1
|
Peter JU, Dieudonné P, Zolk O. Pharmacokinetics, Pharmacodynamics, and Side Effects of Midazolam: A Review and Case Example. Pharmaceuticals (Basel) 2024; 17:473. [PMID: 38675433 PMCID: PMC11054797 DOI: 10.3390/ph17040473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Midazolam, a short-acting benzodiazepine, is widely used to alleviate patient anxiety, enhance compliance, and aid in anesthesia. While its side effects are typically dose-dependent and manageable with vigilant perioperative monitoring, serious cardiorespiratory complications, including fatalities and permanent neurological impairment, have been documented. Prolonged exposure to benzodiazepines, such as midazolam, has been associated with neurological changes in infants. Despite attempts to employ therapeutic drug monitoring for optimal sedation dosing, its efficacy has been limited. Consequently, efforts are underway to identify alternative predictive markers to guide individualized dosing and mitigate adverse effects. Understanding these factors is crucial for determining midazolam's suitability for future administration, particularly after a severe adverse reaction. This article aims to elucidate the factors influencing midazolam's pharmacokinetics and pharmacodynamics, potentially leading to adverse events. Finally, a case study is presented to exemplify the complex investigation into the causative factors of midazolam-related adverse events.
Collapse
Affiliation(s)
- Jens-Uwe Peter
- Institute of Clinical Pharmacology, Immanuel Klinik Rüdersdorf, Brandenburg Medical School, 15562 Rüdersdorf, Germany;
| | - Peter Dieudonné
- Department of Anesthesiology, University Hospital Ulm, 89081 Ulm, Germany
| | - Oliver Zolk
- Institute of Clinical Pharmacology, Immanuel Klinik Rüdersdorf, Brandenburg Medical School, 15562 Rüdersdorf, Germany;
| |
Collapse
|
2
|
Trousil S, Lee P, Edwards RJ, Maslen L, Lozan-Kuehne JP, Ramaswami R, Aboagye EO, Clarke S, Liddle C, Sharma R. Altered cytochrome 2E1 and 3A P450-dependent drug metabolism in advanced ovarian cancer correlates to tumour-associated inflammation. Br J Pharmacol 2019; 176:3712-3722. [PMID: 31236938 DOI: 10.1111/bph.14776] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/10/2019] [Accepted: 05/16/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE Previous work has focussed on changes in drug metabolism caused by altered activity of CYP3A in the presence of inflammation and, in particular, inflammation associated with malignancy. However, drug metabolism involves a number of other P450s, and therefore, we assessed the effect of cancer-related inflammation on multiple CYP enzymes using a validated drug cocktail. EXPERIMENTAL APPROACH Patients with advanced stage ovarian cancer and healthy volunteers were recruited. Participants received caffeine, chlorzoxazone, dextromethorphan, and omeprazole as in vivo probes for CYP1A2, CYP2E1, CYP2D6, CYP3A, and CYP2C19. Blood was collected for serum C-reactive protein and cytokine analysis. KEY RESULTS CYP2E1 activity was markedly up-regulated in cancer (6-hydroxychlorzoxazone/chlorzoxazone ratio of 1.30 vs. 2.75), while CYP3A phenotypic activity was repressed in cancer (omeprazole sulfone/omeprazole ratio of 0.23 vs. 0.49). Increased activity of CYP2E1 was associated with raised serum levels of IL-6, IL-8, and TNF-α. Repression of CYP3A correlated with raised levels of serum C-reactive protein, IL-6, IL-8, and TNF-α. CONCLUSIONS AND IMPLICATIONS CYP enzyme activity is differentially affected by the presence of tumour-associated inflammation, affecting particularly CYP2E1- and CYP3A-mediated drug metabolism, and may have profound implications for drug development and prescribing in oncological settings.
Collapse
Affiliation(s)
- Sebastian Trousil
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Patrizia Lee
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Robert J Edwards
- Division of Experimental Medicine, Imperial College London, London, UK
| | - Lynn Maslen
- Department of Surgery and Cancer, Imperial College London, London, UK
| | | | - Ramya Ramaswami
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Eric O Aboagye
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Stephen Clarke
- Department of Medical Oncology, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Christopher Liddle
- Storr Liver Unit, Westmead Millennium Institute, University of Sydney, Westmead, Westmead, NSW, Australia
| | - Rohini Sharma
- Department of Surgery and Cancer, Imperial College London, London, UK
| |
Collapse
|
3
|
Shehu AI, Ma X. Pregnane X receptor in drug-induced liver injury: Friend or foe? LIVER RESEARCH 2018. [DOI: 10.1016/j.livres.2018.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
4
|
Yan L, Wang Y, Liu J, Nie Y, Zhong XB, Kan Q, Zhang L. Alterations of Histone Modifications Contribute to Pregnane X Receptor-Mediated Induction of CYP3A4 by Rifampicin. Mol Pharmacol 2017; 92:113-123. [PMID: 28546420 DOI: 10.1124/mol.117.108225] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 05/22/2017] [Indexed: 01/28/2023] Open
Abstract
CYP3A4 is one of the major drug-metabolizing enzymes in human and is responsible for the metabolism of 60% of clinically used drugs. Many drugs are able to induce the expression of CYP3A4, which usually causes drug-drug interactions and adverse drug reactions. This study aims to explore the role of histone modifications in rifampicin-induced expression of CYP3A4 in LS174T cells. We found that the induction of CYP3A4 mRNA (4- to 15-fold) by rifampicin in LS174T cells was associated with increased levels of histone H3 lysine 4 trimethylation (H3K4me3, above 1.8-fold) and H3 acetylation (above 2-fold) and a decreased level of histone H3 lysine 27 trimethylation (H3K27me3, about 50%) in the CYP3A4 promoter. Rifampicin enhanced recruitment to the CYP3A4 promoter of nuclear receptor coactivator 6 (NCOA6, above 3-fold) and histone acetyltransferase p300 (p300, above 1.6-fold). Silencing NCOA6 or p300 by short-hairpin RNAs resulted in inhibition of the CYP3A4 induction as well as altered levels of H3K4me3, H3K27me3, or H3 acetylation in the CYP3A4 promoter. Knockdown of pregnane X receptor (PXR) expression not only suppressed the recruitment of NCOA6 and p300 but also abolished the changes caused by rifampicin in H3K4me3, H3K27me3, and H3 acetylation levels in the CYP3A4 promoter. Moreover, rifampicin treatment enhanced the nuclear accumulation and interactions between PXR and NCOA6/p300. In conclusion, we show that the alterations of histone modifications contribute to the PXR-mediated induction of CYP3A4 by rifampicin.
Collapse
Affiliation(s)
- Liang Yan
- Department of Pharmacology (L.Y., J.L., Y.N, L.Z.) and Department of Forensic Medicine (Y.W.), School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, China; Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.Z.); The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (Q.K.)
| | - Yiting Wang
- Department of Pharmacology (L.Y., J.L., Y.N, L.Z.) and Department of Forensic Medicine (Y.W.), School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, China; Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.Z.); The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (Q.K.)
| | - Jingyang Liu
- Department of Pharmacology (L.Y., J.L., Y.N, L.Z.) and Department of Forensic Medicine (Y.W.), School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, China; Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.Z.); The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (Q.K.)
| | - Yali Nie
- Department of Pharmacology (L.Y., J.L., Y.N, L.Z.) and Department of Forensic Medicine (Y.W.), School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, China; Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.Z.); The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (Q.K.)
| | - Xiao-Bo Zhong
- Department of Pharmacology (L.Y., J.L., Y.N, L.Z.) and Department of Forensic Medicine (Y.W.), School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, China; Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.Z.); The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (Q.K.)
| | - Quancheng Kan
- Department of Pharmacology (L.Y., J.L., Y.N, L.Z.) and Department of Forensic Medicine (Y.W.), School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, China; Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.Z.); The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (Q.K.)
| | - Lirong Zhang
- Department of Pharmacology (L.Y., J.L., Y.N, L.Z.) and Department of Forensic Medicine (Y.W.), School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, China; Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (X.Z.); The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (Q.K.)
| |
Collapse
|
5
|
Giebel NL, Shadley JD, McCarver DG, Dorko K, Gramignoli R, Strom SC, Yan K, Simpson PM, Hines RN. Role of Chromatin Structural Changes in Regulating Human CYP3A Ontogeny. ACTA ACUST UNITED AC 2016; 44:1027-37. [PMID: 26921389 DOI: 10.1124/dmd.116.069344] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 02/25/2016] [Indexed: 11/22/2022]
Abstract
Variability in drug-metabolizing enzyme developmental trajectories contributes to interindividual differences in susceptibility to chemical toxicity and adverse drug reactions, particularly in the first years of life. Factors linked to these interindividual differences are largely unknown, but molecular mechanisms regulating ontogeny are likely involved. To evaluate chromatin structure dynamics as a likely contributing mechanism, age-dependent changes in modified and variant histone occupancy were evaluated within known CYP3A4 and 3A7 regulatory domains. Chromatin immunoprecipitation using fetal or postnatal human hepatocyte chromatin pools followed by quantitative polymerase chain reaction DNA amplification was used to determine relative chromatin occupancy by modified and variant histones. Chromatin structure representing a poised transcriptional state (bivalent chromatin), indicated by the occupancy by modified histones associated with both active and repressed transcription, was observed for CYP3A4 and most 3A7 regulatory regions in both postnatal and fetal livers. However, the CYP3A4 regulatory regions had significantly greater occupancy by modified histones associated with repressed transcription in the fetal liver. Conversely, some modified histones associated with active transcription exhibited greater occupancy in the postnatal liver. CYP3A7 regulatory regions also had significantly greater occupancy by modified histones associated with repressed transcription in the fetus. The observed occupancy by modified histones is consistent with chromatin structural dynamics contributing to CYP3A4 ontogeny, although the data are less conclusive regarding CYP3A7. Interpretation of the latter data may be confounded by cell-type heterogeneity in the fetal liver.
Collapse
Affiliation(s)
- Nicholas L Giebel
- Departments of Pediatrics and Pharmacology and Toxicology, Medical College of Wisconsin, and Children's Research Institute, Children's Hospital and Health Systems, Milwaukee, Wisconsin (N.L.G., J.D.S., D.G.M., K.Y., P.M.S., R.N.H.); and Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania (K.D., R.G., S.C.S.)
| | - Jeffrey D Shadley
- Departments of Pediatrics and Pharmacology and Toxicology, Medical College of Wisconsin, and Children's Research Institute, Children's Hospital and Health Systems, Milwaukee, Wisconsin (N.L.G., J.D.S., D.G.M., K.Y., P.M.S., R.N.H.); and Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania (K.D., R.G., S.C.S.)
| | - D Gail McCarver
- Departments of Pediatrics and Pharmacology and Toxicology, Medical College of Wisconsin, and Children's Research Institute, Children's Hospital and Health Systems, Milwaukee, Wisconsin (N.L.G., J.D.S., D.G.M., K.Y., P.M.S., R.N.H.); and Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania (K.D., R.G., S.C.S.)
| | - Kenneth Dorko
- Departments of Pediatrics and Pharmacology and Toxicology, Medical College of Wisconsin, and Children's Research Institute, Children's Hospital and Health Systems, Milwaukee, Wisconsin (N.L.G., J.D.S., D.G.M., K.Y., P.M.S., R.N.H.); and Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania (K.D., R.G., S.C.S.)
| | - Roberto Gramignoli
- Departments of Pediatrics and Pharmacology and Toxicology, Medical College of Wisconsin, and Children's Research Institute, Children's Hospital and Health Systems, Milwaukee, Wisconsin (N.L.G., J.D.S., D.G.M., K.Y., P.M.S., R.N.H.); and Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania (K.D., R.G., S.C.S.)
| | - Stephen C Strom
- Departments of Pediatrics and Pharmacology and Toxicology, Medical College of Wisconsin, and Children's Research Institute, Children's Hospital and Health Systems, Milwaukee, Wisconsin (N.L.G., J.D.S., D.G.M., K.Y., P.M.S., R.N.H.); and Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania (K.D., R.G., S.C.S.)
| | - Ke Yan
- Departments of Pediatrics and Pharmacology and Toxicology, Medical College of Wisconsin, and Children's Research Institute, Children's Hospital and Health Systems, Milwaukee, Wisconsin (N.L.G., J.D.S., D.G.M., K.Y., P.M.S., R.N.H.); and Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania (K.D., R.G., S.C.S.)
| | - Pippa M Simpson
- Departments of Pediatrics and Pharmacology and Toxicology, Medical College of Wisconsin, and Children's Research Institute, Children's Hospital and Health Systems, Milwaukee, Wisconsin (N.L.G., J.D.S., D.G.M., K.Y., P.M.S., R.N.H.); and Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania (K.D., R.G., S.C.S.)
| | - Ronald N Hines
- Departments of Pediatrics and Pharmacology and Toxicology, Medical College of Wisconsin, and Children's Research Institute, Children's Hospital and Health Systems, Milwaukee, Wisconsin (N.L.G., J.D.S., D.G.M., K.Y., P.M.S., R.N.H.); and Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania (K.D., R.G., S.C.S.)
| |
Collapse
|
6
|
Vyhlidal CA, Bi C, Ye SQ, Leeder JS. Dynamics of Cytosine Methylation in the Proximal Promoters of CYP3A4 and CYP3A7 in Pediatric and Prenatal Livers. ACTA ACUST UNITED AC 2016; 44:1020-6. [PMID: 26772622 DOI: 10.1124/dmd.115.068726] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/14/2016] [Indexed: 11/22/2022]
Abstract
Members of the human CYP3A family of metabolizing enzymes exhibit developmental changes in expression whereby CYP3A7 is expressed in fetal tissues, followed by a transition to expression of CYP3A4 in the first months of life. Despite knowledge about the general pattern of CYP3A activity in human development, the mechanisms that regulate developmental expression remain poorly understood. Epigenetic changes, including cytosine methylation, have been suggested to play a role in the regulation of CYP3A expression. The objective of this study was to investigate changes in cytosine methylation of the CYP3A4 and CYP3A7 genes in human pediatric and prenatal livers. The methylation status of cytosine-phospho-guanine dinucleotides was determined in 16 pediatric liver samples using methyl-seq and confirmed by bisulfite sequencing of 48 pediatric and 34 prenatal liver samples. Samples were separated by age into five groups (prenatal, < 1 year of age, 1.8-6 years, 7-11 years, and 12-17 years). Methyl-seq anaylsis revealed that cytosines in the proximal promoter of CYP3A7 are hypomethylated in neonates compared with adolescents (P < 0.001). In contrast, a cytosine 383 base pair upstream of CYP3A4 is hypermethylated in liver samples from neonates compared with adolescents (P = 0.00001). Developmental changes in methylation of cytosines in the proximal promoters of CYP3A4 and CYP3A7 in pediatric livers were confirmed by bisulfite sequencing. In addition, the methylation status of cytosine in the CYP3A4 and CYP3A7 proximal promoters correlated with changes in developmental expression of mRNA for the two enzymes.
Collapse
Affiliation(s)
- Carrie A Vyhlidal
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation (C.A.V., C.B., J.S.L.), and Division of Experimental and Translational Genetics (S.Q.Y.), Department of Pediatrics, Children's Mercy Hospital, Kansas City, Missouri
| | - Chengpeng Bi
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation (C.A.V., C.B., J.S.L.), and Division of Experimental and Translational Genetics (S.Q.Y.), Department of Pediatrics, Children's Mercy Hospital, Kansas City, Missouri
| | - Shui Qing Ye
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation (C.A.V., C.B., J.S.L.), and Division of Experimental and Translational Genetics (S.Q.Y.), Department of Pediatrics, Children's Mercy Hospital, Kansas City, Missouri
| | - J Steven Leeder
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation (C.A.V., C.B., J.S.L.), and Division of Experimental and Translational Genetics (S.Q.Y.), Department of Pediatrics, Children's Mercy Hospital, Kansas City, Missouri
| |
Collapse
|
7
|
Nielsen LM, Holm NB, Olsen L, Linnet K. Cytochrome P450-mediated metabolism of the synthetic cannabinoids UR-144 and XLR-11. Drug Test Anal 2015; 8:792-800. [DOI: 10.1002/dta.1860] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/29/2015] [Accepted: 07/26/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Line Marie Nielsen
- Section of Forensic Chemistry, Department of Forensic Medicine, Faculty of Health and Medical Sciences; University of Copenhagen; Frederik V's Vej 11, 3 DK-2100 Denmark
- Biostructural Research, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences; University of Copenhagen; Jagtvej 162 DK-2100 Denmark
| | - Niels Bjerre Holm
- Section of Forensic Chemistry, Department of Forensic Medicine, Faculty of Health and Medical Sciences; University of Copenhagen; Frederik V's Vej 11, 3 DK-2100 Denmark
| | - Lars Olsen
- Biostructural Research, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences; University of Copenhagen; Jagtvej 162 DK-2100 Denmark
| | - Kristian Linnet
- Section of Forensic Chemistry, Department of Forensic Medicine, Faculty of Health and Medical Sciences; University of Copenhagen; Frederik V's Vej 11, 3 DK-2100 Denmark
| |
Collapse
|
8
|
Li JL, Liu S, Fu Q, Zhang Y, Wang XD, Liu XM, Liu LS, Wang CX, Huang M. Interactive effects of CYP3A4, CYP3A5, MDR1 and NR1I2 polymorphisms on tracrolimus trough concentrations in early postrenal transplant recipients. Pharmacogenomics 2015; 16:1355-65. [DOI: 10.2217/pgs.15.78] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Aims: To evaluate the influences of CYP3A4, CYP3A5, MDR1 and NR1I2 polymorphisms on tacrolimus concentration in early postrenal transplant recipients. Patients & methods: A total of 159 patients were included, dose-adjusted tacrolimus trough concentration on day 7 after transplantation (C0D7/D) was calculated and 10 SNPs in four genes were genotyped. Results: CYP3A5*3 explained 32.8% of variability of tacrolimus C0D7/D. CYP3A4*1G, MDR1 1236–2677–3435 diplotype and NR1I2 -25385C > T explained 21.4% of variability of tacrolimus C0D7/D in CYP3A5 nonexpressers. Conclusion: CYP3A5*3 was the predominant determinant affecting tacrolimus concentration. Genotyping of CYP3A4/MDR1/NR1I2 polymorphisms may be helpful for better guiding tacrolimus dosing in CYP3A5 nonexpressers.
Collapse
Affiliation(s)
- Jia-li Li
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, 132 Waihuan Dong Road, University City, Guangzhou 510006, China
| | - Shu Liu
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, 132 Waihuan Dong Road, University City, Guangzhou 510006, China
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Dong Road, Guangzhou 510060, China
| | - Qian Fu
- Kidney Transplant Department, Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou 510080, China
| | - Yu Zhang
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, 132 Waihuan Dong Road, University City, Guangzhou 510006, China
- School of Pharmaceutical Sciences, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 510182, China
| | - Xue-ding Wang
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, 132 Waihuan Dong Road, University City, Guangzhou 510006, China
| | - Xiao-man Liu
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, 132 Waihuan Dong Road, University City, Guangzhou 510006, China
| | - Long-shan Liu
- Kidney Transplant Department, Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou 510080, China
| | - Chang-xi Wang
- Kidney Transplant Department, Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou 510080, China
| | - Min Huang
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, 132 Waihuan Dong Road, University City, Guangzhou 510006, China
| |
Collapse
|
9
|
Kuang X, Li W, Kanno Y, Mochizuki M, Inouye Y, Koike K. Cycloartane-type triterpenes from Euphorbia fischeriana stimulate human CYP3A4 promoter activity. Bioorg Med Chem Lett 2014; 24:5423-7. [DOI: 10.1016/j.bmcl.2014.10.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 10/03/2014] [Accepted: 10/09/2014] [Indexed: 11/24/2022]
|
10
|
Apellániz-Ruiz M, Inglada-Pérez L, Naranjo MEG, Sánchez L, Mancikova V, Currás-Freixes M, de Cubas AA, Comino-Méndez I, Triki S, Rebai A, Rasool M, Moya G, Grazina M, Opocher G, Cascón A, Taboada-Echalar P, Ingelman-Sundberg M, Carracedo A, Robledo M, Llerena A, Rodríguez-Antona C. High frequency and founder effect of the CYP3A4*20 loss-of-function allele in the Spanish population classifies CYP3A4 as a polymorphic enzyme. THE PHARMACOGENOMICS JOURNAL 2014; 15:288-92. [DOI: 10.1038/tpj.2014.67] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 09/11/2014] [Accepted: 09/19/2014] [Indexed: 11/09/2022]
|
11
|
Šíma M, Netíková I, Slanař O. Pregnane xenobiotic receptors and their effect on drug elimination from the organism. Prague Med Rep 2014; 114:205-13. [PMID: 24485337 DOI: 10.14712/23362936.2014.9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Nuclear receptors are intracellular proteins which, having been activated by their more or less specific ligands, regulate (usually increase) the transcription of target genes. They thus participate in a regulation of a number of physiologic functions. Some of them - especially pregnane xenobiotic receptors - serve primarily as protection of the organism from the xenobiotic intoxication. This is because many xenobiotics activate their function which consists in increasing the gene expression of enzymes involved in the metabolism of xenobiotics and detoxication drug transporters. Clarification of these mechanisms enabled the understanding of the substance of many drug-drug interactions observed in the clinical practice. Polymorphism of the nuclear receptors appears to be one of the causes of the interindividual variability in response to drug administration.
Collapse
Affiliation(s)
- M Šíma
- Institute of Pharmacology, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
| | - I Netíková
- Institute of Pharmacology, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
| | - O Slanař
- Institute of Pharmacology, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech RepublicInstitute of Pharmacology, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
12
|
Chaudhry AS, Thirumaran RK, Yasuda K, Yang X, Fan Y, Strom SC, Schuetz EG. Genetic variation in aldo-keto reductase 1D1 (AKR1D1) affects the expression and activity of multiple cytochrome P450s. Drug Metab Dispos 2013; 41:1538-47. [PMID: 23704699 PMCID: PMC4162005 DOI: 10.1124/dmd.113.051672] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 05/23/2013] [Indexed: 02/02/2023] Open
Abstract
Human liver gene regulatory (Bayesian) network analysis was previously used to identify a cytochrome P450 (P450) gene subnetwork with Aldo-keto reductase 1D1 (AKR1D1) as a key regulatory driver of this subnetwork. This study assessed the biologic importance of AKR1D1 [a key enzyme in the synthesis of bile acids, ligand activators of farnesoid X receptor (FXR), pregnane X receptor (PXR), and constitutive androstane receptor (CAR), known transcriptional regulators of P450s] to hepatic P450 expression. Overexpression of AKR1D1 in primary human hepatocytes led to increased expression of CYP3A4, CYP2C8, CYP2C9, CYP2C19, and CYP2B6. Conversely, AKR1D1 knockdown decreased expression of these P450s. We resequenced AKR1D1 from 98 donor livers and identified a 3'-untranslated region (UTR) (rs1872930) single nucleotide polymorphism (SNP) significantly associated with higher AKR1D1 mRNA expression. AKR1D1 3'-UTR-luciferase reporter studies showed that the variant allele resulted in higher luciferase activity, suggesting that the SNP increases AKR1D1 mRNA stability and/or translation efficiency. Consistent with AKR1D1's putative role as a driver of the P450 subnetwork, the AKR1D1 3'-UTR SNP was significantly associated with increased hepatic mRNA expression of multiple P450s (CYP3A4, CYP2C8, CYP2C9, CYP2C19, and CYP2B6) and CYP3A4, CYP2C8, CYP2C19, and CYP2B6 activities. After adjusting for multiple testing, the association remained significant for AKR1D1, CYP2C9, and CYP2C8 mRNA expression and CYP2C8 activity. These results provide new insights into the variation in expression and activity of P450s that can account for interindividual differences in drug metabolism/efficacy and adverse drug events. In conclusion, we provide the first experimental evidence supporting a role for AKR1D1 as a key genetic regulator of the P450 network.
Collapse
Affiliation(s)
- Amarjit S Chaudhry
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Watanabe K, Sakurai K, Tsuchiya Y, Yamazoe Y, Yoshinari K. Dual roles of nuclear receptor liver X receptor α (LXRα) in the CYP3A4 expression in human hepatocytes as a positive and negative regulator. Biochem Pharmacol 2013; 86:428-36. [PMID: 23732298 DOI: 10.1016/j.bcp.2013.05.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 05/22/2013] [Accepted: 05/22/2013] [Indexed: 12/11/2022]
Abstract
CYP3A4 is a major drug-metabolizing enzyme in humans, whose expression levels show large inter-individual variations and are associated with several factors such as genetic polymorphism, physiological and disease status, diet and xenobiotic exposure. Nuclear receptor pregnane X receptor (PXR) is a key transcription factor for the xenobiotic-mediated transcription of CYP3A4. In this study, we have investigated a possible involvement of liver X receptor α (LXRα), a critical regulator of cholesterol homeostasis, in the hepatic CYP3A4 expression since several recent reports suggest the involvement of CYP3A enzymes in the cholesterol metabolism in humans and mice. Reporter assays using wild-type and mutated CYP3A4 luciferase reporter plasmids and electrophoretic mobility shift assays revealed that LXRα up-regulated CYP3A4 through the known DNA elements critical for the PXR-dependent CYP3A4 transcription, suggesting LXRα as a positive regulator for the CYP3A4 expression and a crosstalk between PXR and LXRα in the expression. In fact, reporter assays showed that LXRα activation attenuated the PXR-dependent CYP3A4 transcription. Moreover, a PXR agonist treatment-dependent increase in CYP3A4 mRNA levels was suppressed by co-treatment with an LXRα agonist in human primary hepatocytes and HepaRG cells. The suppression was not observed when LXRα expression was knocked-down in HepaRG cells. In conclusion, the present results suggest that sterol-sensitive LXRα positively regulates the basal expression of CYP3A4 but suppresses the xenobiotic/PXR-dependent CYP3A4 expression in human hepatocytes. Therefore, nutritional, physiological and disease conditions affecting LXRα might be one of the determinants for the basal and xenobiotic-responsive expression of CYP3A4 in human livers.
Collapse
Affiliation(s)
- Keisuke Watanabe
- Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Japan
| | | | | | | | | |
Collapse
|
14
|
Wu Y, Shi X, Liu Y, Zhang X, Wang J, Luo X, Wen A. Histone deacetylase 1 is required for Carbamazepine-induced CYP3A4 expression. J Pharm Biomed Anal 2012; 58:78-82. [DOI: 10.1016/j.jpba.2011.09.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 08/17/2011] [Accepted: 09/17/2011] [Indexed: 01/28/2023]
|
15
|
Alvarez CE, Akey JM. Copy number variation in the domestic dog. Mamm Genome 2011; 23:144-63. [PMID: 22138850 DOI: 10.1007/s00335-011-9369-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Accepted: 10/09/2011] [Indexed: 12/13/2022]
Abstract
Differences in the content and organization of DNA, collectively referred to as structural variation, have emerged as a major source of genetic and phenotypic diversity within and between species. In addition, structural variation provides an important substrate for evolutionary innovations. Here, we review recent progress in characterizing patterns of canine structural variation within and between breeds, and in correlating copy number variants (CNVs) with phenotypes. Because of the extensive phenotypic diversity that exists within and between breeds and the tantalizing examples of canine CNVs that influence traits such as skin wrinkling in Shar-Pei, dorsal hair ridge in Rhodesian and Thai Ridgebacks, and short limbs in many breeds such as Dachshunds and Corgis, we argue that domesticated dogs are uniquely poised to contribute novel insights into CNV biology. As new technologies continue to be developed and refined, the field of canine genomics is on the precipice of a deeper understanding of how structural variation and CNVs contribute to canine genetic diversity, phenotypic variation, and disease susceptibility.
Collapse
Affiliation(s)
- Carlos E Alvarez
- The Center for Human and Molecular Genetics, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, W491, Columbus, OH 43205, USA.
| | | |
Collapse
|
16
|
Klümpen HJ, Samer CF, Mathijssen RH, Schellens JH, Gurney H. Moving towards dose individualization of tyrosine kinase inhibitors. Cancer Treat Rev 2011; 37:251-60. [DOI: 10.1016/j.ctrv.2010.08.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 08/13/2010] [Accepted: 08/17/2010] [Indexed: 12/11/2022]
|
17
|
Fenneteau F, Poulin P, Nekka F. Physiologically based predictions of the impact of inhibition of intestinal and hepatic metabolism on human pharmacokinetics of CYP3A substrates. J Pharm Sci 2010; 99:486-514. [PMID: 19479982 DOI: 10.1002/jps.21802] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The first objective of the present study was to predict the pharmacokinetics of selected CYP3A substrates administered at a single oral dose to human. The second objective was to predict pharmacokinetics of the selected drugs in presence of inhibitors of the intestinal and/or hepatic CYP3A activity. We developed a whole-body physiologically based pharmacokinetics (WB-PBPK) model accounting for presystemic elimination of midazolam (MDZ), alprazolam (APZ), triazolam (TRZ), and simvastatin (SMV). The model also accounted for concomitant administration of the above-mentioned drugs with CYP3A inhibitors, namely ketoconazole (KTZ), itraconazole (ITZ), diltiazem (DTZ), saquinavir (SQV), and a furanocoumarin contained in grape-fruit juice (GFJ), namely 6',7'-dihydroxybergamottin (DHB). Model predictions were compared to published clinical data. An uncertainty analysis was performed to account for the variability and uncertainty of model parameters when predicting the model outcomes. We also briefly report on the results of our efforts to develop a global sensitivity analysis and its application to the current WB-PBPK model. Considering the current criterion for a successful prediction, judged satisfied once the clinical data are captured within the 5th and 95th percentiles of the predicted concentration-time profiles, a successful prediction has been obtained for a single oral administration of MDZ and SMV. For APZ and TRZ, however, a slight deviation toward the 95th percentile was observed especially for C(max) but, overall, the in vivo profiles were well captured by the PBPK model. Moreover, the impact of DHB-mediated inhibition on the extent of intestinal pre-systemic elimination of MDZ and SMV has been accurately predicted by the proposed PBPK model. For concomitant administrations of MDZ and ITZ, APZ and KTZ, as well as SMV and DTZ, the in vivo concentration-time profiles were accurately captured by the model. A slight deviation was observed for SMV when coadministered with ITZ, whereas more important deviations have been obtained between the model predictions and in vivo concentration-time profiles of MDZ coadministered with SQV. The same observation was made for TRZ when administered with KTZ. Most of the pharmacokinetic parameters predicted by the PBPK model were successfully predicted within a two-fold error range either in the absence or presence of metabolism-based inhibition. Overall, the present study demonstrated the ability of the PBPK model to predict DDI of CYP3A substrates with promising accuracy.
Collapse
Affiliation(s)
- Frederique Fenneteau
- Faculté de Pharmacie, Université de Montréal, CP 6128, Succursale Centre Ville, Montréal, Québec, Canada
| | | | | |
Collapse
|
18
|
Lamba V, Panetta JC, Strom S, Schuetz EG. Genetic predictors of interindividual variability in hepatic CYP3A4 expression. J Pharmacol Exp Ther 2009; 332:1088-99. [PMID: 19934400 DOI: 10.1124/jpet.109.160804] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Variability in hepatic CYP3A4 cannot be explained by common CYP3A4 coding variants. We previously identified polymorphisms in pregnane X receptor (PXR) and ATP-binding cassette subfamily B member 1 (ABCB1) associated with CYP3A4 mRNA levels in small cohorts of human livers. However, the relative contributions of these genetic variations or of polymorphisms in other CYP3A4 regulators to variable CYP3A4 expression were not known. We phenotyped livers from white donors (n = 128) by quantitative real-time polymerase chain reaction for expression of CYP3A4, CYP3A5, and CYP3A7 and nine transcriptional regulators, coactivators, and corepressors. We resequenced hepatic nuclear factor-3-beta (HNF3beta, FoxA2), HNF4alpha, HNF3gamma (FoxA3), nuclear receptor corepressor 2 (NCoR2), and regions of the CYP3A4 promoter and genotyped informative single-nucleotide polymorphisms in PXR and ABCB1 in the same livers. CYP3A4 mRNA was positively correlated with PXR and FoxA2 and negatively correlated with NCoR2 mRNA. A common silent polymorphism and a polymorphic trinucleotide (CCT) repeat in FoxA2 were associated with CYP3A4 expression. The transcriptional activity of the FoxA2 polymorphic CCT repeat alleles (wild-type, n = 14 and variant, n = 13, 15, and 19) when assayed by luciferase reporter transactivation assays was greatest for the wild-type repeat, with deviations from this number having decreased transcriptional activity. This corresponded with higher expression of FoxA2 mRNA and its targets PXR and CYP3A4 in human livers with (CCT) n = 14 genotypes. Multiple linear regression analysis was used to quantify the contributions of selected genetic polymorphisms to variable CYP3A4 expression. This approach identified sex and polymorphisms in FoxA2, HNF4alpha, FoxA3, PXR, ABCB1, and the CYP3A4 promoter that together explained as much as 24.6% of the variation in hepatic CYP3A4 expression.
Collapse
Affiliation(s)
- Vishal Lamba
- Department of Pharmaceutical Sciences, 262 Danny Thomas Place, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | |
Collapse
|
19
|
Willrich MAV, Hirata MH, Hirata RDC. Statin regulation of CYP3A4 and CYP3A5 expression. Pharmacogenomics 2009; 10:1017-24. [PMID: 19530969 DOI: 10.2217/pgs.09.42] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
CYP3A4 and CYP3A5 are cytochrome P450 enzymes that are highly expressed in the liver and gut and metabolize endogenous compounds and xenobiotics. Statins are cholesterol-lowering drugs that are extensively metabolized by CYP3A4 and CYP3A5. The bioavailability of statins is affected by CYP3A4 and CYP3A5 and glucuronidases metabolism as well as uptake and efflux transporters that affect drug disposition. CYP3A4 and CYP3A5 variants have been demonstrated to influence the pharmacokinetics, efficacy and safety of statins. Inducers and inhibitors of CYP3A4 and CYP3A5 play an important role in reducing statin efficacy and increase the risk of adverse effects, respectively. Statins have been demonstrated to increase CYP3A expression in vitro, most likely because they are ligands to nuclear receptors (pregnane X receptor and constitutive androsterone receptor) that form heterodimers with retinoid X receptors and bind to responsive elements in the CYP3A4 and CYP3A5 promoter regions. This special report outlines the earlier studies on variability of response to statins owing to CYP3A variants and highlights findings on the induction of CYP3A4 and CYP3A5 expression by statins.
Collapse
Affiliation(s)
- Maria Alice Vieira Willrich
- Department of Clinical and Toxicological Analysis, University of Sao Paulo, Avenue Prof. Lineu Prestes, 580, B17, 05508-05900 Sao Paulo, SP, Brazil.
| | | | | |
Collapse
|
20
|
Ekhart C, Rodenhuis S, Smits PH, Beijnen JH, Huitema AD. An overview of the relations between polymorphisms in drug metabolising enzymes and drug transporters and survival after cancer drug treatment. Cancer Treat Rev 2009; 35:18-31. [DOI: 10.1016/j.ctrv.2008.07.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 07/09/2008] [Accepted: 07/22/2008] [Indexed: 11/16/2022]
|
21
|
Nicholas TJ, Cheng Z, Ventura M, Mealey K, Eichler EE, Akey JM. The genomic architecture of segmental duplications and associated copy number variants in dogs. Genome Res 2009; 19:491-9. [PMID: 19129542 DOI: 10.1101/gr.084715.108] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Structural variation is an important and abundant source of genetic and phenotypic variation. Here we describe the first systematic and genome-wide analysis of segmental duplications and associated copy number variants (CNVs) in the modern domesticated dog, Canis familiaris, which exhibits considerable morphological, physiological, and behavioral variation. Through computational analyses of the publicly available canine reference sequence, we estimate that segmental duplications comprise approximately 4.21% of the canine genome. Segmental duplications overlap 841 genes and are significantly enriched for specific biological functions such as immunity and defense and KRAB box transcription factors. We designed high-density tiling arrays spanning all predicted segmental duplications and performed aCGH in a panel of 17 breeds and a gray wolf. In total, we identified 3583 CNVs, approximately 68% of which were found in two or more samples that map to 678 unique regions. CNVs span 429 genes that are involved in a wide variety of biological processes such as olfaction, immunity, and gene regulation. Our results provide insight into mechanisms of canine genome evolution and generate a valuable resource for future evolutionary and phenotypic studies.
Collapse
Affiliation(s)
- Thomas J Nicholas
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | |
Collapse
|
22
|
Hariparsad N, Carr BA, Evers R, Chu X. Comparison of Immortalized Fa2N-4 Cells and Human Hepatocytes as in Vitro Models for Cytochrome P450 Induction. Drug Metab Dispos 2008; 36:1046-55. [DOI: 10.1124/dmd.108.020677] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
23
|
Abstract
There is increasing evidence of a systemic inflammatory response associated with malignancy, which may have an impact on both drug disposition and resistance to cytotoxic therapy. The impact of inflammation on drug disposition was studied in mice bearing a number of common tumour xenografts. C57BL/6 mice were inoculated with tumour xenografts. Hepatic expressions of Cyp3a and drug transporters were analysed at the mRNA, protein and functional levels (Cyp3a only). Circulating serum cytokines and the hepatic expression of acute phase proteins (APPs) were measured. Intratumoral levels of multidrug resistance genes were determined. Tumour xenografts elicited an inflammatory response that coincided with repression in hepatic Cyp3a11 activity and the expression of a number of hepatic drug transporters. With tumour growth, a progressive reduction in hepatic Cyp3a11 mRNA expression was seen. Conversely, an increase in the hepatic APP expression and circulating interleukin (IL)-6 levels was observed. Furthermore, a correlation was seen between increased intratumoral expression of the multidrug resistance gene, Mdr1a, and levels of circulating IL-6. Malignancy results in reduced hepatic drug disposition that correlates with an associated inflammatory response. Reduction of inflammation may improve the clinical outcome for patients receiving chemotherapeutic agents that undergo hepatic metabolism.
Collapse
|
24
|
Aitken AE, Morgan ET. Gene-specific effects of inflammatory cytokines on cytochrome P450 2C, 2B6 and 3A4 mRNA levels in human hepatocytes. Drug Metab Dispos 2007; 35:1687-93. [PMID: 17576808 PMCID: PMC2171046 DOI: 10.1124/dmd.107.015511] [Citation(s) in RCA: 274] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cytochromes P450 (P450s) are down-regulated in hepatocytes in response to inflammation and infection. This effect has been extensively studied in animal models, but significantly less is known about responses in humans and even less about responses in the absence of inducing agents. This article focuses on the effects of bacterial lipopolysaccaride (LPS), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF), interferon gamma (IFN), transforming growth factor-beta (TGF) and interleukin-1 beta (IL-1) on expression of CYP2B6 and the CYP2C mRNAs in human hepatocytes. These effects were compared with responses of the better studied and more abundant CYP3A4. CYP3A4 and CYP2C8 were down-regulated by all cytokine treatments. CYP2C18, which is expressed at very low levels in liver, was unaffected by cytokine treatments. The other CYP2Cs and CYP2B6 showed cytokine-specific effects. CYP2C9 and CYP2C19 showed almost identical response patterns, being down-regulated by IL-6 and TGF but not significantly affected by LPS, TNF, IFN, or IL-1. CYP2B6 mRNA responded only to IL-6 and IFN. IL-6 down-regulated the mRNAs of all P450s studied. Western blot analysis of P450 protein expression supported the mRNA data to a large extent, although some inconsistencies were observed. Our results show that human CYP2C8, 2C9, 2C18, 2C19, 2B6, and 3A4 responses to inflammation are independently regulated and indicate that this fine control may have a critical effect on human drug responses in disease states.
Collapse
Affiliation(s)
- Alison E Aitken
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
25
|
Biggs JS, Wan J, Cutler NS, Hakkola J, Uusimäki P, Raunio H, Yost GS. Transcription factor binding to a putative double E-box motif represses CYP3A4 expression in human lung cells. Mol Pharmacol 2007; 72:514-25. [PMID: 17548528 DOI: 10.1124/mol.106.033795] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Two vital enzymes of the CYP3A subfamily, CYP3A4 and CYP3A5, are differentially expressed in the human lung. However, the molecular mechanisms that regulate tissue-selective expression of the genes are poorly understood. The ability of the 5' upstream promoter region of these two genes to drive luciferase reporter activities in human lung A549 cells was dramatically different. The CYP3A5 promoter region activated luciferase gene expression by 10-fold over the promoterless construct, whereas the CYP3A4 promoter did not drive expression. Sequence comparisons of the promoters identified a 57-base pair insertion in the CYP3A4 promoter region (-71 to -127) that was absent in the CYP3A5 promoter. Deletion of the 57-bp motif from CYP3A4 or insertion into the CYP3A5 promoter, showed that this motif represses CYP3A4 expression in lung. EMSA analysis using nuclear extracts from either A549 cells or human lung tissues showed two specific protein/DNA complexes formed with the (32)P-labeled CYP3A4 57-bp oligonucleotide. EMSA analyses identified two E-box motifs as the minimal specific cis-elements. Supershift assays with antibodies directed against known double- or single-E-box binding factors (TAL1, deltaEF1, E2A, HEB, etc.) failed to identify this factor as a previously characterized trans-acting double E-box binding protein. These results demonstrated that the 5'-upstream region of CYP3A4 contains an active putative double E-box repressor motif, not present in the 5'-upstream region of the CYP3A5 gene, that attenuates CYP3A4 expression in the human lung. We believe that this is the first documented case in which a cytochrome P450 gene is actively repressed in a tissue-specific manner.
Collapse
Affiliation(s)
- Jason S Biggs
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112-5820, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Sunder‐Plassmann R. Cytochrome P450: Another Player in the Myocardial Infarction Game? Adv Clin Chem 2007. [DOI: 10.1016/s0065-2423(06)43008-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Haddad A, Davis M, Lagman R. The pharmacological importance of cytochrome CYP3A4 in the palliation of symptoms: review and recommendations for avoiding adverse drug interactions. Support Care Cancer 2006; 15:251-7. [PMID: 17139496 DOI: 10.1007/s00520-006-0127-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Accepted: 07/05/2006] [Indexed: 11/27/2022]
Abstract
BACKGROUND Adverse drug interactions are major causes of morbidity, hospitalizations, and mortality. The greatest risk of drug interactions occurs through in the cytochrome system. CYP3A4, the most prevalent cytochrome, accounts for 30-50% of drugs metabolized through type I enzymes. MATERIALS AND METHODS Palliative patients received medications for symptoms and co-morbidities, many of which are substrate, inhibitors, or promoters of CYP3A4 activity and expression. A literature review on CYP3A4 was performed pertinent to palliative medicine. DISCUSSION In this state of the art review, we discuss the CYP3A4 genetics, and kinetics and common medications, which are substrates or inhibitor/promoters of CYP3A4. CONCLUSION We made some recommendations for drug choices to avoid clinically important drug interaction.
Collapse
Affiliation(s)
- Abdo Haddad
- Palliative Medicine Fellowship Faculty, The Harry R. Horvitz Center for Palliative Medicine, Cleveland Clinic Taussig Cancer Center, Cleveland, OH 44195, USA
| | | | | |
Collapse
|
28
|
Choi JY, Nowell SA, Blanco JG, Ambrosone CB. The role of genetic variability in drug metabolism pathways in breast cancer prognosis. Pharmacogenomics 2006; 7:613-24. [PMID: 16753008 DOI: 10.2217/14622416.7.4.613] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Among patients receiving adjuvant therapy for breast cancer, there is variability in treatment outcomes, and it is unclear which patients will receive the most benefit from treatment and which will have better disease-free survival. To date, most studies of breast cancer prognosis have focused on tumor characteristics, but it is likely that pharmacogenetics, genetic variability in the metabolism of therapeutic agents, also plays a role in the prediction of survival. In this paper, we briefly discuss the metabolic pathways of drugs commonly used for the treatment of breast cancer (cyclophosphamide, doxorubicin, taxanes, tamoxifen and aromatase inhibitors) and describe the known genetic variants that may impact those pathways. Studies that have evaluated potential effects of these genetic variants on treatment outcomes are also discussed. It is likely that the application of pharmacogenetics, particularly in the setting of randomized clinical trials, will contribute to findings that may result in individualized therapeutic dosing.
Collapse
Affiliation(s)
- Ji-Yeob Choi
- Roswell Park Cancer Institute, Department of Epidemiology, Elm & Carlton Sts, Buffalo, NY, 14263, USA
| | | | | | | |
Collapse
|
29
|
Vyhlidal CA, Gaedigk R, Leeder JS. NUCLEAR RECEPTOR EXPRESSION IN FETAL AND PEDIATRIC LIVER: CORRELATION WITH CYP3A EXPRESSION. Drug Metab Dispos 2005; 34:131-7. [PMID: 16243958 DOI: 10.1124/dmd.105.005967] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mechanisms underlying interindividual variation and developmental changes in cytochrome P450 3A (CYP3A) expression and activity are not fully understood. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) methods were used to detect, during human fetal and pediatric development, mRNA expression of nuclear receptors involved in the regulation of CYP3A genes. Quantitative RT-PCR was conducted on RNA extracted from prenatal (n = 60, 76 days to 32 weeks estimated gestational age) and pediatric (n = 20, 4 days to 18 years of age) liver tissue with primers for nuclear receptors implicated in regulating CYP3A gene expression. Pregnane X receptor (PXR) and constitutive androstane receptor (CAR) were expressed at low (and highly variable) levels in pre- and neonatal liver relative to liver tissue derived from older children. CAR was expressed at higher levels relative to PXR in prenatal liver (757 +/- 480 molecules CAR/ng of RNA versus 271 +/- 190 molecules PXR/ng of RNA after correction for 18S rRNA). In contrast, mRNA expression of the heterodimer partner RXRalpha was less variable (33-fold) and did not differ appreciably between pre- and postnatal liver samples (219 +/- 101 molecules/ng of RNA prenatal versus 253 +/- 232 molecules/ng of RNA postnatal). Expression of HNF4alpha1 mRNA was similar to that of RXRalpha. Log CYP3A7 mRNA expression was significantly correlated with PXR (r2 = 0.372) and CAR (r2 = 0.380) mRNA in fetal liver, but associations were weaker than those observed with CYP3A4 mRNA in postnatal liver (r2 = 0.610 and 0.723 for PXR and CAR, respectively). In conclusion, nuclear receptor mRNA expression demonstrates considerable interindividual variability in human fetal and pediatric liver and is significantly correlated with CYP3A expression.
Collapse
Affiliation(s)
- Carrie A Vyhlidal
- Section of Developmental Pharmacology and Experimental Therapeutics, Children's Mercy Hospital and Clinics, 2401 Gillham Road, Kansas City, MO 64108, USA
| | | | | |
Collapse
|
30
|
Martínez-Jiménez CP, Gómez-Lechón MJ, Castell JV, Jover R. Transcriptional regulation of the human hepatic CYP3A4: identification of a new distal enhancer region responsive to CCAAT/enhancer-binding protein beta isoforms (liver activating protein and liver inhibitory protein). Mol Pharmacol 2005; 67:2088-101. [PMID: 15778453 DOI: 10.1124/mol.104.008169] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
CCAAT/enhancer-binding proteins (C/EBPs) are key transcription factors involved in the constitutive expression of several cytochrome P450 genes in the liver. Their concentration and activity change in several pathophysiological conditions. For instance, during inflammation, released cytokines induce repressive C/EBPbeta-liver inhibitory protein (LIP), which antagonizes constitutive C/EBP transactivators [C/EBPalpha and C/EBPbeta-liver activating protein (LAP)], down-regulating genes such as CYP3A4. However, the mechanism by which hepatic C/EBP factors modulate transcription of the CYP3A4 gene is not known. To elucidate the mechanism of action, we cotransfected luciferase reporter vectors, containing 5'-flanking deletions of the CYP3A4 gene, along with expression vectors for C/EBPbeta-LAP, C/EBPbeta-LIP, and C/EBPalpha, in hepatic (HepG2) and nonhepatic (HeLa) cells. Analysis of the -3557 to -6954 base pair (bp) region demonstrated the existence of a 288-bp sequence at -5.95 kilobases (kb), which showed maximal response to C/EBPbeta-LAP ( approximately 30-fold increase in HepG2 cells). Coexpression of LAP with increasing amounts of LIP reduced the activating effect by approximately 70%. Site-directed mutagenesis of predicted C/EBPbeta binding sites demonstrated the presence of four functional C/EBPbeta-responsive motifs within this distal flanking region. Further experiments using chromatin immunoprecipitation proved the binding of endogenous C/EBPbeta to the -5.95-kilobase enhancer of the CYP3A4 gene in human hepatocytes. Expression of recombinant LAP and LIP by means of adenoviral vectors resulted in their binding to this region, which was followed by activation/repression of CYP3A4. Together, our results uncover a new distal enhancer site in the CYP3A4 gene where C/EBPbeta-LAP binds and activates transcription, whereas the truncated form, C/EBPbeta-LIP, antagonizes LAP activity and causes gene repression.
Collapse
Affiliation(s)
- Celia P Martínez-Jiménez
- Unidad de Hepatología Experimental, Centro de Investigación, Hospital La Fe, Avenida de Campanar 21, 46009 Valencia, Spain
| | | | | | | |
Collapse
|
31
|
Tang C, Lin JH, Lu AYH. Metabolism-based drug-drug interactions: what determines individual variability in cytochrome P450 induction? Drug Metab Dispos 2005; 33:603-13. [PMID: 15673596 DOI: 10.1124/dmd.104.003236] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Individual variability in cytochrome P450 (P450) induction comprises an important component contributing to the difficulties in assessing and predicting metabolism-based drug-drug interactions in humans. In this article, we outline the major factors responsible for the individual variability in P450 induction, including variable transporter activity and metabolism of inducers in vivo, genetic variations of P450 genes and their regulatory regions, genetic variations of receptors and regulatory proteins required for induction, and different physiological and environmental elements. With a better understanding of the major determinants in P450 induction and a profile of the phenotypes of these determinants in each individual, it is believed that the individual variability in induction-mediated drug-drug interactions can be adequately evaluated.
Collapse
Affiliation(s)
- Cuyue Tang
- Department of Drug Metabolism, Merck Research Laboratories, Sumneytown Pike, West Point, PA 19486-0004, USA.
| | | | | |
Collapse
|
32
|
Ward BA, Morocho A, Kandil A, Galinsky RE, Flockhart DA, Desta Z. Characterization of human cytochrome P450 enzymes catalyzing domperidone N-dealkylation and hydroxylation in vitro. Br J Clin Pharmacol 2004; 58:277-87. [PMID: 15327587 PMCID: PMC1884565 DOI: 10.1111/j.1365-2125.2004.02156.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
AIMS To confirm the identity of the major metabolites of domperidone and to characterize the cytochrome P450s (CYPs) involved in their formation. METHODS Human liver microsomes (HLMs) were used to characterize the kinetics of domperidone metabolism and liquid chromatography-mass spectrometry to identify the products. Isoform-specific chemical inhibitors, correlation analysis and expressed human CYP genes were used to identify the CYPs involved in domperidone oxidation. RESULTS In HLMs, domperidone underwent hydroxylation to form 5-hydroxydomperidone (MIII) and N-dealkylation to form 2,3-dihydro-2-oxo-1H-benzimidazole-1-propionic acid (MI) and 5-chloro-4-piperidinyl-1,3-dihydro-benzimidazol-2-one (MII). The formation of all three metabolites (n = 4 HLMs) followed apparent Michaelis-Menten kinetics. The mean Km values for MI, MII and MIII formation were 12.4, 11.9, and 12.6 micro m, respectively. In a panel of HLMs (n = 10), the rate of domperidone (5 microm and 50 microm) metabolism correlated with the activity of CYP3A (r > 0.94; P < 0.0001). Only ketoconazole (1 microm) (by 87%) and troleandomycin (50 microm) (by 64%) inhibited domperidone (5 microm) metabolism in HLMs. Domperidone (5 and 50 microm) hydroxylation and N-dealkylation was catalyzed by expressed CYP3A4 at a higher rate than the other CYPs. CYP1A2, 2B6, 2C8 and 2D6 also hydroxylated domperidone CONCLUSIONS CYP3A-catalyzed N-dealkylation and aromatic hydroxylation are the major routes for domperidone metabolism. The drug would be expected to demonstrate highly variable bioavailability due to hepatic, and possibly intestinal first-pass metabolism after oral administration. Increased risk of adverse effects might be anticipated during concomitant administration with CYP3A inhibitors, as well as decreased efficacy with inducers of this enzyme.
Collapse
Affiliation(s)
- Bryan A Ward
- Indiana University School of Medicine, Department of Medicine/Division of Clinical Pharmacology1001 West 10th street, OPD W 320, Indianapolis, Indiana, USA
| | - Alan Morocho
- Indiana University School of Medicine, Department of Medicine/Division of Clinical Pharmacology1001 West 10th street, OPD W 320, Indianapolis, Indiana, USA
| | - Abdullah Kandil
- Indiana University School of Medicine, Department of Medicine/Division of Clinical Pharmacology1001 West 10th street, OPD W 320, Indianapolis, Indiana, USA
| | - Raymond E Galinsky
- Purdue University School of Pharmacy, Department of Industrial and Physical PharmacyWest Lafayette, Indiana, USA
| | - David A Flockhart
- Indiana University School of Medicine, Department of Medicine/Division of Clinical Pharmacology1001 West 10th street, OPD W 320, Indianapolis, Indiana, USA
| | - Zeruesenay Desta
- Indiana University School of Medicine, Department of Medicine/Division of Clinical Pharmacology1001 West 10th street, OPD W 320, Indianapolis, Indiana, USA
| |
Collapse
|
33
|
Rebbeck TR, Spitz M, Wu X. Assessing the function of genetic variants in candidate gene association studies. Nat Rev Genet 2004; 5:589-97. [PMID: 15266341 DOI: 10.1038/nrg1403] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Timothy R Rebbeck
- Department of Biostatistics and Epidemiology, and Abramson Cancer Center, University of Pennsylvania School of Medicine, 904 Blockley Hall, 423 Guardian Drive, Philadelphia, Pennsylvania 19104, USA.
| | | | | |
Collapse
|
34
|
Smith NF, Figg WD, Sparreboom A. Recent advances in pharmacogenetic approaches to anticancer drug development. Drug Dev Res 2004. [DOI: 10.1002/ddr.10361] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|