s)
| | | | | | | | - Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, India
| |
Collapse
|
5
|
Kotlyarov S, Kotlyarova A. Involvement of Fatty Acids and Their Metabolites in the Development of Inflammation in Atherosclerosis. Int J Mol Sci 2022; 23:ijms23031308. [PMID: 35163232 PMCID: PMC8835729 DOI: 10.3390/ijms23031308] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
Despite all the advances of modern medicine, atherosclerosis continues to be one of the most important medical and social problems. Atherosclerosis is the cause of several cardiovascular diseases, which are associated with high rates of disability and mortality. The development of atherosclerosis is associated with the accumulation of lipids in the arterial intima and the disruption of mechanisms that maintain the balance between the development and resolution of inflammation. Fatty acids are involved in many mechanisms of inflammation development and maintenance. Endothelial cells demonstrate multiple cross-linkages between lipid metabolism and innate immunity. In addition, these processes are linked to hemodynamics and the function of other cells in the vascular wall, highlighting the central role of the endothelium in vascular biology.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
- Correspondence:
| | - Anna Kotlyarova
- Department of Pharmacology and Pharmacy, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
6
|
Zhou C, Su M, Sun P, Tang X, Yin KJ. Nitro-oleic acid-mediated blood-brain barrier protection reduces ischemic brain injury. Exp Neurol 2021; 346:113861. [PMID: 34499902 DOI: 10.1016/j.expneurol.2021.113861] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/28/2021] [Accepted: 09/05/2021] [Indexed: 10/20/2022]
Abstract
Nitro-oleic acid (OA-NO2), a nitroalkene formed in nitric oxide-dependent oxidative reactions, has been found in human plasma and is thought to regulate pathophysiological functions. Recently, accumulating evidence suggests that OA-NO2 may function as an anti-inflammatory mediator, and ameliorate the progression of diabetes and cardiovascular diseases. However, the role of OA-NO2 in ischemic brain injury remains unexplored. In this study, C57BL/6 mice were subjected to 1 h transient middle cerebral artery occlusion (MCAO) and followed by 1- 7 days of reperfusion. These mice were treated with vehicle, OA, or OA-NO2 (10 mg/kg) via tail vein injection at 2 h after the onset of MCAO. Our results show that intravenous administration of OA-NO2 led to reduced BBB leakage in ischemic brains, reduced brain infarct, and improved sensorimotor functions in response to ischemic insults when compared to OA and vehicle controls. Also, OA-NO2 significantly reduced BBB leakage-triggered infiltration of neutrophils and macrophages in the ischemic brains. Moreover, OA-NO2 treatment reduced the M1-type microglia and increased M2-type microglia. Mechanistically, OA-NO2 alleviated the decline of mRNA and protein level of major endothelial TJs including ZO-1 in stroke mice. Treatment of OA-NO2 also significantly inhibited stroke-induced inflammatory mediators, iNOS, E-selectin, P-selectin, and ICAM1, in mouse brains. In conclusion, OA-NO2 preserves BBB integrity and confers neurovascular protection in ischemic brain damage. OA-NO2-mediated brain protection may help us to develop a novel therapeutic strategy for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Chao Zhou
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15261, USA; Pittsburgh Institute of Brain Disorders & Recovery, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Moxi Su
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15261, USA; Pittsburgh Institute of Brain Disorders & Recovery, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Ping Sun
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15261, USA; Pittsburgh Institute of Brain Disorders & Recovery, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Xuelian Tang
- Pittsburgh Institute of Brain Disorders & Recovery, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Ke-Jie Yin
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15261, USA; Pittsburgh Institute of Brain Disorders & Recovery, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
7
|
Wilkinson ML, Gow AJ. Effects of fatty acid nitroalkanes on signal transduction pathways and airway macrophage activation. Innate Immun 2021; 27:353-364. [PMID: 34375151 PMCID: PMC8419298 DOI: 10.1177/17534259211015330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Fatty acid nitroalkenes are reversibly-reactive electrophiles that are endogenously detectable at nM concentrations and display anti-inflammatory, pro-survival actions. These actions are elicited through the alteration of signal transduction proteins via a Michael addition on nucleophilic cysteine thiols. Nitrated fatty acids (NO2-FAs), like 9- or 10-nitro-octadec-9-enolic acid, will act on signal transduction proteins directly or on key regulatory proteins to cause an up-regulation or down-regulation of the protein's expression, yielding an anti-inflammatory response. These responses have been characterized in many organ systems, such as the cardiovascular system, with the pulmonary system less well defined. Macrophages are one of the most abundant immune cells in the lung and are essential in maintaining lung homeostasis. Despite this, macrophages can play a role in both acute and chronic lung injury due to up-regulation of anti-inflammatory signal transduction pathways and down-regulation of pro-inflammatory pathways. Through their propensity to alter signal transduction pathways, NO2-FAs may be able to reduce macrophage activation during pulmonary injury. This review will focus on the implications of NO2-FAs on macrophage activation in the lung and the signal transduction pathways that may be altered, leading to reduced pulmonary injury.
Collapse
Affiliation(s)
- Melissa L Wilkinson
- Department of Pharmacology and Toxicology, The State University of New Jersey, USA
| | - Andrew J Gow
- Department of Pharmacology and Toxicology, The State University of New Jersey, USA
| |
Collapse
|
8
|
Liu T, Liao XZ, Zhou MT. Ulinastatin alleviates traumatic brain injury by reducing endothelin-1. Transl Neurosci 2021; 12:1-8. [PMID: 33505713 PMCID: PMC7788573 DOI: 10.1515/tnsci-2021-0001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/21/2022] Open
Abstract
Background Brain edema is one of the major causes of fatality and disability associated with injury and neurosurgical procedures. The goal of this study was to evaluate the effect of ulinastatin (UTI), a protease inhibitor, on astrocytes in a rat model of traumatic brain injury (TBI). Methodology A rat model of TBI was established. Animals were randomly divided into 2 groups – one group was treated with normal saline and the second group was treated with UTI (50,000 U/kg). The brain water content and permeability of the blood–brain barrier were assessed in the two groups along with a sham group (no TBI). Expression of the glial fibrillary acidic protein, endthelin-1 (ET-1), vascular endothelial growth factor (VEGF), and matrix metalloproteinase 9 (MMP-9) were measured by immunohistochemistry and western blot. Effect of UTI on ERK and PI3K/AKT signaling pathways was measured by western blot. Results UTI significantly decreased the brain water content and extravasation of the Evans blue dye. This attenuation was associated with decreased activation of the astrocytes and ET-1. UTI treatment decreased ERK and Akt activation and inhibited the expression of pro-inflammatory VEGF and MMP-9. Conclusion UTI can alleviate brain edema resulting from TBI by inhibiting astrocyte activation and ET-1 production.
Collapse
Affiliation(s)
- Ting Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Xing-Zhi Liao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Mai-Tao Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
9
|
Bardoxolone Methyl Displays Detrimental Effects on Endothelial Bioenergetics, Suppresses Endothelial ET-1 Release, and Increases Endothelial Permeability in Human Microvascular Endothelium. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4678252. [PMID: 33123312 PMCID: PMC7584962 DOI: 10.1155/2020/4678252] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/24/2020] [Accepted: 09/02/2020] [Indexed: 12/21/2022]
Abstract
Nrf2 is a master regulator of antioxidant cellular defence, and agents activating the Nrf2 pathway have been tested in various diseases. However, unexpected side effects of cardiovascular nature reported for bardoxolone methyl in patients with type 2 diabetes mellitus and stage 4 chronic kidney disease (the BEACON trial) still have not been fully explained. Here, we aimed to characterize the effects of bardoxolone methyl compared with other Nrf2 activators—dimethyl fumarate and L-sulforaphane—on human microvascular endothelium. Endothelial toxicity, bioenergetics, mitochondrial membrane potential, endothelin-1 (ET-1) release, endothelial permeability, Nrf2 expression, and ROS production were assessed in human microvascular endothelial cells (HMEC-1) incubated for 3 and 24 hours with 100 nM–5 μM of either bardoxolone methyl, dimethyl fumarate, or L-sulforaphane. Three-hour incubation with bardoxolone methyl (100 nM–5 μM), although not toxic to endothelial cells, significantly affected endothelial bioenergetics by decreasing mitochondrial membrane potential (concentrations ≥ 3 μM), decreasing spare respiratory capacity (concentrations ≥ 1 μM), and increasing proton leak (concentrations ≥ 500 nM), while dimethyl fumarate and L-sulforaphane did not exert such actions. Bardoxolone methyl at concentrations ≥ 3 μM also decreased cellular viability and induced necrosis and apoptosis in the endothelium upon 24-hour incubation. In turn, endothelin-1 decreased permeability in endothelial cells in picomolar range, while bardoxolone methyl decreased ET-1 release and increased endothelial permeability even after short-term (3 hours) incubation. In conclusion, despite that all three Nrf2 activators exerted some beneficial effects on the endothelium, as evidenced by a decrease in ROS production, bardoxolone methyl, the most potent Nrf2 activator among the tested compounds, displayed a distinct endothelial profile of activity comprising detrimental effects on mitochondria and cellular viability and suppression of endothelial ET-1 release possibly interfering with ET-1–dependent local regulation of endothelial permeability.
Collapse
|
10
|
Fatty acid nitroalkenes inhibit the inflammatory response to bleomycin-mediated lung injury. Toxicol Appl Pharmacol 2020; 407:115236. [PMID: 32931793 DOI: 10.1016/j.taap.2020.115236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/03/2020] [Accepted: 09/08/2020] [Indexed: 12/29/2022]
Abstract
Fatty acid nitroalkenes are reversibly-reactive electrophiles, endogenously detectable at nM concentrations, displaying anti-inflammatory actions. Nitroalkenes like 9- or 10-nitro-octadec-9-enoic acid (e.g. nitro-oleic acid, OA-NO2) pleiotropically suppress cardiovascular inflammatory responses, with pulmonary responses less well defined. C57BL/6 J male mice were intratracheally administered bleomycin (3 U/kg, ITB), to induce pulmonary inflammation and acute injury, or saline and were treated with 50 μL OA-NO2 (50 μg) or vehicle in the same instillation and 72 h post-exposure to assess anti-inflammatory properties. Bronchoalveolar lavage (BAL) and lung tissue were collected 7d later. ITB mice lost body weight, with OA-NO2 mitigating this loss (-2.3 ± 0.94 vs -0.4 ± 0.83 g). Histology revealed ITB induced cellular infiltration, proteinaceous debris deposition, and tissue injury, all significantly reduced by OA-NO2. Flow cytometry analysis of BAL demonstrated loss of Siglec F+/F4/80+/CD45+ alveolar macrophages with ITB (89 ± 3.5 vs 30 ± 3.7%). Analysis of CD11b/CD11c expressing cells showed ITB-induced non-resident macrophage infiltration (4 ± 2.3 vs 43 ± 2.4%) was decreased by OA-NO2 (24 ± 2.4%). Additionally, OA-NO2 attenuated increases in mature, activated interstitial macrophages (23 ± 4.8 vs. 43 ± 5.4%) in lung tissue digests. Flow analysis of CD31-/CD45-/Sca-1+ mesenchymal cells revealed ITB increased CD44+ populations (1 ± 0.4 vs 4 ± 0.4MFI), significantly reduced by OA-NO2 (3 ± 0.4MFI). Single cell analysis of mesenchymal cells by western blotting showed profibrotic ZEB1 protein expression induced by ITB. Lung digest CD45+ cells revealed ITB increased HMGB1+ cells, with OA-NO2 suppressing this response. Inhibition of HMGB1 expression correlated with increased basal phospholipid production and SP-B expression in the lung lining. These findings indicate OA-NO2 inhibits ITB-induced pro-inflammatory responses by modulating resident cell function.
Collapse
|
11
|
Guo Z, Mo Z. Keap1‐Nrf2 signaling pathway in angiogenesis and vascular diseases. J Tissue Eng Regen Med 2020; 14:869-883. [PMID: 32336035 DOI: 10.1002/term.3053] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 04/14/2020] [Accepted: 04/22/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Zi Guo
- Department of EndocrinologyThe Third Xiangya Hospital, Central South University Changsha China
| | - Zhaohui Mo
- Department of EndocrinologyThe Third Xiangya Hospital, Central South University Changsha China
| |
Collapse
|
12
|
Advancing Target Identification of Nitrated Phospholipids in Biological Systems by HCD Specific Fragmentation Fingerprinting in Orbitrap Platforms. Molecules 2020; 25:molecules25092120. [PMID: 32369981 PMCID: PMC7248851 DOI: 10.3390/molecules25092120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/24/2020] [Accepted: 04/29/2020] [Indexed: 12/13/2022] Open
Abstract
Nitrated phospholipids have recently been detected in vitro and in vivo and associated with beneficial health effects. They were identified and quantified in biological samples by lipidomics methodologies using liquid chromatography-collision-induced dissociation (CID) tandem mass spectrometry (MS/MS) acquired with the linear ion trap mass spectrometer. Only a few studies have used higher-energy collision dissociation (HCD)-MS/MS in high-resolution Orbitraps to characterize nitrated phosphatidylserines and nitrated cardiolipins, highlighting the marked differences in the fragmentation patterns when using CID or HCD fragmentation methods. In this study, we aimed to evaluate the fragmentation of nitrated phosphatidylcholine and nitrated phosphatidylethanolamine species under HCD-MS/MS. We studied the effect of normalized collision energy (NCE) in the fragmentation pattern to identify the best acquisition conditions and reporter ions to detect nitrated phospholipids. The results showed that the intensity of the typical neutral loss of nitrous acid (HNO2) diminishes with increasing NCE, becoming non-detectable for a higher NCE. Thus, the loss of HNO2 could not be the most suitable ion/fragment for the characterization of nitrated phospholipids under HCD. In HCD-MS/MS new fragment ions were identified, corresponding to the nitrated fatty acyl chains, NO2-RCOO−, (NO2-RCOOH-H2O + H)+, and (NO2-RCOOH + H)+, suggested as potential reporter ions to detect nitrated phospholipids when using the HCD-MS/MS lipidomics analysis.
Collapse
|
13
|
Nitro-Oleic Acid in Seeds and Differently Developed Seedlings of Brassica napus L. PLANTS 2020; 9:plants9030406. [PMID: 32214020 PMCID: PMC7154869 DOI: 10.3390/plants9030406] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 12/31/2022]
Abstract
Similar to animals, it has recently been proven that nitro-fatty acids such as nitro-linolenic acid and nitro-oleic acid (NO2-OA) have relevant physiological roles as signalling molecules also in plants. Although NO2-OA is of great therapeutic importance, its presence in plants as a free fatty acid has not been observed so far. Since Brassica napus (oilseed rape) is a crop with high oleic acid content, the abundance of NO2-OA in its tissues can be assumed. Therefore, we quantified NO2-OA in B. napus seeds and differently developed seedlings. In all samples, NO2-OA was detectable at nanomolar concentrations. The seeds showed the highest NO2-OA content, which decreased during germination. In contrast, nitric oxide (•NO) levels increased in the early stages of germination and seedling growth. Exogenous NO2-OA treatment (100 µM, 24 h) of Brassica seeds resulted in significantly increased •NO level and induced germination capacity compared to untreated seeds. The results of in vitro approaches (4-Amino-5-methylamino-2′,7′-difluorofluorescein (DAF-FM) fluorescence, •NO-sensitive electrode) supported the •NO liberating capacity of NO2-OA. We observed for the first time that Brassica seeds and seedlings contain free NO2-OA which may be involved in germination as an •NO donor as suggested both by the results of exogenous NO2-OA treatment of seeds and in vitro approaches. Due to their high NO2-OA content, Brassica sprouts can be considered as a good source of dietary NO2-OA intake.
Collapse
|
14
|
Mata-Pérez C, Padilla MN, Sánchez-Calvo B, Begara-Morales JC, Valderrama R, Chaki M, Aranda-Caño L, Moreno-González D, Molina-Díaz A, Barroso JB. Endogenous Biosynthesis of S-Nitrosoglutathione From Nitro-Fatty Acids in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:962. [PMID: 32714353 PMCID: PMC7340149 DOI: 10.3389/fpls.2020.00962] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/11/2020] [Indexed: 05/05/2023]
Abstract
Nitro-fatty acids (NO2-FAs) are novel molecules resulting from the interaction of unsaturated fatty acids and nitric oxide (NO) or NO-related molecules. In plants, it has recently been described that NO2-FAs trigger an antioxidant and a defence response against stressful situations. Among the properties of NO2-FAs highlight the ability to release NO therefore modulating specific protein targets through post-translational modifications (NO-PTMs). Thus, based on the capacity of NO2-FAs to act as physiological NO donors and using high-accuracy mass-spectrometric approaches, herein, we show that endogenous nitro-linolenic acid (NO2-Ln) can modulate S-nitrosoglutathione (GSNO) biosynthesis in Arabidopsis. The incubation of NO2-Ln with GSH was analyzed by LC-MS/MS and the in vitro synthesis of GSNO was noted. The in vivo confirmation of this behavior was carried out by incubating Arabidopsis plants with 15N-labeled NO2-Ln throughout the roots, and 15N-labeled GSNO (GS15NO) was detected in the leaves. With the aim to go in depth in the relation of NO2-FA and GSNO in plants, Arabidopsis alkenal reductase mutants (aer mutants) which modulate NO2-FAs levels were used. Our results constitute the first evidence of the modulation of a key NO biological reservoir in plants (GSNO) by these novel NO2-FAs, increasing knowledge about S-nitrosothiols and GSNO-signaling pathways in plants.
Collapse
Affiliation(s)
- Capilla Mata-Pérez
- Group of Biochemistry and Cell Signalling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
| | - María N. Padilla
- Group of Biochemistry and Cell Signalling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
| | - Beatriz Sánchez-Calvo
- Group of Biochemistry and Cell Signalling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
| | - Juan C. Begara-Morales
- Group of Biochemistry and Cell Signalling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
| | - Raquel Valderrama
- Group of Biochemistry and Cell Signalling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
| | - Mounira Chaki
- Group of Biochemistry and Cell Signalling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
| | - Lorena Aranda-Caño
- Group of Biochemistry and Cell Signalling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
| | - David Moreno-González
- Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Jaén, Spain
| | - Antonio Molina-Díaz
- Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Jaén, Spain
| | - Juan B. Barroso
- Group of Biochemistry and Cell Signalling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
- *Correspondence: Juan B. Barroso,
| |
Collapse
|
15
|
Schopfer FJ, Khoo NKH. Nitro-Fatty Acid Logistics: Formation, Biodistribution, Signaling, and Pharmacology. Trends Endocrinol Metab 2019; 30:505-519. [PMID: 31196614 PMCID: PMC7121905 DOI: 10.1016/j.tem.2019.04.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/25/2019] [Accepted: 04/25/2019] [Indexed: 02/04/2023]
Abstract
In addition to supporting cellular energetic demands and providing building blocks for lipid synthesis, fatty acids (FAs) are precursors of potent signaling molecules. In particular, the presence of conjugated double bonds on the fatty-acyl chain provides a preferential target for nitration generating nitro-FAs (NO2-FAs). The formation of NO2-FAs is a nonenzymatic process that requires reactive nitrogen species and occurs locally at the site of inflammation or during gastric acidification. NO2-FAs are electrophilic and display pleiotropic signaling actions through reversible protein alkylation. This review focuses on the endogenously formed NO2-FAs' mechanism of absorption, systemic distribution, signaling, and preclinical models. Understanding the dynamics of these processes will facilitate targeted dietary interventions and further the current pharmacological development aimed at low-grade inflammatory diseases.
Collapse
Affiliation(s)
- Francisco J Schopfer
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| | - Nicholas K H Khoo
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
16
|
Lu H, Sun J, Liang W, Zhang J, Rom O, Garcia-Barrio MT, Li S, Villacorta L, Schopfer FJ, Freeman BA, Chen YE, Fan Y. Novel gene regulatory networks identified in response to nitro-conjugated linoleic acid in human endothelial cells. Physiol Genomics 2019; 51:224-233. [PMID: 31074702 PMCID: PMC6620647 DOI: 10.1152/physiolgenomics.00127.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/05/2019] [Accepted: 04/24/2019] [Indexed: 12/11/2022] Open
Abstract
Endothelial cell (EC) dysfunction is a crucial initiation event in the development of atherosclerosis and is associated with diabetes mellitus, hypertension, and heart failure. Both digestive and oxidative inflammatory conditions lead to the endogenous formation of nitrated derivatives of unsaturated fatty acids (FAs) upon generation of the proximal nitrating species nitrogen dioxide (·NO2) by nitric oxide (·NO) and nitrite-dependent reactions. Nitro-FAs (NO2-FAs) such as nitro-oleic acid (NO2-OA) and nitro-linoleic acid (NO2-LA) potently inhibit inflammation and oxidative stress, regulate cellular functions, and maintain cardiovascular homeostasis. Recently, conjugated linoleic acid (CLA) was identified as the preferential FA substrate of nitration in vivo. However, the functions of nitro-CLA (NO2-CLA) in ECs remain to be explored. In the present study, a distinct transcriptome regulated by NO2-CLA was revealed in primary human coronary artery endothelial cells (HCAECs) through RNA sequencing. Differential gene expression and pathway enrichment analysis identified numerous regulatory networks including those related to the modulation of inflammation, oxidative stress, cell cycle, and hypoxic responses by NO2-CLA, suggesting a diverse impact of NO2-CLA and other electrophilic nitrated FAs on cellular processes. These findings extend the understanding of the protective actions of NO2-CLA in cardiovascular diseases and provide new insight into the underlying mechanisms that mediate the pleiotropic cellular responses to NO2-CLA.
Collapse
Affiliation(s)
- Haocheng Lu
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center , Ann Arbor, Michigan
| | - Jinjian Sun
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center , Ann Arbor, Michigan
| | - Wenying Liang
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center , Ann Arbor, Michigan
| | - Jifeng Zhang
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center , Ann Arbor, Michigan
| | - Oren Rom
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center , Ann Arbor, Michigan
| | - Minerva T Garcia-Barrio
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center , Ann Arbor, Michigan
| | - Shengdi Li
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL) , Heidelberg , Germany
| | - Luis Villacorta
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center , Ann Arbor, Michigan
| | - Francisco J Schopfer
- Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Bruce A Freeman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Y Eugene Chen
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center , Ann Arbor, Michigan
| | - Yanbo Fan
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center , Ann Arbor, Michigan
| |
Collapse
|
17
|
Melo T, Montero-Bullón JF, Domingues P, Domingues MR. Discovery of bioactive nitrated lipids and nitro-lipid-protein adducts using mass spectrometry-based approaches. Redox Biol 2019; 23:101106. [PMID: 30718106 PMCID: PMC6859590 DOI: 10.1016/j.redox.2019.101106] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 01/01/2023] Open
Abstract
Nitro-fatty acids (NO2-FA) undergo reversible Michael adduction reactions with cysteine and histidine residues leading to the post-translational modification (PTM) of proteins. This electrophilic character of NO2-FA is strictly related to their biological roles. The NO2-FA-induced PTM of signaling proteins can lead to modifications in protein structure, function, and subcellular localization. The nitro lipid-protein adducts trigger a series of downstream signaling events that culminates with anti-inflammatory, anti-hypertensive, and cytoprotective effects mediated by NO2-FA. These lipoxidation adducts have been detected and characterized both in model systems and in biological samples by using mass spectrometry (MS)-based approaches. These MS approaches allow to unequivocally identify the adduct together with the targeted residue of modification. The identification of the modified proteins allows inferring on the possible impact of the NO2-FA-induced modification. This review will focus on MS-based approaches as valuable tools to identify NO2-FA-protein adducts and to unveil the biological effect of this lipoxidation adducts.
Collapse
Affiliation(s)
- Tânia Melo
- Centro de Espectrometria de Massa, Departamento de Química & QOPNA, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Departamento de Química & CESAM & ECOMARE, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | - Javier-Fernando Montero-Bullón
- Centro de Espectrometria de Massa, Departamento de Química & QOPNA, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Pedro Domingues
- Centro de Espectrometria de Massa, Departamento de Química & QOPNA, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - M Rosário Domingues
- Centro de Espectrometria de Massa, Departamento de Química & QOPNA, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Departamento de Química & CESAM & ECOMARE, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
18
|
Nrf2 in aging - Focus on the cardiovascular system. Vascul Pharmacol 2018; 112:42-53. [PMID: 30170173 DOI: 10.1016/j.vph.2018.08.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 08/09/2018] [Accepted: 08/20/2018] [Indexed: 02/07/2023]
Abstract
Aging is the most critical risk factor for the development of cardiovascular diseases and their complications. Therefore, the fine-tuning of cellular response to getting older is an essential target for prospective therapies in cardiovascular medicine. One of the most promising targets might be the transcription factor Nrf2, which drives the expression of cytoprotective and antioxidative genes. Importantly, Nrf2 expression correlates with potential lifespan in rodents. However, the effect of Nrf2 activity in vascular diseases might be ambiguous and strongly depend on the cell type. On the one hand, the Nrf2 activity may protect cells from oxidative stress and senescence, on the other hand, total lack of Nrf2 is protective against atherosclerosis development. Therefore, this review aims to discuss the current knowledge on the role played by the transcription factor Nrf2 in cardiovascular diseases and its potential effects on aging.
Collapse
|
19
|
Mata-Pérez C, Padilla MN, Sánchez-Calvo B, Begara-Morales JC, Valderrama R, Chaki M, Barroso JB. Biological properties of nitro-fatty acids in plants. Nitric Oxide 2018; 78:S1089-8603(17)30286-0. [PMID: 29601928 DOI: 10.1016/j.niox.2018.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/24/2018] [Accepted: 03/15/2018] [Indexed: 10/17/2022]
Abstract
Nitro-fatty acids (NO2-FAs) are formed from the reaction between nitrogen dioxide (NO2) and mono and polyunsaturated fatty acids. Knowledge concerning NO2-FAs has significantly increased within a few years ago and the beneficial actions of these species uncovered in animal systems have led to consider them as molecules with therapeutic potential. Based on their nature and structure, NO2-FAs have the ability to release nitric oxide (NO) in aqueous environments and the capacity to mediate post-translational modifications (PTM) by nitroalkylation. Recently, based on the potential of these NO-derived molecules in the animal field, the endogenous occurrence of nitrated-derivatives of linolenic acid (NO2-Ln) was assessed in plant species. Moreover and through RNA-seq technology, it was shown that NO2-Ln can induce a large set of heat-shock proteins (HSPs) and different antioxidant systems suggesting this molecule may launch antioxidant and defence responses in plants. Furthermore, the capacity of this nitro-fatty acid to release NO has also been demonstrated. In view of this background, here we offer an overview on the biological properties described for NO2-FAs in plants and the potential of these molecules to be considered new key intermediaries of NO metabolism in the plant field.
Collapse
Affiliation(s)
- Capilla Mata-Pérez
- Group of Biochemistry and Cell Signalling in Nitric Oxide, Department of Experimental Biology, Centre for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario "Las Lagunillas" s/n, University of Jaén, E-23071, Jaén, Spain
| | - María N Padilla
- Group of Biochemistry and Cell Signalling in Nitric Oxide, Department of Experimental Biology, Centre for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario "Las Lagunillas" s/n, University of Jaén, E-23071, Jaén, Spain
| | - Beatriz Sánchez-Calvo
- Group of Biochemistry and Cell Signalling in Nitric Oxide, Department of Experimental Biology, Centre for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario "Las Lagunillas" s/n, University of Jaén, E-23071, Jaén, Spain
| | - Juan C Begara-Morales
- Group of Biochemistry and Cell Signalling in Nitric Oxide, Department of Experimental Biology, Centre for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario "Las Lagunillas" s/n, University of Jaén, E-23071, Jaén, Spain
| | - Raquel Valderrama
- Group of Biochemistry and Cell Signalling in Nitric Oxide, Department of Experimental Biology, Centre for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario "Las Lagunillas" s/n, University of Jaén, E-23071, Jaén, Spain
| | - Mounira Chaki
- Group of Biochemistry and Cell Signalling in Nitric Oxide, Department of Experimental Biology, Centre for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario "Las Lagunillas" s/n, University of Jaén, E-23071, Jaén, Spain
| | - Juan B Barroso
- Group of Biochemistry and Cell Signalling in Nitric Oxide, Department of Experimental Biology, Centre for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario "Las Lagunillas" s/n, University of Jaén, E-23071, Jaén, Spain.
| |
Collapse
|
20
|
Deen AJ, Sihvola V, Härkönen J, Patinen T, Adinolfi S, Levonen AL. Regulation of stress signaling pathways by nitro-fatty acids. Nitric Oxide 2018; 78:S1089-8603(17)30323-3. [PMID: 29567143 DOI: 10.1016/j.niox.2018.03.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/09/2018] [Accepted: 03/16/2018] [Indexed: 12/31/2022]
Abstract
Electrophilic nitrated-fatty acids (NO2-FA, nitroalkenes) are formed during reactions of NO-derived oxidized species (•NO, •NO2) with either free or esterified polyunsaturated fatty acids. Due to their electrophilic character, they react with nucleophiles such as cysteine thiols in signaling proteins, thereby triggering downstream signaling cascades. Herein, we review two stress-signaling pathways activated by nitroalkenes, the KEAP1-NRF2 signaling pathway and the heat shock response (HSR) pathway. In addition, their biological and pharmacological relevance are discussed. Given that perturbations in both proteostasis and redox balance are common in many disease processes, dual activation of both pathways by nitroalkenes is a promising pharmacological approach for their treatment.
Collapse
Affiliation(s)
- Ashik Jawahar Deen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, Kuopio FI-70211, Finland
| | - Virve Sihvola
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, Kuopio FI-70211, Finland
| | - Jouni Härkönen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, Kuopio FI-70211, Finland
| | - Tommi Patinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, Kuopio FI-70211, Finland
| | - Simone Adinolfi
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, Kuopio FI-70211, Finland
| | - Anna-Liisa Levonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, Kuopio FI-70211, Finland.
| |
Collapse
|