1
|
Mishra DK, Popovski D, Morris SM, Bondoc A, Senthil Kumar S, Girard EJ, Rutka J, Fouladi M, Huang A, Olson JM, Drissi R. Preclinical pediatric brain tumor models for immunotherapy: Hurdles and a way forward. Neuro Oncol 2024; 26:226-235. [PMID: 37713135 PMCID: PMC10836771 DOI: 10.1093/neuonc/noad170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Indexed: 09/16/2023] Open
Abstract
Brain tumors are the most common solid tumor in children and the leading cause of cancer-related deaths. Over the last few years, improvements have been made in the diagnosis and treatment of children with Central Nervous System tumors. Unfortunately, for many patients with high-grade tumors, the overall prognosis remains poor. Lower survival rates are partly attributed to the lack of efficacious therapies. The advent and success of immune checkpoint inhibitors (ICIs) in adults have sparked interest in investigating the utility of these therapies alone or in combination with other drug treatments in pediatric patients. However, to achieve improved clinical outcomes, the establishment and selection of relevant and robust preclinical pediatric high-grade brain tumor models is imperative. Here, we review the information that influenced our model selection as we embarked on an international collaborative study to test ICIs in combination with epigenetic modifying agents to enhance adaptive immunity to treat pediatric brain tumors. We also share challenges that we faced and potential solutions.
Collapse
Affiliation(s)
- Deepak Kumar Mishra
- Center for Childhood Cancer Research, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Dean Popovski
- Arthur and Sonia Labatt Brain Tumor Research Centre, Division of Haematology/Oncology, Hospital for Sick Children, Toronto, Onatario, Canada
| | - Shelli M Morris
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Andrew Bondoc
- Arthur and Sonia Labatt Brain Tumor Research Centre, Division of Haematology/Oncology, Hospital for Sick Children, Toronto, Onatario, Canada
| | - Shiva Senthil Kumar
- Center for Childhood Cancer Research, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Emily J Girard
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - James Rutka
- Division of Neurosurgery, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Maryam Fouladi
- Pediatric Neuro-Oncology Program, Nationwide Children’s Hospital, Columbus, Ohio, USA
- The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Annie Huang
- Arthur and Sonia Labatt Brain Tumor Research Centre, Division of Haematology/Oncology, Hospital for Sick Children, Toronto, Onatario, Canada
| | - James M Olson
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Rachid Drissi
- Center for Childhood Cancer Research, Nationwide Children’s Hospital, Columbus, Ohio, USA
- The Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
2
|
Meng FW, Murphy KE, Makowski CE, Delatte B, Murphy PJ. Competition for H2A.Z underlies the developmental impacts of repetitive element de-repression. Development 2023; 150:dev202338. [PMID: 37938830 PMCID: PMC10651094 DOI: 10.1242/dev.202338] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/10/2023] [Indexed: 11/10/2023]
Abstract
The histone variant H2A.Z is central to early embryonic development, determining transcriptional competency through chromatin regulation of gene promoters and enhancers. In addition to genic loci, we find that H2A.Z resides at a subset of evolutionarily young repetitive elements, including DNA transposons, long interspersed nuclear elements and long terminal repeats, during early zebrafish development. Moreover, increases in H2A.Z occur when repetitive elements become transcriptionally active. Acquisition of H2A.Z corresponds with a reduction in the levels of the repressive histone modification H3K9me3 and a moderate increase in chromatin accessibility. Notably, however, de-repression of repetitive elements also leads to a significant reduction in H2A.Z over non-repetitive genic loci. Genic loss of H2A.Z is accompanied by transcriptional silencing at adjacent coding sequences, but remarkably, these impacts are mitigated by augmentation of total H2A.Z protein via transgenic overexpression. Our study reveals that levels of H2A.Z protein determine embryonic sensitivity to de-repression of repetitive elements, that repetitive elements can function as a nuclear sink for epigenetic factors and that competition for H2A.Z greatly influences overall transcriptional output during development. These findings uncover general mechanisms in which counteractive biological processes underlie phenotypic outcomes.
Collapse
Affiliation(s)
- Fanju W. Meng
- University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | - Benjamin Delatte
- Advanced Research Laboratory, Active Motif, 1914 Palomar Oaks Way STE 150, Carlsbad, CA 92008, USA
| | | |
Collapse
|
3
|
Barone P, Patel S. Myelodysplastic syndrome: Approach to diagnosis in the era of personalized medicine. Semin Diagn Pathol 2023; 40:172-181. [PMID: 37121781 DOI: 10.1053/j.semdp.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/02/2023]
Affiliation(s)
- Paul Barone
- NewYork-Presbyterian Hospital, Weill Cornell Campus, United States of America.
| | - Sanjay Patel
- Weill Cornell Medicine, United States of America
| |
Collapse
|
4
|
Sahafnejad Z, Ramazi S, Allahverdi A. An Update of Epigenetic Drugs for the Treatment of Cancers and Brain Diseases: A Comprehensive Review. Genes (Basel) 2023; 14:genes14040873. [PMID: 37107631 PMCID: PMC10137918 DOI: 10.3390/genes14040873] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/28/2022] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Epigenetics has long been recognized as a significant field in biology and is defined as the investigation of any alteration in gene expression patterns that is not attributed to changes in the DNA sequences. Epigenetic marks, including histone modifications, non-coding RNAs, and DNA methylation, play crucial roles in gene regulation. Numerous studies in humans have been carried out on single-nucleotide resolution of DNA methylation, the CpG island, new histone modifications, and genome-wide nucleosome positioning. These studies indicate that epigenetic mutations and aberrant placement of these epigenetic marks play a critical role in causing the disease. Consequently, significant development has occurred in biomedical research in identifying epigenetic mechanisms, their interactions, and changes in health and disease conditions. The purpose of this review article is to provide comprehensive information about the different types of diseases caused by alterations in epigenetic factors such as DNA methylation and histone acetylation or methylation. Recent studies reported that epigenetics could influence the evolution of human cancer via aberrant methylation of gene promoter regions, which is associated with reduced gene function. Furthermore, DNA methyltransferases (DNMTs) in the DNA methylation process as well as histone acetyltransferases (HATs)/histone deacetylases (HDACs) and histone methyltransferases (HMTs)/demethylases (HDMs) in histone modifications play important roles both in the catalysis and inhibition of target gene transcription and in many other DNA processes such as repair, replication, and recombination. Dysfunction in these enzymes leads to epigenetic disorders and, as a result, various diseases such as cancers and brain diseases. Consequently, the knowledge of how to modify aberrant DNA methylation as well as aberrant histone acetylation or methylation via inhibitors by using epigenetic drugs can be a suitable therapeutic approach for a number of diseases. Using the synergistic effects of DNA methylation and histone modification inhibitors, it is hoped that many epigenetic defects will be treated in the future. Numerous studies have demonstrated a link between epigenetic marks and their effects on brain and cancer diseases. Designing appropriate drugs could provide novel strategies for the management of these diseases in the near future.
Collapse
Affiliation(s)
- Zahra Sahafnejad
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran P.O. Box 14115-111, Iran
| | - Shahin Ramazi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran P.O. Box 14115-111, Iran
| | - Abdollah Allahverdi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran P.O. Box 14115-111, Iran
| |
Collapse
|
5
|
Ahmadi BM, Noori A, Ashtiani MK, Rajabi S, Talkhabi M. 5-Azacytidine incorporated skeletal muscle-derived hydrogel promotes rat skeletal muscle regeneration. Cells Dev 2023; 173:203826. [PMID: 36739913 DOI: 10.1016/j.cdev.2023.203826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Decellularized skeletal muscle is a promising biomaterial for muscle regeneration due to the mimicking of the natural microenvironment. Previously, it has been reported that 5-Azacytidine (5-Aza), a DNA methyltransferase inhibitor, induces myogenesis in different types of stem cells. In the current study, we investigated the effect of 5-Aza incorporated muscle-derived hydrogel on the viability and proliferation of muscle-derived stem cells (MDSCs) in vitro and muscle regeneration in vivo. Wistar rat skeletal muscles were decellularized using a physico-chemical protocol. The decellularized tissue was analyzed using SEM, histological staining and evaluation of DNA content. Then, muscle-derived hydrogel was made from Pepsin-digested decellularized muscle tissues. 5-Aza was physically adsorbed in prepared hydrogels. Then, MDSCs were cultured on hydrogels with/without 5-Aza, and their proliferation and cell viability were determined using LIVE/DEAD and DAPI staining. Moreover, myectomy lesions were done in rat femoris muscles, muscle-derived hydroges with/without 5-Aza were injected to the myectomy sites, and histological evaluation was performed after three weeks. The analysis of decellularized muscle tissues showed that they maintained extracellular matrix components of native muscles, while they lacked DNA. LIVE/DEAD and DAPI staining showed that the hydrogel containing 5-Aza supported MDSCs viability. Histological analysis of myectomy sites showed an improvement in muscle regeneration after administration of 5-Aza incorporated hydrogel. These findings suggest that the combination of 5-Aza with skeletal muscle hydrogel may serve as an alternative treatment option to improve the regeneration of injured muscle tissue.
Collapse
Affiliation(s)
- Behnaz Mirza Ahmadi
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Afshin Noori
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohammad Kazemi Ashtiani
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sarah Rajabi
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Mahmood Talkhabi
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
6
|
Kausar S, Abbas MN, Cui H. A review on the DNA methyltransferase family of insects: Aspect and prospects. Int J Biol Macromol 2021; 186:289-302. [PMID: 34237376 DOI: 10.1016/j.ijbiomac.2021.06.205] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/22/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022]
Abstract
The DNA methyltransferase family contains a conserved set of DNA-modifying enzymatic proteins. They are responsible for epigenetic gene modulation, such as transcriptional silencing, transcription activation, and post-transcriptional modulation. Recent research has revealed that the canonical DNA methyltransferases (DNMTs) biological roles go beyond their traditional functions of establishing and maintaining DNA methylation patterns. Although a complete DNA methylation toolkit is absent in most insect orders, recent evidence indicates the de novo DNA methylation and maintenance function remain conserved. Studies using various molecular approaches provided evidence that DNMTs are multi-functional proteins. However, still in-depth studies on their biological role lack due to the least studied area in insects. Here, we review the DNA methylation toolkit of insects, focusing on recent research on various insect orders, which exhibit DNA methylation at different levels, and for which DNMTs functional studies have become available in recent years. We survey research on the potential roles of DNMTs in the regulation of gene transcription in insect species. DNMTs participate in different physiological processes by interacting with other epigenetic factors. Future studies on insect's DNMTs will benefit to understand developmental processes, responses to various stimuli, and adaptability of insects to different environmental conditions.
Collapse
Affiliation(s)
- Saima Kausar
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
7
|
Wang Y, Xie Q, Tan H, Liao M, Zhu S, Zheng LL, Huang H, Liu B. Targeting cancer epigenetic pathways with small-molecule compounds: Therapeutic efficacy and combination therapies. Pharmacol Res 2021; 173:105702. [PMID: 34102228 DOI: 10.1016/j.phrs.2021.105702] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/07/2021] [Accepted: 05/29/2021] [Indexed: 02/08/2023]
Abstract
Epigenetics mainly refers to covalent modifications to DNA or histones without affecting genomes, which ultimately lead to phenotypic changes in cells or organisms. Given the abundance of regulatory targets in epigenetic pathways and their pivotal roles in tumorigenesis and drug resistance, the development of epigenetic drugs holds a great promise for the current cancer therapy. However, lack of potent, selective, and clinically tractable small-molecule compounds makes the strategy to target cancer epigenetic pathways still challenging. Therefore, this review focuses on epigenetic pathways, small molecule inhibitors targeting DNA methyltransferase (DNMT) and small molecule inhibitors targeting histone modification (the main regulatory targets are histone acetyltransferases (HAT), histone deacetylases (HDACs) and histone methyltransferases (HMTS)), as well as the combination strategies of the existing epigenetic therapeutic drugs and more new therapies to improve the efficacy, which will shed light on a new clue on discovery of more small-molecule drugs targeting cancer epigenetic pathways as promising strategies in the future.
Collapse
Affiliation(s)
- Yi Wang
- Health Management Center, Sichuan Provincial People' Hospital, University of Electronic Science and Technology of China, Chengdu 610072, PR China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, PR China
| | - Qiang Xie
- Department of Stomatology, Sichuan Provincial People' Hospital, University of Electronic Science and Technology of China, Chengdu 610072, PR China
| | - Huidan Tan
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, PR China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Minru Liao
- Department of Stomatology, Sichuan Provincial People' Hospital, University of Electronic Science and Technology of China, Chengdu 610072, PR China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Shiou Zhu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Ling-Li Zheng
- Department of Pharmacy, The First Affiliated Hospital of Chengdu Medical College, No. 278, Baoguang Rd, Xindu Region, Chengdu 610500, PR China.
| | - Haixia Huang
- Oral & Maxillofacial Reconstruction and Regeneration Laboratory, Southwest Medical University, Luzhou, 646000, PR China; Department of Prosthodontics, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, 646000, PR China.
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
8
|
Weyerer V, Strissel PL, Stöhr C, Eckstein M, Wach S, Taubert H, Brandl L, Geppert CI, Wullich B, Cynis H, Beckmann MW, Seliger B, Hartmann A, Strick R. Endogenous Retroviral-K Envelope Is a Novel Tumor Antigen and Prognostic Indicator of Renal Cell Carcinoma. Front Oncol 2021; 11:657187. [PMID: 33968761 PMCID: PMC8100683 DOI: 10.3389/fonc.2021.657187] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Renal cell carcinoma (RCC) is one of the ten most common cancers for men and women with an approximate 75% overall 5-year survival. Sixteen histological tumor subtypes exist and the most common are papillary, chromophobe and clear cell renal cell carcinoma (ccRCC) representing 85% of all RCC. Although epigenetically silenced, endogenous retroviral (ERV) genes become activated in tumors and function to ignite immune responses. Research has intensified to understand ERV protein function and their role as tumor antigens and targets for cancer (immune) therapy. ERV-K env is overexpressed and implicated as a therapeutic target for breast cancer, however studies in RCC are limited. In this investigation a human RCC tissue microarray (TMA) (n=374) predominantly consisting of the most common histological tumor subtypes was hybridized with an ERV-K env antibody and correlated with patient clinical data. TMA results showed the highest amount of ERV-K env protein expression and the strongest significant membrane expression in ccRCC versus other RCC subtypes. High ERV-K env total protein expression of all tumor subtypes significantly correlated with low tumor grading and a longer disease specific survival using multivariable analyses. Cell proliferation and invasion were assayed using the kidney cell lines HEK293 with wild-type p53 and a ccRCC cell line MZ1257RC mutated for p53. Transfecting these cell lines with a codon optimized ERV-K113 env overexpressing CMV vector was performed with or without 5’-Aza-2’-deoxycytidine (Aza) treatment to sustain promoter de-methylation. MZ1257RC showed induction of ERV-K113 expression and significantly increased both proliferation and invasion in the presence or absence of Aza. HEK293 cells demonstrated a restriction of ERV-K113 env expression and invasion with no changes in proliferation in the absence of Aza. However, in the presence of Aza despite increased ERV-K113 env expression, an inhibition of HEK293 proliferation and a further restriction of invasion was found. This study supports ERV-K env as a single prognostic indicator for better survival of RCC, which we propose represents a new tumor antigen. In addition, ERV-K env significantly regulates proliferation and invasion depending on p53 status and Aza treatment.
Collapse
Affiliation(s)
- Veronika Weyerer
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen, Germany
| | - Pamela L Strissel
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen, Germany.,Department of Gynecology and Obstetrics, University Hospital Erlangen, Comprehensive Cancer Center, European Metropolitan Area Erlangen-Nuremberg (CCC ER-EMN), Friedrich-Alexander-University Erlangen-Nuernberg, Erlangen, Germany.,Adjunct Affiliation With Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Christine Stöhr
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen, Germany
| | - Markus Eckstein
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen, Germany
| | - Sven Wach
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen, Germany
| | - Helge Taubert
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen, Germany
| | - Lisa Brandl
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen, Germany
| | - Carol I Geppert
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen, Germany
| | - Bernd Wullich
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen, Germany
| | - Holger Cynis
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle, Germany
| | - Matthias W Beckmann
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Comprehensive Cancer Center, European Metropolitan Area Erlangen-Nuremberg (CCC ER-EMN), Friedrich-Alexander-University Erlangen-Nuernberg, Erlangen, Germany
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Arndt Hartmann
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen, Germany
| | - Reiner Strick
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Comprehensive Cancer Center, European Metropolitan Area Erlangen-Nuremberg (CCC ER-EMN), Friedrich-Alexander-University Erlangen-Nuernberg, Erlangen, Germany.,Translational Research Centre (TRC), Erlangen, Germany
| |
Collapse
|
9
|
Schneider P, Castro PG, Pinhanços SM, Kerstjens M, van Roon EH, Essing AH, Dolman MEM, Molenaar JJ, Pieters R, Stam RW. Decitabine mildly attenuates MLL-rearranged acute lymphoblastic leukemia in vivo, and represents a poor chemo-sensitizer. EJHAEM 2020; 1:527-536. [PMID: 35844991 PMCID: PMC9175850 DOI: 10.1002/jha2.81] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 08/09/2020] [Accepted: 08/12/2020] [Indexed: 01/08/2023]
Abstract
MLL-rearranged acute lymphoblastic leukemia (ALL) represents a highly aggressive ALL subtype, characterized by aberrant DNA methylation patterns. DNA methyltransferase inhibitors, such as decitabine have previously been demonstrated to be effective in eradicating MLL-rearranged ALL cells in vitro. Here, we assessed the in vivo anti-leukemic potential of low-dose DNA methyltransferase inhibitor decitabine using a xenograft mouse model of human MLL-rearranged ALL. Furthermore, we explored whether prolonged exposure to low-dose decitabine could chemo-sensitize MLL-rearranged ALL cells toward conventional chemotherapy as well as other known epigenetic-based and anti-neoplastic compounds. Our data reveal that decitabine prolonged survival in xenograft mice of MLL-rearranged ALL by 8.5 days (P = .0181), but eventually was insufficient to prevent leukemia out-growth, based on the examination of the MLLAF4 cell line SEM. Furthermore, we observe that prolonged pretreatment of low-dose decitabine mildly sensitized toward the conventional drugs prednisolone, vincristine, daunorubicin, asparaginase, and cytarabine in a panel of MLL-rearranged cell lines. Additionally, we assessed synergistic effects of decitabine with other epigenetic-based or anticancer drugs using high-throughput drug library screens. Validation of the top hits, including histone deacetylase inhibitor panobinostat, BCL2 inhibitor Venetoclax, MEK inhibitor pimasertib, and receptor tyrosine kinase foretinib, revealed additive and moderate synergistic effects for the combination of each drug together with decitabine in a cell line-dependent manner.
Collapse
Affiliation(s)
| | | | | | - Mark Kerstjens
- Department of Pediatric Hematology/OncologyErasmus MC ‐ Sophia Children's HospitalRotterdamThe Netherlands
| | - Eddy H. van Roon
- Department of Pediatric Hematology/OncologyErasmus MC ‐ Sophia Children's HospitalRotterdamThe Netherlands
| | - Anke H.W. Essing
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| | | | - Jan J. Molenaar
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| | - Rob Pieters
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| | - Ronald W. Stam
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| |
Collapse
|
10
|
Sandoval JE, Reich NO. The R882H substitution in the human de novo DNA methyltransferase DNMT3A disrupts allosteric regulation by the tumor supressor p53. J Biol Chem 2019; 294:18207-18219. [PMID: 31640986 DOI: 10.1074/jbc.ra119.010827] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/18/2019] [Indexed: 12/14/2022] Open
Abstract
A myriad of protein partners modulate the activity of the human DNA methyltransferase 3A (DNMT3A), whose interactions with these other proteins are frequently altered during oncogenesis. We show here that the tumor suppressor p53 decreases DNMT3A activity by forming a heterotetramer complex with DNMT3A. Mutational and modeling experiments suggested that p53 interacts with the same region in DNMT3A as does the structurally characterized DNMT3L. We observed that the p53-mediated repression of DNMT3A activity is blocked by amino acid substitutions within this interface, but surprisingly, also by a distal DNMT3A residue, R882H. DNMT3A R882H occurs frequently in various cancers, including acute myeloid leukemia, and our results suggest that the effects of R882H and other DNMT3A mutations may go beyond changes in DNMT3A methylation activity. To further understand the dynamics of how protein-protein interactions modulate DNMT3A activity, we determined that p53 has a greater affinity for DNMT3A than for DNMT3L and that p53 readily displaces DNMT3L from the DNMT3A:DNMT3L heterotetramer. Interestingly, this occurred even when the preformed DNMT3A:DNMT3L complex was actively methylating DNA. The frequently identified p53 substitutions (R248W and R273H), whereas able to regulate DNMT3A function when forming the DNMT3A:p53 heterotetramer, no longer displaced DNMT3L from the DNMT3A:DNMT3L heterotetramer. The results of our work highlight the complex interplay between DNMT3A, p53, and DNMT3L and how these interactions are further modulated by clinically derived mutations in each of the interacting partners.
Collapse
Affiliation(s)
- Jonathan E Sandoval
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106-9510
| | - Norbert O Reich
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510.
| |
Collapse
|
11
|
Baradaran E, Moharramipour S, Asgari S, Mehrabadi M. Induction of DNA methyltransferase genes in Helicoverpa armigera following injection of pathogenic bacteria modulates expression of antimicrobial peptides and affects bacterial proliferation. JOURNAL OF INSECT PHYSIOLOGY 2019; 118:103939. [PMID: 31493391 DOI: 10.1016/j.jinsphys.2019.103939] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Following pathogen attack in a host, widespread changes are induced in the host's gene expression, in particular those involved in the immune system, growth and survival. Epigenetic mechanisms have been suggested to be involved in the regulation of these changes through a number of mechanisms. DNA methylation is one of the important epigenetic processes that is carried out by DNA (cytosine-5) methyltransferase (DNMT) and alters expression of target genes. Here, we identified two putative sequences of DNMT (i.e. DNMT1 and DNMT2) from the transcriptome dataset of Helicoverpa armigera that showed high similarity to the homologous sequences in Bombyx mori. Domain architectures of DNMT1 and DNMT2 exhibit the unique pattern of DNMTs that highlights conserved function of these genes in different insects. To see if these genes play any role in bacterial infection, we challenged the fifth instar larvae of H. armigera by injecting Bacillus thuringiensis and Serratia marcescens cells into the hemolymph. Transcript levels of the DNMTs were analyzed by RT-qPCR. The results showed that the expression levels of DNMT1 and DNMT2 increased in the bacteria-injected larvae. Injection of the heat-killed bacteria also induced the expression of the DNMTs, but lower than that of the live bacteria. To determine whether these genes function during bacterial infection, we injected the inhibitor of DNMTs, 5-azacytidine (5-AZA), into the larvae and 24 h later, the bacterial cells were also injected into the larvae. Bacterial replication and larval mortality were analyzed in the treated and control insects. We found that 5-AZA reduced bacterial replication and also mortality of the bacterial-injected larvae regardless of the pathogenic bacterial species. Interestingly, the expression levels of antimicrobial peptides (AMPs) were also modulated following 5-AZA treatment. In conclusion, we showed that upregulation of the DNMTs in H. armigera following bacterial infections modulates AMPs and thereby affects the insect-bacteria interactions.
Collapse
Affiliation(s)
- Ehsan Baradaran
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Saeid Moharramipour
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Sassan Asgari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Mohammad Mehrabadi
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
12
|
Gaillard SL, Zahurak M, Sharma A, Reiss KA, Sartorius-Mergenthaler S, Downs M, Anders NM, Ahuja N, Rudek MA, Azad N. A phase 1 trial of the oral DNA methyltransferase inhibitor CC-486 and the histone deacetylase inhibitor romidepsin in advanced solid tumors. Cancer 2019; 125:2837-2845. [PMID: 31012962 PMCID: PMC6663621 DOI: 10.1002/cncr.32138] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND Epigenetic abnormalities are manifold in all solid tumors and include changes in chromatin configuration and DNA methylation. The authors designed a phase 1 study to evaluate the oral DNA methyltransferase inhibitor CC-486 combined with the histone deacetylase inhibitor romidepsin in advanced solid tumors with dose expansion to further evaluate pharmacodynamics and possible clinical benefit of the recommended phase 2 dose (RP2D). METHODS This was a phase 1 study with a 3 + 3 dose-escalation design and an expansion phase for patients with virally mediated cancers. The disease control rate (DCR) was the primary outcome for the expansion cohort. Correlative studies included long interspersed nucleotide element 1 (LINE-1) methylation and drug exposure in blood samples (clinicaltrials.gov identifier NCT01537744). RESULTS Fourteen patients were enrolled in the dose-escalation portion at 3 dose levels. Three patients experienced dose-limiting toxicities; the RP2D was oral CC-486 300 mg daily on days 1 through 14 and romidepsin 8 mg/m2 on days 8 and 15. Because of slow accrual into the expansion phase, the trial was closed after 4 patients enrolled. Common toxicities of the combination included nausea (83.3%), anorexia (72.2%), fatigue (61.1%), and constipation (55.6%). There were 12 patients evaluable for response, 5 with stable disease, of whom 2 received >4 cycles; there were no responses. Exposure to CC-486 and romidepsin was consistent with prior data. LINE-1 methylation on C1D8 was significantly reduced (mean, -6.23; 95% CI, -12.23, -0.24; P = .04). CONCLUSIONS Although, at the RP2D, the combination of CC-486 and romidepsin was tolerable, no significant anticancer activity was observed. Significant demethylation in post-treatment circulating tumor DNA and biopsies provided proof of target acquisition.
Collapse
Affiliation(s)
- Stéphanie L. Gaillard
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Gynecology and Obstetrics Division of Gynecologic Oncology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Marianna Zahurak
- Department of Oncology Division of Biostatistics and Bioinformatics, Johns Hopkins School of Medicine, Baltimore, MD
| | - Anup Sharma
- Department of Surgery Division of Surgical Oncology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Kim A. Reiss
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD
| | | | - Melinda Downs
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Nicole M. Anders
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Nita Ahuja
- Department of Surgery Division of Surgical Oncology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Michelle A. Rudek
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Medicine Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Nilofer Azad
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
13
|
Tamura M, Yonezawa T, Liu X, Asada S, Hayashi Y, Fukuyama T, Tanaka Y, Kitamura T, Goyama S. Opposing effects of acute versus chronic inhibition of p53 on decitabine's efficacy in myeloid neoplasms. Sci Rep 2019; 9:8171. [PMID: 31160638 PMCID: PMC6547685 DOI: 10.1038/s41598-019-44496-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/15/2019] [Indexed: 12/21/2022] Open
Abstract
Decitabine is a DNA methyltransferase inhibitor and is considered a promising drug to treat myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) with p53 mutations. However, whether loss of p53 in fact increases the response of MDS/AML cells to decitabine remains unclear. In this study, we assessed the role of p53 in MDS and AML cells treated with decitabine using mouse models for MLL-AF9-driven AML and mutant ASXL1-driven MDS/AML. CRISPR/Cas9-mediated depletion of p53 in MDS/AML cells did not increase, but rather decreased their sensitivity to decitabine. Forced expression of a dominant-negative p53 fragment (p53DD) in these cells also decreased their responses to decitabine, confirming that acute inhibition of p53 conferred resistance to decitabine in AML and MDS/AML cells. In contrast, MLL-AF9-expressing AML cells generated from bone marrow progenitors of Trp53-deficient mice were more sensitive to decitabine in vivo than their wild-type counterparts, suggesting that long-term chronic p53 deficiency increases decitabine sensitivity in AML cells. Taken together, these data revealed a multifaceted role for p53 to regulate responses of myeloid neoplasms to decitabine treatment.
Collapse
Affiliation(s)
- Moe Tamura
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, 108-8639, Tokyo, Japan
| | - Taishi Yonezawa
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, 108-8639, Tokyo, Japan
| | - Xiaoxiao Liu
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, 108-8639, Tokyo, Japan
| | - Shuhei Asada
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, 108-8639, Tokyo, Japan
| | - Yasutaka Hayashi
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, 108-8639, Tokyo, Japan
| | - Tomofusa Fukuyama
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, 108-8639, Tokyo, Japan
| | - Yosuke Tanaka
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, 108-8639, Tokyo, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, 108-8639, Tokyo, Japan
| | - Susumu Goyama
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, 108-8639, Tokyo, Japan.
| |
Collapse
|
14
|
Recombinant Methioninase as a DNA Demethylation Agent. Methods Mol Biol 2019. [PMID: 30725424 DOI: 10.1007/978-1-4939-8796-2_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
This chapter reviews the effect of methionine (MET) restriction, via treatment with recombinant methioninase (rMETase), on DNA methylation of cancer cells. CCRF-CEM human cancer cells were treated with rMETase under subcytotoxic conditions. The rMETase-treated cells contained significantly lower levels of genomic methylated DNA than did untreated control cells. DNA methylation was measured by incorporation of the methyl group of [3H]methyl-S-adenosylmethionine into DNA and by methylation-sensitive arbitrarily-primed PCR. DNA hypomethylation effected by rMETase was of similar extent to that effected by treatment of the cells with the DNA methyltransferase inhibitor 5-azacytidine.
Collapse
|
15
|
5-Azacitidine Exerts Prolonged Pro-Apoptotic Effects and Overcomes Cisplatin-Resistance in Non-Seminomatous Germ Cell Tumor Cells. Int J Mol Sci 2018; 20:ijms20010021. [PMID: 30577584 PMCID: PMC6337423 DOI: 10.3390/ijms20010021] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 11/30/2022] Open
Abstract
Despite high cure rates, about 20% of patients with advanced germ cell tumors (GCTs) fail cisplatin-based chemotherapy. High levels of DNA methylation have been identified in GCTs and linked to cisplatin resistance. Here, we examined the effects of DNA hypomethylating 5-azacitidine (5-aza) on two embryonal carcinoma cell lines (NCCIT, 2102Ep) and their cisplatin-resistant isogenic derivatives. Effects on cell viability and cisplatin sensitivity were assessed by the trypan blue exclusion method. Western blotting was used to examine induction of apoptosis 5-aza and results were validated by flow cytometry. Single agent treatment with 5-aza strongly impacted viability and induced apoptosis at low nanomolar concentrations, both in cisplatin-sensitive and -resistant cell lines. 5-aza exerted an immediate apoptotic response, followed by a prolonged inhibitory effect on cell viability and cell-cycle progression. Sequential treatment with 5-aza and cisplatin reduced cellular survival of the cisplatin-resistant sublines already at nanomolar concentrations, suggesting a partial restoration of cisplatin sensitivity by the compound. 5-aza demonstrated anti-tumor activity as a single agent at low nanomolar concentrations in GCT cells, irrespective of cisplatin-sensitivity. 5-aza may also have the potential at least to partially restore cisplatin-sensitivity in non-seminoma cells, supporting the hypothesis that combining DNA demethylating agents with cisplatin-based chemotherapy may be a valid therapeutic approach in patients with refractory GCTs.
Collapse
|
16
|
Azad NS, El-Khoueiry A, Yin J, Oberg AL, Flynn P, Adkins D, Sharma A, Weisenberger DJ, Brown T, Medvari P, Jones PA, Easwaran H, Kamel I, Bahary N, Kim G, Picus J, Pitot HC, Erlichman C, Donehower R, Shen H, Laird PW, Piekarz R, Baylin S, Ahuja N. Combination epigenetic therapy in metastatic colorectal cancer (mCRC) with subcutaneous 5-azacitidine and entinostat: a phase 2 consortium/stand up 2 cancer study. Oncotarget 2018; 8:35326-35338. [PMID: 28186961 PMCID: PMC5471058 DOI: 10.18632/oncotarget.15108] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 10/25/2016] [Indexed: 12/14/2022] Open
Abstract
Purpose Therapy with demethylating agent 5-azacitidine and histone deacetylase inhibitor entinostat shows synergistic re-expression of tumor-suppressor genes and growth inhibition in colorectal (CRC) cell lines and in vivo studies. Experimental Design We conducted a phase II, multi-institutional study of the combination in metastatic CRC patients. Subcutaneous azacitidine was administered at 40 mg/m2 days 1-5 and 8-10 and entinostat was given 7 mg orally on days 3 and 10. An interim analysis indicated toxicity crossed the pre-specified safety boundary but was secondary to disease. A 2nd cohort with added eligibility restrictions was accrued: prior therapies were limited to no more than 2 or 3 (KRAS-mutated and KRAS-wildtype cancers, respectively) and <30% of liver involvement. The primary endpoint was RECIST response. Serial biopsies were performed at baseline and after 2 cycles of therapy. Results Forty-seven patients were enrolled (24:Cohort 1, 23:Cohort 2). Patients were heavily pre-treated (median prior therapies 4: Cohort 1 and 2.5: cohort 2). No responses were observed. Median progression-free survival was 1.9 months; overall survival was 5.6 and 8.3 months in Cohorts 1 and 2, respectively. Toxicity was tolerable and as expected. Unsupervised cluster analysis of serial tumor biopsies suggested greater DNA demethylation in patients with PFS above the median. Conclusion In this first trial of CRC patients with combination epigenetic therapy, we show tolerable therapy without significant clinical activity as determined by RECIST responses. Reversal of hypermethylation was seen in a subset of patients and correlated with improved PFS.
Collapse
Affiliation(s)
| | | | - Jun Yin
- Mayo Clinic, Rochestor, MN, USA
| | | | | | | | - Anup Sharma
- Johns Hopkins University, Baltimore, MD, USA
| | | | | | | | | | | | - Ihab Kamel
- Johns Hopkins University, Baltimore, MD, USA
| | | | | | - Joel Picus
- Washington University, St. Louis, MO, USA
| | | | | | | | - Hui Shen
- Van Andel Research Institute, Grand Rapids, MI, USA
| | | | | | | | - Nita Ahuja
- Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
17
|
Epigenetic therapy activates type I interferon signaling in murine ovarian cancer to reduce immunosuppression and tumor burden. Proc Natl Acad Sci U S A 2017; 114:E10981-E10990. [PMID: 29203668 DOI: 10.1073/pnas.1712514114] [Citation(s) in RCA: 199] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ovarian cancer is the most lethal of all gynecological cancers, and there is an urgent unmet need to develop new therapies. Epithelial ovarian cancer (EOC) is characterized by an immune suppressive microenvironment, and response of ovarian cancers to immune therapies has thus far been disappointing. We now find, in a mouse model of EOC, that clinically relevant doses of DNA methyltransferase and histone deacetylase inhibitors (DNMTi and HDACi, respectively) reduce the immune suppressive microenvironment through type I IFN signaling and improve response to immune checkpoint therapy. These data indicate that the type I IFN response is required for effective in vivo antitumorigenic actions of the DNMTi 5-azacytidine (AZA). Through type I IFN signaling, AZA increases the numbers of CD45+ immune cells and the percentage of active CD8+ T and natural killer (NK) cells in the tumor microenvironment, while reducing tumor burden and extending survival. AZA also increases viral defense gene expression in both tumor and immune cells, and reduces the percentage of macrophages and myeloid-derived suppressor cells in the tumor microenvironment. The addition of an HDACi to AZA enhances the modulation of the immune microenvironment, specifically increasing T and NK cell activation and reducing macrophages over AZA treatment alone, while further increasing the survival of the mice. Finally, a triple combination of DNMTi/HDACi plus the immune checkpoint inhibitor α-PD-1 provides the best antitumor effect and longest overall survival, and may be an attractive candidate for future clinical trials in ovarian cancer.
Collapse
|
18
|
Yang J, Tian X, Yang J, Cui J, Jiang S, Shi R, Liu Y, Liu X, Xu W, Xie W, Jia X, Bade R, Zhang T, Zhang M, Gong K, Yan S, Yang Z, Shao G. 5-Aza-2'-deoxycytidine, a DNA methylation inhibitor, induces cytotoxicity, cell cycle dynamics and alters expression of DNA methyltransferase 1 and 3A in mouse hippocampus-derived neuronal HT22 cells. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:1222-1229. [PMID: 28880816 DOI: 10.1080/15287394.2017.1367143] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Epigenetic processes such as DNA methylation are essential for processes of gene expression in normal mammalian development. DNA methyltransferases (DNMT) are responsible for initiating and maintaining DNA methylation. It is known that 5-Aza-CdR, an inhibitor of DNMT induces cytotoxicity by reducing DNMT activity in various tumor cell lines. However, disturbances in neuronal DNA methylation may also play a role in altered brain functions. Thus, it was of interest to determine whether alterations in DNA methylation might be associated with neuronal functions by using 5-Aza-CdR, on mouse hippocampus-derived neuronal HT22 cell line. In particular, the aim of this study was to investigate the effects of 5-Aza-CdR on cell growth inhibition, cell cycle arrest, apoptosis as well as the expression levels of DNMT in HT22 cells. HT22 cells were incubated with 5 or 20 μmol/L 5-Aza-CdR for 24 h. Data showed that 5-Aza-CdR at both concentrations significantly inhibited proliferation of HT22 cells and exacerbated cytoplasmic vacuolization. Flow cytometry analysis demonstrated that 5-Aza-CdR treatment at both concentrations decreased early apoptosis but enhanced late apoptosis. Cell cycle analysis illustrated that 5-Aza-CdR treatment induced S phase arrest. Further, incubation with 5-Aza-CdR produced a down-regulation in expression of mRNA and protein DNMT1 and 3A but no marked changes were noted in DNMT 3B and p21 expression. In addition, DNMT1 activity was significantly decreased at both 5-Aza-CdR concentrations. Evidence indicates that 5-Aza-CdR induced cytotoxicity was associated with altered mRNA and protein expression of DNMT 1 and 3A associated with reduced DNMT1 activity in HT22 cells which might affect brain functions.
Collapse
Affiliation(s)
- Jing Yang
- a Department of Neurobiology and Center of Stroke , Beijing Institute for Brain Disorders, Capital Medical University , Beijing , P.R.C
- b Inner Mongolia Key laboratory of Hypoxic Translational Medicine , Baotou Medical College , Inner Mongolia , P.R.C
- c Beijing key laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital , Capital Medical University , Beijing , P.R.C
| | - Xiaoli Tian
- b Inner Mongolia Key laboratory of Hypoxic Translational Medicine , Baotou Medical College , Inner Mongolia , P.R.C
- c Beijing key laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital , Capital Medical University , Beijing , P.R.C
| | - Jie Yang
- b Inner Mongolia Key laboratory of Hypoxic Translational Medicine , Baotou Medical College , Inner Mongolia , P.R.C
- c Beijing key laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital , Capital Medical University , Beijing , P.R.C
| | - Junhe Cui
- b Inner Mongolia Key laboratory of Hypoxic Translational Medicine , Baotou Medical College , Inner Mongolia , P.R.C
- c Beijing key laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital , Capital Medical University , Beijing , P.R.C
| | - Shuyuan Jiang
- b Inner Mongolia Key laboratory of Hypoxic Translational Medicine , Baotou Medical College , Inner Mongolia , P.R.C
- c Beijing key laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital , Capital Medical University , Beijing , P.R.C
| | - Rui Shi
- b Inner Mongolia Key laboratory of Hypoxic Translational Medicine , Baotou Medical College , Inner Mongolia , P.R.C
- c Beijing key laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital , Capital Medical University , Beijing , P.R.C
| | - You Liu
- b Inner Mongolia Key laboratory of Hypoxic Translational Medicine , Baotou Medical College , Inner Mongolia , P.R.C
- c Beijing key laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital , Capital Medical University , Beijing , P.R.C
| | - Xiaolei Liu
- b Inner Mongolia Key laboratory of Hypoxic Translational Medicine , Baotou Medical College , Inner Mongolia , P.R.C
- c Beijing key laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital , Capital Medical University , Beijing , P.R.C
| | - Wenqiang Xu
- b Inner Mongolia Key laboratory of Hypoxic Translational Medicine , Baotou Medical College , Inner Mongolia , P.R.C
- c Beijing key laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital , Capital Medical University , Beijing , P.R.C
| | - Wei Xie
- b Inner Mongolia Key laboratory of Hypoxic Translational Medicine , Baotou Medical College , Inner Mongolia , P.R.C
- c Beijing key laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital , Capital Medical University , Beijing , P.R.C
| | - Xiaoe Jia
- b Inner Mongolia Key laboratory of Hypoxic Translational Medicine , Baotou Medical College , Inner Mongolia , P.R.C
- c Beijing key laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital , Capital Medical University , Beijing , P.R.C
| | - Rengui Bade
- b Inner Mongolia Key laboratory of Hypoxic Translational Medicine , Baotou Medical College , Inner Mongolia , P.R.C
- c Beijing key laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital , Capital Medical University , Beijing , P.R.C
| | - Tao Zhang
- b Inner Mongolia Key laboratory of Hypoxic Translational Medicine , Baotou Medical College , Inner Mongolia , P.R.C
- c Beijing key laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital , Capital Medical University , Beijing , P.R.C
| | - Ming Zhang
- b Inner Mongolia Key laboratory of Hypoxic Translational Medicine , Baotou Medical College , Inner Mongolia , P.R.C
- c Beijing key laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital , Capital Medical University , Beijing , P.R.C
| | - Kerui Gong
- d Department of Oral and Maxillofacial Surgery , University of California San Francsico , San Francisco , USA
| | - Shaochun Yan
- b Inner Mongolia Key laboratory of Hypoxic Translational Medicine , Baotou Medical College , Inner Mongolia , P.R.C
- c Beijing key laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital , Capital Medical University , Beijing , P.R.C
| | - Zhanjun Yang
- b Inner Mongolia Key laboratory of Hypoxic Translational Medicine , Baotou Medical College , Inner Mongolia , P.R.C
- c Beijing key laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital , Capital Medical University , Beijing , P.R.C
| | - Guo Shao
- a Department of Neurobiology and Center of Stroke , Beijing Institute for Brain Disorders, Capital Medical University , Beijing , P.R.C
- b Inner Mongolia Key laboratory of Hypoxic Translational Medicine , Baotou Medical College , Inner Mongolia , P.R.C
- c Beijing key laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital , Capital Medical University , Beijing , P.R.C
| |
Collapse
|
19
|
Pawlak A, Ziolo E, Fiedorowicz A, Fidyt K, Strzadala L, Kalas W. Long-lasting reduction in clonogenic potential of colorectal cancer cells by sequential treatments with 5-azanucleosides and topoisomerase inhibitors. BMC Cancer 2016; 16:893. [PMID: 27852227 PMCID: PMC5112712 DOI: 10.1186/s12885-016-2925-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 11/03/2016] [Indexed: 01/10/2023] Open
Abstract
Background The currently approved therapies fail in a substantial number of colorectal cancer (CRC) patients due to the molecular heterogeneity of CRC, hence new efficient drug combinations are urgently needed. Emerging data indicate that 5-azanucleosides are able to sensitize cancer cells to the standard chemotherapeutic agents and contribute to overcoming intrinsic or acquired chemoresistance. Methods CRC cells with different genetic backgrounds (HCT116, DLD-1, HT-29) were sequentially treated with 5-azanucleosides and topoisomerase inhibitors. The combined effects of these two drug classes on cell viability, apoptosis, signaling pathways, and colony formation were investigated. Results Here, we demonstrate that pretreatment with DNA demethylating agents, 5-aza-2′-deoxycytidine and 5-azacytidine, sensitizes CRC cells to topoisomerase inhibitors (irinotecan, etoposide, doxorubicin, mitoxantrone), reducing cell viability and clonogenicity and increasing programmed cell death more effectively than individual compounds at the same or even higher concentrations. 5-Azanucleosides did not cause considerable immediate toxic effects as evaluated by analysis of cell viability, apoptosis, DNA damage (γH2A.X), and endoplasmic reticulum (ER) stress (CHOP). However, 5-azanucleosides exerted long-lasting effects, reducing cell viability, changing cell morphology, and affecting phosphoinositide 3-kinase (PI3-kinase)/Akt signaling pathway. We found that a single exposure to 5-azanucleosides is sufficient to induce long-lasting sensitization to topoisomerase inhibitors. The combinatorial, but not separate, treatment with low doses of 5-aza-2′-deoxycytidine (0.1 μM) and etoposide (0.5 μM) caused a long-lasting (almost 70 days) reduction in clonogenic/replating ability of DLD-1 cells. Conclusions These results suggest that sequential treatments with DNA demethylating agents and topoisomerase inhibitors may exert clinically relevant anticancer effects. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2925-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alicja Pawlak
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wroclaw, Poland
| | - Ewa Ziolo
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wroclaw, Poland
| | - Anna Fiedorowicz
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wroclaw, Poland
| | - Klaudyna Fidyt
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wroclaw, Poland
| | - Leon Strzadala
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wroclaw, Poland
| | - Wojciech Kalas
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wroclaw, Poland. .,Jan Dlugosz University in Czestochowa, Waszyngtona 4/8, 42-200, Czestochowa, Poland.
| |
Collapse
|
20
|
Andrade AF, Borges KS, Suazo VK, Geron L, Corrêa CAP, Castro-Gamero AM, de Vasconcelos EJR, de Oliveira RS, Neder L, Yunes JA, Dos Santos Aguiar S, Scrideli CA, Tone LG. The DNA methyltransferase inhibitor zebularine exerts antitumor effects and reveals BATF2 as a poor prognostic marker for childhood medulloblastoma. Invest New Drugs 2016; 35:26-36. [PMID: 27785591 DOI: 10.1007/s10637-016-0401-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 10/20/2016] [Indexed: 12/11/2022]
Abstract
Medulloblastoma (MB) is the most common solid tumor among pediatric patients and corresponds to 20 % of all pediatric intracranial tumors in this age group. Its treatment currently involves significant side effects. Epigenetic changes such as DNA methylation may contribute to its development and progression. DNA methyltransferase (DNMT) inhibitors have shown promising anticancer effects. The agent Zebularine acts as an inhibitor of DNA methylation and shows low toxicity and high efficacy, being a promising adjuvant agent for anti-cancer chemotherapy. Several studies have reported its effects on different types of tumors; however, there are no studies reporting its effects on MB. We analyzed its potential anticancer effects in four pediatric MB cell lines. The treatment inhibited proliferation and clonogenicity, increased the apoptosis rate and the number of cells in the S phase (p < 0.05), as well as the expression of p53, p21, and Bax, and decreased cyclin A, Survivin and Bcl-2 proteins. In addition, the combination of zebularine with the chemotherapeutic agents vincristine and cisplatin resulted in synergism and antagonism, respectively. Zebularine also modulated the activation of the SHH pathway, reducing SMO and GLI1 levels and one of its targets, PTCH1, without changing SUFU levels. A microarray analysis revealed different pathways modulated by the drug, including the Toll-Like Receptor pathway and high levels of the BATF2 gene. The low expression of this gene was associated with a worse prognosis in MB. Taken together, these data suggest that Zebularine may be a potential drug for further in vivo studies of MB treatment.
Collapse
Affiliation(s)
- Augusto Faria Andrade
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Avenida Bandeirantes 3900, 14048-900, Ribeirão Preto, SP, Brazil.
| | - Kleiton Silva Borges
- Department of Pediatrics - Ribeirão Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
| | - Veridiana Kiill Suazo
- Department of Pediatrics - Ribeirão Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
| | - Lenisa Geron
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Avenida Bandeirantes 3900, 14048-900, Ribeirão Preto, SP, Brazil
| | | | | | | | | | - Luciano Neder
- Department of Pathology, Ribeirão Preto Medical School, USP, São Paulo, Brazil
| | | | | | - Carlos Alberto Scrideli
- Department of Pediatrics - Ribeirão Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
| | - Luiz Gonzaga Tone
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Avenida Bandeirantes 3900, 14048-900, Ribeirão Preto, SP, Brazil.,Department of Pediatrics - Ribeirão Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
21
|
Abstract
Vitamin C deficiency is found in patients with cancer and might complicate various therapy paradigms. Here we show how this deficiency may influence the use of DNA methyltransferase inhibitors (DNMTis) for treatment of hematological neoplasias. In vitro, when vitamin C is added at physiological levels to low doses of the DNMTi 5-aza-2'-deoxycytidine (5-aza-CdR), there is a synergistic inhibition of cancer-cell proliferation and increased apoptosis. These effects are associated with enhanced immune signals including increased expression of bidirectionally transcribed endogenous retrovirus (ERV) transcripts, increased cytosolic dsRNA, and activation of an IFN-inducing cellular response. This synergistic effect is likely the result of both passive DNA demethylation by DNMTi and active conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) by ten-eleven translocation (TET) enzymes at LTR regions of ERVs, because vitamin C acts as a cofactor for TET proteins. In addition, TET2 knockout reduces the synergy between the two compounds. Furthermore, we show that many patients with hematological neoplasia are markedly vitamin C deficient. Thus, our data suggest that correction of vitamin C deficiency in patients with hematological and other cancers may improve responses to epigenetic therapy with DNMTis.
Collapse
|
22
|
Patties I, Kortmann RD, Menzel F, Glasow A. Enhanced inhibition of clonogenic survival of human medulloblastoma cells by multimodal treatment with ionizing irradiation, epigenetic modifiers, and differentiation-inducing drugs. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:94. [PMID: 27317342 PMCID: PMC4912728 DOI: 10.1186/s13046-016-0376-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 06/13/2016] [Indexed: 12/17/2022]
Abstract
Background Medulloblastoma (MB) is the most common pediatric brain tumor. Current treatment regimes consisting of primary surgery followed by radio- and chemotherapy, achieve 5-year overall survival rates of only about 60 %. Therapy-induced endocrine and neurocognitive deficits are common late adverse effects. Thus, improved antitumor strategies are urgently needed. In this study, we combined irradiation (IR) together with epigenetic modifiers and differentiation inducers in a multimodal approach to enhance the efficiency of tumor therapy in MB and also assessed possible late adverse effects on neurogenesis. Methods In three human MB cell lines (DAOY, MEB-Med8a, D283-Med) short-time survival (trypan blue exclusion assay), apoptosis, autophagy, cell cycle distribution, formation of gH2AX foci, and long-term reproductive survival (clonogenic assay) were analyzed after treatment with 5-aza-2′-deoxycytidine (5-azadC), valproic acid (VPA), suberanilohydroxamic acid (SAHA), abacavir (ABC), all-trans retinoic acid (ATRA) and resveratrol (RES) alone or combined with 5-aza-dC and/or IR. Effects of combinatorial treatments on neurogenesis were evaluated in cultured murine hippocampal slices from transgenic nestin-CFPnuc C57BL/J6 mice. Life imaging of nestin-positive neural stem cells was conducted at distinct time points for up to 28 days after treatment start. Results All tested drugs showed a radiosynergistic action on overall clonogenic survival at least in two-outof-three MB cell lines. This effect was pronounced in multimodal treatments combining IR, 5-aza-dC and a second drug. Hereby, ABC and RES induced the strongest reduction of clongenic survival in all three MB cell lines and led to the induction of apoptosis (RES, ABC) and/or autophagy (ABC). Additionally, 5-aza-dC, RES, and ABC increased the S phase cell fraction and induced the formation of gH2AX foci at least in oneout-of-three cell lines. Thereby, the multimodal treatment with 5-aza-dC, IR, and RES or ABC did not change the number of normal neural progenitor cells in murine slice cultures. Conclusion In conclusion, the radiosensitizing capacities of epigenetic and differentiation-inducing drugs presented here suggest that their adjuvant administration might improve MB therapy. Thereby, the combination of 5-aza-dC/IR with ABC and RES seemed to be the most promising to enhance tumor control without affecting the normal neural precursor cells.
Collapse
Affiliation(s)
- Ina Patties
- Department of Radiation Therapy, University of Leipzig, Stephanstraße 9a, Leipzig, 04103, Germany.
| | - Rolf-Dieter Kortmann
- Department of Radiation Therapy, University of Leipzig, Stephanstraße 9a, Leipzig, 04103, Germany
| | - Franziska Menzel
- Institute of Anatomy, University of Leipzig, Liebigstraße 13, 04103, Leipzig, Germany
| | - Annegret Glasow
- Department of Radiation Therapy, University of Leipzig, Stephanstraße 9a, Leipzig, 04103, Germany
| |
Collapse
|
23
|
Yun S, Vincelette ND, Abraham I, Robertson KD, Fernandez-Zapico ME, Patnaik MM. Targeting epigenetic pathways in acute myeloid leukemia and myelodysplastic syndrome: a systematic review of hypomethylating agents trials. Clin Epigenetics 2016; 8:68. [PMID: 27307795 PMCID: PMC4908810 DOI: 10.1186/s13148-016-0233-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/31/2016] [Indexed: 11/23/2022] Open
Abstract
Background Aberrant DNA methylation has been identified as a key molecular event regulating the pathogenesis of myelodysplastic syndromes (MDS); myeloid neoplasms with an inherent risk of transformation to acute myeloid leukemia (AML). Based on the above findings, DNA hypomethylating agents (HMA) have been widely used to treat AML and MDS, especially in elderly patients and in those who are not eligible for allogeneic stem cell transplantation (SCT). Our goal was to determine if there is any therapeutic advantage of HMA vs. conventional care regimens (CCR) and indirectly compare the efficacy of azacitidine and decitabine in this patient population. Methods Eligible studies were limited to randomized controlled trials comparing HMA to CCR in adult patients with AML or MDS. Results Overall survival (OS) rate was 33.2 vs. 21.4 % (RR 0.83, 95 % CI 0.71–0.98) and overall response rate (ORR) 23.7 vs. 13.4 % (RR 0.87, 95 % CI 0.81–0.93) for HMA and CCR, respectively. In subgroup analyses, only azacitidine treatment showed OS improvement (RR 0.75, 95 % CI 0.64–0.98) and not decitabine. Cytogenetic risk or bone marrow blast count did not have independent prognostic impact. Conclusion Collectively, these results demonstrate that HMA have superior outcomes compared to CCR and suggest that azacitidine in comparison to decitabine, may be more effective. Electronic supplementary material The online version of this article (doi:10.1186/s13148-016-0233-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Seongseok Yun
- Department of Medicine, University of Arizona, 1501 N. Campbell Ave., Tucson, AZ 85721 USA ; Hematology and Oncology, H. Lee Moffitt Cancer Center, Tampa, FL 12902 USA
| | - Nicole D Vincelette
- Molecular Pharmacology and Experimental Therapeutics, Department of Medicine, Mayo Clinic, Rochester, MN 55905 USA
| | - Ivo Abraham
- Center for Health Outcomes and PharmacoEconomic Research, University of Arizona, Tucson, AZ 85721 USA ; Arizona Cancer Center, University of Arizona, Tucson, AZ 85721 USA
| | - Keith D Robertson
- Pharmacology, Department of Medicine, Mayo Clinic, Rochester, MN 55905 USA
| | | | - Mrinal M Patnaik
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905 USA
| |
Collapse
|
24
|
Muscle tissue engineering and regeneration through epigenetic reprogramming and scaffold manipulation. Sci Rep 2015; 5:16333. [PMID: 26548559 PMCID: PMC4637833 DOI: 10.1038/srep16333] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 10/13/2015] [Indexed: 11/24/2022] Open
Abstract
Efficiency of cell-based tissue engineering and regenerative medicine has been limited by inadequate cellular responses to injury because of aging and poor controllability of cellular interactions. Since cell progression is under a tight epigenetic regulation, epigenetic modulators such as 5-azacytidine (5-Aza-CR) have been utilized to facilitate reprogramming and development of somatic cells in 2-dimensional (2-D) settings. Nonetheless, progression of a specific tissue lineage toward the terminal phenotype is dependent not only on the genomic potential, but also on the microenvironment cues that are beyond the capability of 2-D approaches. In this study, we investigated the combined effects of matrices of variable rigidities and the treatment with the epigenetic modulator 5-Aza-CR on reprogramming adipose-derived stromal cells (ADSCs) into myoblast-like cells by utilizing tunable transglutaminase cross-linked gelatin (Col-Tgel) in vitro and in vivo. Our experiments demonstrated that cellular plasticity and trans-differentiation were significantly enhanced when ADSCs were treated with an effective dose of 5-Aza-CR (1.25 to 12.5 ng) in the optimal myogenic matrix (15 ± 5 kPa Col-Tgel). Our findings suggest that both physical signals and chemical milieu are critical for the regulation of cellular responses.
Collapse
|
25
|
Hypermethylation of the tumor-suppressor cell adhesion molecule 1 in human papillomavirus-transformed cervical carcinoma cells. Int J Oncol 2015; 46:2656-62. [PMID: 25845528 PMCID: PMC4441298 DOI: 10.3892/ijo.2015.2945] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 02/27/2015] [Indexed: 12/14/2022] Open
Abstract
Epigenetic modification at CpG islands located on the promoter regions of tumor-suppressor genes has been associated with tumor development in many human cancers. Our study showed that the cell adhesion molecule 1 (CADM1) is downregulated in human papillomavirus (HPV)-infected cervical cancer cell lines via its hypermethylation and demethylation using 5-aza-2′-deoxycyticine (5-aza-dC) restored the expression of CADM1 protein. Overexpression of CADM1 inhibited cell proliferation. p53 was involved in the regulation of CADM1. Our results demonstrate that epigenetic alteration of CADM1 was more frequent in HPV-positive cervical cancers and that restoration of CADM1 expression may be a potential strategy for cervical cancer therapy.
Collapse
|
26
|
Cazaly E, Charlesworth J, Dickinson JL, Holloway AF. Genetic Determinants of Epigenetic Patterns: Providing Insight into Disease. Mol Med 2015; 21:400-9. [PMID: 25822796 DOI: 10.2119/molmed.2015.00001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/26/2015] [Indexed: 02/06/2023] Open
Abstract
The field of epigenetics and our understanding of the mechanisms that regulate the establishment, maintenance and heritability of epigenetic patterns continue to grow at a remarkable rate. This information is providing increased understanding of the role of epigenetic changes in disease, insight into the underlying causes of these epigenetic changes and revealing new avenues for therapeutic intervention. Epigenetic modifiers are increasingly being pursued as therapeutic targets in a range of diseases, with a number of agents targeting epigenetic modifications already proving effective in diseases such as cancer. Although it is well established that DNA mutations and aberrant expression of epigenetic modifiers play a key role in disease, attention is now turning to the interplay between genetic and epigenetic factors in complex disease etiology. The role of genetic variability in determining epigenetic profiles, which can then be modified by environmental and stochastic factors, is becoming more apparent. Understanding the interplay between genetic and epigenetic factors is likely to aid in identifying individuals most likely to benefit from epigenetic therapies. This goal is coming closer to realization because of continual advances in laboratory and statistical tools enabling improvements in the integration of genomic, epigenomic and phenotypic data.
Collapse
Affiliation(s)
- Emma Cazaly
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Jac Charlesworth
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Joanne L Dickinson
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Adele F Holloway
- School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
27
|
Oronsky B, Oronsky N, Scicinski J, Fanger G, Lybeck M, Reid T. Rewriting the epigenetic code for tumor resensitization: a review. Transl Oncol 2014; 7:626-31. [PMID: 25389457 PMCID: PMC4225689 DOI: 10.1016/j.tranon.2014.08.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/08/2014] [Accepted: 08/12/2014] [Indexed: 01/13/2023] Open
Abstract
In cancer chemotherapy, one axiom, which has practically solidified into dogma, is that acquired resistance to antitumor agents or regimens, nearly inevitable in all patients with metastatic disease, remains unalterable and irreversible, rendering therapeutic rechallenge futile. However, the introduction of epigenetic therapies, including histone deacetylase inhibitors (HDACis) and DNA methyltransferase inhibitors (DNMTIs), provides oncologists, like computer programmers, with new techniques to “overwrite” the modifiable software pattern of gene expression in tumors and challenge the “one and done” treatment prescription. Taking the epigenetic code-as-software analogy a step further, if chemoresistance is the product of multiple nongenetic alterations, which develop and accumulate over time in response to treatment, then the possibility to hack or tweak the operating system and fall back on a “system restore” or “undo” feature, like the arrow icon in the Windows XP toolbar, reconfiguring the tumor to its baseline nonresistant state, holds tremendous promise for turning advanced, metastatic cancer from a fatal disease into a chronic, livable condition. This review aims 1) to explore the potential mechanisms by which a group of small molecule agents including HDACis (entinostat and vorinostat), DNMTIs (decitabine and 5-azacytidine), and redox modulators (RRx-001) may reprogram the tumor microenvironment from a refractory to a nonrefractory state, 2) highlight some recent findings, and 3) discuss whether the current “once burned forever spurned” paradigm in the treatment of metastatic disease should be revised to promote active resensitization attempts with formerly failed chemotherapies.
Collapse
Affiliation(s)
| | | | | | | | | | - Tony Reid
- UCSD Moores Cancer Center, La Jolla, CA 92093, USA
| |
Collapse
|
28
|
Srivastava P, Paluch BE, Matsuzaki J, James SR, Collamat-Lai G, Karbach J, Nemeth MJ, Taverna P, Karpf AR, Griffiths EA. Immunomodulatory action of SGI-110, a hypomethylating agent, in acute myeloid leukemia cells and xenografts. Leuk Res 2014; 38:1332-41. [PMID: 25260825 DOI: 10.1016/j.leukres.2014.09.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/05/2014] [Accepted: 09/01/2014] [Indexed: 12/25/2022]
Abstract
The mechanism of clinical action for the FDA approved hypomethylating drugs azacitidine and decitabine remains unresolved and in this context the potential immunomodulatory effect of these agents on leukemic cells is an area of active investigation. Induced expression of methylated Cancer Testis Antigen (CTA) genes has been demonstrated in leukemic cell lines following exposure to hypomethylating drugs in vitro. SGI-110 is a novel hypomethylating dinucleotide with prolonged in vivo exposure and clinical activity in patients with MDS and AML. We demonstrate that this agent, like decitabine, produces robust re-expression of the CTAs NY-ESO-1 and MAGE-A, both in vitro and in leukemia-bearing AML xenografts. Upregulation of these genes in vitro was sufficient to induce cytotoxicity by HLA-compatible CD8+ T-cells specific for NY-ESO-1, a well-recognized and immunogenic CTA. Additionally, exposure to SGI-110 enhances MHC class I and co-stimulatory molecule expression, potentially contributing to recognition of CTAs. SGI-110, like the parent compound decitabine, induces expression of CTAs and might modulate immune recognition of myeloid malignancy.
Collapse
Affiliation(s)
- Pragya Srivastava
- Department of Medicine, Roswell Park Cancer Institute, Elm & Carlton Sts, Buffalo, NY 14263, USA
| | - Benjamin E Paluch
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm & Carlton Sts, Buffalo, NY 14263, USA
| | - Junko Matsuzaki
- Center for Immunotherapy, Roswell Park Cancer Institute, Elm & Carlton Sts, Buffalo, NY 14263, USA
| | - Smitha R James
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm & Carlton Sts, Buffalo, NY 14263, USA
| | - Golda Collamat-Lai
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm & Carlton Sts, Buffalo, NY 14263, USA
| | - Julia Karbach
- Klinik für Onkologie und Hämatologie, Krankenhaus Nordwest, Frankfurt, Steinbacher Hohl 2-26, 60488 Frankfurt, Germany
| | - Michael J Nemeth
- Department of Medicine, Roswell Park Cancer Institute, Elm & Carlton Sts, Buffalo, NY 14263, USA
| | - Pietro Taverna
- Astex Pharmaceuticals, Inc., 4140 Dublin Blvd., Suite 200, Dublin, CA 94568, USA
| | - Adam R Karpf
- Eppley Institute, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA.
| | - Elizabeth A Griffiths
- Department of Medicine, Roswell Park Cancer Institute, Elm & Carlton Sts, Buffalo, NY 14263, USA.
| |
Collapse
|
29
|
Öz S, Raddatz G, Rius M, Blagitko-Dorfs N, Lübbert M, Maercker C, Lyko F. Quantitative determination of decitabine incorporation into DNA and its effect on mutation rates in human cancer cells. Nucleic Acids Res 2014; 42:e152. [PMID: 25159616 PMCID: PMC4231731 DOI: 10.1093/nar/gku775] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Decitabine (5-aza-2′-deoxycytidine) is a DNA methyltransferase inhibitor and an archetypal epigenetic drug for the therapy of myeloid leukemias. The mode of action of decitabine strictly depends on the incorporation of the drug into DNA. However, DNA incorporation and ensuing genotoxic effects of decitabine have not yet been investigated in human cancer cell lines or in models related to the approved indication of the drug. Here we describe a robust assay for the quantitative determination of decitabine incorporation rates into DNA from human cancer cells. Using a panel of human myeloid leukemia cell lines we show appreciable amounts of decitabine incorporation that closely correlated with cellular drug uptake. Decitabine incorporation was also detectable in primary cells from myeloid leukemia patients, indicating that the assay is suitable for biomarker analyses to predict drug responses in patients. Finally, we also used next-generation sequencing to comprehensively analyze the effects of decitabine incorporation on the DNA sequence level. Interestingly, this approach failed to reveal significant changes in the rates of point mutations and genome rearrangements in myeloid leukemia cell lines. These results indicate that standard rates of decitabine incorporation are not genotoxic in myeloid leukemia cells.
Collapse
Affiliation(s)
- Simin Öz
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Günter Raddatz
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Maria Rius
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Nadja Blagitko-Dorfs
- Department of Hematology, University of Freiburg Medical Center, 79106 Freiburg, Germany
| | - Michael Lübbert
- Department of Hematology, University of Freiburg Medical Center, 79106 Freiburg, Germany
| | - Christian Maercker
- Esslingen University of Applied Sciences, 73728 Esslingen, Germany Genomics and Proteomics Core Facility, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Frank Lyko
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, 69120 Heidelberg, Germany
| |
Collapse
|
30
|
Kim JG, Bae JH, Kim JA, Heo K, Yang K, Yi JM. Combination effect of epigenetic regulation and ionizing radiation in colorectal cancer cells. PLoS One 2014; 9:e105405. [PMID: 25136811 PMCID: PMC4138159 DOI: 10.1371/journal.pone.0105405] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 07/21/2014] [Indexed: 12/30/2022] Open
Abstract
Exposure of cells to ionizing radiation (IR) induces, not only, activation of multiple signaling pathways that play critical roles in cell fate determination, but also alteration of molecular pathways involved in cell death or survival. Recently, DNA methylation has been established as a critical epigenetic process involved in the regulation of gene expression in cancer cells, suggesting that DNA methylation inhibition may be an effective cancer treatment strategy. Because alterations of gene expression by DNA methylation have been considered to influence radioresponsiveness, we investigated the effect of a DNA methyltransferase inhibitor, 5-aza-2'-deoxycytidine (5-aza-dC), on radiosensitivity. In addition, we investigated the underlying cellular mechanisms of combination treatments of ionizing irradiation (IR) and 5-aza-dC in human colon cancer cells. Colon cancer cell lines were initially tested for radiation sensitivity by IR in vitro and were treated with two different doses of 5-aza-dC. Survival of these cell lines was measured using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and clonogenic assays. The effects of 5-aza-dC along with irradiation on cell growth, cell cycle distribution, apoptosis, and apoptosis-related gene expression were examined. Combination irradiation treatment with 5-aza-dC significantly decreased growth activity compared with irradiation treatment alone or with 5-aza-dC treatment alone. The percentage of HCT116 cells in the sub-G1 phase and their apoptotic rate was increased when cells were treated with irradiation in combination with 5-aza-dC compared with either treatment alone. These observations were strongly supported by increased caspase activity, increased comet tails using comet assays, and increased protein levels of apoptosis-associated molecules (caspase 3/9, cleaved PARP). Our data demonstrated that 5-aza-dC enhanced radiosensitivity in colon cancer cells, and the combination effects of 5-aza-dC with radiation showed greater cellular effects than that of single treatment, suggesting that the combination of 5-aza-dC and radiation has the potential to become a clinical strategy for the treatment of cancer.
Collapse
Affiliation(s)
- Joong-Gook Kim
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, South Korea
| | - Jin-Han Bae
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, South Korea
| | - Jin-Ah Kim
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, South Korea
| | - Kyu Heo
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, South Korea
| | - Kwangmo Yang
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, South Korea
- Department of Radiation Oncology, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Joo Mi Yi
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, South Korea
| |
Collapse
|
31
|
Prognostic value of TP53 gene mutations in myelodysplastic syndromes and acute myeloid leukemia treated with azacitidine. Leuk Res 2014; 38:751-5. [DOI: 10.1016/j.leukres.2014.03.012] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 03/13/2014] [Accepted: 03/15/2014] [Indexed: 02/07/2023]
|
32
|
MicroRNA-34a is dispensable for p53 function as teratogenesis inducer. Arch Toxicol 2014; 88:1749-63. [PMID: 24623309 DOI: 10.1007/s00204-014-1223-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 03/03/2014] [Indexed: 12/19/2022]
Abstract
The tumor suppressor protein p53 is a powerful regulator of the embryo's susceptibility to diverse teratogenic stimuli, functioning both as a teratogenesis inducer and suppressor. However, the targets that p53 engages to fulfill its functions remain largely undefined. We asked whether the microRNA (miRNA) miR-34 family, identified as one of the main targets of p53, mediates its function as a teratogenesis inducer. For this, pregnant ICR-, p53- and miR-34a-deficient mice, as well as rats, were exposed to 5-aza-2'-deoxycytidine (5-aza), a teratogen inducing limb reduction anomalies (LRA) of the hindlimbs in mice and either the hindlimbs or forelimbs in rats. Using hind- and forelimb buds of 5-aza-exposed embryos, we identified that the miR-34 family members are the most upregulated miRNAs in mouse and rat limb buds, with their increase level being significantly higher in limb buds destined for LRA. We showed that p53 mediates the 5-aza-induced miR-34 transcription followed by met proto-oncogene and growth-arrest-specific 1 target suppression in embryonic limb buds. We demonstrated that p53 regulates the teratogenic response to 5-aza acting as a teratogenesis inducer albeit miR-34a deletion does not affect the susceptibility of mice to 5-aza. Overall, our study thoroughly characterizes the expression and regulation of miR-34 family in teratogen-resistant and teratogen-sensitive embryonic structures and discusses the involvement of epigenetic miRNA-mediated pathway(s) in induced teratogenesis.
Collapse
|
33
|
Mudbhary R, Hoshida Y, Chernyavskaya Y, Jacob V, Villanueva A, Fiel MI, Chen X, Kojima K, Thung S, Bronson RT, Lachenmayer A, Revill K, Alsinet C, Sachidanandam R, Desai A, SenBanerjee S, Ukomadu C, Llovet JM, Sadler KC. UHRF1 overexpression drives DNA hypomethylation and hepatocellular carcinoma. Cancer Cell 2014; 25:196-209. [PMID: 24486181 PMCID: PMC3951208 DOI: 10.1016/j.ccr.2014.01.003] [Citation(s) in RCA: 246] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 08/29/2013] [Accepted: 01/06/2014] [Indexed: 12/11/2022]
Abstract
Ubiquitin-like with PHD and RING finger domains 1 (UHRF1) is an essential regulator of DNA methylation that is highly expressed in many cancers. Here, we use transgenic zebrafish, cultured cells, and human tumors to demonstrate that UHRF1 is an oncogene. UHRF1 overexpression in zebrafish hepatocytes destabilizes and delocalizes Dnmt1 and causes DNA hypomethylation and Tp53-mediated senescence. Hepatocellular carcinoma (HCC) emerges when senescence is bypassed. tp53 mutation both alleviates senescence and accelerates tumor onset. Human HCCs recapitulate this paradigm, as UHRF1 overexpression defines a subclass of aggressive HCCs characterized by genomic instability, TP53 mutation, and abrogation of the TP53-mediated senescence program. We propose that UHRF1 overexpression is a mechanism underlying DNA hypomethylation in cancer cells and that senescence is a primary means of restricting tumorigenesis due to epigenetic disruption.
Collapse
Affiliation(s)
- Raksha Mudbhary
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yujin Hoshida
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Liver Cancer Program/Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yelena Chernyavskaya
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Vinitha Jacob
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Augusto Villanueva
- HCC Translational Research Laboratory, IDIBAPS, CIBEREHD, Hospital Clinic, University of Barcelona, Catalonia 08036, Spain; Institute of Liver Studies, Division of Transplantation Immunology and Mucosal Biology, King's College London, London SE5 9RS, UK
| | - M Isabel Fiel
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xintong Chen
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Liver Cancer Program/Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kensuke Kojima
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Liver Cancer Program/Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Swan Thung
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Roderick T Bronson
- Rodent Histopathology Core Dana Farber/Harvard Cancer Center, Harvard Medical School, Boston, MA 02115, USA
| | - Anja Lachenmayer
- Liver Cancer Program/Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kate Revill
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Liver Cancer Program/Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Clara Alsinet
- HCC Translational Research Laboratory, IDIBAPS, CIBEREHD, Hospital Clinic, University of Barcelona, Catalonia 08036, Spain
| | - Ravi Sachidanandam
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anal Desai
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sucharita SenBanerjee
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Chinweike Ukomadu
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Josep M Llovet
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Liver Cancer Program/Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; HCC Translational Research Laboratory, IDIBAPS, CIBEREHD, Hospital Clinic, University of Barcelona, Catalonia 08036, Spain; Institució Catalana de Recerca i Estudis Avançats Lluís Companys, Barcelona 08010, Spain
| | - Kirsten C Sadler
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Liver Cancer Program/Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
34
|
Borges S, Döppler HR, Storz P. A combination treatment with DNA methyltransferase inhibitors and suramin decreases invasiveness of breast cancer cells. Breast Cancer Res Treat 2014; 144:79-91. [PMID: 24510012 DOI: 10.1007/s10549-014-2857-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 01/23/2014] [Indexed: 12/13/2022]
Abstract
The treatment of patients with invasive breast cancer remains a major issue because of the acquisition of drug resistance to conventional chemotherapy. Here we propose a new therapeutic strategy by combining DNA methyltransferase inhibitors (DMTIs) with suramin. Cytotoxic effects of suramin or combination treatment with DMTIs were determined in highly invasive breast cancer cell lines MDA-MB-231, BT-20 and HCC1954, or control cells. In addition, effects on cell invasion were determined in 3-dimensional cell culture assays. DMTI-mediated upregulation of Protein Kinase D1 (PKD1) expression was shown by Western blotting. Effects of suramin on PKD1 activity was determined in vitro and in cells. The importance of PKD1 in mediating the effects of such combination treatment in cell invasion was demonstrated using 3D cell culture assays. A proof of principal animal experiment was performed showing that PKD1 is critical for breast cancer growth. We show that when used in combination, suramin and DMTIs impair the invasive phenotype of breast cancer cells. We show that PKD1, a kinase that previously has been described as a suppressor of tumor cell invasion, is an interface for both FDA-approved drugs, since the additive effects observed are due to DMTI-mediated re-expression and suramin-induced activation of PKD1. Our data reveal a mechanism of how a combination treatment with non-toxic doses of suramin and DMTIs may be of therapeutic benefit for patients with aggressive, multi-drug resistant breast cancer.
Collapse
Affiliation(s)
- Sahra Borges
- Department of Cancer Biology, Mayo Clinic, Griffin Building, Room 306, 4,500 San Pablo Road, Jacksonville, FL, 32224, USA
| | | | | |
Collapse
|
35
|
Jesionek-Kupnicka D, Szybka M, Malachowska B, Fendler W, Potemski P, Piaskowski S, Jaskolski D, Papierz W, Skowronski W, Och W, Kordek R, Zawlik I. TP53 promoter methylation in primary glioblastoma: relationship with TP53 mRNA and protein expression and mutation status. DNA Cell Biol 2014; 33:217-26. [PMID: 24506545 DOI: 10.1089/dna.2013.2201] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Reduced expression of TP53 by promoter methylation has been reported in several neoplasms. It remains unclear whether TP53 promoter methylation is associated with reduced transcriptional and protein expression in glioblastoma (GB). The aim of our work was to study the impact of TP53 methylation and mutations on TP53 mRNA level and protein expression in 42 molecularly characterized primary GB tumors. We also evaluate the impact of all molecular alterations on the overall patient survival. The frequency of TP53 promoter methylation was found in 21.4%. To the best of our knowledge, this is the first report showing such high frequency of TP53 promoter methylation in primary GB. There was no relation between TP53 promoter methylation and TP53 mRNA level (p=0.5722) and between TP53 promoter methylation and TP53 protein expression (p=0.2045). No significant associations were found between TP53 mRNA expression and mutation of TP53 gene (p=0.9076). However, significant association between TP53 mutation and TP53 protein expression was found (p=0.0016). Our data suggest that in primary GB TP53 promoter methylation does not play a role in silencing of TP53 transcriptional and protein expression and is probably regulated by other genetic and epigenetic mechanisms associated with genes involved in the TP53 pathway.
Collapse
|
36
|
Fandy TE, Jiemjit A, Thakar M, Rhoden P, Suarez L, Gore SD. Decitabine induces delayed reactive oxygen species (ROS) accumulation in leukemia cells and induces the expression of ROS generating enzymes. Clin Cancer Res 2014; 20:1249-58. [PMID: 24423613 DOI: 10.1158/1078-0432.ccr-13-1453] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE Azanucleoside DNA methyltransferase (DNMT) inhibitors are currently approved by the U.S. Food and Drug Administration for treatment of myelodysplastic syndrome. The relative contributions of DNMT inhibition and other off-target effects to their clinical efficacy remain unclear. Data correlating DNA methylation reversal and clinical response have been conflicting. Consequently, it is necessary to investigate so-called off-target effects and their impact on cell survival and differentiation. EXPERIMENTAL DESIGN Flow cytometry was used for cell cycle, apoptosis, and reactive oxygen species (ROS) accumulation analysis. Gene expression analysis was performed using real-time PCR. DNA methylation was detected by methylation-specific PCR. Mitochondrial membrane potential was analyzed using JC-1 dye staining. Western blotting was used for quantitative protein expression analysis. RESULTS 5-Aza-2'-deoxycytidine (DAC) induced cell-cycle arrest and apoptosis in leukemia cells. p53 expression was dispensable for DAC-induced apoptosis. DAC induced delayed ROS accumulation in leukemia cells but not in solid tumor cells and p53 expression was dispensable for ROS increase. ROS increase was deoxycytidine kinase dependent, indicating that incorporation of DAC into nuclear DNA is required for ROS generation. ROS accumulation by DAC was caspase-independent and mediated the dissipation of the mitochondrial membrane potential. Concordantly, ROS scavengers diminished DAC-induced apoptosis. DAC induced the expression of different NADPH oxidase isoforms and upregulated Nox4 protein expression in an ATM-dependent manner, indicating the involvement of DNA damage signaling in Nox4 upregulation. CONCLUSION These data highlight the importance of mechanisms other than DNA cytosine demethylation in modulating gene expression and suggest investigating the relevance of ROS accumulation to the clinical activity of DAC.
Collapse
Affiliation(s)
- Tamer E Fandy
- Authors' Affiliations: Department of Pharmaceutical Sciences, Albany College of Pharmacy, Colchester, Vermont; and The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | | | | | | | | | | |
Collapse
|
37
|
Zhang S, Kuang G, Zhao G, Wu X, Zhang C, Lei R, Xia T, Chen J, Wang Z, Ma R, Li B, Yang L, Wang A. Involvement of the mitochondrial p53 pathway in PBDE-47-induced SH-SY5Y cells apoptosis and its underlying activation mechanism. Food Chem Toxicol 2013; 62:699-706. [DOI: 10.1016/j.fct.2013.10.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 09/15/2013] [Accepted: 10/05/2013] [Indexed: 12/31/2022]
|
38
|
Zebularine inhibits tumorigenesis and stemness of colorectal cancer via p53-dependent endoplasmic reticulum stress. Sci Rep 2013; 3:3219. [PMID: 24225777 PMCID: PMC3827606 DOI: 10.1038/srep03219] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 10/24/2013] [Indexed: 12/11/2022] Open
Abstract
Aberrant DNA hypermethylation is frequently found in tumor cells and inhibition of DNA methylation is an effective anticancer strategy. In this study, the therapeutic effect of DNA methyltransferase (DNMT) inhibitor zebularine (Zeb) on colorectal cancer (CRC) was investigated. Zeb exhibited anticancer activity in cell cultures, tumor xenografts and mouse colitis-associated CRC model. It stabilizes p53 through ribosomal protein S7 (RPS7)/MDM2 pathways and DNA damage. Zeb-induced cell death was dependent on p53. Microarray analysis revealed that genes related to endoplasmic reticulum (ER) stress and unfolded protein response (UPR) were affected by Zeb. Zeb induced p53-dependent ER stress and autophagy. Pro-survival markers of ER stress/UPR (GRP78) and autophagy (p62) were increased in tumor tissues of CRC patients, AOM/DSS-induced CRC mice and HCT116-derived colonospheres. Zeb downregulates GRP78 and p62, and upregulates a pro-apoptotic CHOP. Our results reveal a novel mechanism for the anticancer activity of Zeb.
Collapse
|
39
|
Hansberg-Pastor V, González-Arenas A, Peña-Ortiz MA, García-Gómez E, Rodríguez-Dorantes M, Camacho-Arroyo I. The role of DNA methylation and histone acetylation in the regulation of progesterone receptor isoforms expression in human astrocytoma cell lines. Steroids 2013; 78:500-7. [PMID: 23474171 DOI: 10.1016/j.steroids.2013.02.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 02/11/2013] [Accepted: 02/14/2013] [Indexed: 11/21/2022]
Abstract
Many progesterone (P4) effects are mediated by its intracellular receptor (PR), which has two isoforms, PR-A and PR-B, each of them with different function and regulation. Differential PR expression in cancer cells has been associated to a PR isoform-specific promoter methylation. In astrocytomas, the most frequent and aggressive brain tumors, PR isoforms expression is directly correlated to the tumor's evolution grade. However, there is no evidence of the role of epigenetic regulation of PR expression in astrocytomas. We evaluated the effect of the demethylating agent 5-aza-2'-deoxycytidine (5AzadC) and the histone deacetylase inhibitor trichostatin A (TSA) on PR expression in human astrocytoma cell lines U373 (grade III) and D54 (grade IV) by RT-PCR and Western blot. Total PR expression increased with 5 μM 5AzadC treatment, whereas PR-B expression increased with 5 and 10 μM 5AzadC treatment in U373 cells, but not in D54 cells. In U373 cells, PR-A protein content augmented with 10 μM 5AzadC treatment, while PR-B content increased with 5 and 10 μM 5AzadC. PR-B expression was not modified by the TSA concentrations that were used, and the combination with 5AzadC did not change the effects of the latter. The study of 5AzadC effects on the number of astrocytoma cells showed that P4 treatment increased the number of U373 cells, whereas 5AzadC and the combined treatment with P4 reduced it. Our results suggest that PR-B expression is regulated by methylation and not by histone acetylation in U373 cells, and that DNA demethylation reduced the number of U373 cells.
Collapse
Affiliation(s)
- Valeria Hansberg-Pastor
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, Coyoacán 04510, México, DF, Mexico
| | | | | | | | | | | |
Collapse
|
40
|
Brown I, Cascio MG, Rotondo D, Pertwee RG, Heys SD, Wahle KW. Cannabinoids and omega-3/6 endocannabinoids as cell death and anticancer modulators. Prog Lipid Res 2013; 52:80-109. [DOI: 10.1016/j.plipres.2012.10.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 10/05/2012] [Indexed: 01/18/2023]
|
41
|
Tsujioka T, Yokoi A, Uesugi M, Kishimoto M, Tochigi A, Suemori S, Tohyama Y, Tohyama K. Effects of DNA methyltransferase inhibitors (DNMTIs) on MDS-derived cell lines. Exp Hematol 2012; 41:189-97. [PMID: 23085465 DOI: 10.1016/j.exphem.2012.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 10/03/2012] [Accepted: 10/12/2012] [Indexed: 10/27/2022]
Abstract
DNA methyltransferase inhibitors (DNMTIs), including decitabine (DAC) and azacitidine (AZA), have recently been highlighted for the treatment of high-risk myelodysplastic syndrome (MDS); however, their action mechanisms have not been clearly defined. Therefore, we investigated the effects of DNMTIs on MDS-derived cell lines in vitro. An MDS-derived cell line MDS92 and its blastic subline MDS-L and HL-60 were used. All three cell lines were sensitive to DNMTIs, but MDS-L was the most susceptible. DAC-induced cell death in MDS-L was preceded by DNA damage-induced G2 arrest via a p53-independent pathway. AZA did not influence the pattern of cell cycle, although it induced DNA damage response. The IC(50) of DAC or AZA on MDS-L cells was associated with the dose inducing the maximal hypomethylation in long interspersed nuclear elements-1 (LINE-1) methylation assay. AZA suppressed the level of methylation in a time-dependent manner (days 4, 7, and 10), whereas DAC maintained the level of methylation from day 4 to 11. The protein expression of DNMT1 and DNMT3a decreased with the suppression of growth and methylation. We conclude that this study provides in vitro models for understanding the effects of DNMTIs on cell growth and gene regulation, including differences in the possible action mechanism of DAC and AZA.
Collapse
Affiliation(s)
- Takayuki Tsujioka
- Department of Laboratory Medicine, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Han T, Shang D, Xu X, Tian Y. Gene expression profiling of the synergy of 5-aza-2'-deoxycytidine and paclitaxel against renal cell carcinoma. World J Surg Oncol 2012; 10:183. [PMID: 22950635 PMCID: PMC3481426 DOI: 10.1186/1477-7819-10-183] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 08/08/2012] [Indexed: 12/11/2022] Open
Abstract
Background Renal cell carcinoma (RCC) is one of the most common kidney cancers and is highly resistant to chemotherapy. We previously demonstrated that 5-aza-2′-deoxycytidine (DAC) could significantly increase the susceptibility of renal cell carcinoma (RCC) cells to paclitaxel (PTX) treatment in vitro, and showed the synergy of DAC and PTX against RCC. The purpose of this study is to investigated the gene transcriptional alteration and investigate possible molecular mechanism and pathways implicated in the synergy of DAC and PTX against RCC. Methods cDNA microarray was performed and coupled with real-time PCR to identify critical genes in the synergistic mechanism of both agents against RCC cells. Various patterns of gene expression were observed by cluster analysis. IPA software was used to analyze possible biological pathways and to explore the inter-relationships between interesting network genes. Results We found that lymphoid enhancer-binding factor 1 (LEF1), transforming growth factor β-induced (TGFBI), C-X-C motif ligand 5 (CXCL5) and myelocytomatosis viral related oncogene (c-myc) may play a pivotal role in the synergy of DAC and PTX. The PI3K/Akt pathway and other pathways associated with cyclins, DNA replication and cell cycle/mitotic regulation were also associated with the synergy of DAC and PTX against RCC. Conclusion The activation of PI3K/Akt-LEF1/β-catenin pathway could be suppressed synergistically by two agents and that PI3K/Akt-LEF1/β-catenin pathway is participated in the synergy of two agents.
Collapse
Affiliation(s)
- Tiandong Han
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, 95 Yong-An Road, Beijing 100050, China
| | | | | | | |
Collapse
|
43
|
Barrera LN, Johnson IT, Bao Y, Cassidy A, Belshaw NJ. Colorectal cancer cells Caco-2 and HCT116 resist epigenetic effects of isothiocyanates and selenium in vitro. Eur J Nutr 2012; 52:1327-41. [PMID: 22923034 DOI: 10.1007/s00394-012-0442-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 08/10/2012] [Indexed: 12/27/2022]
Abstract
PURPOSE It is relatively unknown how different dietary components, in partnership, regulate gene expression linked to colon pathology. It has been suggested that the combination of various bioactive components present in a plant-based diet is crucial for their potential anticancer activities. This study employed a combinatorial chemopreventive strategy to investigate the impact of selenium and/or isothiocyanates on DNA methylation processes in colorectal carcinoma cell lines. METHODS To gain insights into the epigenetic-mediated changes in gene expression in response to these dietary constituents cultured Caco-2 and HCT116 cells were exposed for up to 12 days to different concentrations of selenium methylselenocysteine and selenite (ranging from 0.2 to 5 μM) either alone or in combination with sulforaphane and iberin (ranging from 6 to 8 μM), and changes to gene-specific (p16(INK4A) and ESR1), global (LINE-1) methylation and DNMT expression were quantified using real-time PCR-based assays. RESULTS No effects on the methylation of CpG islands in ESR1, p16(INK4A) or of LINE-1, a marker of global genomic methylation, were observed after exposure of Caco-2 and HCT116 cells to selenium or isothiocyanates. Only transient changes in DNMT mRNA expression, which occurred mostly in the treatment groups containing isothiocyanates, were observed, and these occurred only for specific DNMT transcripts and did not lead to the modification of the aberrant methylation status present in these cells. CONCLUSION These data suggest that treatment for colon cancer cells with selenium and/or isothiocyanates, either individually or in combination does not impact abnormal methylation patterns of key genes involved in the complex multistep process of colon carcinogenesis in vitro.
Collapse
Affiliation(s)
- Lawrence N Barrera
- Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, UK
| | | | | | | | | |
Collapse
|
44
|
LIU JUAN, ZHANG YAN, XIE YISHAN, WANG FULIANG, ZHANG LIJUN, DENG TAO, LUO HESHENG. 5-Aza-2′-deoxycytidine induces cytotoxicity in BGC-823 cells via DNA methyltransferase 1 and 3a independent of p53 status. Oncol Rep 2012; 28:545-52. [DOI: 10.3892/or.2012.1838] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 04/27/2012] [Indexed: 11/06/2022] Open
|
45
|
Fetal stress and programming of hypoxic/ischemic-sensitive phenotype in the neonatal brain: mechanisms and possible interventions. Prog Neurobiol 2012; 98:145-65. [PMID: 22627492 DOI: 10.1016/j.pneurobio.2012.05.010] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 05/10/2012] [Accepted: 05/11/2012] [Indexed: 12/12/2022]
Abstract
Growing evidence of epidemiological, clinical and experimental studies has clearly shown a close link between adverse in utero environment and the increased risk of neurological, psychological and psychiatric disorders in later life. Fetal stresses, such as hypoxia, malnutrition, and fetal exposure to nicotine, alcohol, cocaine and glucocorticoids may directly or indirectly act at cellular and molecular levels to alter the brain development and result in programming of heightened brain vulnerability to hypoxic-ischemic encephalopathy and the development of neurological diseases in the postnatal life. The underlying mechanisms are not well understood. However, glucocorticoids may play a crucial role in epigenetic programming of neurological disorders of fetal origins. This review summarizes the recent studies about the effects of fetal stress on the abnormal brain development, focusing on the cellular, molecular and epigenetic mechanisms and highlighting the central effects of glucocorticoids on programming of hypoxic-ischemic-sensitive phenotype in the neonatal brain, which may enhance the understanding of brain pathophysiology resulting from fetal stress and help explore potential targets of timely diagnosis, prevention and intervention in neonatal hypoxic-ischemic encephalopathy and other brain disorders.
Collapse
|
46
|
Shiota M, Takeuchi A, Yokomizo A, Kashiwagi E, Tatsugami K, Naito S. Methyltransferase inhibitor adenosine dialdehyde suppresses androgen receptor expression and prostate cancer growth. J Urol 2012; 188:300-6. [PMID: 22608750 DOI: 10.1016/j.juro.2012.02.2553] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Indexed: 10/28/2022]
Abstract
PURPOSE Although most prostate cancers regress after androgen deprivation therapy is given at diagnosis, they eventually regrow in a castration resistant manner, spread systemically and end fatally. Thus, novel therapeutic compounds are needed for prostate cancer. We previously reported that methylation at histone H3 lysine 9 was increased in prostate cancer. In this study we examined the effects of the methyltransferase inhibitor adenosine dialdehyde (Sigma®) on the methylation state of histone H3 lysine 9 and AR gene expression as well as its possible usefulness for prostate cancer. MATERIALS AND METHODS The effect of adenosine dialdehyde on the methylation state of histone H3 lysine 9 and AR gene expression was examined by quantitative real-time polymerase chain reaction and Western blot. We compared methylation at histone H3 lysine 9 at the AR promoter region between androgen dependent and castration resistant prostate cancer by chromatin immunoprecipitation assay. The cytotoxic effect of adenosine dialdehyde on prostate cancer was also evaluated in vitro and in vivo. RESULTS Adenosine dialdehyde suppressed the monomethylation and dimethylation of histone H3 lysine 9 and inhibited Twist1 as well as androgen receptor expression, which are critical for the survival and growth of androgen dependent, androgen sensitive and castration resistant prostate cancer cells in which monomethylated histone H3 lysine 9 increased at the 5' untranslated region of the AR gene. As a result, adenosine dialdehyde had a cytotoxic effect on androgen dependent, androgen sensitive and castration resistant prostate cancer cells in vitro. Adenosine dialdehyde also suppressed prostate cancer growth in vivo in a mouse xenograft model. CONCLUSIONS Results indicate that the methyltransferase inhibitor adenosine dialdehyde is a promising, novel therapeutic compound for prostate cancer.
Collapse
Affiliation(s)
- Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Doi K. Mechanisms of neurotoxicity induced in the developing brain of mice and rats by DNA-damaging chemicals. J Toxicol Sci 2012; 36:695-712. [PMID: 22129734 DOI: 10.2131/jts.36.695] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
It is not widely known how the developing brain responds to extrinsic damage, although the developing brain is considered to be sensitive to diverse environmental factors including DNA-damaging agents. This paper reviews the mechanisms of neurotoxicity induced in the developing brain of mice and rats by six chemicals (ethylnitrosourea, hydroxyurea, 5-azacytidine, cytosine arabinoside, 6-mercaptopurine and etoposide), which cause DNA damage in different ways, especially from the viewpoints of apoptosis and cell cycle arrest in neural progenitor cells. In addition, this paper also reviews the repair process following damage in the developing brain.
Collapse
Affiliation(s)
- Kunio Doi
- Nippon Institute for Biological Science, Ome, Tokyo, Japan.
| |
Collapse
|
48
|
Tsai HC, Li H, Van Neste L, Cai Y, Robert C, Rassool FV, Shin JJ, Harbom KM, Beaty R, Pappou E, Harris J, Yen RWC, Ahuja N, Brock MV, Stearns V, Feller-Kopman D, Yarmus LB, Lin YC, Welm AL, Issa JP, Minn I, Matsui W, Jang YY, Sharkis SJ, Baylin SB, Zahnow CA. Transient low doses of DNA-demethylating agents exert durable antitumor effects on hematological and epithelial tumor cells. Cancer Cell 2012; 21:430-46. [PMID: 22439938 PMCID: PMC3312044 DOI: 10.1016/j.ccr.2011.12.029] [Citation(s) in RCA: 480] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 06/20/2011] [Accepted: 12/30/2011] [Indexed: 12/26/2022]
Abstract
Reversal of promoter DNA hypermethylation and associated gene silencing is an attractive cancer therapy approach. The DNA methylation inhibitors decitabine and azacitidine are efficacious for hematological neoplasms at lower, less toxic, doses. Experimentally, high doses induce rapid DNA damage and cytotoxicity, which do not explain the prolonged time to response observed in patients. We show that transient exposure of cultured and primary leukemic and epithelial tumor cells to clinically relevant nanomolar doses, without causing immediate cytotoxicity, produce an antitumor "memory" response, including inhibition of subpopulations of cancer stem-like cells. These effects are accompanied by sustained decreases in genomewide promoter DNA methylation, gene reexpression, and antitumor changes in key cellular regulatory pathways. Low-dose decitabine and azacitidine may have broad applicability for cancer management.
Collapse
Affiliation(s)
- Hsing-Chen Tsai
- The Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA
| | - Huili Li
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA
| | - Leander Van Neste
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Yi Cai
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA
| | - Carine Robert
- Department of Radiation Oncology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Feyruz V. Rassool
- Department of Radiation Oncology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - James J. Shin
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD21231, USA
| | - Kirsten M. Harbom
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA
| | - Robert Beaty
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA
| | - Emmanouil Pappou
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD21231, USA
| | - James Harris
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD21231, USA
| | - Ray-Whay Chiu Yen
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA
| | - Nita Ahuja
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD21231, USA
| | - Malcolm V. Brock
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD21231, USA
| | - Vered Stearns
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA
- Breast Cancer Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA
| | - David Feller-Kopman
- Bronchoscopy and Interventional Pulmonology, Johns Hopkins Hospital, Baltimore, MD 21205, USA
| | - Lonny B. Yarmus
- Bronchoscopy and Interventional Pulmonology, Johns Hopkins Hospital, Baltimore, MD 21205, USA
| | - Yi-Chun Lin
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112 USA
| | - Alana L. Welm
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112 USA
| | - Jean-Pierre Issa
- Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, 77030 USA
| | - Il Minn
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA
| | - William Matsui
- The Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA
| | - Yoon-Young Jang
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA
| | - Saul J. Sharkis
- The Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA
| | - Stephen B. Baylin
- The Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA
| | - Cynthia A. Zahnow
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA
- Breast Cancer Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA
| |
Collapse
|
49
|
Development of a novel approach, the epigenome-based outlier approach, to identify tumor-suppressor genes silenced by aberrant DNA methylation. Cancer Lett 2012; 322:204-12. [PMID: 22433712 DOI: 10.1016/j.canlet.2012.03.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 03/10/2012] [Accepted: 03/12/2012] [Indexed: 12/22/2022]
Abstract
Identification of tumor-suppressor genes (TSGs) silenced by aberrant methylation of promoter CpG islands (CGIs) is important, but hampered by a large number of genes methylated as passengers of carcinogenesis. To overcome this issue, we here took advantage of the fact that the vast majority of genes methylated in cancers lack, in normal cells, RNA polymerase II (Pol II) and have trimethylation of histone H3 lysine 27 (H3K27me3) in their promoter CGIs. First, we demonstrated that three of six known TSGs in breast cancer and two of three in colon cancer had Pol II and lacked H3K27me3 in normal cells, being outliers to the general rule. BRCA1, HOXA5, MLH1, and RASSF1A had high Pol II, but were expressed only at low levels in normal cells, and were unlikely to be identified as outliers by their expression statuses in normal cells. Then, using epigenome statuses (Pol II binding and H3K27me3) in normal cells, we made a genome-wide search for outliers in breast cancers, and identified 14 outlier promoter CGIs. Among these, DZIP1, FBN2, HOXA5, and HOXC9 were confirmed to be methylated in primary breast cancer samples. Knockdown of DZIP1 in breast cancer cell lines led to increases of their growth, suggesting it to be a novel TSG. The outliers based on their epigenome statuses contained unique TSGs, including DZIP1, compared with those identified by the expression microarray data. These results showed that the epigenome-based outlier approach is capable of identifying a different set of TSGs, compared to the expression-based outlier approach.
Collapse
|
50
|
Abstract
Observations that genome-wide DNA hypomethylation induces genomic instability and tumors in animals caution against the indiscriminate use of demethylating agents, such as 5-aza-2′-deoxycytidine (5-Aza-dC). Using primary mouse embryonic fibroblasts harboring a lacZ mutational reporter construct that allows the quantification and characterization of a wide range of mutational events, we found that in addition to demethylation, treatment with 5-Aza-dC induces γ-H2AX expression, a marker for DNA breaks, and both point mutations and genome rearrangements. To gain insight into the source of these mutations we first tested the hypothesis that the mutagenic effect of 5-Aza-dC may be directly mediated through the DNA methyltransferase 1 (DNMT1) covalently trapped in 5-Aza-dC-substituted DNA. Knock-down of DNMT1 resulted in increased resistance to the cytostatic effects of 5-Aza-dC, delayed onset of γ-H2AX expression and a significant reduction in the frequency of genome rearrangements. There was no effect on the 5-Aza-dC-induced point mutations. An alternative mechanism for 5-Aza-dC-induced demethylation and genome rearrangements via activation-induced cytidine deaminase (AID) followed by base excision repair (BER) was found not to be involved. That is, 5-Aza-dC treatment did not significantly induce AID expression and inhibition of BER did not reduce the frequency of genome rearrangements. Thus, our results indicate that the formation of DNMT1 adducts is the prevalent mechanism of 5-Aza-dC-induced genome rearrangements, although hypomethylation per se may still contribute. Since the therapeutic effects of 5-Aza-dC greatly depend on the presence of DNMT1, the expression level of DNA methyltransferases in tumors may serve as a prognostic factor for the efficacy of 5-Aza-dC treatment.
Collapse
|