1
|
Morotomi-Yano K, Hiromoto Y, Higaki T, Yano KI. Disease-associated H58Y mutation affects the nuclear dynamics of human DNA topoisomerase IIβ. Sci Rep 2022; 12:20627. [PMID: 36450898 PMCID: PMC9712534 DOI: 10.1038/s41598-022-24883-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
DNA topoisomerase II (TOP2) is an enzyme that resolves DNA topological problems and plays critical roles in various nuclear processes. Recently, a heterozygous H58Y substitution in the ATPase domain of human TOP2B was identified from patients with autism spectrum disorder, but its biological significance remains unclear. In this study, we analyzed the nuclear dynamics of TOP2B with H58Y (TOP2B H58Y). Although wild-type TOP2B was highly mobile in the nucleus of a living cell, the nuclear mobility of TOP2B H58Y was markedly reduced, suggesting that the impact of H58Y manifests as low protein mobility. We found that TOP2B H58Y is insensitive to ICRF-187, a TOP2 inhibitor that halts TOP2 as a closed clamp on DNA. When the ATPase activity of TOP2B was compromised, the nuclear mobility of TOP2B H58Y was restored to wild-type levels, indicating the contribution of the ATPase activity to the low nuclear mobility. Analysis of genome-edited cells harboring TOP2B H58Y showed that TOP2B H58Y retains sensitivity to the TOP2 poison etoposide, implying that TOP2B H58Y can undergo at least a part of its catalytic reactions. Collectively, TOP2 H58Y represents a unique example of the relationship between a disease-associated mutation and perturbed protein dynamics.
Collapse
Affiliation(s)
- Keiko Morotomi-Yano
- grid.274841.c0000 0001 0660 6749Institute of Industrial Nanomaterials, Kumamoto University, Kumamoto, Japan
| | - Yukiko Hiromoto
- grid.274841.c0000 0001 0660 6749Faculty of Science, Kumamoto University, Kumamoto, Japan
| | - Takumi Higaki
- grid.274841.c0000 0001 0660 6749Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan ,grid.274841.c0000 0001 0660 6749International Research Organization for Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Ken-ichi Yano
- grid.274841.c0000 0001 0660 6749Institute of Industrial Nanomaterials, Kumamoto University, Kumamoto, Japan ,grid.274841.c0000 0001 0660 6749Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
2
|
Ling EM, Baslé A, Cowell IG, van den Berg B, Blower TR, Austin CA. A comprehensive structural analysis of the ATPase domain of human DNA topoisomerase II beta bound to AMPPNP, ADP, and the bisdioxopiperazine, ICRF193. Structure 2022; 30:1129-1145.e3. [PMID: 35660158 PMCID: PMC9592559 DOI: 10.1016/j.str.2022.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/25/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022]
Abstract
Human topoisomerase II beta (TOP2B) modulates DNA topology using energy from ATP hydrolysis. To investigate the conformational changes that occur during ATP hydrolysis, we determined the X-ray crystallographic structures of the human TOP2B ATPase domain bound to AMPPNP or ADP at 1.9 Å and 2.6 Å resolution, respectively. The GHKL domains of both structures are similar, whereas the QTK loop within the transducer domain can move for product release. As TOP2B is the clinical target of bisdioxopiperazines, we also determined the structure of a TOP2B:ADP:ICRF193 complex to 2.3 Å resolution and identified key drug-binding residues. Biochemical characterization revealed the N-terminal strap reduces the rate of ATP hydrolysis. Mutagenesis demonstrated residue E103 as essential for ATP hydrolysis in TOP2B. Our data provide fundamental insights into the tertiary structure of the human TOP2B ATPase domain and a potential regulatory mechanism for ATP hydrolysis. Three structures of the TOP2B ATPase domain bound to AMPPNP, ADP, or ICRF193 The QTK loop in the ADP complex is further from the active site An SO4 ion is in place of the ATP hydrolysis product, Pi Biochemical data show the N-terminal strap reduces the ATPase hydrolysis activity
Collapse
Affiliation(s)
- Elise M Ling
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Arnaud Baslé
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Ian G Cowell
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Bert van den Berg
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Tim R Blower
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK.
| | - Caroline A Austin
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
3
|
Chanboonyasitt P, Chan YW. Regulation of mitotic chromosome architecture and resolution of ultrafine anaphase bridges by PICH. Cell Cycle 2021; 20:2077-2090. [PMID: 34530686 PMCID: PMC8565832 DOI: 10.1080/15384101.2021.1970877] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/28/2021] [Accepted: 08/16/2021] [Indexed: 11/30/2022] Open
Abstract
To ensure genome stability, chromosomes need to undergo proper condensation into two linked sister chromatids from prophase to prometaphase, followed by equal segregation at anaphase. Emerging evidence has shown that persistent DNA entanglements connecting the sister chromatids lead to the formation of ultrafine anaphase bridges (UFBs). If UFBs are not resolved soon after anaphase, they can induce chromosome missegregation. PICH (PLK1-interacting checkpoint helicase) is a DNA translocase that localizes on chromosome arms, centromeres and UFBs. It plays multiple essential roles in mitotic chromosome organization and segregation. PICH also recruits other associated proteins to UFBs, and together they mediate UFB resolution. Here, the proposed mechanism behind PICH's functions in chromosome organization and UFB resolution will be discussed. We summarize the regulation of PICH action at chromosome arms and centromeres, how PICH recognizes UFBs and recruits other UFB-associated factors, and finally how PICH promotes UFB resolution together with other DNA processing enzymes.
Collapse
Affiliation(s)
| | - Ying Wai Chan
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
4
|
Hassebroek VA, Park H, Pandey N, Lerbakken BT, Aksenova V, Arnaoutov A, Dasso M, Azuma Y. PICH regulates the abundance and localization of SUMOylated proteins on mitotic chromosomes. Mol Biol Cell 2020; 31:2537-2556. [PMID: 32877270 PMCID: PMC7851874 DOI: 10.1091/mbc.e20-03-0180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Proper chromosome segregation is essential for faithful cell division and if not maintained results in defective cell function caused by the abnormal distribution of genetic information. Polo-like kinase 1-interacting checkpoint helicase (PICH) is a DNA translocase essential for chromosome bridge resolution during mitosis. Its function in resolving chromosome bridges requires both DNA translocase activity and ability to bind chromosomal proteins modified by the small ubiquitin-like modifier (SUMO). However, it is unclear how these activities cooperate to resolve chromosome bridges. Here, we show that PICH specifically disperses SUMO2/3 foci on mitotic chromosomes. This PICH function is apparent toward SUMOylated topoisomerase IIα (TopoIIα) after inhibition of TopoIIα by ICRF-193. Conditional depletion of PICH using the auxin-inducible degron (AID) system resulted in the retention of SUMO2/3-modified chromosomal proteins, including TopoIIα, indicating that PICH functions to reduce the association of these proteins with chromosomes. Replacement of PICH with its translocase-deficient mutants led to increased SUMO2/3 foci on chromosomes, suggesting that the reduction of SUMO2/3 foci requires the remodeling activity of PICH. In vitro assays showed that PICH specifically attenuates SUMOylated TopoIIα activity using its SUMO-binding ability. Taking the results together, we propose a novel function of PICH in remodeling SUMOylated proteins to ensure faithful chromosome segregation.
Collapse
Affiliation(s)
| | - Hyewon Park
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045
| | - Nootan Pandey
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045
| | | | - Vasilisa Aksenova
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Alexei Arnaoutov
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Mary Dasso
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Yoshiaki Azuma
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045,*Address correspondence to: Yoshiaki Azuma ()
| |
Collapse
|
5
|
Atwal M, Swan RL, Rowe C, Lee KC, Lee DC, Armstrong L, Cowell IG, Austin CA. Intercalating TOP2 Poisons Attenuate Topoisomerase Action at Higher Concentrations. Mol Pharmacol 2019; 96:475-484. [PMID: 31399497 PMCID: PMC6744389 DOI: 10.1124/mol.119.117259] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/02/2019] [Indexed: 12/18/2022] Open
Abstract
Topoisomerase II (TOP2) poisons are effective cytotoxic anticancer agents that stabilize the normally transient TOP2-DNA covalent complexes formed during the enzyme reaction cycle. These drugs include etoposide, mitoxantrone, and the anthracyclines doxorubicin and epirubicin. Anthracyclines also exert cell-killing activity via TOP2-independent mechanisms, including DNA adduct formation, redox activity, and lipid peroxidation. Here, we show that anthracyclines and another intercalating TOP2 poison, mitoxantrone, stabilize TOP2-DNA covalent complexes less efficiently than etoposide, and at higher concentrations they suppress the formation of TOP2-DNA covalent complexes, thus behaving as TOP2 poisons at low concentration and inhibitors at high concentration. We used induced pluripotent stem cell (iPSC)-derived human cardiomyocytes as a model to study anthracycline-induced damage in cardiac cells. Using immunofluorescence, our study is the first to demonstrate the presence of topoisomerase IIβ (TOP2B) as the only TOP2 isoform in iPSC-derived cardiomyocytes. In these cells, etoposide robustly induced TOP2B covalent complexes, but we could not detect doxorubicin-induced TOP2-DNA complexes, and doxorubicin suppressed etoposide-induced TOP2-DNA complexes. In vitro, etoposide-stabilized DNA cleavage was attenuated by doxorubicin, epirubicin, or mitoxantrone. Clinical use of anthracyclines is associated with cardiotoxicity. The observations in this study have potentially important clinical consequences regarding the effectiveness of anticancer treatment regimens when TOP2-targeting drugs are used in combination. These observations suggest that inhibition of TOP2B activity, rather than DNA damage resulting from TOP2 poisoning, may play a role in doxorubicin cardiotoxicity. SIGNIFICANCE STATEMENT: We show that anthracyclines and mitoxantrone act as topoisomerase II (TOP2) poisons at low concentration but attenuate TOP2 activity at higher concentration, both in cells and in in vitro cleavage experiments. Inhibition of type II topoisomerases suppresses the action of other drugs that poison TOP2. Thus, combinations containing anthracyclines or mitoxantrone and etoposide may reduce the activity of etoposide as a TOP2 poison and thus reduce the efficacy of drug combinations.
Collapse
Affiliation(s)
- Mandeep Atwal
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom (M.A., R.L.S., C.R., K.C.L., I.G.C., C.A.A.) and Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, United Kingdom (D.C.L., L.A.)
| | - Rebecca L Swan
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom (M.A., R.L.S., C.R., K.C.L., I.G.C., C.A.A.) and Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, United Kingdom (D.C.L., L.A.)
| | - Chloe Rowe
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom (M.A., R.L.S., C.R., K.C.L., I.G.C., C.A.A.) and Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, United Kingdom (D.C.L., L.A.)
| | - Ka C Lee
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom (M.A., R.L.S., C.R., K.C.L., I.G.C., C.A.A.) and Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, United Kingdom (D.C.L., L.A.)
| | - David C Lee
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom (M.A., R.L.S., C.R., K.C.L., I.G.C., C.A.A.) and Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, United Kingdom (D.C.L., L.A.)
| | - Lyle Armstrong
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom (M.A., R.L.S., C.R., K.C.L., I.G.C., C.A.A.) and Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, United Kingdom (D.C.L., L.A.)
| | - Ian G Cowell
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom (M.A., R.L.S., C.R., K.C.L., I.G.C., C.A.A.) and Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, United Kingdom (D.C.L., L.A.)
| | - Caroline A Austin
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom (M.A., R.L.S., C.R., K.C.L., I.G.C., C.A.A.) and Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, United Kingdom (D.C.L., L.A.)
| |
Collapse
|
6
|
Morotomi-Yano K, Saito S, Adachi N, Yano KI. Dynamic behavior of DNA topoisomerase IIβ in response to DNA double-strand breaks. Sci Rep 2018; 8:10344. [PMID: 29985428 PMCID: PMC6037730 DOI: 10.1038/s41598-018-28690-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/27/2018] [Indexed: 12/11/2022] Open
Abstract
DNA topoisomerase II (Topo II) is crucial for resolving topological problems of DNA and plays important roles in various cellular processes, such as replication, transcription, and chromosome segregation. Although DNA topology problems may also occur during DNA repair, the possible involvement of Topo II in this process remains to be fully investigated. Here, we show the dynamic behavior of human Topo IIβ in response to DNA double-strand breaks (DSBs), which is the most harmful form of DNA damage. Live cell imaging coupled with site-directed DSB induction by laser microirradiation demonstrated rapid recruitment of EGFP-tagged Topo IIβ to the DSB site. Detergent extraction followed by immunofluorescence showed the tight association of endogenous Topo IIβ with DSB sites. Photobleaching analysis revealed that Topo IIβ is highly mobile in the nucleus. The Topo II catalytic inhibitors ICRF-187 and ICRF-193 reduced the Topo IIβ mobility and thereby prevented Topo IIβ recruitment to DSBs. Furthermore, Topo IIβ knockout cells exhibited increased sensitivity to bleomycin and decreased DSB repair mediated by homologous recombination (HR), implicating the role of Topo IIβ in HR-mediated DSB repair. Taken together, these results highlight a novel aspect of Topo IIβ functions in the cellular response to DSBs.
Collapse
Affiliation(s)
- Keiko Morotomi-Yano
- Department of Bioelectrics, Institute of Pulsed Power Science, Kumamoto University, Kumamoto, 860-8555, Japan
| | - Shinta Saito
- Department of Life and Environmental System Science, Graduate School of Nanobioscience, Yokohama City University, Yokohama, 236-0027, Japan
| | - Noritaka Adachi
- Department of Life and Environmental System Science, Graduate School of Nanobioscience, Yokohama City University, Yokohama, 236-0027, Japan.,Advanced Medical Research Center, Yokohama City University, Yokohama, 236-0004, Japan
| | - Ken-Ichi Yano
- Department of Bioelectrics, Institute of Pulsed Power Science, Kumamoto University, Kumamoto, 860-8555, Japan.
| |
Collapse
|
7
|
Deng S, Yan T, Jendrny C, Nemecek A, Vincetic M, Gödtel-Armbrust U, Wojnowski L. Dexrazoxane may prevent doxorubicin-induced DNA damage via depleting both topoisomerase II isoforms. BMC Cancer 2014; 14:842. [PMID: 25406834 PMCID: PMC4242484 DOI: 10.1186/1471-2407-14-842] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 11/04/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The bisdioxopiperazine dexrazoxane (DRZ) prevents anthracycline-induced heart failure, but its clinical use is limited by uncertain cardioprotective mechanism and by concerns of interference with cancer response to anthracyclines and of long-term safety. METHODS We investigated the effects of DRZ on the stability of topoisomerases IIα (TOP2A) and IIβ (TOP2B) and on the DNA damage generated by poisoning these enzymes by the anthracycline doxorubicin (DOX). RESULTS DRZ given i.p. transiently depleted in mice the predominant cardiac isoform Top2b. The depletion was also seen in H9C2 cardiomyocytes and it was attenuated by mutating the bisdioxopiperazine binding site of TOP2B. Consistently, the accumulation of DOX-induced DNA double strand breaks (DSB) by wild-type, although not by mutant TOP2B, was reduced by DRZ. In contrast, the DRZ analogue ICRF-161, which is capable of iron chelation but not of TOP2B binding and cardiac protection, did not deplete TOP2B and did not prevent the accumulation of DOX-induced DSB. TOP2A, re-expressed in cultured cardiomyocytes by fresh serum, was depleted by DRZ along with TOP2B. DRZ depleted TOP2A also from fibrosarcoma-derived cells, but not from lung cancer-derived and human embryo-derived cells. DRZ-mediated TOP2A depletion reduced the accumulation of DOX-induced DSB. CONCLUSIONS Taken together, our data support a model of anthracycline-induced heart failure caused by TOP2B-mediated DSB and of its prevention by DRZ via TOP2B degradation rather than via iron chelation. The depletion of TOP2B and TOP2A suggests an explanation for the reported DRZ interference with cancer response to anthracyclines and for DRZ side-effects.
Collapse
Affiliation(s)
- Shiwei Deng
- Institute of Pharmacology, Medical Center of the University Mainz, Obere Zahlbacher Str, 67, D-55131 Mainz, Germany.
| | | | | | | | | | | | | |
Collapse
|
8
|
Onoda A, Hosoya O, Sano K, Kiyama K, Kimura H, Kawano S, Furuta R, Miyaji M, Tsutsui K, Tsutsui KM. Nuclear dynamics of topoisomerase IIβ reflects its catalytic activity that is regulated by binding of RNA to the C-terminal domain. Nucleic Acids Res 2014; 42:9005-20. [PMID: 25034690 PMCID: PMC4132749 DOI: 10.1093/nar/gku640] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
DNA topoisomerase II (topo II) changes DNA topology by cleavage/re-ligation cycle(s) and thus contributes to various nuclear DNA transactions. It is largely unknown how the enzyme is controlled in a nuclear context. Several studies have suggested that its C-terminal domain (CTD), which is dispensable for basal relaxation activity, has some regulatory influence. In this work, we examined the impact of nuclear localization on regulation of activity in nuclei. Specifically, human cells were transfected with wild-type and mutant topo IIβ tagged with EGFP. Activity attenuation experiments and nuclear localization data reveal that the endogenous activity of topo IIβ is correlated with its subnuclear distribution. The enzyme shuttles between an active form in the nucleoplasm and a quiescent form in the nucleolus in a dynamic equilibrium. Mechanistically, the process involves a tethering event with RNA. Isolated RNA inhibits the catalytic activity of topo IIβ in vitro through the interaction with a specific 50-residue region of the CTD (termed the CRD). Taken together, these results suggest that both the subnuclear distribution and activity regulation of topo IIβ are mediated by the interplay between cellular RNA and the CRD.
Collapse
Affiliation(s)
- Akihisa Onoda
- Department of Neurogenomics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Osamu Hosoya
- Department of Neurogenomics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Kuniaki Sano
- Department of Neurogenomics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Kazuko Kiyama
- Department of Neurogenomics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Hiroshi Kimura
- Laboratory of Biological Science, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shinji Kawano
- Department of Neurogenomics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Ryohei Furuta
- Department of Neurogenomics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Mary Miyaji
- Department of Neurogenomics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Ken Tsutsui
- Department of Neurogenomics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Kimiko M Tsutsui
- Department of Neurogenomics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| |
Collapse
|
9
|
Kim SO, Sakchaisri K, N. R. T, Soung NK, Jang JH, Kim YS, Lee KS, Kwon YT, Asami Y, Ahn JS, Erikson RL, Kim BY. STK295900, a dual inhibitor of topoisomerase 1 and 2, induces G(2) arrest in the absence of DNA damage. PLoS One 2013; 8:e53908. [PMID: 23349762 PMCID: PMC3551932 DOI: 10.1371/journal.pone.0053908] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 12/04/2012] [Indexed: 11/18/2022] Open
Abstract
STK295900, a small synthetic molecule belonging to a class of symmetric bibenzimidazoles, exhibits antiproliferative activity against various human cancer cell lines from different origins. Examining the effect of STK295900 in HeLa cells indicates that it induces G(2) phase arrest without invoking DNA damage. Further analysis shows that STK295900 inhibits DNA relaxation that is mediated by topoisomerase 1 (Top 1) and topoisomerase 2 (Top 2) in vitro. In addition, STK295900 also exhibits protective effect against DNA damage induced by camptothecin. However, STK295900 does not affect etoposide-induced DNA damage. Moreover, STK295900 preferentially exerts cytotoxic effect on cancer cell lines while camptothecin, etoposide, and Hoechst 33342 affected both cancer and normal cells. Therefore, STK295900 has a potential to be developed as an anticancer chemotherapeutic agent.
Collapse
Affiliation(s)
- Sun-Ok Kim
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, Cheongwon, Korea
- Department of Biochemistry, College of Natural Sciences, ChungNam National University, Yuseonggu, Daejeon, Korea
| | - Krisada Sakchaisri
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, Cheongwon, Korea
| | - Thimmegowda N. R.
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, Cheongwon, Korea
| | - Nak Kyun Soung
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, Cheongwon, Korea
| | - Jae-Hyuk Jang
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, Cheongwon, Korea
| | - Young Sang Kim
- Department of Biochemistry, College of Natural Sciences, ChungNam National University, Yuseonggu, Daejeon, Korea
| | - Kyung Sang Lee
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yong Tae Kwon
- World Class University (WCU), Graduate School of Convergence Science and Technology and College of Medicine, Seoul National University, Seoul, Korea
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, School of Pharmacy, Universigy of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Yukihiro Asami
- Chemical Biology Department, RIKEN Advanced Science Institute, Wako-shi, Saitama, Japan
| | - Jong Seog Ahn
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, Cheongwon, Korea
| | - Raymond Leo Erikson
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Bo Yeon Kim
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, Cheongwon, Korea
| |
Collapse
|
10
|
Correa-Basurto J, Ramos-Morales FR, Matus MH, Rosales-Hernández MC, Mancilla-Percino T, Trujillo-Ferrara J, Ilizaliturri-Flores I. Docking and DFT Studies to explore the Topoisomerase II ATP Pocket employing 3-Substituted 2,6-Piperazindiones for drug design. MOLECULAR SIMULATION 2012. [DOI: 10.1080/08927022.2012.690877] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
11
|
Greer Card DA, Sierant ML, Davey S. Rad9A is required for G2 decatenation checkpoint and to prevent endoreduplication in response to topoisomerase II inhibition. J Biol Chem 2010; 285:15653-15661. [PMID: 20305300 DOI: 10.1074/jbc.m109.096156] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Rad9A checkpoint protein interacts with and is required for proper localization of topoisomerase II-binding protein 1 (TopBP1) in response to DNA damage. Topoisomerase II (Topo II), another binding partner of TopBP1, decatenates sister chromatids that become intertwined during replication. Inhibition of Topo II by ICRF-193 (meso-4,4'-(3,2-butanediyl)-bis-(2,6-piperazinedione)), a catalytic inhibitor that does not induce DNA double-strand breaks, causes a mitotic delay known as the G(2) decatenation checkpoint. Here, we demonstrate that this checkpoint, dependent on ATR and BRCA1, also requires Rad9A. Analysis of different Rad9A phosphorylation mutants suggests that these modifications are required to prevent endoreduplication and to maintain decatenation checkpoint arrest. Furthermore, Rad9A Ser(272) is phosphorylated in response to Topo II inhibition. ICRF-193 treatment also causes phosphorylation of an effector kinase downstream of Rad9A in the DNA damage checkpoint pathway, Chk2, at Thr(68). Both of these sites are major targets of phosphorylation by the ATM kinase, although it has previously been shown that ATM is not required for the decatenation checkpoint. Examination of ataxia telangectasia (A-T) cells demonstrates that ATR does not compensate for ATM loss, suggesting that phosphorylation of Rad9A and Chk2 by ATM plays an additional role in response to Topo II inhibition than checkpoint function alone. Finally, we have shown that murine embryonic stem cells deficient for Rad9A have higher levels of catenated mitotic spreads than wild-type counterparts. Together, these results emphasize the importance of Rad9A in preserving genomic integrity in the presence of catenated chromosomes and all types of DNA aberrations.
Collapse
Affiliation(s)
- Deborah A Greer Card
- Cancer Research Institute, Division of Cancer Biology and Genetics, Queen's University, Kingston, Ontario K7L 3N6, Canada; Departments of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Megan L Sierant
- Cancer Research Institute, Division of Cancer Biology and Genetics, Queen's University, Kingston, Ontario K7L 3N6, Canada; Departments of Biochemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Scott Davey
- Cancer Research Institute, Division of Cancer Biology and Genetics, Queen's University, Kingston, Ontario K7L 3N6, Canada; Departments of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario K7L 3N6, Canada; Departments of Biochemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada; Departments of Oncology, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| |
Collapse
|
12
|
Persistence of DNA threads in human anaphase cells suggests late completion of sister chromatid decatenation. Chromosoma 2007; 117:123-35. [PMID: 17989990 PMCID: PMC2755729 DOI: 10.1007/s00412-007-0131-7] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 10/11/2007] [Accepted: 10/12/2007] [Indexed: 11/17/2022]
Abstract
PICH (Plk1-interacting checkpoint helicase) was recently identified as an essential component of the spindle assembly checkpoint and shown to localize to kinetochores, inner centromeres, and thin threads connecting separating chromosomes even during anaphase. In this paper, we have used immuno-fiber fluorescence in situ hybridization and chromatin-immunoprecipitation to demonstrate that PICH associates with centromeric chromatin during anaphase. Furthermore, by careful analysis of PICH-positive anaphase threads through FISH as well as bromo-deoxyurdine and CREST labeling, we strengthen the evidence that these threads comprise mainly alphoid centromere deoxyribonucleic acid. Finally, by timing the addition of ICRF-193 (a specific inhibitor of topoisomerase-II alpha) to cells synchronized in anaphase, we demonstrate that topoisomerase activity is required specifically to resolve PICH-positive threads during anaphase (as opposed to being required to prevent the formation of such threads during earlier cell cycle stages). These data indicate that PICH associates with centromeres during anaphase and that most PICH-positive threads evolve from inner centromeres as these stretch in response to tension. Moreover, they show that topoisomerase activity is required during anaphase for the resolution of PICH-positive threads, implying that the complete separation of sister chromatids occurs later than previously assumed.
Collapse
|
13
|
Gilroy KL, Leontiou C, Padget K, Lakey JH, Austin CA. mAMSA resistant human topoisomerase IIbeta mutation G465D has reduced ATP hydrolysis activity. Nucleic Acids Res 2006; 34:1597-607. [PMID: 16549872 PMCID: PMC1405819 DOI: 10.1093/nar/gkl057] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Type II Human DNA Topoisomerases (topos II) play an essential role in DNA replication and transcription and are important targets for cancer chemotherapeutic drugs. Topoisomerase II causes transient double-strand breaks in DNA, forming a gate through which another double helix is passed, and acts as a DNA dependent ATPase. Mutations in topoII have been linked to atypical multi-drug resistance. Both human Topoisomerase II isoforms, α and β, are targeted by amsacrine. We have used a forced molecular evolution approach to identify mutations conferring resistance to acridines. Here we report mutation βG465D, which was selected with mAMSA and DACA and is cross-resistant to etoposide, ellipticine and doxorubicin. Resistance to mAMSA appears to decrease over time indicating a previously unreported resistance mechanism. G465D lies within the B′ domain in the region that contacts the cleaved gate helix. There is a 3-fold decrease in ATP affinity and ATP hydrolysis and an altered requirement for magnesium in decatenation assays. The decatenation rate is decreased for the mutated G465D protein. And we report for the first time the use of fluorescence anisotropy with intact human topoisomerase II.
Collapse
Affiliation(s)
- Kathryn L Gilroy
- The Institute for Cell and Molecular Biosciences, The University of Newcastle upon Tyne, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | | | | | | | | |
Collapse
|
14
|
Sorensen TK, Grauslund M, Jensen PB, Sehested M, Jensen LH. Separation of bisdioxopiperazine- and vanadate resistance in topoisomerase II. Biochem Biophys Res Commun 2005; 334:853-60. [PMID: 16053917 DOI: 10.1016/j.bbrc.2005.06.177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Accepted: 06/26/2005] [Indexed: 11/16/2022]
Abstract
Bisdioxopiperazines are inhibitors of topoisomerase II trapping this protein as a closed clamp on DNA with concomitant inhibition of its ATPase activity. Here, we analyse the effects of N-terminal mutations identified in bisdioxopiperazine-resistant cells on ATP hydrolysis by this enzyme. We present data consistent with bisdioxopiperazine resistance arising by two different mechanisms; one involving reduced stability of the N-terminal clamp (the N-gate) and one involving reduced affinity for bisdioxopiperazines. Vanadate is a general inhibitor of type P ATPases and has recently been demonstrated to lock topoisomerase II as a salt-stable closed clamp on DNA analogous to the bisdioxopiperazines. We show that a R162K mutation in human topoisomerase II alpha renders this enzyme highly resistant towards vanadate while having little effect on bisdioxopiperazine sensitivity. The implications of these findings for the mechanism of action of bisdioxopiperazines versus vanadate with topoisomerase II are discussed.
Collapse
Affiliation(s)
- Tina K Sorensen
- Department of Pathology, Diagnostic Centre RH5444, Copenhagen University Hospital, Frederik V's Vej 11, DK-2100 Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
15
|
Ciesielska E, Studzian K, Wasowska M, Oszczapowicz I, Szmigiero L. Cytotoxicity, cellular uptake and DNA damage by daunorubicin and its new analogues with modified daunosamine moiety. Cell Biol Toxicol 2005; 21:139-47. [PMID: 16328893 DOI: 10.1007/s10565-005-0142-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Accepted: 06/29/2005] [Indexed: 11/27/2022]
Abstract
Daunorubicin (DRB) and its two analogues containing a trisubstituted amidino group at the C-3' position of the daunosamine moiety have been compared regarding their cytotoxic activity, cellular uptake, subcellular localization and DNA damaging properties. An analogue containing in the amidino group a morpholine moiety (DRBM) as well as an analogue with a hexamethyleneimine moiety (DRBH), tested against cultured L1210 cells, exhibited lower cytotoxicity then DRB. The decrease of cytotoxic activity was not related to cellular uptake and subcellular localization of drugs. Although all tested drugs were active in the induction of DNA breaks and DNA-protein crosslinks, they differed in the mechanism of induction of DNA lesions. DRB produced DNA breaks mediated solely by topoisomerase II, whereas DRBM and DRBH induced two types of DNA breaks by two separate processes. The first is related to the inhibition of topoisomerase II and the second presumably reflects a covalent binding of drug metabolites to DNA. It is hypothesized that the replacement of the primary amino group (-NH(2)) at the C-3' position of the daunosamine moiety by a trisubstituted amidino group (-N=CH-NRR) may be a route to the synthesis of anthracycline derivatives with enhanced ability to form covalent adducts to DNA.
Collapse
Affiliation(s)
- E Ciesielska
- Department of Molecular Pharmacology, Medical University of Lodz, Poland
| | | | | | | | | |
Collapse
|
16
|
Dupont P, Aubry A, Cambau E, Gutmann L. Contribution of the ATP binding site of ParE to susceptibility to novobiocin and quinolones in Streptococcus pneumoniae. J Bacteriol 2005; 187:1536-40. [PMID: 15687222 PMCID: PMC545609 DOI: 10.1128/jb.187.4.1536-1540.2005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Streptococcus pneumoniae, an H103Y substitution in the ATP binding site of the ParE subunit of topoisomerase IV was shown to confer quinolone resistance and hypersensitivity to novobiocin when associated with an S84F change in the A subunit of DNA gyrase. We reconstituted in vitro the wild-type topoisomerase IV and its ParE mutant. The ParE mutant enzyme showed a decreased activity for decatenation at subsaturating ATP levels and was more sensitive to inhibition by novobiocin but was as sensitive to quinolones. These results show that the ParE alteration H103Y alone is not responsible for quinolone resistance and agree with the assumption that it facilitates the open conformation of the ATP binding site that would lead to novobiocin hypersensitivity and to a higher requirement of ATP.
Collapse
Affiliation(s)
- Philippe Dupont
- INSERM E0004, Laboratoire de Recherche Moléculaire sur les Antibiotiques, 15, rue de l'Ecole de Médecine, Université Paris VI, 75270 Paris Cedex 06, France
| | | | | | | |
Collapse
|
17
|
Vilain N, Tsai-Pflugfelder M, Benoit A, Gasser SM, Leroy D. Modulation of drug sensitivity in yeast cells by the ATP-binding domain of human DNA topoisomerase IIalpha. Nucleic Acids Res 2003; 31:5714-22. [PMID: 14500835 PMCID: PMC206448 DOI: 10.1093/nar/gkg737] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Epipodophyllotoxins are effective antitumour drugs that trap eukaryotic DNA topoisomerase II in a covalent complex with DNA. Based on DNA cleavage assays, the mode of interaction of these drugs was proposed to involve amino acid residues of the catalytic site. An in vitro binding study, however, revealed two potential binding sites for etoposide within human DNA topoisomerase IIalpha (htopoIIalpha), one in the catalytic core of the enzyme and one in the ATP-binding N-terminal domain. Here we have tested how N-terminal mutations that reduce the affinity of the site for etoposide or ATP affect the sensitivity of yeast cells to etoposide. Surprisingly, when introduced into full-length enzymes, mutations that lower the drug binding capacity of the N-terminal domain in vitro render yeast more sensitive to epipodophyllotoxins. Consistently, when the htopoIIalpha N-terminal domain alone is overexpressed in the presence of yeast topoII, cells become more resistant to etoposide. Point mutations that weaken etoposide binding eliminate this resistance phenotype. We argue that the N-terminal ATP-binding pocket competes with the active site of the holoenzyme for binding etoposide both in cis and in trans with different outcomes, suggesting that each topoisomerase II monomer has two non-equivalent drug-binding sites.
Collapse
Affiliation(s)
- Nathalie Vilain
- Swiss Institute for Experimental Cancer Research, Ch. des Boveresses 155, CH-1066 Epalinges s/Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
18
|
Classen S, Olland S, Berger JM. Structure of the topoisomerase II ATPase region and its mechanism of inhibition by the chemotherapeutic agent ICRF-187. Proc Natl Acad Sci U S A 2003; 100:10629-34. [PMID: 12963818 PMCID: PMC196855 DOI: 10.1073/pnas.1832879100] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Type IIA topoisomerases both manage the topological state of chromosomal DNA and are the targets of a variety of clinical agents. Bisdioxopiperazines are anticancer agents that associate with ATP-bound eukaryotic topoisomerase II (topo II) and convert the enzyme into an inactive, salt-stable clamp around DNA. To better understand both topo II and bisdioxopiperazine function, we determined the structures of the adenosine 5'-[beta,gamma-imino]-triphosphate-bound yeast topo II ATPase region (ScT2-ATPase) alone and complexed with the bisdioxopiperazine ICRF-187. The drug-free form of the protein is similar in overall fold to the equivalent region of bacterial gyrase but unexpectedly displays significant conformational differences. The ternary drug-bound complex reveals that ICRF-187 acts by an unusual mechanism of inhibition in which the drug does not compete for the ATP-binding pocket, but bridges and stabilizes a transient dimer interface between two ATPase protomers. Our data explain why bisdioxopiperazines target ATP-bound topo II, provide a structural rationale for the effects of certain drug-resistance mutations, and point to regions of bisdioxopiperazines that might be modified to improve or alter drug specificity.
Collapse
Affiliation(s)
- Scott Classen
- Department of Molecular and Cell Biology, 237 Hildebrand Hall, University of California, Berkeley, CA 94720-3206, USA
| | | | | |
Collapse
|
19
|
Renodon-Cornière A, Sørensen TK, Jensen PB, Nitiss JL, Søkilde B, Sehested M, Jensen LH. Probing the role of linker substituents in bisdioxopiperazine analogs for activity against wild-type and mutant human topoisomerase II alpha. Mol Pharmacol 2003; 63:1159-68. [PMID: 12695544 DOI: 10.1124/mol.63.5.1159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The bisdioxopiperazines are catalytic inhibitors of eukaryotic type II DNA topoisomerases capable of trapping these enzymes as a salt-stable closed-clamp complex on circular DNA. The various bisdioxopiperazine analogs differ from each other because of structural differences in the linker connecting the two dioxopiperazine rings. Although the composition of this linker region has been found to be important for potency, the structural basis for this is largely unknown. To elucidate the role of the linker region in drug action, we have analyzed the effect of different linker substituents in otherwise identical analogs by studying their interaction with wild-type and mutant human topoisomerase II alpha. Two mutations, L169I and R162Q, displayed differential sensitivity toward closely related analogs, suggesting that the linker region in these compounds plays a highly specific role in protein drug interaction. The finding that the L169I mutation, which probably represents a subtle structural change, was sufficient to confer resistance further emphases the importance of this region of the protein for bisdioxopiperazine inhibition of topoisomerase II. Comparing the sensitivity profiles of different bisdioxopiperazines against wild-type and mutant proteins with that of mitindomide, we observed a spectrum of sensitivity closely resembling that of ICRF-154, a bisdioxopiperazine with no linker substituents. We discuss the implications of these observations for the understanding of the mechanism of bisdioxopiperazine action on topoisomerase II.
Collapse
|
20
|
Skouboe C, Bjergbaek L, Oestergaard VH, Larsen MK, Knudsen BR, Andersen AH. A human topoisomerase II alpha heterodimer with only one ATP binding site can go through successive catalytic cycles. J Biol Chem 2003; 278:5768-74. [PMID: 12480934 DOI: 10.1074/jbc.m210332200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic DNA topoisomerase II is a dimeric nuclear enzyme essential for DNA metabolism and chromosome dynamics. It changes the topology of DNA by coupling binding and hydrolysis of two ATP molecules to the transport of one DNA duplex through a temporary break introduced in another. During this process the structurally and functionally complex enzyme passes through a cascade of conformational changes, which requires intra- and intersubunit communication. To study the importance of ATP binding and hydrolysis in relation to DNA strand transfer, we have purified and characterized a human topoisomerase II alpha heterodimer with only one ATP binding site. The heterodimer was able to relax supercoiled DNA, although less efficiently than the wild type enzyme. It furthermore possessed a functional N-terminal clamp and was sensitive to ICRF-187. This demonstrates that human topoisomerase II alpha can pass through all the conformations required for DNA strand passage and enzyme resetting with binding and hydrolysis of only one ATP. However, the heterodimer lacked the normal stimulatory effect of DNA on ATP binding and hydrolysis as well as the stimulatory effect of ATP on DNA cleavage. The results can be explained in a model, where efficient catalysis requires an extensive communication between the second ATP and the DNA segment to be cleaved.
Collapse
Affiliation(s)
- Camilla Skouboe
- Department of Molecular Biology, University of Aarhus, C. F. Møllers Allé, Building 130, Arhus C 8000, Denmark
| | | | | | | | | | | |
Collapse
|
21
|
Wessel I, Jensen LH, Renodon-Corniere A, Sorensen TK, Nitiss JL, Jensen PB, Sehested M. Human small cell lung cancer NYH cells resistant to the bisdioxopiperazine ICRF-187 exhibit a functional dominant Tyr165Ser mutation in the Walker A ATP binding site of topoisomerase II alpha. FEBS Lett 2002; 520:161-6. [PMID: 12044890 DOI: 10.1016/s0014-5793(02)02805-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bisdioxopiperazine anti-cancer agents are catalytic inhibitors of topoisomerase II which by unknown means lock the enzyme in a closed clamp form and inhibit its ATPase activity. In order to demarcate a putative pharmacophore, we here describe a novel Tyr165Ser mutation in the enzyme's Walker A ATP binding site leading to specific bisdioxopiperazine resistance when transformed into a temperature-conditional yeast system. The Tyr165Ser mutation differed from a previously described Arg162Gln by being heterozygous and by purified Tyr165Ser enzyme being drug-resistant in a kinetoplast DNA decatenation enzymatic assay. This suggested dominant nature of Tyr165Ser was supported by co-transformation studies in yeast of plasmids carrying wild type and mutant genes. These results enable a model of the bisdioxopiperazine pharmacophore using the proposed asymmetric ATP hydrolysis of the enzyme.
Collapse
MESH Headings
- Adenosine Triphosphate/metabolism
- Amino Acid Substitution
- Antigens, Neoplasm
- Antineoplastic Agents/pharmacology
- Binding Sites/genetics
- Carcinoma, Small Cell/enzymology
- Carcinoma, Small Cell/genetics
- Carcinoma, Small Cell/pathology
- Cell Division/drug effects
- Cell Division/genetics
- DNA Topoisomerases, Type II/genetics
- DNA Topoisomerases, Type II/metabolism
- DNA-Binding Proteins
- Dose-Response Relationship, Drug
- Drug Resistance, Fungal/genetics
- Drug Resistance, Neoplasm/genetics
- Genotype
- Humans
- Lung Neoplasms/enzymology
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Mutation
- Protein Binding
- Razoxane/pharmacology
- Saccharomyces cerevisiae/drug effects
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/growth & development
- Transformation, Genetic
- Tumor Cells, Cultured/drug effects
Collapse
Affiliation(s)
- Irene Wessel
- Department of Pathology, Laboratory Center, Rigshospitalet 5431, DK-2100 Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
22
|
Muñoz P, Baus F, Piette J. Ku antigen is required to relieve G2 arrest caused by inhibition of DNA topoisomerase II activity by the bisdioxopiperazine ICRF-193. Oncogene 2001; 20:1990-9. [PMID: 11360183 DOI: 10.1038/sj.onc.1204262] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2000] [Revised: 01/09/2001] [Accepted: 01/15/2001] [Indexed: 11/09/2022]
Abstract
Ku antigen is necessary for DNA double-strand break (DSB) repair through its ability to bind DNA ends with high affinity and to recruit the catalytic subunit of DNA-PK to the DSBs. Ku-deficient cells are hypersensitive to agents causing DSBs in DNA but also to the DNA topoisomerase II (topo II) inhibitor ICRF-193, which does not induce DSBs. This suggests a new role of Ku antigen, that is independent of DSB repair by DNA-PK. Here we characterize the basis for the hypersensitivity of Ku-deficient cells to ICRF-193. Chromosome condensation and segregation, which are dependent on topo II, but also the catalytic activity of topo II in late S-G2 were inhibited to a comparable extent when ICRF-193 was applied to Ku-deficient cells or wild-type cells. However, mutant cells arrested in G2 by ICRF-193 treatment were unable to progress into M phase upon drug removal, although drug-trapped topo II complexes were removed from DNA and the two isoforms of topo II recovered their catalytic activity as in wild-type cells. The reversibility of G2 arrest was recovered by complementation of mutant cells with a human Ku86 cDNA. Notably, chromosome condensation was abnormal in Ku-deficient cells after suppression of the G2 arrest by caffeine, even in the absence of ICRF-193. These results reflect the involvement of Ku-antigen in the cellular response to topo II inhibition, more particularly in relieving G2 arrest caused by topo II inhibition in late S/G2 and the subsequent recovery of chromosome condensation.
Collapse
Affiliation(s)
- P Muñoz
- Institut de Génétique Moléculaire de Montpellier, UMR 5535, IFR 24, CNRS, 1919 route de Mende, 34293 Montpellier Cedex 5, France
| | | | | |
Collapse
|