1
|
Hoogstraten CA, Schirris TJJ, Russel FGM. Unlocking mitochondrial drug targets: The importance of mitochondrial transport proteins. Acta Physiol (Oxf) 2024; 240:e14150. [PMID: 38666512 DOI: 10.1111/apha.14150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/02/2024] [Accepted: 04/12/2024] [Indexed: 05/12/2024]
Abstract
A disturbed mitochondrial function contributes to the pathology of many common diseases. These organelles are therefore important therapeutic targets. On the contrary, many adverse effects of drugs can be explained by a mitochondrial off-target effect, in particular, due to an interaction with carrier proteins in the inner membrane. Yet this class of transport proteins remains underappreciated and understudied. The aim of this review is to provide a deeper understanding of the role of mitochondrial carriers in health and disease and their significance as drug targets. We present literature-based evidence that mitochondrial carrier proteins are associated with prevalent diseases and emphasize their potential as drug (off-)target sites by summarizing known mitochondrial drug-transporter interactions. Studying these carriers will enhance our knowledge of mitochondrial drug on- and off-targets and provide opportunities to further improve the efficacy and safety of drugs.
Collapse
Affiliation(s)
- Charlotte A Hoogstraten
- Department of Pharmacy, Division of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Tom J J Schirris
- Department of Pharmacy, Division of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Frans G M Russel
- Department of Pharmacy, Division of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
2
|
Kubik J, Humeniuk E, Adamczuk G, Madej-Czerwonka B, Korga-Plewko A. Targeting Energy Metabolism in Cancer Treatment. Int J Mol Sci 2022; 23:ijms23105572. [PMID: 35628385 PMCID: PMC9146201 DOI: 10.3390/ijms23105572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/12/2022] [Accepted: 05/15/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer is the second most common cause of death worldwide after cardiovascular diseases. The development of molecular and biochemical techniques has expanded the knowledge of changes occurring in specific metabolic pathways of cancer cells. Increased aerobic glycolysis, the promotion of anaplerotic responses, and especially the dependence of cells on glutamine and fatty acid metabolism have become subjects of study. Despite many cancer treatment strategies, many patients with neoplastic diseases cannot be completely cured due to the development of resistance in cancer cells to currently used therapeutic approaches. It is now becoming a priority to develop new treatment strategies that are highly effective and have few side effects. In this review, we present the current knowledge of the enzymes involved in the different steps of glycolysis, the Krebs cycle, and the pentose phosphate pathway, and possible targeted therapies. The review also focuses on presenting the differences between cancer cells and normal cells in terms of metabolic phenotype. Knowledge of cancer cell metabolism is constantly evolving, and further research is needed to develop new strategies for anti-cancer therapies.
Collapse
Affiliation(s)
- Joanna Kubik
- Independent Medical Biology Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland; (J.K.); (G.A.); (A.K.-P.)
| | - Ewelina Humeniuk
- Independent Medical Biology Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland; (J.K.); (G.A.); (A.K.-P.)
- Correspondence: ; Tel.: +48-81-448-65-20
| | - Grzegorz Adamczuk
- Independent Medical Biology Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland; (J.K.); (G.A.); (A.K.-P.)
| | - Barbara Madej-Czerwonka
- Human Anatomy Department, Faculty of Medicine, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Agnieszka Korga-Plewko
- Independent Medical Biology Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland; (J.K.); (G.A.); (A.K.-P.)
| |
Collapse
|
3
|
Kurekova S, Tomaskova ZS, Andelova N, Macejova D, Cervienkova M, Brtko J, Ferko M, Grman M, Mackova K. The effect of all-trans retinoic acid on the mitochondrial function and survival of cardiomyoblasts exposed to local photodamage. Cell Biol Int 2022; 46:947-964. [PMID: 35191136 DOI: 10.1002/cbin.11784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 12/30/2021] [Accepted: 02/12/2022] [Indexed: 11/06/2022]
Abstract
This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Simona Kurekova
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05, Bratislava, Slovakia
| | - Zuzana Sevcikova Tomaskova
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05, Bratislava, Slovakia
| | - Natalia Andelova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104, Bratislava, Slovakia
| | - Dana Macejova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505, Bratislava, Slovakia
| | - Michaela Cervienkova
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, 81237, Bratislava, Slovakia
| | - Julius Brtko
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505, Bratislava, Slovakia
| | - Miroslav Ferko
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104, Bratislava, Slovakia
| | - Marian Grman
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, 84505, Bratislava, Slovakia
| | - Katarina Mackova
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05, Bratislava, Slovakia
| |
Collapse
|
4
|
Jaiquel Baron S, King MS, Kunji ER, Schirris TJ. Characterization of drug-induced human mitochondrial ADP/ATP carrier inhibition. Am J Cancer Res 2021; 11:5077-5091. [PMID: 33859735 PMCID: PMC8039944 DOI: 10.7150/thno.54936] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 01/18/2021] [Indexed: 01/10/2023] Open
Abstract
An increasing number of commonly prescribed drugs are known to interfere with mitochondrial function, causing cellular toxicity, but the underlying mechanisms are largely unknown. Although often not considered, mitochondrial transport proteins form a significant class of potential mitochondrial off-targets. So far, most drug interactions have been reported for the mitochondrial ADP/ATP carrier (AAC), which exchanges cytosolic ADP for mitochondrial ATP. Here, we show inhibition of cellular respiratory capacity by only a subset of the 18 published AAC inhibitors, which questions whether all compound do indeed inhibit such a central metabolic process. This could be explained by the lack of a simple, direct model system to evaluate and compare drug-induced AAC inhibition. Methods: For its development, we have expressed and purified human AAC1 (hAAC1) and applied two approaches. In the first, thermostability shift assays were carried out to investigate the binding of these compounds to human AAC1. In the second, the effect of these compounds on transport was assessed in proteoliposomes with reconstituted human AAC1, enabling characterization of their inhibition kinetics. Results: Of the proposed inhibitors, chebulinic acid, CD-437 and suramin are the most potent with IC50-values in the low micromolar range, whereas another six are effective at a concentration of 100 μM. Remarkably, half of all previously published AAC inhibitors do not show significant inhibition in our assays, indicating that they are false positives. Finally, we show that inhibitor strength correlates with a negatively charged surface area of the inhibitor, matching the positively charged surface of the substrate binding site. Conclusion: Consequently, we have provided a straightforward model system to investigate AAC inhibition and have gained new insights into the chemical compound features important for inhibition. Better evaluation methods of drug-induced inhibition of mitochondrial transport proteins will contribute to the development of drugs with an enhanced safety profile.
Collapse
|
5
|
Qi J, Zhao W, Zheng Y, Wang R, Chen Q, Wang FA, Fan W, Gao H, Xia X. Single-crystal structure and intracellular localization of Zn(II)-thiosemicarbazone complex targeting mitochondrial apoptosis pathways. Bioorg Med Chem Lett 2020; 30:127340. [PMID: 32631541 DOI: 10.1016/j.bmcl.2020.127340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/17/2020] [Accepted: 06/06/2020] [Indexed: 01/01/2023]
Abstract
Tracking of drugs in cancer cells is important for basic biology research and therapeutic applications. Therefore, we designed and synthesised a Zn(II)-thiosemicarbazone complex with photoluminescent property for organelle-specific imaging and anti-cancer proliferation. The Zn(AP44eT)(NO3)2 coordination ratio of metal to ligand was 1:1, which was remarkably superior to 2-((3-aminopyridin-2-yl) methylene)-N, N-diethylhydrazinecarbothioamide (AP44eT·HCl) in many aspects, such as fluorescence and anti-tumour activity. Confocal fluorescence imaging showed that the Zn(AP44eT)(NO3)2 was aggregated in mitochondria. Moreover, Zn(AP44eT)(NO3)2 was more effective than the metal-free AP44eT·HCl in shortening the G2 phase in the MCF-7 cell cycle and promoting apoptosis of cancer cells. Supposedly, the effects of these complexes might be located mainly in the mitochondria and activated caspase-3 and 9 proteins.
Collapse
Affiliation(s)
- Jinxu Qi
- Medcine College of Pingdingshan University, Pingdingshan, Henan 467000, China.
| | - Wei Zhao
- Medcine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Yunyun Zheng
- Medcine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Ruiya Wang
- Medcine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Qiu Chen
- Medcine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Fu-An Wang
- Medcine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Weiwei Fan
- Medcine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Huashan Gao
- Medcine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Xichao Xia
- Medcine College of Pingdingshan University, Pingdingshan, Henan 467000, China.
| |
Collapse
|
6
|
Koenders SA, Wijaya LS, Erkelens MN, Bakker AT, van der Noord VE, van Rooden EJ, Burggraaff L, Putter PC, Botter E, Wals K, van den Elst H, den Dulk H, Florea BI, van de Water B, van Westen GJP, Mebius RE, Overkleeft HS, Le Dévédec SE, van der Stelt M. Development of a Retinal-Based Probe for the Profiling of Retinaldehyde Dehydrogenases in Cancer Cells. ACS CENTRAL SCIENCE 2019; 5:1965-1974. [PMID: 31893226 PMCID: PMC6936097 DOI: 10.1021/acscentsci.9b01022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Indexed: 05/13/2023]
Abstract
Retinaldehyde dehydrogenases belong to a superfamily of enzymes that regulate cell differentiation and are responsible for detoxification of anticancer drugs. Chemical tools and methods are of great utility to visualize and quantify aldehyde dehydrogenase (ALDH) activity in health and disease. Here, we present the discovery of a first-in-class chemical probe based on retinal, the endogenous substrate of retinal ALDHs. We unveil the utility of this probe in quantitating ALDH isozyme activity in a panel of cancer cells via both fluorescence and chemical proteomic approaches. We demonstrate that our probe is superior to the widely used ALDEFLUOR assay to explain the ability of breast cancer (stem) cells to produce all-trans retinoic acid. Furthermore, our probe revealed the cellular selectivity profile of an advanced ALDH1A1 inhibitor, thereby prompting us to investigate the nature of its cytotoxicity. Our results showcase the application of substrate-based probes in interrogating pathologically relevant enzyme activities. They also highlight the general power of chemical proteomics in driving the discovery of new biological insights and its utility to guide drug discovery efforts.
Collapse
Affiliation(s)
- Sebastiaan
T. A. Koenders
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands
- Oncode Institute, Utrecht 3521 AL, The Netherlands
| | - Lukas S. Wijaya
- Cancer
Therapeutics and Drug Safety, Division of Drug Discovery and Safety,
Leiden Academic Centre for Drug Research, Leiden University, Leiden 2300 RA, The Netherlands
| | - Martje N. Erkelens
- Department
of Molecular Cell Biology and Immunology, Amsterdam University Medical Centra, Amsterdam 1081 HV, The Netherlands
| | - Alexander T. Bakker
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands
| | - Vera E. van der Noord
- Cancer
Therapeutics and Drug Safety, Division of Drug Discovery and Safety,
Leiden Academic Centre for Drug Research, Leiden University, Leiden 2300 RA, The Netherlands
| | - Eva J. van Rooden
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands
| | - Lindsey Burggraaff
- Computational
Drug Discovery, Division of Drug Discovery and Safety, Leiden Academic
Centre for Drug Research, Leiden University, Leiden 2300 RA, The Netherlands
| | - Pasquale C. Putter
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands
| | - Else Botter
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands
| | - Kim Wals
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands
- Oncode Institute, Utrecht 3521 AL, The Netherlands
| | - Hans van den Elst
- Department
of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands
| | - Hans den Dulk
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands
| | - Bogdan I. Florea
- Department
of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands
| | - Bob van de Water
- Cancer
Therapeutics and Drug Safety, Division of Drug Discovery and Safety,
Leiden Academic Centre for Drug Research, Leiden University, Leiden 2300 RA, The Netherlands
| | - Gerard J. P. van Westen
- Computational
Drug Discovery, Division of Drug Discovery and Safety, Leiden Academic
Centre for Drug Research, Leiden University, Leiden 2300 RA, The Netherlands
| | - Reina E. Mebius
- Department
of Molecular Cell Biology and Immunology, Amsterdam University Medical Centra, Amsterdam 1081 HV, The Netherlands
| | - Herman S. Overkleeft
- Department
of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands
| | - Sylvia E. Le Dévédec
- Cancer
Therapeutics and Drug Safety, Division of Drug Discovery and Safety,
Leiden Academic Centre for Drug Research, Leiden University, Leiden 2300 RA, The Netherlands
| | - Mario van der Stelt
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands
- Oncode Institute, Utrecht 3521 AL, The Netherlands
- E-mail:
| |
Collapse
|
7
|
Russo Spena C, De Stefano L, Poli G, Granchi C, El Boustani M, Ecca F, Grassi G, Grassi M, Canzonieri V, Giordano A, Tuccinardi T, Caligiuri I, Rizzolio F. Virtual screening identifies a PIN1 inhibitor with possible antiovarian cancer effects. J Cell Physiol 2019; 234:15708-15716. [PMID: 30697729 DOI: 10.1002/jcp.28224] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/10/2019] [Indexed: 02/06/2023]
Abstract
Peptidyl-prolyl cis-trans isomerase, NIMA-interacting 1 (PIN1) is a peptidyl-prolyl isomerase that binds phospho-Ser/Thr-Pro motifs in proteins and catalyzes the cis-trans isomerization of proline peptide bonds. PIN1 is overexpressed in several cancers including high-grade serous ovarian cancer. Since few therapies are effective against this cancer, PIN1 could be a therapeutic target but effective PIN1 inhibitors are lacking. To identify molecules with in vivo inhibitory effects on PIN1, we used consensus docking to model existing PIN1-ligand X-ray structures and to screen a chemical database for candidate inhibitors. Ten molecules were selected and tested in cellular assays, leading to the identification of VS10 that bound and inhibited PIN1. VS10 treatment reduced the viability of ovarian cancer cell lines by inducing proteasomal PIN1 degradation, without effects on PIN1 transcription, and also reduced the levels of downstream targets β-catenin, cyclin D1, and pSer473-Akt. VS10 is a selective PIN1 inhibitor that may offer new opportunities for treating PIN1-overexpressing tumors.
Collapse
Affiliation(s)
- Concetta Russo Spena
- Pathology Unit, IRCCS CRO Aviano-National Cancer Institute, Aviano, Italy.,Doctoral School in Chemistry, University of Trieste, Trieste, Italy
| | - Lucia De Stefano
- Pathology Unit, IRCCS CRO Aviano-National Cancer Institute, Aviano, Italy.,Doctoral School in Chemistry, University of Trieste, Trieste, Italy
| | - Giulio Poli
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | - Maguie El Boustani
- Pathology Unit, IRCCS CRO Aviano-National Cancer Institute, Aviano, Italy.,Doctoral School in Molecular Biomedicine, University of Trieste, Trieste, Italy
| | - Fabrizio Ecca
- Experimental and Clinical Pharmacology Unit, IRCCS CRO Aviano-National Cancer Institute, Aviano, Italy
| | - Gabriele Grassi
- Department of Life Sciences, Cattinara University Hospital, University of Trieste, Trieste, Italy
| | - Mario Grassi
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Vincenzo Canzonieri
- Pathology Unit, IRCCS CRO Aviano-National Cancer Institute, Aviano, Italy.,Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, Pennsylvania.,Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Antonio Giordano
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | - Isabella Caligiuri
- Pathology Unit, IRCCS CRO Aviano-National Cancer Institute, Aviano, Italy
| | - Flavio Rizzolio
- Pathology Unit, IRCCS CRO Aviano-National Cancer Institute, Aviano, Italy.,Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, Pennsylvania.,Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Venezia-Mestre, Italy
| |
Collapse
|
8
|
Badrinath N, Yoo SY. Mitochondria in cancer: in the aspects of tumorigenesis and targeted therapy. Carcinogenesis 2019; 39:1419-1430. [PMID: 30357389 DOI: 10.1093/carcin/bgy148] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/19/2018] [Indexed: 01/15/2023] Open
Abstract
Mitochondria play pivotal roles in most eukaryotic cells, ranging from energy production to regulation of apoptosis. As sites of cellular respiration, mitochondria experience accumulation of reactive oxygen species (ROS) due to damage in electron transport chain carriers. Mutations in mitochondrial DNA (mtDNA) as well as nuclear DNA are reported in various cancers. Mitochondria have a dual role in cancer: the development of tumors due to mutations in mitochondrial genome and the generation of ROS. Impairment in the mitochondria-regulated apoptosis pathway accelerates tumorigenesis. Numerous strategies targeting mitochondria have been developed to induce the mitochondrial (i.e. intrinsic) apoptosis pathway in cancer cells. This review elaborates the roles of mitochondria in cancer with respect to mutations and apoptosis and discusses mitochondria-targeting strategies as cancer therapies to enhance the killing of cancer cells.
Collapse
Affiliation(s)
- Narayanasamy Badrinath
- Biomedical Sciences, School of Medicine, Pusan National University, Yangsan, Republic of Korea.,Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - So Young Yoo
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea.,BIO-IT Foundry Technology Institute, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
9
|
Wei-LaPierre L, Ainbinder A, Tylock KM, Dirksen RT. Substrate-dependent and cyclophilin D-independent regulation of mitochondrial flashes in skeletal and cardiac muscle. Arch Biochem Biophys 2019; 665:122-131. [PMID: 30872061 PMCID: PMC6499064 DOI: 10.1016/j.abb.2019.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 01/20/2023]
Abstract
Mitochondrial flashes (mitoflashes) are stochastic events in the mitochondrial matrix detected by mitochondrial-targeted cpYFP (mt-cpYFP). Mitoflashes are quantal bursts of reactive oxygen species (ROS) production accompanied by modest matrix alkalinization and depolarization of the mitochondrial membrane potential. Mitoflashes are fundamental events present in a wide range of cell types. To date, the precise mechanisms for mitoflash generation and termination remain elusive. Transient opening of the mitochondrial membrane permeability transition pore (mPTP) during a mitoflash is proposed to account for the mitochondrial membrane potential depolarization. Here, we set out to compare the tissue-specific effects of cyclophilin D (CypD)-deficiency and mitochondrial substrates on mitoflash activity in skeletal and cardiac muscle. In contrast to previous reports, we found that CypD knockout did not alter the mitoflash frequency or other mitoflash properties in acutely isolated cardiac myocytes, skeletal muscle fibers, or isolated mitochondria from skeletal muscle and the heart. However, in skeletal muscle fibers, CypD deficiency resulted in a parallel increase in both activity-dependent mitochondrial Ca2+ uptake and activity-dependent mitoflash activity. Increases in both mitochondrial Ca2+ uptake and mitoflash activity following electrical stimulation were abolished by inhibition of mitochondrial Ca2+ uptake. We also found that mitoflash frequency and amplitude differ greatly between intact skeletal muscle fibers and cardiac myocytes, but that this difference is absent in isolated mitochondria. We propose that this difference may be due, in part, to differences in substrate availability in intact skeletal muscle fibers (primarily glycolytic) and cardiac myocytes (largely oxidative). Overall, we find that CypD does not contribute significantly in mitoflash biogenesis under basal conditions in skeletal and cardiac muscle, but does regulate mitoflash events during muscle activity. In addition, tissue-dependent differences in mitoflash frequency are strongly regulated by mitochondrial substrate availability.
Collapse
Affiliation(s)
- Lan Wei-LaPierre
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| | - Alina Ainbinder
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Kevin M Tylock
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Robert T Dirksen
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| |
Collapse
|
10
|
Trigo D, Goncalves MB, Corcoran JPT. The regulation of mitochondrial dynamics in neurite outgrowth by retinoic acid receptor β signaling. FASEB J 2019; 33:7225-7235. [PMID: 30857414 PMCID: PMC6529336 DOI: 10.1096/fj.201802097r] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Neuronal regeneration is a highly energy-demanding process that greatly relies on axonal mitochondrial transport to meet the enhanced metabolic requirements. Mature neurons typically fail to regenerate after injury, partly because of mitochondrial motility and energy deficits in injured axons. Retinoic acid receptor (RAR)-β signaling is involved in axonal and neurite regeneration. Here we investigate the effect of RAR-β signaling on mitochondrial trafficking during neurite outgrowth and find that it enhances their proliferation, speed, and movement toward the growing end of the neuron via hypoxia-inducible factor 1α signaling. We also show that RAR-β signaling promotes the binding of the mitochondria to the anchoring protein, glucose-related protein 75, at the growing tip of neurite, thus allowing them to provide energy and metabolic roles required for neurite outgrowth.—Trigo, D., Goncalves, M. B., Corcoran, J. P. T. The regulation of mitochondrial dynamics in neurite outgrowth by retinoic acid receptor β signaling.
Collapse
Affiliation(s)
- Diogo Trigo
- The Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Maria B Goncalves
- The Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Jonathan P T Corcoran
- The Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| |
Collapse
|
11
|
Liu Y, Ma X, Guo J, Lin Z, Zhou M, Bi W, Liu J, Wang J, Lu H, Wu G. All-trans retinoic acid can antagonize osteoblastogenesis induced by different BMPs irrespective of their dimerization types and dose-efficiencies. Drug Des Devel Ther 2018; 12:3419-3430. [PMID: 30349195 PMCID: PMC6186890 DOI: 10.2147/dddt.s178190] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Introduction Alcoholism can lead to low mineral density, compromised regenerative bone capacity and delayed osteointegration of dental implants. This may be partially attributed to the inhibitive effect of all-trans retinoic acid (ATRA), a metabolite of alcohol, on osteoblastogenesis. Our previous studies demonstrated that heterodimeric bone morphogenetic protein 2/7 (BMP2/7) was a more potent BMP than homodimeric BMP2 or BMP7, and could antagonize the inhibitive effect of ATRA to rescue osteoblastogenesis. Materials and methods In this study, we compared the effectiveness of BMP2/7, BMP2 and BMP7 in restoring osteoblastogenesis of murine preosteoblasts upon inhibition with 1 µM ATRA, and we further analyzed the potential mechanisms. We measured the following parameters: cell viability, ALP, OCN, mineralization, the expression of osteogenic differentiation marker genes (Collagen I, ALP and OCN) and the expression of BMP signaling key genes (Dlx5, Runx2, Osterix and Smad1). Results BMP2/7 treatment alone induced significantly higher osteoblastogenesis compared to BMP2 and BMP7. When cells were treated by ATRA, BMP2/7 was superior only in rescuing cell viability and ALP activity, compared to BMP2 or BMP7. However, BMP2/7 was not superior to BMP2 or BMP7 in restoring OCN expression and extracellular mineralized nodules, or in rescuing expression of two key osteogenic genes, Dlx5 and Runx2. Irrespective of their dimeric types or potency, the selected BMPs could antagonize the inhibitory effect of ATRA on osteoblastogenesis. Conclusion The presence of ATRA, BMP2/7 still induced significantly higher cell viability and early differentiation than the homodimers. However, ATRA significantly attenuated the advantages of BMP2/7 in inducing late and final osteoblastogenic differentiation over the homodimers.
Collapse
Affiliation(s)
- Yi Liu
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510140, China
| | - Xiaoqing Ma
- Shanghai Xuhui District Dental Center, Shanghai 200032, China
| | - Jing Guo
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510140, China
| | - Zhen Lin
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Miao Zhou
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510140, China
| | - Wenjuan Bi
- College of Stomatology, North China University of Science and Technology, Tangshan 063000, China
| | - Jinsong Liu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, China
| | - Jingxiao Wang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, China
| | - Haiping Lu
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou 310053, China,
| | - Gang Wu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, 1081LA Amsterdam, the Netherlands,
| |
Collapse
|
12
|
Induction of Neuronal Differentiation of Murine N2a Cells by Two Polyphenols Present in the Mediterranean Diet Mimicking Neurotrophins Activities: Resveratrol and Apigenin. Diseases 2018; 6:diseases6030067. [PMID: 30037152 PMCID: PMC6165409 DOI: 10.3390/diseases6030067] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 12/31/2022] Open
Abstract
In the prevention of neurodegeneration associated with aging and neurodegenerative diseases (Alzheimer’s disease, Parkinson’s disease), neuronal differentiation is of interest. In this context, neurotrophic factors are a family of peptides capable of promoting the growth, survival, and/or differentiation of both developing and immature neurons. In contrast to these peptidyl compounds, polyphenols are not degraded in the intestinal tract and are able to cross the blood–brain barrier. Consequently, they could potentially be used as therapeutic agents in neurodegenerative pathologies associated with neuronal loss, thus requiring the stimulation of neurogenesis. We therefore studied the ability to induce neuronal differentiation of two major polyphenols present in the Mediterranean diet: resveratrol (RSV), a major compound found in grapes and red wine, and apigenin (API), present in parsley, rosemary, olive oil, and honey. The effects of these compounds (RSV and API: 6.25–50 µM) were studied on murine neuro-2a (N2a) cells after 48 h of treatment without or with 10% fetal bovine serum (FBS). Retinoic acid (RA: 6.25–50 µM) was used as positive control. Neuronal differentiation was morphologically evaluated through the presence of dendrites and axons. Cell growth was determined by cell counting and cell viability by staining with fluorescein diacetate (FDA). Neuronal differentiation was more efficient in the absence of serum than with 10% FBS or 10% delipidized FBS. At concentrations inducing neuronal differentiation, no or slight cytotoxicity was observed with RSV and API, whereas RA was cytotoxic. Without FBS, RSV and API, as well as RA, trigger the neuronal differentiation of N2a cells via signaling pathways simultaneously involving protein kinase A (PKA)/phospholipase C (PLC)/protein kinase C (PKC) and MEK/ERK. With 10% FBS, RSV and RA induce neuronal differentiation via PLC/PKC and PKA/PLC/PKC, respectively. With 10% FBS, PKA and PLC/PKC as well as MEK/ERK signaling pathways were not activated in API-induced neuronal differentiation. In addition, the differentiating effects of RSV and API were not inhibited by cyclo[DLeu5] OP, an antagonist of octadecaneuropeptide (ODN) which is a neurotrophic factor. Moreover, RSV and API do not stimulate the expression of the diazepam-binding inhibitor (DBI), the precursor of ODN. Thus, RSV and API are able to induce neuronal differentiation, ODN and its receptor are not involved in this process, and the activation of the (PLC/PKC) signaling pathway is required, except with apigenin in the presence of 10% FBS. These data show that RSV and API are able to induce neuronal differentiation and therefore mimic neurotrophin activity. Thus, RSV and API could be of interest in regenerative medicine to favor neurogenesis.
Collapse
|
13
|
Shum AMY, Fung DCY, Corley SM, McGill MC, Bentley NL, Tan TC, Wilkins MR, Polly P. Cardiac and skeletal muscles show molecularly distinct responses to cancer cachexia. Physiol Genomics 2015; 47:588-99. [PMID: 26395599 DOI: 10.1152/physiolgenomics.00128.2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 09/18/2015] [Indexed: 12/22/2022] Open
Abstract
Cancer cachexia is a systemic, paraneoplastic syndrome seen in patients with advanced cancer. There is growing interest in the altered muscle pathophysiology experienced by cachectic patients. This study reports the microarray analysis of gene expression in cardiac and skeletal muscle in the colon 26 (C26) carcinoma mouse model of cancer cachexia. A total of 268 genes were found to be differentially expressed in cardiac muscle tissue, compared with nontumor-bearing controls. This was fewer than the 1,533 genes that changed in cachectic skeletal muscle. In addition to different numbers of genes changing, different cellular functions were seen to change in each tissue. The cachectic heart showed signs of inflammation, similar to cachectic skeletal muscle, but did not show the upregulation of ubiquitin-dependent protein catabolic processes or downregulation of genes involved in cellular energetics and muscle regeneration that characterizes skeletal muscle cachexia. Quantitative PCR was used to investigate a subset of inflammatory genes in the cardiac and skeletal muscle of independent cachectic samples; this revealed that B4galt1, C1s, Serpina3n, and Vsig4 were significantly upregulated in cardiac tissue, whereas C1s and Serpina3n were significantly upregulated in skeletal tissue. Our skeletal muscle microarray results were also compared with those from three published microarray studies and found to be consistent in terms of the genes differentially expressed and the functional processes affected. Our study highlights that skeletal and cardiac muscles are affected differently in the C26 mouse model of cachexia and that therapeutic strategies cannot assume that both muscle types will show a similar response.
Collapse
Affiliation(s)
- Angie M Y Shum
- Inflammation and Infection Research Centre, University of New South Wales Australia, New South Wales, Australia; Department of Pathology, School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, New South Wales, Australia
| | - David C Y Fung
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales Australia, New South Wales, Australia
| | - Susan M Corley
- New South Wales Systems Biology Initiative, University of New South Wales Australia, New South Wales, Australia; School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales Australia, New South Wales, Australia
| | - Max C McGill
- Inflammation and Infection Research Centre, University of New South Wales Australia, New South Wales, Australia; Department of Pathology, School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, New South Wales, Australia
| | - Nicholas L Bentley
- Inflammation and Infection Research Centre, University of New South Wales Australia, New South Wales, Australia; Mitochondrial Bioenergetics Group, Department of Pharmacology, School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, New South Wales, Australia
| | - Timothy C Tan
- Inflammation and Infection Research Centre, University of New South Wales Australia, New South Wales, Australia; Blacktown Clinical School and Blacktown Hospital, Blacktown, New South Wales, Australia; and Cardiac Ultrasound Laboratory, Massachusetts General Hospital, Boston, Massachusetts
| | - Marc R Wilkins
- New South Wales Systems Biology Initiative, University of New South Wales Australia, New South Wales, Australia; School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales Australia, New South Wales, Australia
| | - Patsie Polly
- Inflammation and Infection Research Centre, University of New South Wales Australia, New South Wales, Australia; Department of Pathology, School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia, New South Wales, Australia;
| |
Collapse
|
14
|
Ribeiro MPC, Santos AE, Custódio JBA. Mitochondria: the gateway for tamoxifen-induced liver injury. Toxicology 2014; 323:10-8. [PMID: 24881593 DOI: 10.1016/j.tox.2014.05.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 05/14/2014] [Accepted: 05/28/2014] [Indexed: 12/13/2022]
Abstract
Tamoxifen (TAM) is routinely used in the treatment of breast carcinoma. TAM-induced liver injury remains a major concern, as TAM causes hepatic steatosis in a significant number of patients, which can progress toward steatohepatitis. Liver toxicity is generally believed to involve mitochondrial dysfunction and TAM exerts multiple deleterious effects on mitochondria, which may account for the hepatotoxicity observed in patients treated with TAM. Endoxifen (EDX), a key active metabolite of TAM that is being investigated as an alternative to TAM in breast cancer therapy, slightly affects mitochondria in comparison with TAM and this demonstration well correlates with the absence of alterations in the clinical parameters of individuals taking EDX. The steady-state plasma concentrations of TAM and its active metabolites EDX and 4-hydroxytamoxifen (OHTAM) in patients taking TAM are highly variable, reflecting genetic variants of CYP2D6 involved in TAM metabolism. Besides de genetic polymorphisms, the intake of drugs that influence the enzymatic activity of CYP2D6 compromises the therapeutic efficiency of TAM. The knowledge of the impact of the variability of TAM metabolism in the breast cancer treatment explains the discrepant outcomes observed in patients taking TAM, as well as the individual variability of idiosyncratic liver injury and other sides effects observed. Therefore, and contrarily to the clinical use of EDX, the need of therapeutic drug monitoring and a regular assessment of liver function biomarkers should be considered in patients under therapies with TAM. In this review we focus on the mitochondrial effects of TAM and its metabolites and on the role played by mitochondria in the initiating events leading to TAM-induced hepatotoxicity, as well as the clinical implications.
Collapse
Affiliation(s)
- Mariana P C Ribeiro
- Center for Neuroscience and Cell Biology, University of Coimbra, 3000-354 Coimbra, Portugal; Laboratory of Biochemistry, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Armanda E Santos
- Center for Neuroscience and Cell Biology, University of Coimbra, 3000-354 Coimbra, Portugal; Laboratory of Biochemistry, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - José B A Custódio
- Center for Neuroscience and Cell Biology, University of Coimbra, 3000-354 Coimbra, Portugal; Laboratory of Biochemistry, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
| |
Collapse
|
15
|
|
16
|
Ribeiro MP, Santos AE, Santos MS, Custódio JB. Effects of all-trans-retinoic acid on the permeability transition and bioenergetic functions of rat liver mitochondria in combination with endoxifen. Life Sci 2013; 93:96-107. [DOI: 10.1016/j.lfs.2013.05.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 05/09/2013] [Accepted: 05/29/2013] [Indexed: 11/26/2022]
|
17
|
Silva FSG, Ribeiro MPC, Santos MS, Rocha-Pereira P, Santos-Silva A, Custódio JBA. The antiestrogen 4-hydroxytamoxifen protects against isotretinoin-induced permeability transition and bioenergetic dysfunction of liver mitochondria: comparison with tamoxifen. J Bioenerg Biomembr 2013; 45:383-96. [DOI: 10.1007/s10863-013-9517-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 05/21/2013] [Indexed: 10/26/2022]
|
18
|
Suh DH, Kim MK, Kim HS, Chung HH, Song YS. Mitochondrial permeability transition pore as a selective target for anti-cancer therapy. Front Oncol 2013; 3:41. [PMID: 23483560 PMCID: PMC3592197 DOI: 10.3389/fonc.2013.00041] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 02/12/2013] [Indexed: 11/13/2022] Open
Abstract
Mitochondrial outer membrane permeabilization (MOMP) is the ultimate step in dozens of lethal apoptotic signal transduction pathways which converge on mitochondria. One of the representative systems proposed to be responsible for the MOMP is the mitochondrial permeability transition pore (MPTP). Although the molecular composition of the MPTP is not clearly understood, the MPTP attracts much interest as a promising target for resolving two conundrums regarding cancer treatment: tumor selectivity and resistance to treatment. The regulation of the MPTP is closely related to metabolic reprogramming in cancer cells including mitochondrial alterations. Restoration of deregulated apoptotic machinery in cancer cells by tumor-specific modulation of the MPTP could therefore be a promising anti-cancer strategy. Currently, a number of MPTP-targeting agents are under pre-clinical and clinical studies. Here, we reviewed the structure and regulation of the MPTP as well as the current status of the development of promising MPTP-targeting drugs.
Collapse
Affiliation(s)
- Dong H Suh
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine Seoul, South Korea
| | | | | | | | | |
Collapse
|
19
|
Vitamin A treatment induces apoptosis through an oxidant-dependent activation of the mitochondrial pathway. Cell Biol Int 2013; 32:100-6. [DOI: 10.1016/j.cellbi.2007.08.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Revised: 04/30/2007] [Accepted: 08/27/2007] [Indexed: 11/20/2022]
|
20
|
Puzianowska-Kuznicka M, Pawlik-Pachucka E, Owczarz M, Budzińska M, Polosak J. Small-molecule hormones: molecular mechanisms of action. Int J Endocrinol 2013; 2013:601246. [PMID: 23533406 PMCID: PMC3603355 DOI: 10.1155/2013/601246] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 12/30/2012] [Accepted: 01/17/2013] [Indexed: 01/01/2023] Open
Abstract
Small-molecule hormones play crucial roles in the development and in the maintenance of an adult mammalian organism. On the molecular level, they regulate a plethora of biological pathways. Part of their actions depends on their transcription-regulating properties, exerted by highly specific nuclear receptors which are hormone-dependent transcription factors. Nuclear hormone receptors interact with coactivators, corepressors, basal transcription factors, and other transcription factors in order to modulate the activity of target genes in a manner that is dependent on tissue, age and developmental and pathophysiological states. The biological effect of this mechanism becomes apparent not earlier than 30-60 minutes after hormonal stimulus. In addition, small-molecule hormones modify the function of the cell by a number of nongenomic mechanisms, involving interaction with proteins localized in the plasma membrane, in the cytoplasm, as well as with proteins localized in other cellular membranes and in nonnuclear cellular compartments. The identity of such proteins is still under investigation; however, it seems that extranuclear fractions of nuclear hormone receptors commonly serve this function. A direct interaction of small-molecule hormones with membrane phospholipids and with mRNA is also postulated. In these mechanisms, the reaction to hormonal stimulus appears within seconds or minutes.
Collapse
Affiliation(s)
- Monika Puzianowska-Kuznicka
- Department of Human Epigenetics, Mossakowski Medical Research Centre, 5 Pawinskiego Street, 02-106 Warsaw, Poland
- Department of Geriatrics and Gerontology, Medical Center of Postgraduate Education, 61/63 Kleczewska Street, 01-826 Warsaw, Poland
- *Monika Puzianowska-Kuznicka:
| | - Eliza Pawlik-Pachucka
- Department of Human Epigenetics, Mossakowski Medical Research Centre, 5 Pawinskiego Street, 02-106 Warsaw, Poland
- Department of Geriatrics and Gerontology, Medical Center of Postgraduate Education, 61/63 Kleczewska Street, 01-826 Warsaw, Poland
| | - Magdalena Owczarz
- Department of Geriatrics and Gerontology, Medical Center of Postgraduate Education, 61/63 Kleczewska Street, 01-826 Warsaw, Poland
| | - Monika Budzińska
- Department of Geriatrics and Gerontology, Medical Center of Postgraduate Education, 61/63 Kleczewska Street, 01-826 Warsaw, Poland
| | - Jacek Polosak
- Department of Human Epigenetics, Mossakowski Medical Research Centre, 5 Pawinskiego Street, 02-106 Warsaw, Poland
| |
Collapse
|
21
|
Fulda S, Kroemer G. Mitochondria as therapeutic targets for the treatment of malignant disease. Antioxid Redox Signal 2011; 15:2937-49. [PMID: 21644835 DOI: 10.1089/ars.2011.4078] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
SIGNIFICANCE Mitochondria exert vital functions during normal physiology and are also centrally involved in the regulation of various modes of cell death. Thus, engaging the mitochondrial apoptosis pathway presents an attractive possibility to activate lethal effectors in cancer cells. RECENT ADVANCES Compounds that directly target mitochondria offer the advantage to initiate mitochondrial outer membrane permeabilization independently of upstream signal transduction elements that are frequently impaired in human cancers. As a consequence, mitochondrion-targeted agents may bypass some forms of drug resistance. CRITICAL ISSUES An ever-increasing number of compounds, including natural compounds and rationally designed drugs, has been shown to directly act on mitochondria. FUTURE DIRECTIONS Forthcoming insights into the fine regulation of mitochondrial apoptosis will likely open future perspectives for cancer drug development.
Collapse
Affiliation(s)
- Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt am Main, Germany.
| | | |
Collapse
|
22
|
Ramsay EE, Hogg PJ, Dilda PJ. Mitochondrial metabolism inhibitors for cancer therapy. Pharm Res 2011; 28:2731-44. [PMID: 21918915 DOI: 10.1007/s11095-011-0584-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 09/07/2011] [Indexed: 01/15/2023]
Abstract
Cancer cells catabolise nutrients in a different way than healthy cells. Healthy cells mainly rely on oxidative phosphorylation, while cancer cells employ aerobic glycolysis. Glucose is the main nutrient catabolised by healthy cells, while cancer cells often depend on catabolism of both glucose and glutamine. A key organelle involved in this altered metabolism is mitochondria. Mitochondria coordinate the catabolism of glucose and glutamine across the cancer cell. Targeting mitochondrial metabolism in cancer cells has potential for the treatment of this disease. Perhaps the most promising target is the hexokinase-voltage dependent anion channel-adenine nucleotide translocase complex that spans the outer- and inner-mitochondrial membranes. This complex links glycolysis, oxidative phosphorylation and mitochondrial-mediated apoptosis in cancer cells. This review discusses cancer cell mitochondrial metabolism and the small molecule inhibitors of this metabolism that are in pre-clinical or clinical development.
Collapse
Affiliation(s)
- Emma E Ramsay
- Prince of Wales Clinical School, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | | | | |
Collapse
|
23
|
Javadov S, Hunter JC, Barreto-Torres G, Parodi-Rullan R. Targeting the mitochondrial permeability transition: cardiac ischemia-reperfusion versus carcinogenesis. Cell Physiol Biochem 2011; 27:179-90. [PMID: 21471706 DOI: 10.1159/000327943] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2011] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular diseases and cancer continue to be major causes of death worldwide, and despite intensive research only modest progress has been reached in reducing the morbidity and mortality of these awful diseases. Mitochondria are broadly accepted as the key organelles that play a crucial role in cell life and death. They provide cells with ATP produced via oxidative phosphorylation under physiological conditions, and initiate cell death through both apoptosis and necrosis in response to severe stress. Oxidative stress accompanied by calcium overload and ATP depletion induces the mitochondrial permeability transition (mPT) with formation of pathological, non-specific mPT pores (mPTP) in the mitochondrial inner membrane. Opening of the mPTP with a high conductance results in matrix swelling ultimately inducing rupture of the mitochondrial outer membrane and releasing pro-apoptotic proteins into the cytoplasm. The ATP level is the determining factor in deciding whether cells die through apoptosis or necrosis. Cardiac cells undergoing ischemia followed by reperfusion (IR) possess exactly the same conditions mentioned above to induce mPTP opening. Due to its critical role in cell death, inhibition of mPTP opening has been accepted as a major therapeutic approach to protect the heart against IR. In contrast to cardiac IR, cancer cells exhibit less sensitivity to pore opening which can be in part explained by increased expression of mPTP compounds/modulators and metabolic remodeling. Since the main goal of chemotherapy is to provoke apoptosis, mPT induction may represent an attractive approach for the development of new cancer therapeutics to induce mitochondria-mediated cell death and prevent cell differentiation in carcinogenesis. This review focuses on the role of the mPTP in cardiac IR and cancer, and pharmacological agents to prevent or initiate mPT-mediated cell death, respectively in these diseases.
Collapse
Affiliation(s)
- Sabzali Javadov
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, PR 00936-5067, USA.
| | | | | | | |
Collapse
|
24
|
Brenner C, Subramaniam K, Pertuiset C, Pervaiz S. Adenine nucleotide translocase family: four isoforms for apoptosis modulation in cancer. Oncogene 2010; 30:883-95. [PMID: 21076465 DOI: 10.1038/onc.2010.501] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Mitochondria have important functions in mammalian cells as the energy powerhouse and integrators of the mitochondrial pathway of apoptosis. The adenine nucleotide translocase (ANT) is a family of proteins involved in cell death pathways that perform distinctly opposite functions to regulate cell fate decisions. On the one hand, ANT catalyzes the adenosine triphosphate export from the mitochondrial matrix to the intermembrane space with the concomitant import of ADP from the intermembrane space to the matrix. On the other hand, during periods of stress, ANT could function as a lethal pore and trigger the process of mitochondrial membrane permeabilization, which leads irreversibly to cell death. In human, ANT is encoded by four homologous genes, whose expression is not only tissue specific, but also varies according to the pathophysiological state of the cell. Recent evidence revealed a differential role of the ANT isoforms in apoptosis and a deregulation of their expression in cancer. In this review, we introduce the current knowledge of ANT in apoptosis and cancer cells and propose a novel classification of ANT isoforms.
Collapse
Affiliation(s)
- C Brenner
- Univ Paris-Sud, Châtenay-Malabry, France.
| | | | | | | |
Collapse
|
25
|
Fulda S. Exploiting mitochondrial apoptosis for the treatment of cancer. Mitochondrion 2010; 10:598-603. [DOI: 10.1016/j.mito.2010.05.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 03/10/2010] [Accepted: 05/12/2010] [Indexed: 01/11/2023]
|
26
|
Abstract
Mitochondria are the cells' powerhouse, but also their suicidal weapon store. Dozens of lethal signal transduction pathways converge on mitochondria to cause the permeabilization of the mitochondrial outer membrane, leading to the cytosolic release of pro-apoptotic proteins and to the impairment of the bioenergetic functions of mitochondria. The mitochondrial metabolism of cancer cells is deregulated owing to the use of glycolytic intermediates, which are normally destined for oxidative phosphorylation, in anabolic reactions. Activation of the cell death machinery in cancer cells by inhibiting tumour-specific alterations of the mitochondrial metabolism or by stimulating mitochondrial membrane permeabilization could therefore be promising therapeutic approaches.
Collapse
Affiliation(s)
- Simone Fulda
- University Children's Hospital, Ulm University, Eythstrasse 24, D-89075 Ulm, Germany.
| | | | | |
Collapse
|
27
|
Cione E, Pingitore A, Genchi F, Genchi G. Coenzyme A enhances activity of the mitochondrial adenine nucleotide translocator. Int J Biochem Cell Biol 2009; 42:106-12. [PMID: 19800022 DOI: 10.1016/j.biocel.2009.09.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 09/09/2009] [Accepted: 09/22/2009] [Indexed: 11/25/2022]
Abstract
The adenine nucleotide translocator (ANT) accomplishes the exchange of ATP from the mitochondrial matrix with cytoplasmic ADP. While investigating the biochemical mechanism of retinoic acid (RA) on the ANT via retinoylation, we have found and subsequently demonstrated a positive influence of Coenzyme A (CoA) on the transport of ATP across the membranes of rat liver mitochondria. CoA enhances ANT activity in a dose-dependent manner modifying the V(max) (673.3+/-20.7 nmol ATP/mgprotein/min versus 155.0+/-1.9 nmol ATP/mgprotein/min), the IC(50) for the specific inhibitor carboxyatractyloside (CATR) (0.142+/-0.012 microM versus 0.198+/-0.011 microM) but not the K(m) (22.50+/-0.52 microM versus 22.19+/-0.98 microM). Data suggest a likely enzymatic involvement in the interaction between ANT and CoA. The effect of CoA is observed in mitochondria from several different tissues.
Collapse
Affiliation(s)
- Erika Cione
- Department of Pharmaco-Biology, University of Calabria, Edificio Polifunzionale, 87036 Rende (CS), Italy
| | | | | | | |
Collapse
|
28
|
Galluzzi L, Morselli E, Kepp O, Vitale I, Rigoni A, Vacchelli E, Michaud M, Zischka H, Castedo M, Kroemer G. Mitochondrial gateways to cancer. Mol Aspects Med 2009; 31:1-20. [PMID: 19698742 DOI: 10.1016/j.mam.2009.08.002] [Citation(s) in RCA: 190] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 08/12/2009] [Accepted: 08/13/2009] [Indexed: 12/29/2022]
Abstract
Mitochondria are required for cellular survival, yet can also orchestrate cell death. The peculiar biochemical properties of these organelles, which are intimately linked to their compartmentalized ultrastructure, provide an optimal microenvironment for multiple biosynthetic and bioenergetic pathways. Most intracellular ATP is generated by mitochondrial respiration, which also represents the most relevant source of intracellular reactive oxygen species. Mitochondria participate in a plethora of anabolic pathways, including cholesterol, cardiolipin, heme and nucleotide biosynthesis. Moreover, mitochondria integrate numerous pro-survival and pro-death signals, thereby exerting a decisive control over several biochemical cascades leading to cell death, in particular the intrinsic pathway of apoptosis. Therefore, it is not surprising that cancer cells often manifest the deregulation of one or several mitochondrial functions. The six classical hallmarks of cancer (i.e., limitless replication, self-provision of proliferative stimuli, insensitivity to antiproliferative signals, disabled apoptosis, sustained angiogenesis, invasiveness/metastatic potential), as well as other common features of tumors (i.e., avoidance of the immune response, enhanced anabolic metabolism, disabled autophagy) may directly or indirectly implicate deregulated mitochondria. In this review, we discuss several mechanisms by which mitochondria can contribute to malignant transformation and tumor progression.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- INSERM, U848, Institut Gustave Roussy, PR1, 39 Rue Camille Desmoulins, F-94805 Villejuif, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
The mitochondrial pathway to apoptosis is a major pathway of physiological cell death in vertebrates. The mitochondrial cell death pathway commences when apoptogenic molecules present between the outer and inner mitochondrial membranes are released into the cytosol by mitochondrial outer membrane permeabilization (MOMP). BCL-2 family members are the sentinels of MOMP in the mitochondrial apoptotic pathway; the pro-apoptotic B cell lymphoma (BCL)-2 proteins, BCL-2 associated x protein and BCL-2 antagonist killer 1 induce MOMP whereas the anti-apoptotic BCL-2 proteins, BCL-2, BCL-xl and myeloid cell leukaemia 1 prevent MOMP from occurring. The release of pro-apoptotic factors such as cytochrome c from mitochondria leads to formation of a multimeric complex known as the apoptosome and initiates caspase activation cascades. These pathways are important for normal cellular homeostasis and play key roles in the pathogenesis of many diseases. In this review, we will provide a brief overview of the mitochondrial death pathway and focus on a selection of diseases whose pathogenesis involves the mitochondrial death pathway and we will examine the various pharmacological approaches that target this pathway.
Collapse
|
30
|
Influence of all-trans-retinoic acid on oxoglutarate carrier via retinoylation reaction. Biochim Biophys Acta Mol Cell Biol Lipids 2008; 1791:3-7. [PMID: 18977311 DOI: 10.1016/j.bbalip.2008.09.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 09/17/2008] [Accepted: 09/24/2008] [Indexed: 11/21/2022]
Abstract
All-trans-retinoic acid (atRA), an activated metabolite of vitamin A, is incorporated covalently into proteins both invivo and invitro. AtRA reduced the transport activity of the oxoglutarate carrier (OGC) isolated from testes mitochondria to 58% of control via retinoylation reaction. Labeling of testes mitochondrial proteins with (3)HatRA demonstrated the binding of atRA to a 31.5 KDa protein. This protein was identified as OGC due to the competition for the labeling reaction with 2-oxoglutarate, the specific OGC substrate. The role of retinoylated proteins is currently being explored and here we have the first evidence that retinoic acids bind directly to OGC and inhibit its activity in rat testes mitochondria via retinoylation reaction. This study indicates the evidence of a specific interaction between atRA and OGC and establishes a novel mechanism for atRA action, which could influence the physiological biosynthesis of testosterone in situations such as retinoic acid treatment.
Collapse
|
31
|
Hail N, Cortes M, Drake EN, Spallholz JE. Cancer chemoprevention: a radical perspective. Free Radic Biol Med 2008; 45:97-110. [PMID: 18454943 DOI: 10.1016/j.freeradbiomed.2008.04.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 03/27/2008] [Accepted: 04/03/2008] [Indexed: 12/12/2022]
Abstract
Cancer chemopreventive agents block the transformation of normal cells and/or suppress the promotion of premalignant cells to malignant cells. Certain agents may achieve these objectives by modulating xenobiotic biotransformation, protecting cellular elements from oxidative damage, or promoting a more differentiated phenotype in target cells. Conversely, various cancer chemopreventive agents can encourage apoptosis in premalignant and malignant cells in vivo and/or in vitro, which is conceivably another anticancer mechanism. Furthermore, it is evident that many of these apoptogenic agents function as prooxidants in vitro. The constitutive intracellular redox environment dictates a cell's response to an agent that alters this environment. Thus, it is highly probable that normal cells, through adaption, could acquire resistance to transformation via exposure to a chemopreventive agent that promotes oxidative stress or disrupts the normal redox tone of these cells. In contrast, transformed cells, which typically endure an oxidizing intracellular environment, would ultimately succumb to apoptosis due to an uncontrollable production of reactive oxygen species caused by the same agent. Here, we provide evidence to support the hypothesis that reactive oxygen species and cellular redox tone are exploitable targets in cancer chemoprevention via the stimulation of cytoprotection in normal cells and/or the induction of apoptosis in transformed cells.
Collapse
Affiliation(s)
- Numsen Hail
- Department of Pharmaceutical Sciences, The University of Colorado Denver School of Pharmacy, Denver, CO 80220, USA.
| | | | | | | |
Collapse
|
32
|
Zanotto-Filho A, Cammarota M, Gelain DP, Oliveira RB, Delgado-Cañedo A, Dalmolin RJS, Pasquali MAB, Moreira JCF. Retinoic acid induces apoptosis by a non-classical mechanism of ERK1/2 activation. Toxicol In Vitro 2008; 22:1205-12. [PMID: 18474417 DOI: 10.1016/j.tiv.2008.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Revised: 03/07/2008] [Accepted: 04/02/2008] [Indexed: 11/25/2022]
Abstract
Even though RA is involved in differentiation and apoptosis of normal and cancer cells, being sometimes used as adjuvant in chemotherapy, its mechanisms of action involve multiple overlapping pathways that still remain unclear. Recent studies point out that RA exerts rapid and non-genomic effects, which are independent of RAR/RXR-mediated gene transcription. In this work, we reported that RA treatment for 24 h decreases cell viability, induces apoptosis dependent on caspase-3 activation, and activates the transcription factor AP-1 in cultured Sertoli cells. Moreover, RA induced a rapid and non-classical stimulation of ERK1/2. ERK1/2 activation was mediated by MEK1/2, and the protein synthesis inhibitor cycloheximide did not alter the pattern of RA-induced ERK1/2 phosphorylation. Pharmacological inhibition of MEK1/2-ERK1/2 pathway with UO126 blocked caspase-3 activation, decreased AP-1 binding to DNA and inhibited apoptosis. Overall, our data suggest that a rapid and non-genomic effect of RA upon MEK1/2-ERK1/2 pathway leads to caspase-3 activation and caspase-3-dependent apoptosis in cultured Sertoli cells. The non-canonical RA signaling presented in this work evokes new perspectives of RA action, which may play an important role in mediating early biological effects of RA modulating cell death in normal and tumor cells.
Collapse
Affiliation(s)
- Alfeu Zanotto-Filho
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Morales MC, Pérez-Yarza G, Rementería NN, Boyano MD, Apraiz A, Gómez-Muñoz A, Pérez-Andrés E, Asumendi A. 4-HPR-mediated leukemia cell cytotoxicity is triggered by ceramide-induced mitochondrial oxidative stress and is regulated downstream by Bcl-2. Free Radic Res 2007; 41:591-601. [PMID: 17454142 DOI: 10.1080/10715760701218558] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
We have previously reported that, in leukemia cells, the cytotoxicity of the anticancer agent N-(4-hydroxyphenyl)retinamide (4-HPR) is mediated by mitochondria-derived reactive oxygen species (ROS) and cardiolipin peroxidation. Here, we have analyzed at greater depth the 4-HPR-triggered molecular events, demonstrating that 4-HPR induces an early (15 min) increase in ceramide levels by sphingomyelin hydrolysis and later (from 1 h) by de novo synthesis. Using specific inhibitors of both pathways, we demonstrate that ceramide accumulation is responsible for early ROS generation, which act as apoptotic signalling intermediates leading to conformational activation of Bak and Bax, loss of mitochondrial membrane potential (DeltaPsim), mitochondrial membrane permeabilization (MMP) and cell death. Enforced expression of Bcl-2 has no effect on 4-HPR-induced oxidative stress, but notably prevents mitochondrial alterations and apoptosis, indicating that Bcl-2 functions by regulating events downstream of ROS generation. In conclusion, our study delineates for the fist time the sequence and timing of the principal events induced by 4-HPR in leukemia cells and points to the potential use of modulators of ceramide metabolism as enhancers in 4-HPR-based therapies.
Collapse
Affiliation(s)
- Maria-Celia Morales
- Department of Cell Biology and Histology, Faculty of Medicine and Dentistry, University of the Basque Country, Barrio Sarriena s/n, Leioa, Bizkaia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Cañestro C, Postlethwait JH. Development of a chordate anterior–posterior axis without classical retinoic acid signaling. Dev Biol 2007; 305:522-38. [PMID: 17397819 DOI: 10.1016/j.ydbio.2007.02.032] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Revised: 02/18/2007] [Accepted: 02/26/2007] [Indexed: 11/23/2022]
Abstract
Developmental signaling by retinoic acid (RA) is thought to be an innovation essential for the origin of the chordate body plan. The larvacean urochordate Oikopleura dioica maintains a chordate body plan throughout life, and yet its genome appears to lack genes for RA synthesis, degradation, and reception. This suggests the hypothesis that the RA-machinery was lost during larvacean evolution, and predicts that Oikopleura development has become independent of RA-signaling. This prediction raises the problem that the anterior-posterior organization of a chordate body plan can be developed without the classical morphogenetic role of RA. To address this problem, we performed pharmacological treatments and analyses of developmental molecular markers to investigate whether RA acts in anterior-posterior axial patterning in Oikopleura embryos. Results revealed that RA does not cause homeotic posteriorization in Oikopleura as it does in vertebrates and cephalochordates, and showed that a chordate can develop the phylotypic body plan in the absence of the classical morphogenetic role of RA. A comparison of Oikopleura and ascidian evidence suggests that the lack of RA-induced homeotic posteriorization is a shared derived feature of urochordates. We discuss possible relationships of altered roles of RA in urochordate development to genomic events, such as rupture of the Hox-cluster, in the context of a new understanding of chordate phylogeny.
Collapse
Affiliation(s)
- Cristian Cañestro
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | | |
Collapse
|
35
|
Galluzzi L, Larochette N, Zamzami N, Kroemer G. Mitochondria as therapeutic targets for cancer chemotherapy. Oncogene 2006; 25:4812-30. [PMID: 16892093 DOI: 10.1038/sj.onc.1209598] [Citation(s) in RCA: 259] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mitochondria are vital for cellular bioenergetics and play a central role in determining the point-of-no-return of the apoptotic process. As a consequence, mitochondria exert a dual function in carcinogenesis. Cancer-associated changes in cellular metabolism (the Warburg effect) influence mitochondrial function, and the invalidation of apoptosis is linked to an inhibition of mitochondrial outer membrane permeabilization (MOMP). On theoretical grounds, it is tempting to develop specific therapeutic interventions that target the mitochondrial Achilles' heel, rendering cancer cells metabolically unviable or subverting endogenous MOMP inhibitors. A variety of experimental therapeutic agents can directly target mitochondria, causing apoptosis induction. This applies to a heterogeneous collection of chemically unrelated compounds including positively charged alpha-helical peptides, agents designed to mimic the Bcl-2 homology domain 3 of Bcl-2-like proteins, ampholytic cations, metals and steroid-like compounds. Such MOMP inducers or facilitators can induce apoptosis by themselves (monotherapy) or facilitate apoptosis induction in combination therapies, bypassing chemoresistance against DNA-damaging agents. In addition, it is possible to design molecules that neutralize inhibitor of apoptosis proteins (IAPs) or heat shock protein 70 (HSP70). Such IAP or HSP70 inhibitors can mimic the action of mitochondrion-derived mediators (Smac/DIABLO, that is, second mitochondria-derived activator of caspases/direct inhibitor of apoptosis-binding protein with a low isoelectric point, in the case of IAPs; AIF, that is apoptosis-inducing factor, in the case of HSP70) and exert potent chemosensitizing effects.
Collapse
Affiliation(s)
- L Galluzzi
- CNRS-FRE 2939, Institut Gustave Roussy, Villejuif, France
| | | | | | | |
Collapse
|
36
|
Robert C, Delva L, Balitrand N, Nahajevszky S, Masszi T, Chomienne C, Papp B. Apoptosis Induction by Retinoids in Eosinophilic Leukemia Cells: Implication of Retinoic Acid Receptor-α Signaling in All-Trans-Retinoic Acid Hypersensitivity. Cancer Res 2006; 66:6336-44. [PMID: 16778211 DOI: 10.1158/0008-5472.can-06-0078] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hypereosinophilic syndrome (HES) has recently been recognized as a clonal leukemic lesion, which is due to a specific oncogenic event that generates hyperactive platelet-derived growth factor receptor-alpha-derived tyrosine kinase fusion proteins. In the present work, the effect of retinoids on the leukemic hypereosinophilia-derived EoL-1 cell line and on primary HES-derived cells has been investigated. We show that all-trans-retinoic acid (ATRA) inhibits eosinophil colony formation of HES-derived bone marrow cells and is a powerful inducer of apoptosis of the EoL-1 cell line. Apoptosis was shown in the nanomolar concentration range by phosphatidylserine externalization, proapoptotic shift of the Bcl-2/Bak ratio, drop in mitochondrial membrane potential, activation of caspases, and cellular morphology. Unlike in other ATRA-sensitive myeloid leukemia models, apoptosis was rapid and was not preceded by terminal cell differentiation. Use of isoform-selective synthetic retinoids indicated that retinoic acid receptor-alpha-dependent signaling is sufficient to induce apoptosis of EoL-1 cells. Our work shows that the scope of ATRA-induced apoptosis of malignancies may be wider within the myeloid lineage than thought previously, that the EoL-1 cell line constitutes a new and unique model for the study of ATRA-induced cell death, and that ATRA may have potential for the management of clonal HES.
Collapse
Affiliation(s)
- Carine Robert
- Institut National de la Santé et de la Recherche Médicale, UMR-S 718, Institut Universitaire d'Hématologie, University of Paris VII, Paris, France
| | | | | | | | | | | | | |
Collapse
|
37
|
Zamora M, Ortega JA, Alaña L, Viñas O, Mampel T. Apoptotic and anti-proliferative effects of all-trans retinoic acid. Adenine nucleotide translocase sensitizes HeLa cells to all-trans retinoic acid. Exp Cell Res 2006; 312:1813-9. [PMID: 16556444 DOI: 10.1016/j.yexcr.2006.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Revised: 02/08/2006] [Accepted: 02/13/2006] [Indexed: 10/24/2022]
Abstract
We examined the apoptotic and anti-proliferative effects of all-trans retinoic acid (atRA) in HeLa cells. Our results demonstrated that HeLa cells were more sensitive to the anti-proliferative effects of atRA than to its apoptotic effects. Furthermore, we demonstrated that caspase inhibition attenuates cell death but does not alter the atRA-dependent reduction in cell proliferation, which suggests that atRA-induced apoptosis is independent of the arrest in cell proliferation. To check whether ANT proteins mediated these atRA effects, we transiently transfected cells with expression vectors encoding for individual ANT (adenine nucleotide translocase 1-3). Our results revealed that ANT1 and ANT3 over-expressing HeLa cells increased their atRA sensitivity. Thus, our results not only demonstrate the different functional activities of ANT isoforms, but also contribute to a better understanding of the properties of atRA as an anti-tumoral agent used in cancer therapy.
Collapse
Affiliation(s)
- Mónica Zamora
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona Diagonal 645, E-08028-Barcelona, Spain
| | | | | | | | | |
Collapse
|
38
|
Martínez-Angoa A, Parra-Hernández E, Madrigal-Bujaidar E, Chamorro-Cevallos G, Carvajal-Sandoval G, Zamudio-Cortes P. Reduction of all-trans-retinoic acid–induced teratogenesis in the rat by glycine administration. ACTA ACUST UNITED AC 2006; 76:731-8. [PMID: 17022025 DOI: 10.1002/bdra.20309] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Prenatal rat embryo exposure to retinoids induces severe malformations in various organs; the most active and teratogenic metabolite is all-trans-retinoic acid (atRA). The mechanisms of this embryopathy are only partly known. In the present study, the influence of glycine on the teratogenicity of atRA was investigated. METHODS Embryos from 5 groups of white rats were studied: Group 1 remained untreated; Group 2 received glycine 2% in drinking water ad libitum from the first gestational day (GD 1); Group 3 was administered vehicle (corn oil); Group 4 was treated with atRA (50 mg/kg of body weight) injected (IP); and Group 5 was treated with atRA (50 mg/kg of body weight IP) plus glycine 2% in drinking water ad libitum from GD 1. atRA was administrated daily from GD 8-10. Dams were killed on the 21st day of pregnancy, and their fetuses were examined to detect external, visceral, and skeletal malformations. RESULTS The results show that the atRA-administered dose is not toxic for the dams, and that although fetal death was not observed, it produced abnormalities in the fetuses. Glycine reduced atRA-induced teratogenic effects (external and skeletal defects). CONCLUSIONS The results indicate that glycine effectively reduces the teratogenic effects of atRA. Thus, glycine might be useful for the prevention of vitamin A teratogenicity.
Collapse
Affiliation(s)
- Alba Martínez-Angoa
- Department of Genetics, National Institute of Respiratory Diseases, México, Distrito Federal
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
The mitochondria have emerged as a novel target for anticancer chemotherapy. This tenet is based on the observations that several conventional and experimental chemotherapeutic agents promote the permeabilization of mitochondrial membranes in cancerous cells to initiate the release of apoptogenic mitochondrial proteins. This ability to engage mitochondrial-mediated apoptosis directly using chemotherapy may be responsible for overcoming aberrant apoptosis regulatory mechanisms commonly encountered in cancerous cells. Interestingly, several putative cancer chemopreventive agents also possess the ability to trigger apoptosis in transformed, premalignant, or malignant cells in vitro via mitochondrial membrane permeabilization. This process may occur through the regulation of Bcl-2 family members, or by the induction of the mitochondrial permeability transition. Thus, by exploiting endogenous mitochondrial-mediated apoptosis-inducing mechanisms, certain chemopreventive agents may be able to block the progression of premalignant cells to malignant cells or the dissemination of malignant cells to distant organ sites as means of modulating carcinogenesis in vivo. This review will examine cancer chemoprevention with respect to apoptosis, carcinogenesis, and the proapoptotic activity of various chemopreventive agents observed in vitro. In doing so, I will construct a paradigm supporting the notion that the mitochondria are a novel target for the chemoprevention of cancer.
Collapse
Affiliation(s)
- N Hail
- Department of Clinical Pharmacy, School of Pharmacy, The University of Colorado at Denver and Health Sciences Center, Denver, CO 80262, USA.
| |
Collapse
|
40
|
Schmidt-Mende J, Gogvadze V, Hellström-Lindberg E, Zhivotovsky B. Early mitochondrial alterations in ATRA-induced cell death. Cell Death Differ 2005; 13:119-28. [PMID: 16003389 DOI: 10.1038/sj.cdd.4401715] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
All-trans retinoic acid (ATRA) induces differentiation and subsequent apoptosis in a variety of cell lines. Using the myeloid cell line P39, we show that ATRA disturbs mitochondrial functional activity long before any detectable signs of apoptosis occur. These early changes include diminished mitochondrial oxygen consumption, decreased calcium uptake by mitochondria and as a result, a lower mitochondrial matrix calcium concentration. Granulocyte colony-stimulating factor (G-CSF) increases mitochondrial respiration and calcium accumulation capacity and subsequently blocks ATRA-induced apoptosis. Nifedipine, a plasma membrane calcium channel blocker, inhibits apoptosis-related changes, such as the loss of the mitochondrial membrane potential and activation of caspases. Thus, the properties of ATRA and G-CSF to modulate mitochondrial respiration and intracellular calcium control are novel findings, which give insight into their precise molecular mode of action.
Collapse
Affiliation(s)
- J Schmidt-Mende
- Institute of Environmental Medicine, Division of Toxicology, Karolinska Institutet, Box 210, Stockholm SE-171 77, Sweden.
| | | | | | | |
Collapse
|
41
|
Siems W, Wiswedel I, Salerno C, Crifò C, Augustin W, Schild L, Langhans CD, Sommerburg O. β-Carotene breakdown products may impair mitochondrial functions — potential side effects of high-dose β-carotene supplementation. J Nutr Biochem 2005; 16:385-97. [PMID: 15992676 DOI: 10.1016/j.jnutbio.2005.01.009] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2004] [Revised: 12/01/2004] [Accepted: 01/12/2005] [Indexed: 11/28/2022]
Abstract
Beta-carotene (BC) and other carotenoids are mainly considered as belonging to the group of micronutrients. As they are contained in fruit and vegetables and thus part of human diet, a regular low-dose intake from natural sources is normally assured. In the last decade high-dose supplementation with synthetic carotenoids has been used successfully in the treatment of diseases believed to be associated with oxidative stress. However, in a few clinical studies harmful effects have been observed as well, e.g., a higher incidence of lung cancer after BC was given in high doses to smokers. Our studies aim at shedding light on the causal mechanisms of the known side effects that we have investigated. Possibilities of preventing them are discussed. Obviously, on certain conditions of high-dose carotenoid supplementation, both the antioxidant and prooxidant reactions may arise. Carotenoid breakdown products (CBP) including very reactive aldehydes and epoxides are formed during oxidative attack in the course of antioxidative action. Carotenoid breakdown products inhibit state 3 respiration of isolated rat liver mitochondria at concentrations between 0.5 and 20 microM. In vivo stimulated neutrophils might represent an important source for the generation of CBP, and the lung might be a critical organ in CBP formation. The inhibition of mitochondrial state 3 respiration by CBP is accompanied by a reduced content of protein sulfhydryl groups, decreasing glutathione levels and redox state, and also elevated accumulation of malondialdehyde. Changes in mitochondrial membrane potential favour functional deterioration of the adenine nucleotide translocator (ANT). The findings reflect a basic mechanism of the side effects of BC supplementation in circumstances of severe oxidative stress induced by CBP representing a class of lipid oxidation products. We are striving for safe conditions of carotenoid supplementation in order to protect patients in need of this kind of medical treatment from possible side effects, such as unwanted prooxidative reactions.
Collapse
Affiliation(s)
- Werner Siems
- Loges-School for Physical Medicine and Rehabilitation, D-38667 Bad Harzburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Salerno C, Crifò C, Capuozzo E, Sommerburg O, Langhans CD, Siems W. Effect of carotenoid oxidation products on neutrophil viability and function. Biofactors 2005; 24:185-92. [PMID: 16403979 DOI: 10.1002/biof.5520240122] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Human neutrophils are short-lived cells that play important roles in host defense and acute inflammation by releasing hydrolytic and cytotoxic proteins and reactive oxygen derivatives. Apoptosis, a physiological mechanism for cell death, regulates both production and survival of neutrophils, representing a basic biological mechanism for this type of cells. Carotenoids may react with toxic oxygen metabolites released by neutrophils to form a multitude of carotenoid cleavage products that exert, in turn, relevant prooxidative biological effects. Recent data suggest that carotenoid oxidation products may affect neutrophil viability and function by exerting proapoptotic activity and interfering with superoxide production by activated cells. The prooxidant and proapoptotic activities of carotenoid oxidation products could account, at least in some cases, for the procancerogenic properties of carotenoid rich diet.
Collapse
Affiliation(s)
- C Salerno
- Department of Biochemical Sciences and Laboratory of Clinical Biochemistry, University of Rome La Sapienza, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
43
|
Keshavan P, Schwemberger SJ, Smith DLH, Babcock GF, Zucker SD. Unconjugated bilirubin induces apoptosis in colon cancer cells by triggering mitochondrial depolarization. Int J Cancer 2004; 112:433-45. [PMID: 15382069 DOI: 10.1002/ijc.20418] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bilirubin is the principal end product of heme degradation. Prompted by epidemiologic analyses demonstrating an inverse correlation between serum bilirubin levels and cancer mortality, we examined the effect(s) of bilirubin on the growth and survival of colon adenocarcinoma cells. Adenocarcinoma cell monolayers were treated with bilirubin over a range of bilirubin:BSA molar ratios (0-0.6), and viability was assessed colorimetrically. Apoptosis was characterized by TUNEL assay, annexin V staining and caspase-3 activation. The mechanism(s) by which bilirubin induces apoptosis was investigated by Western blotting for cytochrome c release, assaying for caspase-8 and caspase-9 activation and for mitochondrial depolarization by JC-1 staining. The direct effect of bilirubin on the membrane potential of isolated mitochondria was evaluated using light-scattering and fluorescence techniques. Bilirubin decreased the viability of all colon cancer cell lines tested in a dose-dependent manner. Cells exhibited substantial apoptosis when exposed to bilirubin concentrations ranging 0-50 microM, as demonstrated by an 8- to 10-fold increase in TUNEL and annexin V staining and in caspase-3 activity. Bilirubin treatment evokes specific activation of caspase-9, enhances cytochrome c release into the cytoplasm and triggers the mitochondrial permeability transition in colon cancer monolayers. Additionally, bilirubin directly induces the depolarization of isolated rat liver mitochondria, an effect that is not inhibited by cyclosporin A. Bilirubin stimulates apoptosis of colon adenocarcinoma cells in vitro through activation of the mitochondrial pathway, apparently by directly dissipating mitochondrial membrane potential. As this effect is triggered at concentrations normally present in the intestinal lumen, we postulate a physiologic role for bilirubin in modulating colon tumorigenesis.
Collapse
Affiliation(s)
- Pavitra Keshavan
- Division of Digestive Diseases, University of Cincinnati, Cincinnati, OH, USA.
| | | | | | | | | |
Collapse
|
44
|
Boya P, Morales MC, Gonzalez-Polo RA, Andreau K, Gourdier I, Perfettini JL, Larochette N, Deniaud A, Baran-Marszak F, Fagard R, Feuillard J, Asumendi A, Raphael M, Pau B, Brenner C, Kroemer G. The chemopreventive agent N-(4-hydroxyphenyl)retinamide induces apoptosis through a mitochondrial pathway regulated by proteins from the Bcl-2 family. Oncogene 2003; 22:6220-30. [PMID: 13679861 DOI: 10.1038/sj.onc.1206827] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
N-(4-hydroxyphenyl)retinamide (4-HPR, fenretinide) is a potent chemopreventive agent whose effect has been suggested to involve apoptosis induction. 4-HPR induces a loss of the mitochondrial transmembrane potential and the mitochondrial release of cytochrome c before caspase activation. Inhibition of mitochondrial membrane permeabilization (MMP) by transfection with Bcl-2 or the Cytomegalovirus UL37 gene product vMIA prevented caspase activation and cell death. In contrast to other retinoid derivatives, 4-HPR has no direct MMP-inducing effects when added to isolated mitochondria or when added to proteoliposomes containing the MMP-regulatory permeability transition pore complex (PTPC). Moreover, although reactive oxygen species (ROS) overproduction appears to be instrumental for 4-HPR-induced MMP and apoptosis, inhibition of the NF-kappaB or p53-mediated signal transduction pathways failed to modulate 4-HPR-induced apoptosis. 4-HPR was found to cause an antioxidant-inhibitable conformational change of both Bax and Bak, leading to the exposure of their N-termini and to the mitochondrial relocalization of Bax. Cells with a Bax(-/-) Bak(-/-) genotype were resistant against the 4-HPR-induced MMP, overproduction of ROS and cell death. Altogether, these data indicate that 4-HPR induces MMP through an ROS-mediated pathway that involves the obligatory contribution of the proapopotic Bcl-2 family members Bax and/or Bak.
Collapse
Affiliation(s)
- Patricia Boya
- Centre National de la Recherche Scientifique, UMR8125, Institut Gustave Roussy, Villejuif, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|