1
|
Vrzalová A, Vrzal R, Nádvorník P, Šebela M, Dvořák Z. Modulation of aryl hydrocarbon receptor activity by halogenated indoles. Bioorg Med Chem 2024; 114:117964. [PMID: 39454560 DOI: 10.1016/j.bmc.2024.117964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
The aryl hydrocarbon receptor (AhR) is a cytosolic ligand-activated transcription factor integral to various physiological and pathological processes. Among its diverse ligands, indole-based compounds have garnered attention due to their significant biological activity and potential therapeutic applications. This study explores the activation of AhR by structurally diverse halogenated indoles. We evaluated the transcriptional activity of AhR and cell viability in the human LS174T-AhR-luc reporter cell line. Among the tested compounds, 4-FI, 7-FI, 6-BrI, 7-BrI, 6-Cl-2-ox, 5-Br-2-ox, and 6-Br-2-ox activated AhR in a concentration-dependent manner, displaying high efficacy and potency. Molecular docking analysis revealed moderate binding affinities of these compounds to the PAS-B domain of AhR, corroborated by competitive radioligand binding assays. Functional assays showed that halogenated indoles induce the formation of AhR-ARNT heterodimer and enhance the binding of the AhR to the CYP1A1 promoter. Additionally, 4-FI and 7-FI exhibited anti-inflammatory properties in Caco-2 cell models, highlighting their potential for therapeutic applications. This study underscores the significance of the type and position of halogen moiety in indole scaffold, suggesting their potential as candidates for developing therapeutics drugs to treat conditions such as inflammatory bowel disease via AhR activation.
Collapse
Affiliation(s)
- Aneta Vrzalová
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Olomouc, Czech Republic.
| | - Radim Vrzal
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Petr Nádvorník
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Marek Šebela
- Department of Biochemistry, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Zdeněk Dvořák
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
2
|
Spencer KD, Bline H, Chen HJ, Verosky BG, Hilt ME, Jaggers RM, Gur TL, Mathé EA, Bailey MT. Modulation of anxiety-like behavior in galactooligosaccharide-fed mice: A potential role for bacterial tryptophan metabolites and reduced microglial reactivity. Brain Behav Immun 2024; 121:229-243. [PMID: 39067620 DOI: 10.1016/j.bbi.2024.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 07/02/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024] Open
Abstract
Prebiotic galactooligosaccharides (GOS) reduce anxiety-like behaviors in mice and humans. However, the biological pathways behind these behavioral changes are not well understood. To begin to study these pathways, we utilized C57BL/6 mice that were fed a standard diet with or without GOS supplementation for 3 weeks prior to testing on the open field. After behavioral testing, colonic contents and serum were collected for bacteriome (16S rRNA gene sequencing, colonic contents only) and metabolome (UPLC-MS, colonic contents and serum data) analyses. As expected, GOS significantly reduced anxiety-like behavior (i.e., increased time in the center) and decreased cytokine gene expression (Tnfa and Ccl2) in the prefrontal cortex. Notably, time in the center of the open field was significantly correlated with serum methyl-indole-3-acetic acid (methyl-IAA). This metabolite is a methylated form of indole-3-acetic acid (IAA) that is derived from bacterial metabolism of tryptophan. Sequencing analyses showed that GOS significantly increased Lachnospiraceae UCG006 and Akkermansia; these taxa are known to metabolize both GOS and tryptophan. To determine the extent to which methyl-IAA can affect anxiety-like behavior, mice were intraperitoneally injected with methyl-IAA. Mice given methyl-IAA had a reduction in anxiety-like behavior in the open field, along with lower Tnfa in the prefrontal cortex. Methyl-IAA was also found to reduce TNF-α (as well as CCL2) production by LPS-stimulated BV2 microglia. Together, these data support a novel pathway through which GOS reduces anxiety-like behaviors in mice and suggests that the bacterial metabolite methyl-IAA reduces microglial cytokine and chemokine production, which in turn reduces anxiety-like behavior.
Collapse
Affiliation(s)
- Kyle D Spencer
- Graduate Partnership Program, National Center for Advancing Translational Sciences, NIH, Rockville, MD, USA; Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA; Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Heather Bline
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Helen J Chen
- Medical Scientist Training Program, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Branden G Verosky
- Medical Scientist Training Program, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Miranda E Hilt
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Robert M Jaggers
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Tamar L Gur
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Psychiatry & Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Ewy A Mathé
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD, USA
| | - Michael T Bailey
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Oral and GI Research Affinity Group, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
3
|
Ranhotra HS. Discrete interplay of gut microbiota L-tryptophan metabolites in host biology and disease. Mol Cell Biochem 2024; 479:2273-2290. [PMID: 37861881 DOI: 10.1007/s11010-023-04867-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/24/2023] [Indexed: 10/21/2023]
Abstract
The gut microbiota and the host maintain a conjoint relationship and together achieve optimal physiology via a multitude of interactive signalling cues. Dietary-derived L-tryptophan (L-trp) is enzymatically metabolized by the resident symbiotic gut microbiota to indole and various indole derivatives. Indole and indole metabolites secreted by the gut bacteria act locally in the intestinal cells as well as distally and modulate tissue-specific functions which are beneficial to the host. Functions attributed to these microbial indole metabolites in the host include regulation of intestinal permeability, immunity and mucosal roles, inflammation, and insulin sensitivity. On the other hand, dysregulation of gut microbiota L-trp metabolism compromises the optimal availability of indole and indole metabolites and can induce the onset of metabolic disorders, inflammation, liver steatosis, and decrease gut barrier integrity. Gut dysbiosis is regarded as one of the prime reasons for this deregulated microbial-derived indole metabolites. A number of indole metabolites from the gut bacteria have been identified recently displaying variable affinity towards xenobiotic nuclear receptors. Microbial metabolite mimicry concept can be used to design and develop novel indole-moiety-containing compounds with higher affinity towards the receptors and efficacy in preclinical studies. Such compounds may serve as therapeutic drugs in clinical trials in the future. In this article, I review L-trp metabolism in the host and gut microbiota and the various physiological functions, patho-physiologies associated with the microbial-released indole metabolites in the host, including the metabolite mimicry-based concept to develop tailored indole-containing novel experimental drugs.
Collapse
Affiliation(s)
- Harmit S Ranhotra
- Department of Biochemistry, St. Edmund's College, Shillong, 793 003, India.
| |
Collapse
|
4
|
Dvořák Z, Vyhlídalová B, Pečinková P, Li H, Anzenbacher P, Špičáková A, Anzenbacherová E, Chow V, Liu J, Krause H, Wilson D, Berés T, Tarkowski P, Chen D, Mani S. In vitro safety signals for potential clinical development of the anti-inflammatory pregnane X receptor agonist FKK6. Bioorg Chem 2024; 144:107137. [PMID: 38245951 DOI: 10.1016/j.bioorg.2024.107137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/25/2023] [Accepted: 01/14/2024] [Indexed: 01/23/2024]
Abstract
Based on the mimicry of microbial metabolites, functionalized indoles were demonstrated as the ligands and agonists of the pregnane X receptor (PXR). The lead indole, FKK6, displayed PXR-dependent protective effects in DSS-induced colitis in mice and in vitro cytokine-treated intestinal organoid cultures. Here, we report on the initial in vitro pharmacological profiling of FKK6. FKK6-PXR interactions were characterized by hydrogen-deuterium exchange mass spectrometry. Screening FKK6 against potential cellular off-targets (G protein-coupled receptors, steroid and nuclear receptors, ion channels, and xenobiotic membrane transporters) revealed high PXR selectivity. FKK6 has poor aqueous solubility but was highly soluble in simulated gastric and intestinal fluids. A large fraction of FKK6 was bound to plasma proteins and chemically stable in plasma. The partition coefficient of FKK6 was 2.70, and FKK6 moderately partitioned into red blood cells. In Caco2 cells, FKK6 displayed high permeability (A-B: 22.8 × 10-6 cm.s-1) and no active efflux. These data are indicative of essentially complete in vivo absorption of FKK6. The data from human liver microsomes indicated that FKK6 is rapidly metabolized by cytochromes P450 (t1/2 5 min), notably by CYP3A4. Two oxidized FKK6 derivatives, including DC73 (N6-oxide) and DC97 (C19-phenol), were detected, and these metabolites had 5-7 × lower potency as PXR agonists than FKK6. This implies that despite high intestinal absorption, FKK6 is rapidly eliminated by the liver, and its PXR effects are predicted to be predominantly in the intestines. In conclusion, the PXR ligand and agonist FKK6 has a suitable pharmacological profile supporting its potential preclinical development.
Collapse
Affiliation(s)
- Zdeněk Dvořák
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| | - Barbora Vyhlídalová
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Petra Pečinková
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Hao Li
- Department of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Pavel Anzenbacher
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, 779 00 Olomouc, Czech Republic
| | - Alena Špičáková
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, 779 00 Olomouc, Czech Republic
| | - Eva Anzenbacherová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, 779 00 Olomouc, Czech Republic
| | - Vimanda Chow
- Department of Chemistry, York University, 6 Thompson Road, M3J 1L3, ON, Toronto, Canada
| | - Jiabao Liu
- Department of Molecular Genetics, Donnelly Centre for Cellular and Biomolecular Research, 160 College Street, M5S 3E1, ON, Toronto, Canada
| | - Henry Krause
- Department of Molecular Genetics, Donnelly Centre for Cellular and Biomolecular Research, 160 College Street, M5S 3E1, ON, Toronto, Canada
| | - Derek Wilson
- Department of Chemistry, York University, 6 Thompson Road, M3J 1L3, ON, Toronto, Canada
| | - Tibor Berés
- Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Petr Tarkowski
- Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Centre of the Region Haná for Biotechnological and Agricultural Research, Crop Research Institute, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Dajun Chen
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Sridhar Mani
- Department of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
5
|
Gutierrez F, Murphy QM, Swartwout BK, Read KA, Edwards MR, Abdelhamid L, Cabana-Puig X, Testerman JC, Xu T, Lu R, Amin P, Cecere TE, Reilly CM, Oestreich KJ, Ciupe SM, Luo XM. TCDD and CH223191 Alter T Cell Balance but Fail to Induce Anti-Inflammatory Response in Adult Lupus Mice. Immunohorizons 2024; 8:172-181. [PMID: 38353996 PMCID: PMC10916358 DOI: 10.4049/immunohorizons.2300023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024] Open
Abstract
Aryl hydrocarbon receptor (AhR) responds to endogenous and exogenous ligands as a cytosolic receptor, transcription factor, and E3 ubiquitin ligase. Several studies support an anti-inflammatory effect of AhR activation. However, exposure to the AhR agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) during early stages of development results in an autoimmune phenotype and exacerbates lupus. The effects of TCDD on lupus in adults with pre-existing autoimmunity have not been described. We present novel evidence that AhR stimulation by TCDD alters T cell responses but fails to impact lupus-like disease using an adult mouse model. Interestingly, AhR antagonist CH223191 also changed T cell balance in our model. We next developed a conceptual framework for identifying cellular and molecular factors that contribute to physiological outcomes in lupus and created models that describe cytokine dynamics that were fed into a system of differential equations to predict the kinetics of T follicular helper (Tfh) and regulatory T (Treg) cell populations. The model predicted that Tfh cells expanded to larger values following TCDD exposure compared with vehicle and CH223191. Following the initial elevation, both Tfh and Treg cell populations continuously decayed over time. A function based on the ratio of predicted Treg/Tfh cells showed that Treg cells exceed Tfh cells in all groups, with TCDD and CH223191 showing lower Treg/Tfh cell ratios than the vehicle and that the ratio is relatively constant over time. We conclude that AhR ligands did not induce an anti-inflammatory response to attenuate autoimmunity in adult lupus mice. This study challenges the dogma that TCDD supports an immunosuppressive phenotype.
Collapse
Affiliation(s)
- Fernando Gutierrez
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Quiyana M. Murphy
- Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Brianna K. Swartwout
- Translational Biology Medicine and Health Graduate Program, Virginia Polytechnic Institute and State University, Roanoke, VA
| | - Kaitlin A. Read
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Michael R. Edwards
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Leila Abdelhamid
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Xavier Cabana-Puig
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - James C. Testerman
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Tian Xu
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Ran Lu
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Pavly Amin
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Thomas E. Cecere
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Christopher M. Reilly
- Department of Biomedical Sciences, Edward Via College of Osteopathic Medicine, Blacksburg, VA
| | - Kenneth J. Oestreich
- Department of Microbial Infection and Immunity, Ohio State University College of Medicine, Columbus, OH
| | - Stanca M. Ciupe
- Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Xin M. Luo
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
| |
Collapse
|
6
|
Vrzal R, Marcalíková A, Krasulová K, Zemánková L, Dvořák Z. Jasmone Is a Ligand-Selective Allosteric Antagonist of Aryl Hydrocarbon Receptor (AhR). Int J Mol Sci 2023; 24:15655. [PMID: 37958638 PMCID: PMC10648586 DOI: 10.3390/ijms242115655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Herbal extracts represent a wide spectrum of biologically active ingredients with potential medical applications. By screening minor constituents of jasmine essential oil towards aryl hydrocarbon receptor (AhR) activity using a gene reporter assay (GRA), we found the antagonist effects of jasmone (3-methyl-2-[(2Z)-pent-2-en-1-yl]cyclopent-2-en-1-one). It inhibited 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-, benzo[a]pyrene (BaP)-, and 6-formylindolo[3,2-b]carbazole (FICZ)-triggered AhR-dependent luciferase activity in a concentration-dependent manner. However, the inhibition differed markedly between TCDD, BaP, and FICZ, with the latter being significantly less inhibited. The dose-response analysis confirmed an allosteric type of AhR antagonism. Furthermore, jasmone efficiently inhibited AhR activation by AhR agonists and microbial catabolites of tryptophan (MICTs). TCDD- and FICZ-inducible CYP1A1 expression in primary human hepatocytes was inhibited by jasmone, whereas in the human HepG2 and LS180 cells, jasmone antagonized only TCDD-activated AhR. Jasmone only partially displaced radiolabeled TCDD from its binding to mouse Ahr, suggesting it is not a typical orthosteric ligand of AhR. TCDD-elicited AhR nuclear translocation was not affected by jasmone, whereas downstream signaling events, including the formation of the AhR:ARNT complex and enrichment of the CYP1A1 promoter, were inhibited by jasmone. In conclusion, we show that jasmone is a potent allosteric antagonist of AhR. Such discovery may help to find and/or clarify the use of jasmone in pharmaco- and phytotherapy for conditions where AhR plays a key role.
Collapse
Affiliation(s)
- Radim Vrzal
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | | | | | | | | |
Collapse
|
7
|
Sládeková L, Zgarbová E, Vrzal R, Vanda D, Soural M, Jakubcová K, Vázquez-Gómez G, Vondráček J, Dvořák Z. Switching on/off aryl hydrocarbon receptor and pregnane X receptor activities by chemically modified tryptamines. Toxicol Lett 2023; 387:63-75. [PMID: 37778463 DOI: 10.1016/j.toxlet.2023.09.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/01/2023] [Accepted: 09/27/2023] [Indexed: 10/03/2023]
Abstract
Microbial indoles have been demonstrated as selective or dual agonists and ligands of the pregnane X receptor (PXR) and aryl hydrocarbon receptor (AhR). However, structural determinants of microbial indoles selectivity towards both receptors remain elusive. Here, we studied the effects of existing and newly synthesized derivatives of indole microbial metabolite tryptamine on the activity of AhR and PXR receptors. We show that the elongation of indolyl-3-alkaneamine chain, indole N-methylation and conversion of indolyl-3-alkaneamines to oleamides resulted in a major increase of PXR activity and in parallel loss of AhR activity. Using reporter gene assays, RT-PCR and TR-FRET techniques, we have characterized in detail the activation of PXR by novel indolyl-3-alkanyl-oleamides, 1-methyltryptamine and 1-methyltryptamine-acetamide. As a proof of concept, we demonstrated anti-inflammatory and epithelial barrier-protective activity of lead derivatives in intestinal Caco-2 cells, employing the measurement of expression of pro-inflammatory chemokines, tight junction genes, trans-epithelial electric resistance TEER, and dextran-FITC permeability assay. In conclusion, we show that a subtle chemical modifications of simple microbial indole metabolite tryptamine, leads to substantial changes in AhR and PXR agonist activities.
Collapse
Affiliation(s)
- Lucia Sládeková
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Eliška Zgarbová
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Radim Vrzal
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - David Vanda
- Department of Organic Chemistry, Faculty of Science, Palacký University, 17. Listopadu 12, 771 46 Olomouc, Czech Republic
| | - Miroslav Soural
- Department of Organic Chemistry, Faculty of Science, Palacký University, 17. Listopadu 12, 771 46 Olomouc, Czech Republic
| | - Klára Jakubcová
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic
| | - Gerardo Vázquez-Gómez
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic
| | - Zdeněk Dvořák
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
8
|
Funkhouser-Jones LJ, Xu R, Wilke G, Fu Y, Schriefer LA, Makimaa H, Rodgers R, Kennedy EA, VanDussen KL, Stappenbeck TS, Baldridge MT, Sibley LD. Microbiota-produced indole metabolites disrupt mitochondrial function and inhibit Cryptosporidium parvum growth. Cell Rep 2023; 42:112680. [PMID: 37384526 PMCID: PMC10530208 DOI: 10.1016/j.celrep.2023.112680] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/08/2023] [Accepted: 06/07/2023] [Indexed: 07/01/2023] Open
Abstract
Cryptosporidiosis is a leading cause of life-threatening diarrhea in young children in resource-poor settings. To explore microbial influences on susceptibility, we screened 85 microbiota-associated metabolites for their effects on Cryptosporidium parvum growth in vitro. We identify eight inhibitory metabolites in three main classes: secondary bile salts/acids, a vitamin B6 precursor, and indoles. Growth restriction of C. parvum by indoles does not depend on the host aryl hydrocarbon receptor (AhR) pathway. Instead, treatment impairs host mitochondrial function and reduces total cellular ATP, as well as directly reducing the membrane potential in the parasite mitosome, a degenerate mitochondria. Oral administration of indoles, or reconstitution of the gut microbiota with indole-producing bacteria, delays life cycle progression of the parasite in vitro and reduces the severity of C. parvum infection in mice. Collectively, these findings indicate that microbiota metabolites impair mitochondrial function and contribute to colonization resistance to Cryptosporidium infection.
Collapse
Affiliation(s)
- Lisa J Funkhouser-Jones
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rui Xu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Georgia Wilke
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yong Fu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lawrence A Schriefer
- Department of Medicine, Division of Infectious Diseases, Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Heyde Makimaa
- Department of Medicine, Division of Infectious Diseases, Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rachel Rodgers
- Department of Medicine, Division of Infectious Diseases, Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Elizabeth A Kennedy
- Department of Medicine, Division of Infectious Diseases, Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kelli L VanDussen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Thaddeus S Stappenbeck
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Megan T Baldridge
- Department of Medicine, Division of Infectious Diseases, Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
9
|
Funkhouser-Jones LJ, Xu R, Wilke G, Fu Y, Shriefer LA, Makimaa H, Rodgers R, Kennedy EA, VanDussen KL, Stappenbeck TS, Baldridge MT, Sibley LD. Microbiota produced indole metabolites disrupt host cell mitochondrial energy production and inhibit Cryptosporidium parvum growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.25.542157. [PMID: 37292732 PMCID: PMC10245909 DOI: 10.1101/2023.05.25.542157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cryptosporidiosis is a leading cause of life-threatening diarrhea in young children in resource-poor settings. Susceptibility rapidly declines with age, associated with changes in the microbiota. To explore microbial influences on susceptibility, we screened 85 microbiota- associated metabolites enriched in the adult gut for their effects on C. parvum growth in vitro. We identified eight inhibitory metabolites in three main classes: secondary bile salts/acids, a vitamin B 6 precursor, and indoles. Growth restriction of C. parvum by indoles did not depend on the host aryl hydrocarbon receptor (AhR) pathway. Instead, treatment impaired host mitochondrial function and reduced total cellular ATP, as well as directly reduced the membrane potential in the parasite mitosome, a degenerate mitochondria. Oral administration of indoles, or reconstitution of the gut microbiota with indole producing bacteria, delayed life cycle progression of the parasite in vitro and reduced severity of C. parvum infection in mice. Collectively, these findings indicate that microbiota metabolites contribute to colonization resistance to Cryptosporidium infection.
Collapse
Affiliation(s)
- Lisa J. Funkhouser-Jones
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Rui Xu
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Georgia Wilke
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Yong Fu
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Lawrence A. Shriefer
- Department of Medicine, Division of Infectious Diseases, Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Heyde Makimaa
- Department of Medicine, Division of Infectious Diseases, Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Rachel Rodgers
- Department of Medicine, Division of Infectious Diseases, Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Elizabeth A. Kennedy
- Department of Medicine, Division of Infectious Diseases, Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Kelli L. VanDussen
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Thaddeus S. Stappenbeck
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Megan T. Baldridge
- Department of Medicine, Division of Infectious Diseases, Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - L. David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
10
|
Ondrová K, Zůvalová I, Vyhlídalová B, Krasulová K, Miková E, Vrzal R, Nádvorník P, Nepal B, Kortagere S, Kopečná M, Kopečný D, Šebela M, Rastinejad F, Pu H, Soural M, Rolfes KM, Haarmann-Stemmann T, Li H, Mani S, Dvořák Z. Monoterpenoid aryl hydrocarbon receptor allosteric antagonists protect against ultraviolet skin damage in female mice. Nat Commun 2023; 14:2728. [PMID: 37169746 PMCID: PMC10174618 DOI: 10.1038/s41467-023-38478-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 05/02/2023] [Indexed: 05/13/2023] Open
Abstract
The human aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that is a pivotal regulator of human physiology and pathophysiology. Allosteric inhibition of AhR was previously thought to be untenable. Here, we identify carvones as noncompetitive, insurmountable antagonists of AhR and characterize the structural and functional consequences of their binding. Carvones do not displace radiolabeled ligands from binding to AhR but instead bind allosterically within the bHLH/PAS-A region of AhR. Carvones do not influence the translocation of ligand-activated AhR into the nucleus but inhibit the heterodimerization of AhR with its canonical partner ARNT and subsequent binding of AhR to the promoter of CYP1A1. As a proof of concept, we demonstrate physiologically relevant Ahr-antagonism by carvones in vivo in female mice. These substances establish the molecular basis for selective targeting of AhR regardless of the type of ligand(s) present and provide opportunities for the treatment of disease processes modified by AhR.
Collapse
Affiliation(s)
- Karolína Ondrová
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Iveta Zůvalová
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Barbora Vyhlídalová
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Kristýna Krasulová
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Eva Miková
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Radim Vrzal
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Petr Nádvorník
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Binod Nepal
- Department of Microbiology & Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Sandhya Kortagere
- Department of Microbiology & Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Martina Kopečná
- Department of Experimental Biology, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - David Kopečný
- Department of Experimental Biology, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Marek Šebela
- Department of Biochemistry, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Fraydoon Rastinejad
- Target Discovery Institute Nuffield Department of Medicine Research Building Brasenose College University of Oxford, Oxford, UK
| | - Hua Pu
- Target Discovery Institute Nuffield Department of Medicine Research Building Brasenose College University of Oxford, Oxford, UK
| | - Miroslav Soural
- Department of Organic Chemistry, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | | | | | - Hao Li
- Department of Medicine, Oncology, Molecular Pharmacology, and Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sridhar Mani
- Department of Medicine, Oncology, Molecular Pharmacology, and Genetics, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Zdeněk Dvořák
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Olomouc, Czech Republic.
| |
Collapse
|
11
|
Natural Product Skatole Ameliorates Lipotoxicity-Induced Multiple Hepatic Damage under Hyperlipidemic Conditions in Hepatocytes. Nutrients 2023; 15:nu15061490. [PMID: 36986221 PMCID: PMC10052055 DOI: 10.3390/nu15061490] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/14/2023] [Accepted: 03/19/2023] [Indexed: 03/22/2023] Open
Abstract
Skatole (3-methylindole, 3MI) is a natural-origin compound derived from plants, insects, and microbial metabolites in human intestines. Skatole has an anti-lipid peroxidation effect and is a biomarker for several diseases. However, its effect on hepatocyte lipid metabolism and lipotoxicity has not been elucidated. Hepatic lipotoxicity is induced by excess saturated free fatty acids in hyperlipidemia, which directly damages the hepatocytes. Lipotoxicity is involved in several metabolic diseases and hepatocytes, particularly affecting nonalcoholic fatty liver disease (NAFLD) progression. NAFLD is caused by the accumulation of fat by excessive free fatty acids (FFAs) in the blood and is accompanied by hepatic damage, such as endoplasmic reticulum (ER) stress, abnormal glucose and insulin metabolism, oxidative stress, and lipoapoptosis with lipid accumulation. Hepatic lipotoxicity causes multiple hepatic damages in NAFLD and has a directly effect on the progression from NAFLD to nonalcoholic steatohepatitis (NASH). This study confirmed that the natural compound skatole improves various damages to hepatocytes caused by lipotoxicity in hyperlipidemic conditions. To induce lipotoxicity, we exposed HepG2, SNU-449, and Huh7 cells to palmitic acid, a saturated fatty acid, and confirmed the protective effect of skatole. Skatole inhibited fat accumulation in the hepatocytes, reduced ER and oxidative stress, and recovered insulin resistance and glucose uptake. Importantly, skatole reduced lipoapoptosis by regulating caspase activity. In conclusion, skatole ameliorated multiple types of hepatocyte damage induced by lipotoxicity in the presence of excess free fatty acids.
Collapse
|
12
|
Zgarbová E, Vrzal R. Skatole: A thin red line between its benefits and toxicity. Biochimie 2022; 208:1-12. [PMID: 36586563 DOI: 10.1016/j.biochi.2022.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2022]
Abstract
Skatole (3-methylindole) is a heterocyclic compound naturally found in the feces of vertebrates and is produced by certain flowers. Skatole has been used in specific products of the perfume industry or as a flavor additive in ice cream. Additionally, skatole is formed by tryptophan pyrolysis of tobacco and has been demonstrated to be a mutagen. Skatole-induced pulmonotoxicity was reliably described in ruminants and rodents, but no studies have been conducted in humans. Initially, we provide basic knowledge and a historical overview of skatole. Then, skatole bacterial formation in the intestine is described, and the importance of the microbiome during this process is evaluated. Increased skatole concentrations could serve as a marker for intestinal disease development. Therefore, the human molecular targets of skatole that may have significant effects on various processes in the human body are described. Ultimately, we suggest a link between skatole intestinal formation in humans and skatole-induced pulmonotoxicity, which should be explored further in the future.
Collapse
Affiliation(s)
- Eliška Zgarbová
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71, Olomouc, Czech Republic
| | - Radim Vrzal
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71, Olomouc, Czech Republic.
| |
Collapse
|
13
|
Zgarbová E, Vrzal R. The Impact of Indoles Activating the Aryl Hydrocarbon Receptor on Androgen Receptor Activity in the 22Rv1 Prostate Cancer Cell Line. Int J Mol Sci 2022; 24:ijms24010502. [PMID: 36613955 PMCID: PMC9820252 DOI: 10.3390/ijms24010502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
The activation of the aryl hydrocarbon receptor (AhR) by xenobiotic compounds was demonstrated to result in the degradation of the androgen receptor (AR). Since prostate cancer is often dependent on AR, it has become a significant therapeutic target. As a result of the emerging concept of bacterial mimicry, we tested whether compounds with indole scaffolds capable of AhR activation have the potential to restrict AR activity in prostate cancer cells. Altogether, 22 indolic compounds were tested, and all of them activated AhR. However, only eight decreased DHT-induced AR luciferase activity. All indoles, which met the AhR-activating and AR-suppressing criteria, decreased the expression of DHT-inducible AR target genes, specifically KLK3 and FKBP5 mRNAs. The reduced AR binding to the KLK3 promoter was confirmed by a chromatin immunoprecipitation (ChIP) assay. In addition, some indoles significantly decreased AR protein and mRNA level. By using CRISPR/Cas9 AhR knockout technology, no relationship between AhR and AR, measured as target gene expression, was observed. In conclusion, some indoles that activate AhR possess AR-inhibiting activity, which seems to be related to the downregulation of AR expression rather than to AR degradation alone. Moreover, there does not seem to be a clear relationship that would connect AhR activation with AR activity suppression in 22Rv1 cells.
Collapse
|
14
|
An overview of aryl hydrocarbon receptor ligands in the Last two decades (2002–2022): A medicinal chemistry perspective. Eur J Med Chem 2022; 244:114845. [DOI: 10.1016/j.ejmech.2022.114845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/28/2022] [Accepted: 10/08/2022] [Indexed: 11/21/2022]
|
15
|
Vrzalová A, Pečinková P, Illés P, Gurská S, Džubák P, Szotkowski M, Hajdúch M, Mani S, Dvořák Z. Mixture Effects of Tryptophan Intestinal Microbial Metabolites on Aryl Hydrocarbon Receptor Activity. Int J Mol Sci 2022; 23:10825. [PMID: 36142735 PMCID: PMC9505659 DOI: 10.3390/ijms231810825] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Aryl hydrocarbon receptor (AHR) plays pivotal roles in intestinal physiology and pathophysiology. Intestinal AHR is activated by numerous dietary, endogenous, and microbial ligands. Whereas the effects of individual compounds on AHR are mostly known, the effects of real physiological mixtures occurring in the intestine have not been studied. Using reporter gene assays and RT-PCR, we evaluated the combinatorial effects (3520 combinations) of 11 microbial catabolites of tryptophan (MICTs) on AHR. We robustly (n = 30) determined the potencies and relative efficacies of single MICTs. Synergistic effects of MICT binary mixtures were observed between low- or medium-efficacy agonists, in particular for combinations of indole-3-propionate and indole-3-lactate. Combinations comprising highly efficacious agonists such as indole-3-pyruvate displayed rather antagonist effects, caused by saturation of the assay response. These synergistic effects were confirmed by RT-PCR as CYP1A1 mRNA expression. We also tested mimic multicomponent and binary mixtures of MICTs, prepared based on the metabolomic analyses of human feces and colonoscopy aspirates, respectively. In this case, AHR responsiveness did not correlate with type of diet or health status, and the indole concentrations in the mixtures were determinative of gross AHR activity. Future systematic research on the synergistic activation of AHR by microbial metabolites and other ligands is needed.
Collapse
Affiliation(s)
- Aneta Vrzalová
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Petra Pečinková
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Peter Illés
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Soňa Gurská
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 1333/5, 77900 Olomouc, Czech Republic
| | - Petr Džubák
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 1333/5, 77900 Olomouc, Czech Republic
| | - Martin Szotkowski
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 1333/5, 77900 Olomouc, Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 1333/5, 77900 Olomouc, Czech Republic
| | - Sridhar Mani
- Department of Medicine, Molecular Pharmacology and Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Zdeněk Dvořák
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| |
Collapse
|
16
|
Zhu S, Huang H, Xu S, Liu Y, Wu Y, Xu S, Huang S, Gao J, He L. High-fat diet and alcohol induced-mice could cause colonic injury through molecular mechanisms of endogenous toxins. Toxicol Res (Camb) 2022; 11:696-706. [PMID: 36051667 PMCID: PMC9424707 DOI: 10.1093/toxres/tfac025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/13/2022] [Accepted: 04/21/2022] [Indexed: 08/01/2023] Open
Abstract
Due to the complexity and diverse causes, the pathological mechanism of diet-induced colonic injury and colitis remains unclear. In this study, we studied the effects of the combination of a high-fat diet (HFD) plus alcohol on colonic injury in mice. We found HFD plus alcohol treatment induced disturbance of the gut microbiota; increased the production of intestinal toxins lipopolysaccharide (LPS), indole, and skatole; destroyed the stability of the intestinal mucosa; and caused the colonic epithelial cells damage through the activation of nuclear factor (NF)-κB and aromatic hydrocarbon receptors (AhR) signaling pathways. To mimic the effect of HFD plus alcohol in vivo, NCM460 cells were stimulated with alcohol and oleic acid with/without intestinal toxins (LPS, indole, and skatole) in vitro. Combinative treatment of alcohol and oleic acid caused moderate damage on NCM460 cells, while combination with intestinal toxins induced serious cell apoptosis. Western blot data indicated that the activation of NF-κB and AhR pathways further augmented after intestinal toxins treatment in alcohol- and oleic acid-treated colonic cells. This study provided new evidence for the relationship between diet pattern and colonic inflammation, which might partly reveal the pathological development of diet-induced colon disease and the involvement of intestinal toxins.
Collapse
Affiliation(s)
- Shumin Zhu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232 Huandong Road, University Town, Panyu District, Guangzhou, Guangdong 510006, People’s Republic of China
| | - Haiyang Huang
- Dongguan Hospital of Traditional Chinese Medicine, 3 Dongcheng Section, Songshan Lake Avenue, Dongcheng Street, Dongguan, Guangdong 523000, People’s Republic of China
| | - Shuoxi Xu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232 Huandong Road, University Town, Panyu District, Guangzhou, Guangdong 510006, People’s Republic of China
| | - Ying Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232 Huandong Road, University Town, Panyu District, Guangzhou, Guangdong 510006, People’s Republic of China
| | - Yayun Wu
- Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, No.111, Dade Road, Yuexiu District, Guangzhou, Guangdong 510120, People’s Republic of China
| | - Shijie Xu
- Department of Development Planning, Guangzhou University of Chinese Medicine, 232 Huandong Road, University Town, Panyu District, Guangzhou, Guangdong 510006, People’s Republic of China
| | - Song Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232 Huandong Road, University Town, Panyu District, Guangzhou, Guangdong 510006, People’s Republic of China
| | - Jie Gao
- Corresponding author: School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, People’s Republic of China. . Nursing college, Guangdong Food and Drug Vocational College, Guangzhou, Guangdong, Guangdong 510520, People’s Republic of China.
| | - Lian He
- Corresponding author: School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, People’s Republic of China. . Nursing college, Guangdong Food and Drug Vocational College, Guangzhou, Guangdong, Guangdong 510520, People’s Republic of China.
| |
Collapse
|
17
|
Modoux M, Rolhion N, Lefevre JH, Oeuvray C, Nádvorník P, Illes P, Emond P, Parc Y, Mani S, Dvorak Z, Sokol H. Butyrate acts through HDAC inhibition to enhance aryl hydrocarbon receptor activation by gut microbiota-derived ligands. Gut Microbes 2022; 14:2105637. [PMID: 35895845 PMCID: PMC9336500 DOI: 10.1080/19490976.2022.2105637] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Aryl hydrocarbon receptor (AhR) is a critical player in the crosstalk between the gut microbiota and its host. However, factors regulating AhR within the gut, which is a complex metabolomic environment, are poorly understood. This study investigates the effect of a combination of metabolites on the activation mechanism of AhR. AhR activity was evaluated using both a luciferase reporter system and mRNA levels of AhR target genes on human cell lines and human colonic explants. AhR activation was studied by radioligand-binding assay, nuclear translocation of AhR by immuofluorescence and protein co-immunoprecipitation of AhR with ARNT. Indirect activation of AhR was evaluated using several tests and inhibitors. The promoter of the target gene CYP1A1 was studied both by chromatin immunoprecipitation and by using an histone deacetylase HDAC inhibitor (iHDAC). Short-chain fatty acids, and butyrate in particular, enhance AhR activity mediated by endogenous tryptophan metabolites without binding to the receptor. This effect was confirmed in human intestinal explants and did not rely on activation of receptors targeted by SCFAs, inhibition of AhR degradation or clearance of its ligands. Butyrate acted directly on AhR target gene promoter to reshape chromatin through iHDAC activity. Our findings revealed that butyrate is not an AhR ligand but acts as iHDAC leading to an increase recruitment of AhR to the target gene promoter in the presence of tryptophan-derived AhR agonists. These data contribute to a novel understanding of the complex regulation of AhR activation by gut microbiota-derived metabolites.
Collapse
Affiliation(s)
- Morgane Modoux
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, Paris, France,Paris Centre for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Nathalie Rolhion
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, Paris, France,Paris Centre for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Jeremie H. Lefevre
- Paris Centre for Microbiome Medicine (PaCeMM) FHU, Paris, France,Sorbonne Université, Department of Digestive Surgery, AP-HP, Hôpital Saint Antoine, Paris, France
| | - Cyriane Oeuvray
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, Paris, France,Paris Centre for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Petr Nádvorník
- Departments of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic
| | - Peter Illes
- Departments of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic
| | - Patrick Emond
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, Centre-Val de Loire, France
| | - Yann Parc
- Sorbonne Université, Department of Digestive Surgery, AP-HP, Hôpital Saint Antoine, Paris, France
| | - Sridhar Mani
- Departments of Molecular Pharmacology, Genetics and Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Zdenek Dvorak
- Departments of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic
| | - Harry Sokol
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, Paris, France,Paris Centre for Microbiome Medicine (PaCeMM) FHU, Paris, France,INRAe, UMR1319 Micalis & AgroParisTech, Jouy en Josas, France,CONTACT Harry Sokol Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, ParisF-75012, France
| |
Collapse
|
18
|
King J, Woolner VH, Keyzers RA, Rosengren RJ. Characterization of marine-derived halogenated indoles as ligands of the aryl hydrocarbon receptor. Toxicol Rep 2022; 9:1198-1203. [DOI: 10.1016/j.toxrep.2022.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/18/2022] [Accepted: 05/21/2022] [Indexed: 11/28/2022] Open
|
19
|
Zhang J, Pavek P, Kamaraj R, Ren L, Zhang T. Dietary phytochemicals as modulators of human pregnane X receptor. Crit Rev Food Sci Nutr 2021:1-23. [PMID: 34698593 DOI: 10.1080/10408398.2021.1995322] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
As a promiscuous xenobiotic sensor, pregnane X receptor (PXR) plays a crucial role in drug metabolism. Since dietary phytochemicals exhibit the potential to modulate human PXR, this review aims to summarize the plant-derived PXR modulators, including agonists, partial agonists, and antagonists. The crystal structures of the apo and ligand-bound forms of PXR especially that of PXR complexed with binary mixtures are summarized, in order to provide the structural basis for PXR binding promiscuity and synergistic activation of PXR by composite ligands. Furthermore, this review summarizes the characterized agonists, partial agonists, and antagonists of human PXR from botanical source. Contrary to PXR agonists, there are only a few antagonists obtained from botanical source due to the promiscuity of PXR. It is worth noting that trans-resveratrol and a series of methylindoles have been identified as partial agonists of PXR, both in activating PXR function, but also inhibiting the effect of other PXR agonists. Since antagonizing PXR function plays a crucial role in the prevention of drug-drug interactions and improvement of therapeutic efficacy, further research is necessary to screen more plant-derived PXR antagonists in the future. In summary, this review may contribute to understanding the roles of phytochemicals in food-drug and herb-drug interactions.
Collapse
Affiliation(s)
- Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Petr Pavek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Hradec Kralove, Czech Republic
| | - Rajamanikkam Kamaraj
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Hradec Kralove, Czech Republic
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
| |
Collapse
|
20
|
Kumar P, Lee JH, Lee J. Diverse roles of microbial indole compounds in eukaryotic systems. Biol Rev Camb Philos Soc 2021; 96:2522-2545. [PMID: 34137156 PMCID: PMC9290978 DOI: 10.1111/brv.12765] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 02/06/2023]
Abstract
Indole and its derivatives are widespread across different life forms, functioning as signalling molecules in prokaryotes and with more diverse roles in eukaryotes. A majority of indoles found in the environment are attributed to bacterial enzymes converting tryptophan into indole and its derivatives. The involvement of indoles among lower organisms as an interspecies and intraspecies signal is well known, with many reports showing that inter‐kingdom interactions involving microbial indole compounds are equally important as they influence defence systems and even the behaviour of higher organisms. This review summarizes recent advances in our understanding of the functional properties of indole and indole derivatives in diverse eukaryotes. Furthermore, we discuss current perspectives on the role of microbial indoles in human diseases such as diabetes, obesity, atherosclerosis, and cancers. Deciphering the function of indoles as biomarkers of metabolic state will facilitate the formulation of diet‐based treatments and open unique therapeutic opportunities.
Collapse
Affiliation(s)
- Prasun Kumar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Republic of Korea
| | - Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Republic of Korea
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Republic of Korea
| |
Collapse
|
21
|
Gasaly N, de Vos P, Hermoso MA. Impact of Bacterial Metabolites on Gut Barrier Function and Host Immunity: A Focus on Bacterial Metabolism and Its Relevance for Intestinal Inflammation. Front Immunol 2021; 12:658354. [PMID: 34122415 PMCID: PMC8187770 DOI: 10.3389/fimmu.2021.658354] [Citation(s) in RCA: 205] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/29/2021] [Indexed: 12/13/2022] Open
Abstract
The diverse and dynamic microbial community of the human gastrointestinal tract plays a vital role in health, with gut microbiota supporting the development and function of the gut immune barrier. Crosstalk between microbiota-gut epithelium and the gut immune system determine the individual health status, and any crosstalk disturbance may lead to chronic intestinal conditions, such as inflammatory bowel diseases (IBD) and celiac disease. Microbiota-derived metabolites are crucial mediators of host-microbial interactions. Some beneficially affect host physiology such as short-chain fatty acids (SCFAs) and secondary bile acids. Also, tryptophan catabolites determine immune responses, such as through binding to the aryl hydrocarbon receptor (AhR). AhR is abundantly present at mucosal surfaces and when activated enhances intestinal epithelial barrier function as well as regulatory immune responses. Exogenous diet-derived indoles (tryptophan) are a major source of endogenous AhR ligand precursors and together with SCFAs and secondary bile acids regulate inflammation by lowering stress in epithelium and gut immunity, and in IBD, AhR expression is downregulated together with tryptophan metabolites. Here, we present an overview of host microbiota-epithelium- gut immunity crosstalk and review how microbial-derived metabolites contribute to host immune homeostasis. Also, we discuss the therapeutic potential of bacterial catabolites for IBD and celiac disease and how essential dietary components such as dietary fibers and bacterial tryptophan catabolites may contribute to intestinal and systemic homeostasis.
Collapse
Affiliation(s)
- Naschla Gasaly
- Laboratory of Innate Immunity, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, Netherlands
| | - Marcela A Hermoso
- Laboratory of Innate Immunity, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
| |
Collapse
|
22
|
Ženata O, Panáček A, Kvítek L, Vrzal R. The impact of graphene oxide on androgen receptor signalling in prostate cancer cells. CHEMOSPHERE 2021; 269:128759. [PMID: 33153849 DOI: 10.1016/j.chemosphere.2020.128759] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/21/2020] [Accepted: 10/25/2020] [Indexed: 05/14/2023]
Abstract
Androgen receptor (AR) signalling is triggered by androgens that have lipophilic nature. Since it was indicated that graphene oxide (GO) might facilitate passive diffusion of lipophilic compounds probably via Trojan horse-like mechanism, we tested the hypothesis if this suggestion would apply for androgens as well. Thus, we investigated if GO affects dihydrotestosterone (DHT)-triggered signalling of AR in two prostate cancer-derived cell lines, 22Rv1 and LNCaP. These cell lines differ in number of AR variants, i.e. there are two variants in 22Rv1 cells (full length and truncated) but only one in LNCaP cells (full length). Graphene oxide had no effect on basal luciferase activity but significantly decreased DHT-inducible AR-dependent luciferase activity in stably transfected cells. In 22Rv1 cells, it induced concentration-dependent decrease of DHT-inducible KLK3 mRNA and PSA protein after 24 h. While there was no effect on UBE2C mRNA (regulated by truncated variant), there was synergistic effect of DHT and GO on UBE2C protein level. Translocation of full-length AR (AR-FL) was potentiated by GO in the presence of DHT in 22Rv1 cells but it was suppressed in LNCaP cells. DHT-stimulated enrichment of AR-FL on KLK3 promoter was not significantly affected by GO in any tested cell line neither was KLK3 mRNA at 4 h of incubation. In conclusion, GO affects DHT-triggered signalling in both types of cells in similar manner, but ligand-triggered redistribution of AR-FL is affected differently. One of the reasons may be the presence of truncated variant of androgen receptor.
Collapse
Affiliation(s)
- Ondřej Ženata
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University in Olomouc, Slechtitelu 27, Olomouc, CZ-783 71, Czech Republic
| | - Aleš Panáček
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, 17. Listopadu 12, 771 46, Olomouc, Czech Republic
| | - Libor Kvítek
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, 17. Listopadu 12, 771 46, Olomouc, Czech Republic
| | - Radim Vrzal
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University in Olomouc, Slechtitelu 27, Olomouc, CZ-783 71, Czech Republic.
| |
Collapse
|
23
|
Dvořák Z, Poulíková K, Mani S. Indole scaffolds as a promising class of the aryl hydrocarbon receptor ligands. Eur J Med Chem 2021; 215:113231. [PMID: 33582577 DOI: 10.1016/j.ejmech.2021.113231] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/24/2021] [Accepted: 01/24/2021] [Indexed: 11/18/2022]
Abstract
The aryl hydrocarbon receptor (AhR), deemed initially as a xenobiotic sensor, plays multiple physiological roles and is involved in various pathophysiological processes and many diseases' etiology. Therefore, the therapeutic and chemopreventive targeting of AhR is a fundamental issue. To date, thousands of structurally diverse ligands of AhR have been identified. The bottleneck in targeting the AhR is that it is a Janus-faced player with beneficial vs. harmful effects in the ligand-specific context. A distinct structural class of the AhR ligands is those with indole-based scaffolds. The present review summarizes the knowledge on the existing indole-derived AhR ligands, comprising natural and dietary compounds, synthetic compounds including clinically used drugs, endogenous intermediary metabolites, and catabolites produced by human microbiota. The examples of novel, indole ring containing, rational design based AhR ligands are presented. The molecular, in vitro, and in vivo effects are described.
Collapse
Affiliation(s)
- Zdeněk Dvořák
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| | - Karolína Poulíková
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Sridhar Mani
- Department of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
24
|
Coelho NR, Matos C, Pimpão AB, Correia MJ, Sequeira CO, Morello J, Pereira SA, Monteiro EC. AHR canonical pathway: in vivo findings to support novel antihypertensive strategies. Pharmacol Res 2021; 165:105407. [PMID: 33418029 DOI: 10.1016/j.phrs.2020.105407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 12/23/2022]
Abstract
Essential hypertension (HTN) is a disease where genetic and environmental factors interact to produce a high prevalent set of almost indistinguishable phenotypes. The weak definition of what is under the umbrella of HTN is a consequence of the lack of knowledge on the players involved in environment-gene interaction and their impact on blood pressure (BP) and mechanisms. The disclosure of these mechanisms that sense and (mal)adapt to toxic-environmental stimuli might at least determine some phenotypes of essential HTN and will have important therapeutic implications. In the present manuscript, we looked closer to the environmental sensor aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor involved in cardiovascular physiology, but better known by its involvement in biotransformation of xenobiotics through its canonical pathway. This review aims to disclose the contribution of the AHR-canonical pathway to HTN. For better mirror the complexity of the mechanisms involved in BP regulation, we privileged evidence from in vivo studies. Here we ascertained the level of available evidence and a comprehensive characterization of the AHR-related phenotype of HTN. We reviewed clinical and rodent studies on AHR-HTN genetic association and on AHR ligands and their impact on BP. We concluded that AHR is a druggable mechanistic linker of environmental exposure to HTN. We conclude that is worth to investigate the canonical pathway of AHR and the expression/polymorphisms of its related genes and/or other biomarkers (e.g. tryptophan-related ligands), in order to identify patients that may benefit from an AHR-centered antihypertensive treatment.
Collapse
Affiliation(s)
- Nuno R Coelho
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - Clara Matos
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - António B Pimpão
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - M João Correia
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - Catarina O Sequeira
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - Judit Morello
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - Sofia A Pereira
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal.
| | - Emília C Monteiro
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| |
Collapse
|
25
|
Illés P, Krasulová K, Vyhlídalová B, Poulíková K, Marcalíková A, Pečinková P, Sirotová N, Vrzal R, Mani S, Dvořák Z. Indole microbial intestinal metabolites expand the repertoire of ligands and agonists of the human pregnane X receptor. Toxicol Lett 2020; 334:87-93. [DOI: 10.1016/j.toxlet.2020.09.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/01/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022]
|
26
|
Zadorozhnii PV, Kiselev VV, Kharchenko AV. In silico toxicity evaluation of Salubrinal and its analogues. Eur J Pharm Sci 2020; 155:105538. [PMID: 32889087 DOI: 10.1016/j.ejps.2020.105538] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/14/2020] [Accepted: 08/30/2020] [Indexed: 02/06/2023]
Abstract
This paper reports on a comprehensive in silico toxicity assessment of Salubrinal and its analogues containing a cinnamic acid residue or quinoline ring using the online servers admetSAR, ADMETlab, ProTox, ADVERPred, Pred-hERG and Vienna LiverTox. Apart from rare exceptions, in all 55 studied structures, mild or practical absence of acute toxicity was predicted for rats (III or IV toxicity class). Cardiotoxic, hepatotoxic and immunotoxic effects were predicted for Salubrinal and its analogues. We constructed models of the main predicted anti-targets hERG, BSEP, MRP3, MRP4 and AhR using the principle of homologous modeling. Molecular docking studies were carried out with the obtained models. We carried out molecular docking for all targets using AutoDock Vina, implemented in the PyRx 0.8 software package. According to the results of molecular docking, the compounds analyzed are potential moderate or weak hERG blockers. Induction of cholestasis and, as a consequence, liver damage by these drugs, directly related to inhibition of BSEP, MRP3 and MRP4, most likely will not be observed. Interaction with AhR for the studied compounds is impossible for steric reasons and, as a consequence, toxic effects on the immune and other organ systems associated with the activation of the AhR signaling pathway are excluded.
Collapse
Affiliation(s)
- Pavlo V Zadorozhnii
- Department of pharmacy and technology of organic substances, Ukrainian State University of Chemical Technology, Gagarin Ave., 8, Dnipro 49005, Ukraine.
| | - Vadym V Kiselev
- Department of pharmacy and technology of organic substances, Ukrainian State University of Chemical Technology, Gagarin Ave., 8, Dnipro 49005, Ukraine
| | - Aleksandr V Kharchenko
- Department of pharmacy and technology of organic substances, Ukrainian State University of Chemical Technology, Gagarin Ave., 8, Dnipro 49005, Ukraine
| |
Collapse
|
27
|
Differential activation of human pregnane X receptor PXR by isomeric mono-methylated indoles in intestinal and hepatic in vitro models. Toxicol Lett 2020; 324:104-110. [DOI: 10.1016/j.toxlet.2020.02.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/27/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023]
|
28
|
Vyhlídalová B, Krasulová K, Pečinková P, Poulíková K, Vrzal R, Andrysík Z, Chandran A, Mani S, Dvorak Z. Antimigraine Drug Avitriptan Is a Ligand and Agonist of Human Aryl Hydrocarbon Receptor That Induces CYP1A1 in Hepatic and Intestinal Cells. Int J Mol Sci 2020; 21:ijms21082799. [PMID: 32316498 PMCID: PMC7216230 DOI: 10.3390/ijms21082799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 12/15/2022] Open
Abstract
The efforts for therapeutic targeting of the aryl hydrocarbon receptor (AhR) have emerged in recent years. We investigated the effects of available antimigraine triptan drugs, having an indole core in their structure, on AhR signaling in human hepatic and intestinal cells. Activation of AhR in reporter gene assays was observed for Avitriptan and to a lesser extent for Donitriptan, while other triptans were very weak or no activators of AhR. Using competitive binding assay and by homology docking, we identified Avitriptan as a low-affinity ligand of AhR. Avitriptan triggered nuclear translocation of AhR and increased binding of AhR in CYP1A1 promotor DNA, as revealed by immune-fluorescence microscopy and chromatin immune-precipitation assay, respectively. Strong induction of CYP1A1 mRNA was achieved by Avitriptan in wild type but not in AhR-knockout, immortalized human hepatocytes, implying that induction of CYP1A1 is AhR-dependent. Increased levels of CYP1A1 mRNA by Avitriptan were observed in human colon carcinoma cells LS180 but not in primary cultures of human hepatocytes. Collectively, we show that Avitriptan is a weak ligand and activator of human AhR, which induces the expression of CYP1A1 in a cell-type specific manner. Our data warrant the potential off-label therapeutic application of Avitriptan as an AhR-agonist drug.
Collapse
Affiliation(s)
- Barbora Vyhlídalová
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic; (B.V.); (K.K.); (P.P.); (K.P.); (R.V.)
| | - Kristýna Krasulová
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic; (B.V.); (K.K.); (P.P.); (K.P.); (R.V.)
| | - Petra Pečinková
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic; (B.V.); (K.K.); (P.P.); (K.P.); (R.V.)
| | - Karolína Poulíková
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic; (B.V.); (K.K.); (P.P.); (K.P.); (R.V.)
| | - Radim Vrzal
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic; (B.V.); (K.K.); (P.P.); (K.P.); (R.V.)
| | - Zdeněk Andrysík
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA;
| | - Aneesh Chandran
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109-1065, USA;
| | - Sridhar Mani
- Department of Genetics and Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Correspondence: (S.M.); (Z.D.); Tel.: +1-718-430-2871 (S.M.); +420-58-5634903 (Z.D.)
| | - Zdenek Dvorak
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic; (B.V.); (K.K.); (P.P.); (K.P.); (R.V.)
- Correspondence: (S.M.); (Z.D.); Tel.: +1-718-430-2871 (S.M.); +420-58-5634903 (Z.D.)
| |
Collapse
|
29
|
Vyhlídalová B, Krasulová K, Pečinková P, Marcalíková A, Vrzal R, Zemánková L, Vančo J, Trávníček Z, Vondráček J, Karasová M, Mani S, Dvořák Z. Gut Microbial Catabolites of Tryptophan Are Ligands and Agonists of the Aryl Hydrocarbon Receptor: A Detailed Characterization. Int J Mol Sci 2020; 21:ijms21072614. [PMID: 32283770 PMCID: PMC7177849 DOI: 10.3390/ijms21072614] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/04/2020] [Accepted: 04/08/2020] [Indexed: 02/07/2023] Open
Abstract
We examined the effects of gut microbial catabolites of tryptophan on the aryl hydrocarbon receptor (AhR). Using a reporter gene assay, we show that all studied catabolites are low-potency agonists of human AhR. The efficacy of catabolites differed substantially, comprising agonists with no or low (i3-propionate, i3-acetate, i3-lactate, i3-aldehyde), medium (i3-ethanol, i3-acrylate, skatole, tryptamine), and high (indole, i3-acetamide, i3-pyruvate) efficacies. We displayed ligand-selective antagonist activities by i3-pyruvate, i3-aldehyde, indole, skatole, and tryptamine. Ligand binding assay identified low affinity (skatole, i3-pyruvate, and i3-acetamide) and very low affinity (i3-acrylate, i3-ethanol, indole) ligands of the murine AhR. Indole, skatole, tryptamine, i3-pyruvate, i3-acrylate, and i3-acetamide induced CYP1A1 mRNA in intestinal LS180 and HT-29 cells, but not in the AhR-knockout HT-29 variant. We observed a similar CYP1A1 induction pattern in primary human hepatocytes. The most AhR-active catabolites (indole, skatole, tryptamine, i3-pyruvate, i3-acrylate, i3-acetamide) elicited nuclear translocation of the AhR, followed by a formation of AhR-ARNT heterodimer and enhanced binding of the AhR to the CYP1A1 gene promoter. Collectively, we comprehensively characterized the interactions of gut microbial tryptophan catabolites with the AhR, which may expand the current understanding of their potential roles in intestinal health and disease.
Collapse
Affiliation(s)
- Barbora Vyhlídalová
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic; (B.V.); (K.K.); (P.P.); (A.M.); (R.V.); (L.Z.)
| | - Kristýna Krasulová
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic; (B.V.); (K.K.); (P.P.); (A.M.); (R.V.); (L.Z.)
| | - Petra Pečinková
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic; (B.V.); (K.K.); (P.P.); (A.M.); (R.V.); (L.Z.)
| | - Adéla Marcalíková
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic; (B.V.); (K.K.); (P.P.); (A.M.); (R.V.); (L.Z.)
| | - Radim Vrzal
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic; (B.V.); (K.K.); (P.P.); (A.M.); (R.V.); (L.Z.)
| | - Lenka Zemánková
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic; (B.V.); (K.K.); (P.P.); (A.M.); (R.V.); (L.Z.)
| | - Jan Vančo
- Division of Biologically Active Complexes and Molecular Magnets, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; (J.V.); (Z.T.)
| | - Zdeněk Trávníček
- Division of Biologically Active Complexes and Molecular Magnets, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; (J.V.); (Z.T.)
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic; (J.V.); (M.K.)
| | - Martina Karasová
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic; (J.V.); (M.K.)
| | - Sridhar Mani
- Department of Genetics and Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Correspondence: (S.M.); (Z.D.); Tel.: +001-718-430-2871 (S.M.); +420-58-5634903 (Z.D.)
| | - Zdeněk Dvořák
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic; (B.V.); (K.K.); (P.P.); (A.M.); (R.V.); (L.Z.)
- Correspondence: (S.M.); (Z.D.); Tel.: +001-718-430-2871 (S.M.); +420-58-5634903 (Z.D.)
| |
Collapse
|
30
|
Xu EG, Richardot WH, Li S, Buruaem L, Wei HH, Dodder NG, Schick SF, Novotny T, Schlenk D, Gersberg RM, Hoh E. Assessing Toxicity and in Vitro Bioactivity of Smoked Cigarette Leachate Using Cell-Based Assays and Chemical Analysis. Chem Res Toxicol 2019; 32:1670-1679. [DOI: 10.1021/acs.chemrestox.9b00201] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Elvis Genbo Xu
- Department of Environmental Sciences, University of California, Riverside, Riverside, California 92521, United States
| | - William H. Richardot
- School of Public Health, San Diego State University, San Diego, California 92182, United States
- San Diego State University Research Foundation, San Diego, California 92182, United States
| | - Shuying Li
- Department of Environmental Sciences, University of California, Riverside, Riverside, California 92521, United States
| | - Lucas Buruaem
- Department of Environmental Sciences, University of California, Riverside, Riverside, California 92521, United States
| | - Hung-Hsu Wei
- School of Public Health, San Diego State University, San Diego, California 92182, United States
| | - Nathan G. Dodder
- School of Public Health, San Diego State University, San Diego, California 92182, United States
- San Diego State University Research Foundation, San Diego, California 92182, United States
| | - Suzaynn F. Schick
- Department of Medicine, Division of Occupational and Environmental Health, University of California, San Francisco San Francisco, California 94143, United States
| | - Thomas Novotny
- School of Public Health, San Diego State University, San Diego, California 92182, United States
- San Diego State University Research Foundation, San Diego, California 92182, United States
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, Riverside, California 92521, United States
| | - Richard M. Gersberg
- School of Public Health, San Diego State University, San Diego, California 92182, United States
| | - Eunha Hoh
- School of Public Health, San Diego State University, San Diego, California 92182, United States
| |
Collapse
|
31
|
Vyhlídalová B, Poulíková K, Bartoňková I, Krasulová K, Vančo J, Trávníček Z, Mani S, Dvořák Z. Mono-methylindoles induce CYP1A genes and inhibit CYP1A1 enzyme activity in human hepatocytes and HepaRG cells. Toxicol Lett 2019; 313:66-76. [PMID: 31201936 DOI: 10.1016/j.toxlet.2019.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/03/2019] [Accepted: 06/11/2019] [Indexed: 01/01/2023]
Abstract
Mono-methylindoles (MMI) were described as agonists and/or antagonists of the human aryl hydrocarbon receptor (AhR). Here, we investigated the effects of MMI on AhR-CYP1A pathway in human hepatocytes and HepaRG cells derived from human progenitor hepatic cells. All MMI, except of 2-methylindole, strongly induced CYP1A1 and CYP1A2 mRNAs in HepaRG cells. Induction of CYP1A genes was absent in AhR-knock-out HepaRG cells. Consistently, CYP1A1 and CYP1A2 mRNAs and proteins were induced by all MMIs (except 2-methylindole), in human hepatocytes. The enzyme activity of CYP1A1 was inhibited by MMIs in human hepatocytes and LS180 colon cancer cells in a concentration-dependent manner (IC50 values from 1.2 μM to 23.8 μM and from 3.4 μM to 11.4 μM, respectively). Inhibition of CYP1A1 activity by MMI in human liver microsomes was much weaker as compared to that in intact cells. Incubation of parental MMI with human hepatocytes either diminished (4-methylindole, 6-methylindole) or enhanced (7-methylindole) their agonist effects on AhR in AZ-AHR reporter cells. In conclusion, overall effects of MMI on AhR-CYP1A pathway in human cells comprise the induction of CYP1A genes through AhR, the inhibition of CYP1A catalytic activity and possibly the metabolic transformation causing loss or gain of AhR agonist activity of parental compounds.
Collapse
Affiliation(s)
- Barbora Vyhlídalová
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71, Olomouc, Czech Republic
| | - Karolína Poulíková
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71, Olomouc, Czech Republic
| | - Iveta Bartoňková
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71, Olomouc, Czech Republic
| | - Kristýna Krasulová
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71, Olomouc, Czech Republic; Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Slechtitelu 27, 783 71, Olomouc, Czech Republic
| | - Jan Vančo
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Slechtitelu 27, 783 71, Olomouc, Czech Republic
| | - Zdeněk Trávníček
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Slechtitelu 27, 783 71, Olomouc, Czech Republic
| | - Sridhar Mani
- Department of Genetics and Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Zdeněk Dvořák
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71, Olomouc, Czech Republic; Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Slechtitelu 27, 783 71, Olomouc, Czech Republic.
| |
Collapse
|
32
|
Burkina V, Zlabek V, Rasmussen MK, Zamaratskaia G. End-product inhibition of skatole-metabolising enzymes CYP1A, CYP2A19 and CYP2E1 in porcine and piscine hepatic microsomes. Toxicol Lett 2019; 303:67-71. [PMID: 30599194 DOI: 10.1016/j.toxlet.2018.12.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/19/2018] [Accepted: 12/28/2018] [Indexed: 01/07/2023]
Abstract
The hepatic cytochrome p450 enzymes 1 A, 2A19 and 2E1 is very important for the elimination of skatole from the body of pigs. Impaired skatole metabolism, results in skatole accumulation, which give rise to off flavor of the meat. Several metabolites of skatole has been identified, however the role of these metabolites in the inhibition of the skatole metabolizing enzymes are not documented. Using microsomes from pigs and fish, we determined the ability of several skatole metabolites to inhibit CYP1 A, CYP2A19 and CYP2E1 dependent activity. Our results show that 2-aminoacetophenone is an inhibitor of porcine CYP2A19 and CYP2E1 activity, but not the piscine orthologues. In conclusion, there is species specific differences in the inhibition of CYP1 A and CYP2A19 dependent metabolism of probe substrates. This is relevant to the evaluation of different model systems and to the reduction of off flavor of meat.
Collapse
Affiliation(s)
- Viktoriia Burkina
- Swedish University of Agricultural Sciences, Uppsala Department of Molecular Science, P.O. Box 7015, SE-750 07, Uppsala, Sweden; University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25, Vodnany, Czech Republic.
| | - Vladimir Zlabek
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25, Vodnany, Czech Republic.
| | | | - Galia Zamaratskaia
- Swedish University of Agricultural Sciences, Uppsala Department of Molecular Science, P.O. Box 7015, SE-750 07, Uppsala, Sweden; University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25, Vodnany, Czech Republic.
| |
Collapse
|
33
|
Ultrasensitivity dynamics of diverse aryl hydrocarbon receptor modulators in a hepatoma cell line. Arch Toxicol 2018; 93:635-647. [PMID: 30569404 DOI: 10.1007/s00204-018-2380-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/13/2018] [Indexed: 10/27/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a nuclear receptor that facilitates a wide transcriptional response and causes a variety of adaptive and maladaptive physiological functions. Such functions are entirely dependent on the type of ligand activating it, and therefore, the nuances in the activation of this receptor at the single-cell level have become a research interest for different pharmacological and toxicological applications. Here, we investigate the activation of the AhR by diverse classes of compounds in a Hepa1c1c7-based murine hepatoma cell line. The exogenous compounds analyzed produced different levels of ultrasensitivity in AhR activation as measured by XRE-coupled EGFP production and analyzed by both flow cytometric and computational simulation techniques. Interestingly, simulation experiments reported herein were able to reproduce and quantitate the natural single-cell stochasticity inherent to mammalian cell lines as well as the ligand-specific differences in ultrasensitivity. Classical AhR modulators 2,3,7,8-tetrachlorodibenzodioxin (10- 1-105 pM), PCB-126 (10- 1-107 pM), and benzo[a]pyrene (10- 1-107 pM) produced the greatest levels of single-cell ultrasensitivity and most maximal responses, while consumption-based ligands indole-3-carbinol (103-109 pM), 3,3'-diindolylmethane (103-108 pM), and cannabidiol (103-108 pM) caused low-level AhR activation in more purely graded single-cell fashions. All compounds were tested and analyzed over a 24 h period for consistency. The comparative quantitative results for each compound are presented within. This study aids in defining the disparity between different types of AhR modulators that produce distinctly different physiological outcomes. In addition, the simulation tool developed for this study can be used in future studies to predict the quantitative effects of diverse types of AhR ligands in the context of pharmacological therapies or toxicological concerns.
Collapse
|