1
|
Gomes I, Gupta A, Margolis EB, Fricker LD, Devi LA. Ketamine and Major Ketamine Metabolites Function as Allosteric Modulators of Opioid Receptors. Mol Pharmacol 2024; 106:240-252. [PMID: 39187388 PMCID: PMC11493337 DOI: 10.1124/molpharm.124.000947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/18/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024] Open
Abstract
Ketamine is a glutamate receptor antagonist that was developed over 50 years ago as an anesthetic agent. At subanesthetic doses, ketamine and some metabolites are analgesics and fast-acting antidepressants, presumably through targets other than glutamate receptors. We tested ketamine and its metabolites for activity as allosteric modulators of opioid receptors expressed as recombinant receptors in heterologous systems and with native receptors in rodent brain; signaling was examined by measuring GTP binding, β-arrestin recruitment, MAPK activation, and neurotransmitter release. Although micromolar concentrations of ketamine alone had weak agonist activity at μ opioid receptors, the combination of submicromolar concentrations of ketamine with endogenous opioid peptides produced robust synergistic responses with statistically significant increases in efficacies. All three opioid receptors (μ, δ, and κ) showed synergism with submicromolar concentrations of ketamine and either methionine-enkephalin (Met-enk), leucine-enkephalin (Leu-enk), and/or dynorphin A17 (Dyn A17), albeit the extent of synergy was variable between receptors and peptides. S-ketamine exhibited higher modulatory effects compared with R-ketamine or racemic ketamine, with ∼100% increase in efficacy. Importantly, the ketamine metabolite 6-hydroxynorketamine showed robust allosteric modulatory activity at μ opioid receptors; this metabolite is known to have analgesic and antidepressant activity but does not bind to glutamate receptors. Ketamine enhanced potency and efficacy of Met-enkephalin signaling both in mouse midbrain membranes and in rat ventral tegmental area neurons as determined by electrophysiology recordings in brain slices. Taken together, these findings support the hypothesis that some of the therapeutic effects of ketamine and its metabolites are mediated by directly engaging the endogenous opioid system. SIGNIFICANCE STATEMENT: This study found that ketamine and its major biologically active metabolites function as potent allosteric modulators of μ, δ, and κ opioid receptors, with submicromolar concentrations of these compounds synergizing with endogenous opioid peptides, such as enkephalin and dynorphin. This allosteric activity may contribute to ketamine's therapeutic effectiveness for treating acute and chronic pain and as a fast-acting antidepressant drug.
Collapse
Affiliation(s)
- Ivone Gomes
- Departments of Pharmacological Sciences (I.G., A.G., L.A.D.) and Psychiatry (L.A.D.), and Nash Family Department of Neuroscience (L.A.D.), Icahn School of Medicine at Mount Sinai, New York, New York; UCSF Weill Institute for Neurosciences, Department of Neurology, Neuroscience Graduate Program, University of California, San Francisco, California (E.B.M.); and Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (L.D.F.)
| | - Achla Gupta
- Departments of Pharmacological Sciences (I.G., A.G., L.A.D.) and Psychiatry (L.A.D.), and Nash Family Department of Neuroscience (L.A.D.), Icahn School of Medicine at Mount Sinai, New York, New York; UCSF Weill Institute for Neurosciences, Department of Neurology, Neuroscience Graduate Program, University of California, San Francisco, California (E.B.M.); and Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (L.D.F.)
| | - Elyssa B Margolis
- Departments of Pharmacological Sciences (I.G., A.G., L.A.D.) and Psychiatry (L.A.D.), and Nash Family Department of Neuroscience (L.A.D.), Icahn School of Medicine at Mount Sinai, New York, New York; UCSF Weill Institute for Neurosciences, Department of Neurology, Neuroscience Graduate Program, University of California, San Francisco, California (E.B.M.); and Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (L.D.F.)
| | - Lloyd D Fricker
- Departments of Pharmacological Sciences (I.G., A.G., L.A.D.) and Psychiatry (L.A.D.), and Nash Family Department of Neuroscience (L.A.D.), Icahn School of Medicine at Mount Sinai, New York, New York; UCSF Weill Institute for Neurosciences, Department of Neurology, Neuroscience Graduate Program, University of California, San Francisco, California (E.B.M.); and Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (L.D.F.)
| | - Lakshmi A Devi
- Departments of Pharmacological Sciences (I.G., A.G., L.A.D.) and Psychiatry (L.A.D.), and Nash Family Department of Neuroscience (L.A.D.), Icahn School of Medicine at Mount Sinai, New York, New York; UCSF Weill Institute for Neurosciences, Department of Neurology, Neuroscience Graduate Program, University of California, San Francisco, California (E.B.M.); and Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (L.D.F.)
| |
Collapse
|
2
|
Zhang M, Chen T, Lu X, Lan X, Chen Z, Lu S. G protein-coupled receptors (GPCRs): advances in structures, mechanisms, and drug discovery. Signal Transduct Target Ther 2024; 9:88. [PMID: 38594257 PMCID: PMC11004190 DOI: 10.1038/s41392-024-01803-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/19/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024] Open
Abstract
G protein-coupled receptors (GPCRs), the largest family of human membrane proteins and an important class of drug targets, play a role in maintaining numerous physiological processes. Agonist or antagonist, orthosteric effects or allosteric effects, and biased signaling or balanced signaling, characterize the complexity of GPCR dynamic features. In this study, we first review the structural advancements, activation mechanisms, and functional diversity of GPCRs. We then focus on GPCR drug discovery by revealing the detailed drug-target interactions and the underlying mechanisms of orthosteric drugs approved by the US Food and Drug Administration in the past five years. Particularly, an up-to-date analysis is performed on available GPCR structures complexed with synthetic small-molecule allosteric modulators to elucidate key receptor-ligand interactions and allosteric mechanisms. Finally, we highlight how the widespread GPCR-druggable allosteric sites can guide structure- or mechanism-based drug design and propose prospects of designing bitopic ligands for the future therapeutic potential of targeting this receptor family.
Collapse
Affiliation(s)
- Mingyang Zhang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ting Chen
- Department of Cardiology, Changzheng Hospital, Affiliated to Naval Medical University, Shanghai, 200003, China
| | - Xun Lu
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaobing Lan
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Ziqiang Chen
- Department of Orthopedics, Changhai Hospital, Affiliated to Naval Medical University, Shanghai, 200433, China.
| | - Shaoyong Lu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China.
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
3
|
Zhang YZ, Wang SY, Guo XC, Liu XH, Wang XF, Wang MM, Qiu TT, Han FT, Zhang Y, Wang CL. Novel endomorphin analogues CEMR-1 and CEMR-2 produce potent and long-lasting antinociception with a favourable side effect profile at the spinal level. Br J Pharmacol 2024; 181:1268-1289. [PMID: 37990825 DOI: 10.1111/bph.16287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 10/09/2023] [Accepted: 11/08/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND AND PURPOSE Endomorphins have shown great promise as pharmaceutics for the treatment of pain. We have previously confirmed that novel endomorphin analogues CEMR-1 and CEMR-2 behaved as potent μ agonists and displayed potent antinociceptive activities at the supraspinal and peripheral levels. The present study was undertaken to evaluate the antinociceptive properties of CEMR-1 and CEMR-2 following intrathecal (i.t.) administration. Furthermore, their antinociceptive tolerance and opioid-like side effects were also determined. EXPERIMENTAL APPROACH The spinal antinociceptive effects of CEMR-1 and CEMR-2 were determined in a series of pain models, including acute radiant heat paw withdrawal test, spared nerve injury-induced neuropathic pain, complete Freund's adjuvant-induced inflammatory pain, visceral pain and formalin pain. Antinociceptive tolerance was evaluated in radiant heat paw withdrawal test. KEY RESULTS Spinal administration of CEMR-1 and CEMR-2 produced potent and prolonged antinociceptive effects in acute pain. CEMR-1 and CEMR-2 may produce their antinociception through distinct μ receptor subtypes. These two analogues also exhibited significant analgesic activities in neuropathic, inflammatory, visceral and formalin pain at the spinal level. It is noteworthy that CEMR-1 showed non-tolerance-forming analgesic properties, while CEMR-2 exhibited substantially reduced antinociceptive tolerance. Furthermore, both analogues displayed no or reduced side effects on conditioned place preference response, physical dependence, locomotor activity and gastrointestinal transit. CONCLUSIONS AND IMPLICATIONS The present investigation demonstrated that CEMR-1 and CEMR-2 displayed potent and long-lasting antinociception with a favourable side effect profile at the spinal level. Therefore, CEMR-1 and CEMR-2 might serve as promising analgesic compounds with minimal opioid-like side effects.
Collapse
Affiliation(s)
- Yu-Zhe Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Si-Yu Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xue-Ci Guo
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xiao-Han Liu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | | | - Meng-Meng Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Ting-Ting Qiu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Feng-Tong Han
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yao Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Chang-Lin Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, China
| |
Collapse
|
4
|
Gao L, Zhang Z, Zhu Y, Lu X, Tian Y, Wei L. Effect of pretreatment with a small dose of esketamine on sufentanil-induced cough during anesthesia induction: a randomized controlled trial. BMC Anesthesiol 2024; 24:116. [PMID: 38528479 PMCID: PMC10964693 DOI: 10.1186/s12871-024-02501-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/18/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Sufentanil-induced cough is common during the induction of anesthesia. The objective of this study was to determine whether pretreatment with a small dose of esketamine is effective in treating sufentanil-induced cough. METHODS 220 patients were screened, and 200 patients who had scheduled elective surgery and were between 18 and 70 years old were randomly divided into two groups. Before sufentanil was administered, esketamine group (group K) was injected with 0.15 mg/kg esketamine at 5 s, and control group (group C) was administered with the same volume. Within 1 min after sufentanil(0.4ug/kg) injection during induction, cough incidence and severity were evaluated. After sufentanil was injected, we recorded its hemodynamic changes and side effects. RESULTS In the esketamine group (group K) and control group (group C), there was an incidence of cough of 5 and 34%, respectively. The esketamine group (group K) had a significantly lower incidence and severity of cough compared to the control group (group C) immediately after sufentanil injection (P < 0.05). MAP and HR did not differ significantly between the two groups during three different times of general anesthesia induction (P > 0.05). CONCLUSION In our study, we found that sufentanil-induced cough was significantly reduced by pretreatment with 0.15 mg/kg esketamine, but with no significant changes in the hemodynamic status. TRIAL REGISTRATION Chinese Clinical Trial Registry (ChiCTR2200063821, registered date: 17/09/2022), http://www.chictr.org.cn.
Collapse
Affiliation(s)
- Liangliang Gao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221000, China
| | - Zhuoliang Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221000, China
| | - Yi Zhu
- Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, 215000, China
| | - Xinyu Lu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221000, China
| | - Yue Tian
- Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, 215000, China
| | - Lei Wei
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221000, China.
- Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, 215000, China.
| |
Collapse
|
5
|
Erstad BL, Glenn MJ. Considerations and limitations of buprenorphine prescribing for opioid use disorder in the intensive care unit setting: A narrative review. Am J Health Syst Pharm 2024; 81:171-182. [PMID: 37979138 DOI: 10.1093/ajhp/zxad289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Indexed: 11/19/2023] Open
Abstract
PURPOSE The purpose of this review is to discuss important considerations when prescribing buprenorphine for opioid use disorder (OUD) in the intensive care unit (ICU) setting, recognizing the challenges of providing detailed recommendations in the setting of limited available evidence. SUMMARY Buprenorphine is a partial mu-opioid receptor agonist that is likely to be increasingly prescribed for OUD in the ICU setting due to the relaxation of prescribing regulations. The pharmacology and pharmacokinetics of buprenorphine are complicated by the availability of several formulations that can be given by different administration routes. There is no single optimal dosing strategy for buprenorphine induction, with regimens ranging from very low-dose to high dose regimens. Faster induction with higher doses of buprenorphine has been studied and is frequently utilized in the emergency department. In patients admitted to the ICU who were receiving opioids either medically or illicitly, analgesia will not occur until their baseline opioid requirements are covered when their preadmission opioid is either reversed or interrupted. For patients in the ICU who are not on buprenorphine at the time of admission but have possible OUD, there are no validated tools to diagnose OUD or the severity of opioid withdrawal in critically ill patients unable to provide the subjective components of instruments validated in outpatient settings. When prescribing buprenorphine in the ICU, important issues to consider include dosing, monitoring, pain management, use of adjunctive medications, and considerations to transition to outpatient therapy. Ideally, addiction and pain management specialists would be available when buprenorphine is prescribed for critically ill patients. CONCLUSION There are unique challenges when prescribing buprenorphine for OUD in critically ill patients, regardless of whether they were receiving buprenorphine when admitted to the ICU setting for OUD or are under consideration for buprenorphine initiation. There is a critical need for more research in this area.
Collapse
Affiliation(s)
- Brian L Erstad
- Department of Pharmacy Practice and Science, University of Arizona College of Pharmacy, Tucson, AZ, USA
| | - Melody J Glenn
- Department of Emergency Medicine and Department of Psychiatry, University of Arizona College of Medicine/Banner University Medical Center, Tucson, AZ, USA
| |
Collapse
|
6
|
He Y, Su Q, Zhao L, Zhang L, Yu L, Shi J. Historical perspectives and recent advances in small molecule ligands of selective/biased/multi-targeted μ/δ/κ opioid receptor (2019-2022). Bioorg Chem 2023; 141:106869. [PMID: 37797454 DOI: 10.1016/j.bioorg.2023.106869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 10/07/2023]
Abstract
The opioids have been used for more than a thousand years and are not only the most widely prescribed drugs for moderate to severe pain and acute pain, but also the preferred drugs. However, their non-analgesic effects, especially respiratory depression and potential addiction, are important factors that plague the safety of clinical use and are an urgent problem for pharmacological researchers to address. Current research on analgesic drugs has evolved into different directions: de-opioidization; application of pharmacogenomics to individualize the use of opioids; development of new opioids with less adverse effects. The development of new opioid drugs remains a hot research topic, and with the in-depth study of opioid receptors and intracellular signal transduction mechanisms, new research ideas have been provided for the development of new opioid analgesics with less side effects and stronger analgesic effects. The development of novel opioid drugs in turn includes selective opioid receptor ligands, biased opioid receptor ligands, and multi-target opioid receptor ligands and positive allosteric modulators (PAMs) or antagonists and the single compound as multi-targeted agnoists/antagonists for different receptors. PAMs strategies are also getting newer and are the current research hotspots, including the BMS series of compounds and others, which are extensive and beyond the scope of this review. This review mainly focuses on the selective/biased/multi-targeted MOR/DOR/KOR (mu opioid receptor/delta opioid receptor/kappa opioid receptor) small molecule ligands and involves some cryo-electron microscopy (cryoEM) and structure-based approaches as well as the single compound as multi-targeted agnoists/antagonists for different receptors from 2019 to 2022, including discovery history, activities in vitro and vivo, and clinical studies, in an attempt to provide ideas for the development of novel opioid analgesics with fewer side effects.
Collapse
Affiliation(s)
- Ye He
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Qian Su
- Department of Health Management & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Liyun Zhao
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Lijuan Zhang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Lu Yu
- Department of Respiratory Medicine, Sichuan Academy of Medical Sciences and Sichuan provincial People's Hospital, Chengdu, 610072, China.
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| |
Collapse
|
7
|
Grudzien P, Neufeld H, Ebe Eyenga M, Gaponenko V. Development of tolerance to chemokine receptor antagonists: current paradigms and the need for further investigation. Front Immunol 2023; 14:1184014. [PMID: 37575219 PMCID: PMC10420067 DOI: 10.3389/fimmu.2023.1184014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/27/2023] [Indexed: 08/15/2023] Open
Abstract
Chemokine G-protein coupled receptors are validated drug targets for many diseases, including cancer, neurological, and inflammatory disorders. Despite much time and effort spent on therapeutic development, very few chemokine receptor antagonists are approved for clinical use. Among potential reasons for the slow progress in developing chemokine receptor inhibitors, antagonist tolerance, a progressive reduction in drug efficacy after repeated administration, is likely to play a key role. The mechanisms leading to antagonist tolerance remain poorly understood. In many cases, antagonist tolerance is accompanied by increased receptor concentration on the cell surface after prolonged exposure to chemokine receptor antagonists. This points to a possible role of altered receptor internalization and presentation on the cell surface, as has been shown for agonist (primarily opioid) tolerance. In addition, examples of antagonist tolerance in the context of other G-protein coupled receptors suggest the involvement of noncanonical signal transduction in opposing the effects of the antagonists. In this review, we summarize the available progress and challenges in therapeutic development of chemokine receptor antagonists, describe the available knowledge about antagonist tolerance, and propose new avenues for future investigation of this important phenomenon. Furthermore, we highlight the modern methodologies that have the potential to reveal novel mechanisms leading to antagonist tolerance and to propel the field forward by advancing the development of potent "tolerance-free" antagonists of chemokine receptors.
Collapse
Affiliation(s)
| | | | | | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
8
|
Fouillen A, Bous J, Granier S, Mouillac B, Sounier R. Bringing GPCR Structural Biology to Medical Applications: Insights from Both V2 Vasopressin and Mu-Opioid Receptors. MEMBRANES 2023; 13:606. [PMID: 37367810 PMCID: PMC10303988 DOI: 10.3390/membranes13060606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/05/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023]
Abstract
G-protein coupled receptors (GPCRs) are versatile signaling proteins that regulate key physiological processes in response to a wide variety of extracellular stimuli. The last decade has seen a revolution in the structural biology of clinically important GPCRs. Indeed, the improvement in molecular and biochemical methods to study GPCRs and their transducer complexes, together with advances in cryo-electron microscopy, NMR development, and progress in molecular dynamic simulations, have led to a better understanding of their regulation by ligands of different efficacy and bias. This has also renewed a great interest in GPCR drug discovery, such as finding biased ligands that can either promote or not promote specific regulations. In this review, we focus on two therapeutically relevant GPCR targets, the V2 vasopressin receptor (V2R) and the mu-opioid receptor (µOR), to shed light on the recent structural biology studies and show the impact of this integrative approach on the determination of new potential clinical effective compounds.
Collapse
Affiliation(s)
- Aurélien Fouillen
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, 34000 Montpellier, France; (A.F.); (S.G.); (B.M.)
- Centre de Biochimie Structurale (CBS), Université de Montpellier, CNRS, INSERM, 34090 Montpellier, France
| | - Julien Bous
- Section of Receptor Biology & Signaling, Department of Physiology & Pharmacology, Karolinska Institutet, 17165 Stockholm, Sweden;
| | - Sébastien Granier
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, 34000 Montpellier, France; (A.F.); (S.G.); (B.M.)
| | - Bernard Mouillac
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, 34000 Montpellier, France; (A.F.); (S.G.); (B.M.)
| | - Remy Sounier
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, 34000 Montpellier, France; (A.F.); (S.G.); (B.M.)
| |
Collapse
|
9
|
Eseadi C, Ngwu MO. Significance of music therapy in treating depression and anxiety disorders among people with cancer. World J Clin Oncol 2023; 14:69-80. [PMID: 36908676 PMCID: PMC9993142 DOI: 10.5306/wjco.v14.i2.69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/16/2023] [Accepted: 02/07/2023] [Indexed: 02/21/2023] Open
Abstract
Globally, cancer cases and mortality have recently escalated and have attracted global concern. The clinical diagnosis and manifestation of cancer can result in significant mental health issues like depression and anxiety disorders. The tendency of people with cancer to suffer from psychological disorders such as anxiety and depression is usually high. A significant number of deaths related to cancer may likely not be from the killer disease but from psychological disorders associated with the illness. The utilization of music as a remedial approach to healing mental disorders cannot be overstated. Thus, identifying the impacts of music therapy in dealing with depression and anxiety disorders among people with cancer is relevant, as the majority of methods used in treating cancer have some side effects which may trigger psychological disorders in cancer patients. Ultimately, this study explored the significance of music therapy in treating depression and anxiety disorders among people with cancer. To achieve the aim of this study, the authors employed a narrative literature review to investigate the significance of music therapy in addressing depression and anxiety disorders among people with cancer. The type of literature review employed in this study is to provide an understanding of the selected research papers. The review found that music therapy significantly reduces depression and anxiety disorders among breast cancer, lung cancer, prostate cancer, and colorectal cancer patients. It is needful for healthcare providers to incorporate music therapy interventions while treating people with cancer. This will help reduce cancer deaths resulting from psychological disorders rather than the killer disease, cancer. However, the standardized procedures and evaluation criteria for applying music-based intervention strategies in oncology medicine still need to be further established and improved.
Collapse
Affiliation(s)
- Chiedu Eseadi
- Department of Educational Psychology, University of Johannesburg, Gauteng 2006, South Africa
| | - Millicent O Ngwu
- Department of Sociology and Anthropology, University of Nigeria, Nsukka 41001, Enugu, Nigeria
| |
Collapse
|
10
|
Hou Y, Zou G, Wang X, Guo H, Ma X, Cheng X, Xie Z, Zuo X, Xia J, Mao H, Yuan M, Chen Q, Cao P, Yang Y, Zhang L, Xiong W. Coordinated activity of a central pathway drives associative opioid analgesic tolerance. SCIENCE ADVANCES 2023; 9:eabo5627. [PMID: 36753548 PMCID: PMC9908028 DOI: 10.1126/sciadv.abo5627] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Opioid analgesic tolerance, a root cause of opioid overdose and misuse, can develop through an associative learning. Despite intensive research, the locus and central pathway subserving the associative opioid analgesic tolerance (AOAT) remains unclear. Using a combination of chemo/optogenetic manipulation with calcium imaging and slice physiology, here we identify neuronal ensembles in a hierarchically organized pathway essential for AOAT. The association of morphine-induced analgesia with an environmental condition drives glutamatergic signaling from ventral hippocampus (vHPC) to dorsomedial prefrontal cortex (dmPFC) cholecystokininergic (CCKergic) neurons. Excitation of CCKergic neurons, which project and release CCK to basolateral amygdala (BLA) glutamatergic neurons, relays AOAT signal through inhibition of BLA μ-opioid receptor function, thereby leading to further loss of morphine analgesic efficacy. This work provides evidence for a circuit across different brain regions distinct for opioid analgesic tolerance. The components of this pathway are potential targets to treat opioid overdose and abuse.
Collapse
Affiliation(s)
- Yiwen Hou
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Guichang Zou
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China
| | - Xianglian Wang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Hui Guo
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Xiao Ma
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Xingyu Cheng
- National Institute of Biological Sciences, Beijing 102206, China
| | - Zhiyong Xie
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xin Zuo
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Jing Xia
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Huanhuan Mao
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Man Yuan
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Qi Chen
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Peng Cao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yupeng Yang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Li Zhang
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Xiong
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China
- Anhui Province Key Laboratory of Biomedical Aging Research, Hefei 230026, China
| |
Collapse
|
11
|
Kelly E, Conibear A, Henderson G. Biased Agonism: Lessons from Studies of Opioid Receptor Agonists. Annu Rev Pharmacol Toxicol 2023; 63:491-515. [PMID: 36170657 DOI: 10.1146/annurev-pharmtox-052120-091058] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In ligand bias different agonist drugs are thought to produce distinct signaling outputs when activating the same receptor. If these signaling outputs mediate therapeutic versus adverse drug effects, then agonists that selectively activate the therapeutic signaling pathway would be extremely beneficial. It has long been thought that μ-opioid receptor agonists that selectively activate G protein- over β-arrestin-dependent signaling pathways would produce effective analgesia without the adverse effects such as respiratory depression. However, more recent data indicate that most of the therapeutic and adverse effects of agonist-induced activation of the μ-opioid receptor are actually mediated by the G protein-dependent signaling pathway, and that a number of drugs described as G protein biased in fact may not be biased, but instead may be low-intrinsic-efficacy agonists. In this review we discuss the current state of the field of bias at the μ-opioid receptor and other opioid receptor subtypes.
Collapse
Affiliation(s)
- Eamonn Kelly
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom;
| | - Alexandra Conibear
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom;
| | - Graeme Henderson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom;
| |
Collapse
|
12
|
Röderer P, Belu A, Heidrich L, Siobal M, Isensee J, Prolingheuer J, Janocha E, Valdor M, Hagendorf S, Bahrenberg G, Opitz T, Segschneider M, Haupt S, Nitzsche A, Brüstle O, Hucho T. Emergence of nociceptive functionality and opioid signaling in human induced pluripotent stem cell-derived sensory neurons. Pain 2023:00006396-990000000-00249. [PMID: 36727909 DOI: 10.1097/j.pain.0000000000002860] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/15/2022] [Indexed: 02/03/2023]
Abstract
ABSTRACT Induced pluripotent stem cells (iPSCs) have enabled the generation of various difficult-to-access cell types such as human nociceptors. A key challenge associated with human iPSC-derived nociceptors (hiPSCdNs) is their prolonged functional maturation. While numerous studies have addressed the expression of classic neuronal markers and ion channels in hiPSCdNs, the temporal development of key signaling cascades regulating nociceptor activity has remained largely unexplored. In this study, we used an immunocytochemical high-content imaging approach alongside electrophysiological staging to assess metabotropic and ionotropic signaling of large scale-generated hiPSCdNs across 70 days of in vitro differentiation. During this period, the resting membrane potential became more hyperpolarized, while rheobase, action potential peak amplitude, and membrane capacitance increased. After 70 days, hiPSCdNs exhibited robust physiological responses induced by GABA, pH shift, ATP, and capsaicin. Direct activation of protein kinase A type II (PKA-II) through adenylyl cyclase stimulation with forskolin resulted in PKA-II activation at all time points. Depolarization-induced activation of PKA-II emerged after 35 days of differentiation. However, effective inhibition of forskolin-induced PKA-II activation by opioid receptor agonists required 70 days of in vitro differentiation. Our results identify a pronounced time difference between early expression of functionally important ion channels and emergence of regulatory metabotropic sensitizing and desensitizing signaling only at advanced stages of in vitro cultivation, suggesting an independent regulation of ionotropic and metabotropic signaling. These data are relevant for devising future studies into the development and regulation of human nociceptor function and for defining time windows suitable for hiPSCdN-based drug discovery.
Collapse
Affiliation(s)
- Pascal Röderer
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Bonn
- LIFE & BRAIN GmbH, Cellomics Unit, Bonn, Germany, Germany
| | - Andreea Belu
- Translational Pain Research, Department of Anaesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Luzia Heidrich
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Bonn
- LIFE & BRAIN GmbH, Cellomics Unit, Bonn, Germany, Germany
| | - Maike Siobal
- Translational Pain Research, Department of Anaesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jörg Isensee
- Translational Pain Research, Department of Anaesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jonathan Prolingheuer
- Translational Pain Research, Department of Anaesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | | | | | | | | | - Thoralf Opitz
- Institute of Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany
| | - Michaela Segschneider
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Bonn
| | - Simone Haupt
- LIFE & BRAIN GmbH, Cellomics Unit, Bonn, Germany, Germany
| | - Anja Nitzsche
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Bonn
- LIFE & BRAIN GmbH, Cellomics Unit, Bonn, Germany, Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn, Bonn
- LIFE & BRAIN GmbH, Cellomics Unit, Bonn, Germany, Germany
| | - Tim Hucho
- Translational Pain Research, Department of Anaesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
13
|
Shiraki A, Shimizu S. The molecular associations in clathrin-coated pit regulate β-arrestin-mediated MAPK signaling downstream of μ-opioid receptor. Biochem Biophys Res Commun 2023; 640:64-72. [PMID: 36502633 DOI: 10.1016/j.bbrc.2022.11.098] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
It has been thought that μ-opioid receptors (MOPs) activate the G protein-mediated analgesic pathway and β-arrestin 2-mediated side effect pathway; however, ligands that only minimally recruit β-arrestin 2 to MOPs may also cause opioid side effects. Moreover, such side effects have been induced in mutant mice lacking β-arrestin 2 or expressing phosphorylation-deficient MOPs that do not recruit β-arrestin 2. These findings raise the critical question of whether β-arrestin 2 recruitment to MOP triggers side effects. Here, we show that β-arrestin 1 and 2 are essential in the efficient activation of the Gi/o-mediated MAPK signaling at MOP. Moreover, the magnitude of β-arrestin-mediated signals is not correlated with the magnitude of phosphorylation of the carboxyl-terminal of MOP, which is used to evaluate the β-arrestin bias of a ligand. Instead, the molecular association with β2-adaptin and clathrin heavy chain in the formation of clathrin-coated pits is essential for β-arrestin to activate MAPK signaling. Our findings provide insights into G protein-coupled receptor-mediated signaling and further highlight a concept that the accumulation of molecules required for endocytosis is critical for activating intracellular signaling.
Collapse
Affiliation(s)
- Atsuko Shiraki
- Department of Anesthesia, Kyoto University Hospital, Kyoto City, Japan
| | - Satoshi Shimizu
- Department of Anesthesia, Kyoto University Hospital, Kyoto City, Japan.
| |
Collapse
|
14
|
Gamble MC, Williams BR, Singh N, Posa L, Freyberg Z, Logan RW, Puig S. Mu-opioid receptor and receptor tyrosine kinase crosstalk: Implications in mechanisms of opioid tolerance, reduced analgesia to neuropathic pain, dependence, and reward. Front Syst Neurosci 2022; 16:1059089. [PMID: 36532632 PMCID: PMC9751598 DOI: 10.3389/fnsys.2022.1059089] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/31/2022] [Indexed: 07/30/2023] Open
Abstract
Despite the prevalence of opioid misuse, opioids remain the frontline treatment regimen for severe pain. However, opioid safety is hampered by side-effects such as analgesic tolerance, reduced analgesia to neuropathic pain, physical dependence, or reward. These side effects promote development of opioid use disorders and ultimately cause overdose deaths due to opioid-induced respiratory depression. The intertwined nature of signaling via μ-opioid receptors (MOR), the primary target of prescription opioids, with signaling pathways responsible for opioid side-effects presents important challenges. Therefore, a critical objective is to uncouple cellular and molecular mechanisms that selectively modulate analgesia from those that mediate side-effects. One such mechanism could be the transactivation of receptor tyrosine kinases (RTKs) via MOR. Notably, MOR-mediated side-effects can be uncoupled from analgesia signaling via targeting RTK family receptors, highlighting physiological relevance of MOR-RTKs crosstalk. This review focuses on the current state of knowledge surrounding the basic pharmacology of RTKs and bidirectional regulation of MOR signaling, as well as how MOR-RTK signaling may modulate undesirable effects of chronic opioid use, including opioid analgesic tolerance, reduced analgesia to neuropathic pain, physical dependence, and reward. Further research is needed to better understand RTK-MOR transactivation signaling pathways, and to determine if RTKs are a plausible therapeutic target for mitigating opioid side effects.
Collapse
Affiliation(s)
- Mackenzie C. Gamble
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Molecular and Translational Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Benjamin R. Williams
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Navsharan Singh
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Luca Posa
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Ryan W. Logan
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
| | - Stephanie Puig
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
15
|
Evaluation of the Intracellular Signaling Activities of κ-Opioid Receptor Agonists, Nalfurafine Analogs; Focusing on the Selectivity of G-Protein- and β-Arrestin-Mediated Pathways. Molecules 2022; 27:molecules27207065. [PMID: 36296658 PMCID: PMC9611050 DOI: 10.3390/molecules27207065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 12/30/2022] Open
Abstract
Opioid receptors (ORs) are classified into three types (μ, δ, and κ), and opioid analgesics are mainly mediated by μOR activation; however, their use is sometimes restricted by unfavorable effects. The selective κOR agonist nalfurafine was initially developed as an analgesic, but its indication was changed because of the narrow safety margin. The activation of ORs mainly induces two intracellular signaling pathways: a G-protein-mediated pathway and a β-arrestin-mediated pathway. Recently, the expectations for κOR analgesics that selectively activate these pathways have increased; however, the structural properties required for the selectivity of nalfurafine are still unknown. Therefore, we evaluated the partial structures of nalfurafine that are necessary for the selectivity of these two pathways. We assayed the properties of nalfurafine and six nalfurafine analogs (SYKs) using cells stably expressing κORs. The SYKs activated κORs in a concentration-dependent manner with higher EC50 values than nalfurafine. Upon bias factor assessment, only SYK-309 (possessing the 3S-hydroxy group) showed higher selectivity of G-protein-mediated signaling activities than nalfurafine, suggesting the direction of the 3S-hydroxy group may affect the β-arrestin-mediated pathway. In conclusion, nalfurafine analogs having a 3S-hydroxy group, such as SYK-309, could be considered G-protein-biased κOR agonists.
Collapse
|
16
|
Higginbotham JA, Markovic T, Massaly N, Morón JA. Endogenous opioid systems alterations in pain and opioid use disorder. Front Syst Neurosci 2022; 16:1014768. [PMID: 36341476 PMCID: PMC9628214 DOI: 10.3389/fnsys.2022.1014768] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022] Open
Abstract
Decades of research advances have established a central role for endogenous opioid systems in regulating reward processing, mood, motivation, learning and memory, gastrointestinal function, and pain relief. Endogenous opioid systems are present ubiquitously throughout the central and peripheral nervous system. They are composed of four families, namely the μ (MOPR), κ (KOPR), δ (DOPR), and nociceptin/orphanin FQ (NOPR) opioid receptors systems. These receptors signal through the action of their endogenous opioid peptides β-endorphins, dynorphins, enkephalins, and nociceptins, respectfully, to maintain homeostasis under normal physiological states. Due to their prominent role in pain regulation, exogenous opioids-primarily targeting the MOPR, have been historically used in medicine as analgesics, but their ability to produce euphoric effects also present high risks for abuse. The ability of pain and opioid use to perturb endogenous opioid system function, particularly within the central nervous system, may increase the likelihood of developing opioid use disorder (OUD). Today, the opioid crisis represents a major social, economic, and public health concern. In this review, we summarize the current state of the literature on the function, expression, pharmacology, and regulation of endogenous opioid systems in pain. Additionally, we discuss the adaptations in the endogenous opioid systems upon use of exogenous opioids which contribute to the development of OUD. Finally, we describe the intricate relationship between pain, endogenous opioid systems, and the proclivity for opioid misuse, as well as potential advances in generating safer and more efficient pain therapies.
Collapse
Affiliation(s)
- Jessica A. Higginbotham
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States
- Pain Center, Washington University in St. Louis, St. Louis, MO, United States
- School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Tamara Markovic
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nicolas Massaly
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States
- Pain Center, Washington University in St. Louis, St. Louis, MO, United States
- School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Jose A. Morón
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States
- Pain Center, Washington University in St. Louis, St. Louis, MO, United States
- School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, United States
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
17
|
Borowiecki P. Chemoenzymatic Synthesis of Optically Active Ethereal Analog of iso-Moramide-A Novel Potentially Powerful Analgesic †. Int J Mol Sci 2022; 23:ijms231911803. [PMID: 36233106 PMCID: PMC9569485 DOI: 10.3390/ijms231911803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
To develop potent and safer analgesics, we designed and synthesized a novel enantiomerically enriched ethereal analog of (R)-iso-moramide, namely 2-[(2R)-2-(morpholin-4-yl)propoxy]-2,2-diphenyl-1-(pyrrolidin-1-yl)ethan-1-one. The titled active agent can potentially serve as a powerful synthetic opiate with an improved affinity and selectivity toward opioid receptors (ORs). This hypothesis was postulated based on docking studies regarding the respective complexes between the designed ligand and µ-OR, δ-OR, and κ-OR. The key step of the elaborated asymmetric synthesis of novel analog involves lipase-catalyzed kinetic resolution of racemic 1-(morpholin-4-yl)propan-2-ol, which was accomplished on a 10 g scale via an enantioselective transesterification employing vinyl acetate as an irreversible acyl donor in tert-butyl methyl ether (MTBE) as the co-solvent. Next, the obtained homochiral (S)-(+)-morpholino-alcohol (>99% ee) was functionalized into corresponding chloro-derivative using thionyl chloride (SOCl2) or the Appel reaction conditions. Further transformation with N-diphenylacetyl-1-pyrrolidine under phase-transfer catalysis (PTC) conditions using O2-saturated DMSO/NaOH mixture as an oxidant furnished the desired levorotatory isomer of the title product isolated in 26% total yield after three steps, and with 89% ee. The absolute configuration of the key-intermediate of (R)-(−)-iso-moramide was determined using a modified form of Mosher’s methodology. The preparation of the optically active dextrorotatory isomer of the titled product (87% ee) was carried out essentially by the same route, utilizing (R)-(−)-1-(morpholin-4-yl)propan-2-ol (98% ee) as a key intermediate. The spectroscopic characterization of the ethereal analog of iso-moramide and the enantioselective retention relationship of its enantiomers using HPLC on the cellulose-based chiral stationary phase were performed. Moreover, as a proof-of-principle, single-crystal X-ray diffraction (XRD) analysis of the synthesized 2-[(2R)-2-(morpholin-4-yl)propoxy]-2,2-diphenyl-1-(pyrrolidin-1-yl)ethan-1-one is reported.
Collapse
Affiliation(s)
- Paweł Borowiecki
- Laboratory of Biocatalysis and Biotransformation, Department of Drugs Technology and Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Koszykowa St. 75, 00-662 Warsaw, Poland
| |
Collapse
|
18
|
Sepulveda DE, Morris DP, Raup-Konsavage WM, Sun D, Vrana KE, Graziane NM. Evaluating the Antinociceptive Efficacy of Cannabidiol Alone or in Combination with Morphine Using the Formalin Test in Male and Female Mice. Cannabis Cannabinoid Res 2022; 7:648-657. [PMID: 34846928 PMCID: PMC9587782 DOI: 10.1089/can.2021.0108] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Introduction: Phytocannabinoids have emerged as a potential alternative treatment option for individuals experiencing persistent pain. However, evidence-based research regarding their clinical utility in both males and females remains incomplete. In addition, it is unknown whether combining readily available cannabinoids with opioids has a synergistic or subadditive effect on pain modulation. To begin to fill this knowledge gap, we investigated the antinociceptive effects of the phytocannabinoid, CBD, either alone or in combination with opioids in male and female C57BL/6J mice. Results: Using the formalin test, our results show that CBD (10 mg/kg, i.p.) treatment evoked antinociception in phase I, but not in phase II, of the formalin test in male mice. However, in female mice, CBD showed no significant antinociceptive effect. In addition, a direct sex comparison showed that CBD evoked a significant increase in nociceptive behaviors in female versus male mice during phase I of the formalin test. Furthermore, we show that CBD (10 mg/kg, i.p.) in combination with low-dose morphine (1 mg/kg, i.p.) was ineffective at eliciting a synergistic antinociceptive response in both male and female mice. Lastly, consistent with previous literature, we showed that females treated with a relatively higher dose of morphine (10 mg/kg, i.p.) displayed a significant increase in the variability of nociceptive behaviors compared to morphine-treated male mice. Conclusion: Overall, our results suggest that CBD treatment may have beneficial antinociceptive effects during the acute phase of persistent pain, but these effects are more beneficial to males than females. We provide further pre-clinical support that treatments geared toward reducing nociceptive behaviors differentially affect males and females.
Collapse
Affiliation(s)
- Diana E. Sepulveda
- Department of Pharmacology, Penn State University College of Medicine, Hershey, Pennsylvania, USA
- Department of Department of Anesthesiology and Perioperative Medicine, Penn State University College of Medicine, Hershey, Pennsylvania, USA
| | | | - Wesley M. Raup-Konsavage
- Department of Pharmacology, Penn State University College of Medicine, Hershey, Pennsylvania, USA
| | - Dongxiao Sun
- Department of Pharmacology, Penn State University College of Medicine, Hershey, Pennsylvania, USA
| | - Kent E. Vrana
- Department of Pharmacology, Penn State University College of Medicine, Hershey, Pennsylvania, USA
| | - Nicholas M. Graziane
- Department of Pharmacology, Penn State University College of Medicine, Hershey, Pennsylvania, USA
- Department of Department of Anesthesiology and Perioperative Medicine, Penn State University College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
19
|
Tian X, Zhang J, Wang S, Gao H, Sun Y, Liu X, Fu W, Tan B, Su R. Tyrosine 7.43 is important for mu-opioid receptor downstream signaling pathways activated by fentanyl. Front Pharmacol 2022; 13:919325. [PMID: 36120357 PMCID: PMC9478952 DOI: 10.3389/fphar.2022.919325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
G protein–coupled receptors can signal through both G proteins and ß-arrestin2. For the µ-opioid receptor (MOR), early experimental evidence from a single study suggested that G protein signaling mediates analgesia and sedation, whereas ß-arrestin signaling mediates respiratory depression and constipation. Then, receptor mutations were used to clarify which residues interact with ligands to selectively regulate signals in a ligand-specific manner. However, there is no systematic study on how to determine these residues and clarify the molecular mechanism of their influence on signal pathways. We have therefore used molecular docking to predict the amino acid sites that affect the binding of ligands and MOR. Then, the corresponding sites were mutated to determine the effect of the structural determinant of MOR on Gi/o protein and ß-arrestin pathways. The pharmacological and animal behavioral experiments in combination with molecular dynamics simulations were used to elucidate the molecular mechanism of key residues governing the signaling. Without affecting ligand binding to MOR, MORY7.43A attenuated the activation of both Gi/o protein and ß-arrestin signaling pathways stimulated by fentanyl, whereas it did not change these two pathways stimulated by morphine. Likewise, the activation peak time of extracellular regulated protein kinases was significantly prolonged at MORY7.43A compared with that at MORwildtype stimulated by fentanyl, but there was no difference stimulated by morphine. In addition, MORY7.43A significantly enhanced analgesia by fentanyl but not by morphine in the mice behavioral experiment. Furthermore, the molecular dynamics simulations showed that H6 moves toward the cellular membrane. H6 of the fentanyl–Y7.43A system moved outward more than that in the morphine–Y7.43A system. Y7.43 mutation disrupted hydrophobic interactions between W6.48 and Y7.43 in the fentanyl–Y7.43A system but not in the morphine–Y7.43A system. Our results have disclosed novel mechanisms of Y7.43 mutation affecting MOR signaling pathways. Y7.43 mutation reduced the activation of the Gi/o protein pathway and blocked the ß-arrestin2 recruitment, increased the H6 outward movement of MOR, and disrupted hydrophobic interactions. This may be responsible for the enhanced fentanyl analgesia. These findings are conducive to designing new drugs from the perspective of ligand and receptor binding, and Y7.43 is also expected to be a key site to structure optimization of synthesized compounds.
Collapse
Affiliation(s)
- Xiangyun Tian
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Junjie Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Shaowen Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Huan Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- School of Pharmacy, Yantai University, Yantai, China
| | - Yi Sun
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xiaoqian Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Wei Fu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Bo Tan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- *Correspondence: Bo Tan, , ; Ruibin Su, ,
| | - Ruibin Su
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- *Correspondence: Bo Tan, , ; Ruibin Su, ,
| |
Collapse
|
20
|
Puig S, Shelton MA, Barko K, Seney ML, Logan RW. Sex-specific role of the circadian transcription factor NPAS2 in opioid tolerance, withdrawal and analgesia. GENES, BRAIN, AND BEHAVIOR 2022; 21:e12829. [PMID: 36053258 PMCID: PMC9744556 DOI: 10.1111/gbb.12829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 02/05/2023]
Abstract
Opioids like fentanyl remain the mainstay treatment for chronic pain. Unfortunately, opioid's high dependence liability has led to the current opioid crisis, in part, because of side-effects that develop during long-term use, including analgesic tolerance and physical dependence. Both tolerance and dependence to opioids may lead to escalation of required doses to achieve previous therapeutic efficacy. Additionally, altered sleep and circadian rhythms are common in people on opioid therapy. Opioids impact sleep and circadian rhythms, while disruptions to sleep and circadian rhythms likely mediate the effects of opioids. However, the mechanisms underlying these bidirectional relationships between circadian rhythms and opioids remain largely unknown. The circadian protein, neuronal PAS domain protein 2 (NPAS2), regulates circadian-dependent gene transcription in structure of the central nervous system that modulate opioids and pain. Here, male and female wild-type and NPAS2-deficient (NPAS2-/-) mice were used to investigate the role of NPAS2 in fentanyl analgesia, tolerance, hyperalgesia and physical dependence. Overall, thermal pain thresholds, acute analgesia and tolerance to a fixed dose of fentanyl were largely similar between wild-type and NPAS2-/- mice. However, female NPAS2-/- exhibited augmented analgesic tolerance and significantly more behavioral symptoms of physical dependence to fentanyl. Only male NPAS2-/- mice had increased fentanyl-induced hypersensitivity, when compared with wild-type males. Together, our findings suggest sex-specific effects of NPAS2 signaling in the regulation of fentanyl-induced tolerance, hyperalgesia and dependence.
Collapse
Affiliation(s)
- Stephanie Puig
- Department of Pharmacology and Experimental TherapeuticsBoston University School of MedicineBostonMassachusettsUSA
- Translational Neuroscience Program, Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Micah A. Shelton
- Translational Neuroscience Program, Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Kelly Barko
- Translational Neuroscience Program, Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Marianne L. Seney
- Translational Neuroscience Program, Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Ryan W. Logan
- Department of Pharmacology and Experimental TherapeuticsBoston University School of MedicineBostonMassachusettsUSA
- Translational Neuroscience Program, Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Center for Systems NeuroscienceBoston UniversityBostonMassachusettsUSA
| |
Collapse
|
21
|
Quintana GR, Mac Cionnaith CE, Pfaus JG. Behavioral, Neural, and Molecular Mechanisms of Conditioned Mate Preference: The Role of Opioids and First Experiences of Sexual Reward. Int J Mol Sci 2022; 23:8928. [PMID: 36012194 PMCID: PMC9409009 DOI: 10.3390/ijms23168928] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 12/20/2022] Open
Abstract
Although mechanisms of mate preference are thought to be relatively hard-wired, experience with appetitive and consummatory sexual reward has been shown to condition preferences for partner related cues and even objects that predict sexual reward. Here, we reviewed evidence from laboratory species and humans on sexually conditioned place, partner, and ejaculatory preferences in males and females, as well as the neurochemical, molecular, and epigenetic mechanisms putatively responsible. From a comprehensive review of the available data, we concluded that opioid transmission at μ opioid receptors forms the basis of sexual pleasure and reward, which then sensitizes dopamine, oxytocin, and vasopressin systems responsible for attention, arousal, and bonding, leading to cortical activation that creates awareness of attraction and desire. First experiences with sexual reward states follow a pattern of sexual imprinting, during which partner- and/or object-related cues become crystallized by conditioning into idiosyncratic "types" that are found sexually attractive and arousing. These mechanisms tie reward and reproduction together, blending proximate and ultimate causality in the maintenance of variability within a species.
Collapse
Affiliation(s)
- Gonzalo R. Quintana
- Departamento de Psicología y Filosofía, Facultad de Ciencias Sociales y Jurídicas, Universidad de Tarapacá, Arica 1000007, Chile
| | - Conall E. Mac Cionnaith
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montreal, QC H4B1R6, Canada
| | - James G. Pfaus
- Department of Psychology and Life Sciences, Faculty of Humanities, Charles University, 182 00 Prague, Czech Republic
- Division of Sexual Neuroscience, Center for Sexual Health and Intervention, Czech National Institute of Mental Health, 250 67 Klecany, Czech Republic
| |
Collapse
|
22
|
Paul B, Sribhashyam S, Majumdar S. Opioid signaling and design of analgesics. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 195:153-176. [PMID: 36707153 PMCID: PMC10325139 DOI: 10.1016/bs.pmbts.2022.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Clinical treatment of acute to severe pain relies on the use of opioids. While their potency is significant, there are considerable side effects that can negatively affect patients. Their rise in usage has correlated with the current opioid epidemic in the United States, which has led to more than 70,000 deaths per year (Volkow and Blanco, 2021). Opioid-related drug development aims to make target compounds that show strong potency but with diminished side effects. Research into pharmaceuticals that could act as potential alternatives to current pains medications has relied on mechanistic insights of opioid receptors, a class of G-protein coupled receptors (GPCRs), and biased agonism, a common phenomenon among pharmaceutical compounds where downstream effects can be altered at the same receptor via different agonists. Opioids function typically by binding to an active site on the extracellular portion of opioid receptors. Once activated, the opioid receptor initiates a G-protein signaling pathway and/or the β-arrestin2 pathway. The proposed concept for the development of safe analgesics around mu and kappa opioid receptor subtypes has focused on not recruiting β-arrestin2 (biased agonism) and/or having low efficacy at the receptor (partial agonism). By altering chemical motifs on a common scaffold, chemists can take advantage of biased agonism as well as create compounds with low intrinsic efficacy for the desired treatments. This review will focus on ligands with bias profile, signaling aspects of the receptor and probe into the structural basis of receptor that leads to bias and/or partial agonism.
Collapse
Affiliation(s)
- Barnali Paul
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St Louis and Washington University School of Medicine, St Louis, MO, United States
| | - Sashrik Sribhashyam
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St Louis and Washington University School of Medicine, St Louis, MO, United States
| | - Susruta Majumdar
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St Louis and Washington University School of Medicine, St Louis, MO, United States.
| |
Collapse
|
23
|
Giacoletti G, Price T, Hoelz LVB, Shremo Msdi A, Cossin S, Vazquez-Falto K, Amorim Fernandes TV, Santos de Pontes V, Wang H, Boechat N, Nornoo A, Brust TF. A Selective Adenylyl Cyclase 1 Inhibitor Relieves Pain Without Causing Tolerance. Front Pharmacol 2022; 13:935588. [PMID: 35899113 PMCID: PMC9310748 DOI: 10.3389/fphar.2022.935588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Among the ten different adenylyl cyclase isoforms, studies with knockout animals indicate that inhibition of AC1 can relieve pain and reduce behaviors linked to opioid dependence. We previously identified ST034307 as a selective inhibitor of AC1. The development of an AC1-selective inhibitor now provides the opportunity to further study the therapeutic potential of inhibiting this protein in pre-clinical animal models of pain and related adverse reactions. In the present study we have shown that ST034307 relives pain in mouse models of formalin-induced inflammatory pain, acid-induced visceral pain, and acid-depressed nesting. In addition, ST034307 did not cause analgesic tolerance after chronic dosing. We were unable to detect ST034307 in mouse brain following subcutaneous injections but showed a significant reduction in cAMP concentration in dorsal root ganglia of the animals. Considering the unprecedented selectivity of ST034307, we also report the predicted molecular interaction between ST034307 and AC1. Our results indicate that AC1 inhibitors represent a promising new class of analgesic agents that treat pain and do not result in tolerance or cause disruption of normal behavior in mice. In addition, we outline a unique binding site for ST034307 at the interface of the enzyme's catalytic domain.
Collapse
Affiliation(s)
- Gianna Giacoletti
- Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, FL, United States
| | - Tatum Price
- Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, FL, United States
| | - Lucas V. B. Hoelz
- Laboratório de Síntese de Fármacos—LASFAR, Instituto de Tecnologia em Fármacos, Farmanguinhos—FIOCRUZ, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Abdulwhab Shremo Msdi
- Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, FL, United States
| | - Samantha Cossin
- Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, FL, United States
| | - Katerina Vazquez-Falto
- Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, FL, United States
| | - Tácio V. Amorim Fernandes
- Laboratório de Síntese de Fármacos—LASFAR, Instituto de Tecnologia em Fármacos, Farmanguinhos—FIOCRUZ, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Instituto Nacional de Metrologia, Qualidade e Tecnologia—INMETRO, Rio de Janeiro, Brazil
| | - Vinícius Santos de Pontes
- Laboratório de Síntese de Fármacos—LASFAR, Instituto de Tecnologia em Fármacos, Farmanguinhos—FIOCRUZ, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Hongbing Wang
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Nubia Boechat
- Laboratório de Síntese de Fármacos—LASFAR, Instituto de Tecnologia em Fármacos, Farmanguinhos—FIOCRUZ, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Adwoa Nornoo
- Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, FL, United States
| | - Tarsis F. Brust
- Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, FL, United States
| |
Collapse
|
24
|
Coluzzi F, Rullo L, Scerpa MS, Losapio LM, Rocco M, Billeci D, Candeletti S, Romualdi P. Current and Future Therapeutic Options in Pain Management: Multi-mechanistic Opioids Involving Both MOR and NOP Receptor Activation. CNS Drugs 2022; 36:617-632. [PMID: 35616826 PMCID: PMC9166888 DOI: 10.1007/s40263-022-00924-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/18/2022] [Indexed: 12/24/2022]
Abstract
Opioids are widely used in chronic pain management, despite major concerns about their risk of adverse events, particularly abuse, misuse, and respiratory depression from overdose. Multi-mechanistic opioids, such as tapentadol and buprenorphine, have been widely studied as a valid alternative to traditional opioids for their safer profile. Special interest was focused on the role of the nociceptin opioid peptide (NOP) receptor in terms of analgesia and improved tolerability. Nociceptin opioid peptide receptor agonists were shown to reinforce the antinociceptive effect of mu opioid receptor (MOR) agonists and modulate some of their adverse effects. Therefore, multi-mechanistic opioids involving both MOR and NOP receptor activation became a major field of pharmaceutical and clinical investigations. Buprenorphine was re-discovered in a new perspective, as an atypical analgesic and as a substitution therapy for opioid use disorders; and buprenorphine derivatives have been tested in animal models of nociceptive and neuropathic pain. Similarly, cebranopadol, a full MOR/NOP receptor agonist, has been clinically evaluated for its potent analgesic efficacy and better tolerability profile, compared with traditional opioids. This review overviews pharmacological mechanisms of the NOP receptor system, including its role in pain management and in the development of opioid tolerance. Clinical data on buprenorphine suggest its role as a safer alternative to traditional opioids, particularly in patients with non-cancer pain; while data on cebranopadol still require phase III study results to approve its introduction on the market. Other bifunctional MOR/NOP receptor ligands, such as BU08028, BU10038, and AT-121, are currently under pharmacological investigations and could represent promising analgesic agents for the future.
Collapse
Affiliation(s)
- Flaminia Coluzzi
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Polo Pontino, Latina, Italy
- Unit Anesthesia, Intensive Care and Pain Medicine, Sant'Andrea University Hospital, Rome, Italy
| | - Laura Rullo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Irnerio 48, Bologna, 40126, Italy
| | - Maria Sole Scerpa
- Unit Anesthesia, Intensive Care and Pain Medicine, Sant'Andrea University Hospital, Rome, Italy
| | - Loredana Maria Losapio
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Irnerio 48, Bologna, 40126, Italy
| | - Monica Rocco
- Department of Surgical and Medical Science and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Sanzio Candeletti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Irnerio 48, Bologna, 40126, Italy.
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Irnerio 48, Bologna, 40126, Italy
| |
Collapse
|
25
|
Novel Opioid Analgesics for the Development of Transdermal Opioid Patches That Possess Morphine-Like Pharmacological Profiles Rather Than Fentanyl: Possible Opioid Switching Alternatives Among Patch Formula. Anesth Analg 2022; 134:1082-1093. [PMID: 35427270 PMCID: PMC8986634 DOI: 10.1213/ane.0000000000005954] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Transdermal fentanyl is widely used in the treatment of severe pain because of convenience, safety, and stable blood concentrations. Nevertheless, patients often develop tolerance to fentanyl, necessitating the use of other opioids; transdermal buprenorphine patch is widely used as an analgesic agent, though available formulation does not provide comparable analgesic effect as transdermal fentanyl patch. Opioids bind to the opioid receptor (OR) to activate both G protein–mediated and β-arrestin–mediated pathways. We synthesized morphine-related compounds with high transdermal absorbability (N1 and N2) and evaluated their OR activities pharmacologically in comparison with fentanyl and morphine.
Collapse
|
26
|
Deng M, Zhang Z, Xing M, Liang X, Li Z, Wu J, Jiang S, Weng Y, Guo Q, Zou W. LncRNA MRAK159688 facilitates morphine tolerance by promoting REST-mediated inhibition of mu opioid receptor in rats. Neuropharmacology 2022; 206:108938. [PMID: 34982972 DOI: 10.1016/j.neuropharm.2021.108938] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/17/2021] [Accepted: 12/28/2021] [Indexed: 12/11/2022]
Abstract
Morphine tolerance (MT) caused by the long-term use of morphine is a major medical problem. The molecular mechanism of morphine tolerance remains elusive. Here, we established a morphine tolerance model in rats and verified whether the long noncoding RNA (lncRNA) MRAK159688 is involved in morphine tolerance and its specific molecular mechanism. We show the significant upregulation of MRAK159688 expression in the spinal cord of morphine-tolerant rats. Overexpression of MRAK159688 by a lentivirus reduces the analgesic efficacy of morphine and induces pain behavior. Downregulation of MRAK159688 using a small interfering RNA (siRNA) attenuates the formation of morphine tolerance, partially reverses the development of morphine tolerance and alleviates morphine-induced hyperalgesia. MRAK159688 is located in the nucleus and cytoplasm of neurons, and it colocalizes with repressor element-1 silencing transcription factor (REST) in the nucleus. MRAK159688 potentiates the expression and function of REST, thereby inhibiting the expression of mu opioid receptor (MOR) and subsequently inducing morphine tolerance. Moreover, REST overexpression blocks the effects of MRAK159688 siRNA on relieving morphine tolerance. In general, chronic morphine administration-mediated upregulation of MRAK159688 in the spinal cord contributes to morphine tolerance and hyperalgesia by promoting REST-mediated inhibition of MOR. MRAK159688 downregulation may represent a novel RNA-based therapy for morphine tolerance.
Collapse
Affiliation(s)
- Meiling Deng
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Zengli Zhang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; Department of Anesthesiology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300000, China
| | - Manyu Xing
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xia Liang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China
| | - Zhengyiqi Li
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jing Wu
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Shasha Jiang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yingqi Weng
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Wangyuan Zou
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
27
|
Mizobuchi Y, Miyano K, Manabe S, Uezono E, Komatsu A, Kuroda Y, Nonaka M, Matsuoka Y, Sato T, Uezono Y, Morimatsu H. Ketamine Improves Desensitization of µ-Opioid Receptors Induced by Repeated Treatment with Fentanyl but Not with Morphine. Biomolecules 2022; 12:426. [PMID: 35327617 PMCID: PMC8946650 DOI: 10.3390/biom12030426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
The issue of tolerance to continuous or repeated administration of opioids should be addressed. The ability of ketamine to improve opioid tolerance has been reported in clinical studies, and its mechanism of tolerance may involve improved desensitization of μ-opioid receptors (MORs). We measured changes in MOR activity and intracellular signaling induced by repeated fentanyl and morphine administration and investigated the effects of ketamine on these changes with human embryonic kidney 293 cells expressing MOR using the CellKey™, cADDis cyclic adenosine monophosphate, and PathHunter® β-arrestin recruitment assays. Repeated administration of fentanyl or morphine suppressed the second MOR responses. Administration of ketamine before a second application of opioids within clinical concentrations improved acute desensitization and enhanced β-arrestin recruitment elicited by fentanyl but not by morphine. The effects of ketamine on fentanyl were suppressed by co-treatment with an inhibitor of G-protein-coupled receptor kinase (GRK). Ketamine may potentially reduce fentanyl tolerance but not that of morphine through modulation of GRK-mediated pathways, possibly changing the conformational changes of β-arrestin to MOR.
Collapse
Affiliation(s)
- Yusuke Mizobuchi
- Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikatacho, Kita-ku, Okayama-shi 700-8558, Japan; (Y.M.); (H.M.)
- Department of Pain Control Research, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (K.M.); (E.U.); (M.N.)
- Department of Anesthesiology and Critical Care Medicine, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan;
| | - Kanako Miyano
- Department of Pain Control Research, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (K.M.); (E.U.); (M.N.)
| | - Sei Manabe
- Department of Anesthesiology and Resuscitology, Okayama University Hospital, 2-5-1 Shikatacho, Kita-ku, Okayama-shi 700-8558, Japan; (S.M.); (Y.M.)
| | - Eiko Uezono
- Department of Pain Control Research, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (K.M.); (E.U.); (M.N.)
- Department of Anesthesiology and Pain Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (A.K.); (Y.K.)
| | - Akane Komatsu
- Department of Anesthesiology and Pain Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (A.K.); (Y.K.)
| | - Yui Kuroda
- Department of Anesthesiology and Pain Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (A.K.); (Y.K.)
| | - Miki Nonaka
- Department of Pain Control Research, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (K.M.); (E.U.); (M.N.)
| | - Yoshikazu Matsuoka
- Department of Anesthesiology and Resuscitology, Okayama University Hospital, 2-5-1 Shikatacho, Kita-ku, Okayama-shi 700-8558, Japan; (S.M.); (Y.M.)
| | - Tetsufumi Sato
- Department of Anesthesiology and Critical Care Medicine, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan;
| | - Yasuhito Uezono
- Department of Pain Control Research, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (K.M.); (E.U.); (M.N.)
- Supportive and Palliative Care Research Support Office, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa-shi 277-8577, Japan
| | - Hiroshi Morimatsu
- Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikatacho, Kita-ku, Okayama-shi 700-8558, Japan; (Y.M.); (H.M.)
- Department of Anesthesiology and Resuscitology, Okayama University Hospital, 2-5-1 Shikatacho, Kita-ku, Okayama-shi 700-8558, Japan; (S.M.); (Y.M.)
| |
Collapse
|
28
|
Singh R, Zogg H, Ghoshal UC, Ro S. Current Treatment Options and Therapeutic Insights for Gastrointestinal Dysmotility and Functional Gastrointestinal Disorders. Front Pharmacol 2022; 13:808195. [PMID: 35145413 PMCID: PMC8822166 DOI: 10.3389/fphar.2022.808195] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
Functional gastrointestinal disorders (FGIDs) have been re-named as disorders of gut-brain interactions. These conditions are not only common in clinical practice, but also in the community. In reference to the Rome IV criteria, the most common FGIDs, include functional dyspepsia (FD) and irritable bowel syndrome (IBS). Additionally, there is substantial overlap of these disorders and other specific gastrointestinal motility disorders, such as gastroparesis. These disorders are heterogeneous and are intertwined with several proposed pathophysiological mechanisms, such as altered gut motility, intestinal barrier dysfunction, gut immune dysfunction, visceral hypersensitivity, altered GI secretion, presence and degree of bile acid malabsorption, microbial dysbiosis, and alterations to the gut-brain axis. The treatment options currently available include lifestyle modifications, dietary and gut microbiota manipulation interventions including fecal microbiota transplantation, prokinetics, antispasmodics, laxatives, and centrally and peripherally acting neuromodulators. However, treatment that targets the pathophysiological mechanisms underlying the symptoms are scanty. Pharmacological agents that are developed based on the cellular and molecular mechanisms underlying pathologies of these disorders might provide the best avenue for future pharmaceutical development. The currently available therapies lack long-term effectiveness and safety for their use to treat motility disorders and FGIDs. Furthermore, the fundamental challenges in treating these disorders should be defined; for instance, 1. Cause and effect cannot be disentangled between symptoms and pathophysiological mechanisms due to current therapies that entail the off-label use of medications to treat symptoms. 2. Despite the knowledge that the microbiota in our gut plays an essential part in maintaining gut health, their exact functions in gut homeostasis are still unclear. What constitutes a healthy microbiome and further, the precise definition of gut microbial dysbiosis is lacking. More comprehensive, large-scale, and longitudinal studies utilizing multi-omics data are needed to dissect the exact contribution of gut microbial alterations in disease pathogenesis. Accordingly, we review the current treatment options, clinical insight on pathophysiology, therapeutic modalities, current challenges, and therapeutic clues for the clinical care and management of functional dyspepsia, gastroparesis, irritable bowel syndrome, functional constipation, and functional diarrhea.
Collapse
Affiliation(s)
- Rajan Singh
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, United States
| | - Hannah Zogg
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, United States
| | - Uday C Ghoshal
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
- *Correspondence: Uday C Ghoshal, ; Seungil Ro,
| | - Seungil Ro
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, United States
- *Correspondence: Uday C Ghoshal, ; Seungil Ro,
| |
Collapse
|
29
|
Comparison of an Addictive Potential of μ-Opioid Receptor Agonists with G Protein Bias: Behavioral and Molecular Modeling Studies. Pharmaceutics 2021; 14:pharmaceutics14010055. [PMID: 35056950 PMCID: PMC8779292 DOI: 10.3390/pharmaceutics14010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/15/2021] [Accepted: 12/23/2021] [Indexed: 12/02/2022] Open
Abstract
Among different approaches to the search for novel—safer and less addictive—opioid analgesics, biased agonism has received the most attention in recent years. Some μ-opioid receptor agonists with G protein bias, including SR compounds, were proposed to induce diminished side effects. However, in many aspects, behavioral effects of those compounds, as well as the mechanisms underlying differences in their action, remain unexplored. Here, we aimed to evaluate the effects of SR-14968 and SR-17018, highly G protein-biased opioid agonists, on antinociception, motor activity and addiction-like behaviors in C57BL/6J mice. The obtained results showed that the compounds induce strong and dose-dependent antinociception. SR-14968 causes high, and SR-17018 much lower, locomotor activity. Both agonists develop reward-associated behavior and physical dependence. The compounds also cause antinociceptive tolerance, however, developing more slowly when compared to morphine. Interestingly, SR compounds, in particular SR-17018, slow down the development of antinociceptive tolerance to morphine and inhibit some symptoms of morphine withdrawal. Therefore, our results indicate that SR agonists possess rewarding and addictive properties, but can positively modulate some symptoms of morphine dependence. Next, we have compared behavioral effects of SR-compounds and PZM21 and searched for a relationship to the substantial differences in molecular interactions that these compounds form with the µ-opioid receptor.
Collapse
|
30
|
G protein signaling-biased mu opioid receptor agonists that produce sustained G protein activation are noncompetitive agonists. Proc Natl Acad Sci U S A 2021; 118:2102178118. [PMID: 34819362 DOI: 10.1073/pnas.2102178118] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2021] [Indexed: 12/15/2022] Open
Abstract
The ability of a ligand to preferentially promote engagement of one signaling pathway over another downstream of GPCR activation has been referred to as signaling bias, functional selectivity, and biased agonism. The presentation of ligand bias reflects selectivity between active states of the receptor, which may result in the display of preferential engagement with one signaling pathway over another. In this study, we provide evidence that the G protein-biased mu opioid receptor (MOR) agonists SR-17018 and SR-14968 stabilize the MOR in a wash-resistant yet antagonist-reversible G protein-signaling state. Furthermore, we demonstrate that these structurally related biased agonists are noncompetitive for radiolabeled MOR antagonist binding, and while they stimulate G protein signaling in mouse brains, partial agonists of this class do not compete with full agonist activation. Importantly, opioid antagonists can readily reverse their effects in vivo. Given that chronic treatment with SR-17018 does not lead to tolerance in several mouse pain models, this feature may be desirable for the development of long-lasting opioid analgesics that remain sensitive to antagonist reversal of respiratory suppression.
Collapse
|
31
|
Zhang YZ, Wang MM, Wang SY, Wang XF, Yang WJ, Zhao YN, Han FT, Zhang Y, Gu N, Wang CL. Novel Cyclic Endomorphin Analogues with Multiple Modifications and Oligoarginine Vector Exhibit Potent Antinociception with Reduced Opioid-like Side Effects. J Med Chem 2021; 64:16801-16819. [PMID: 34781680 DOI: 10.1021/acs.jmedchem.1c01631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Endomorphins (EMs) are potent pharmaceuticals for the treatment of pain. Herein, we investigated several novel EM analogues with multiple modifications and oligoarginine conjugation. Our results showed that analogues 1-6 behaved as potent μ-opioid agonists and enhanced stability and lipophilicity. Analogues 5 and 6 administered centrally and peripherally induced significant and prolonged antinociceptive effects in acute pain. Both analogues also produced long-acting antiallodynic effects against neuropathic and inflammatory pain. Furthermore, they showed a reduced acute antinociceptive tolerance. Analogue 6 decreased the extent of chronic antinociceptive tolerance, and analogue 5 exhibited no tolerance at the supraspinal level. Particularly, they displayed nontolerance-forming antinociception at the peripheral level. In addition, analogues 5 and 6 exhibited reduced or no opioid-like side effects on gastrointestinal transit, conditioned place preference (CPP), and motor impairment. The present investigation established that multiple modifications and oligoarginine-vector conjugation of EMs would be helpful in developing novel analgesics with fewer side effects.
Collapse
Affiliation(s)
- Yu-Zhe Zhang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Meng-Meng Wang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Si-Yu Wang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Xiao-Fang Wang
- Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Wen-Jiao Yang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Ya-Nan Zhao
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Feng-Tong Han
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Yao Zhang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Ning Gu
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Chang-Lin Wang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China.,Stake Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| |
Collapse
|
32
|
Cong X, Maurel D, Déméné H, Vasiliauskaité-Brooks I, Hagelberger J, Peysson F, Saint-Paul J, Golebiowski J, Granier S, Sounier R. Molecular insights into the biased signaling mechanism of the μ-opioid receptor. Mol Cell 2021; 81:4165-4175.e6. [PMID: 34433090 DOI: 10.1016/j.molcel.2021.07.033] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/18/2021] [Accepted: 07/27/2021] [Indexed: 02/08/2023]
Abstract
GPCR functional selectivity opens new opportunities for the design of safer drugs. Ligands orchestrate GPCR signaling cascades by modulating the receptor conformational landscape. Our study provides insights into the dynamic mechanism enabling opioid ligands to preferentially activate the G protein over the β-arrestin pathways through the μ-opioid receptor (μOR). We combine functional assays in living cells, solution NMR spectroscopy, and enhanced-sampling molecular dynamic simulations to identify the specific μOR conformations induced by G protein-biased agonists. In particular, we describe the dynamic and allosteric communications between the ligand-binding pocket and the receptor intracellular domains, through conserved motifs in class A GPCRs. Most strikingly, the biased agonists trigger μOR conformational changes in the intracellular loop 1 and helix 8 domains, which may impair β-arrestin binding or signaling. The findings may apply to other GPCR families and provide key molecular information that could facilitate the design of biased ligands.
Collapse
Affiliation(s)
- Xiaojing Cong
- Institut de Génomique Fonctionnelle, CNRS UMR-5203 INSERM U1191, University of Montpellier, 34000 Montpellier, France
| | - Damien Maurel
- Institut de Génomique Fonctionnelle, CNRS UMR-5203 INSERM U1191, University of Montpellier, 34000 Montpellier, France
| | - Hélène Déméné
- Centre de Biochimie Structurale, CNRS UMR 5048-INSERM 1054, University of Montpellier, 29 rue de Navacelles, 34090 Montpellier Cedex, France
| | - Ieva Vasiliauskaité-Brooks
- Institut de Génomique Fonctionnelle, CNRS UMR-5203 INSERM U1191, University of Montpellier, 34000 Montpellier, France
| | - Joanna Hagelberger
- Institut de Génomique Fonctionnelle, CNRS UMR-5203 INSERM U1191, University of Montpellier, 34000 Montpellier, France
| | - Fanny Peysson
- Institut de Génomique Fonctionnelle, CNRS UMR-5203 INSERM U1191, University of Montpellier, 34000 Montpellier, France
| | - Julie Saint-Paul
- Institut de Génomique Fonctionnelle, CNRS UMR-5203 INSERM U1191, University of Montpellier, 34000 Montpellier, France
| | - Jérôme Golebiowski
- Université Côte d'Azur, CNRS, Institute of Chemistry of Nice UMR7272, 06108 Nice, France; Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu 711-873, South Korea
| | - Sébastien Granier
- Institut de Génomique Fonctionnelle, CNRS UMR-5203 INSERM U1191, University of Montpellier, 34000 Montpellier, France.
| | - Rémy Sounier
- Institut de Génomique Fonctionnelle, CNRS UMR-5203 INSERM U1191, University of Montpellier, 34000 Montpellier, France.
| |
Collapse
|
33
|
Karasawa Y, Miyano K, Fujii H, Mizuguchi T, Kuroda Y, Nonaka M, Komatsu A, Ohshima K, Yamaguchi M, Yamaguchi K, Iseki M, Uezono Y, Hayashida M. In Vitro Analyses of Spinach-Derived Opioid Peptides, Rubiscolins: Receptor Selectivity and Intracellular Activities through G Protein- and β-Arrestin-Mediated Pathways. Molecules 2021; 26:molecules26196079. [PMID: 34641621 PMCID: PMC8513079 DOI: 10.3390/molecules26196079] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/14/2022] Open
Abstract
Activated opioid receptors transmit internal signals through two major pathways: the G-protein-mediated pathway, which exerts analgesia, and the β-arrestin-mediated pathway, which leads to unfavorable side effects. Hence, G-protein-biased opioid agonists are preferable as opioid analgesics. Rubiscolins, the spinach-derived naturally occurring opioid peptides, are selective δ opioid receptor agonists, and their p.o. administration exhibits antinociceptive effects. Although the potency and effect of rubiscolins as G-protein-biased molecules are partially confirmed, their in vitro profiles remain unclear. We, therefore, evaluated the properties of rubiscolins, in detail, through several analyses, including the CellKeyTM assay, cADDis® cAMP assay, and PathHunter® β-arrestin recruitment assay, using cells stably expressing µ, δ, κ, or µ/δ heteromer opioid receptors. In the CellKeyTM assay, rubiscolins showed selective agonistic effects for δ opioid receptor and little agonistic or antagonistic effects for µ and κ opioid receptors. Furthermore, rubiscolins were found to be G-protein-biased δ opioid receptor agonists based on the results obtained in cADDis® cAMP and PathHunter® β-arrestin recruitment assays. Finally, we found, for the first time, that they are also partially agonistic for the µ/δ dimers. In conclusion, rubiscolins could serve as attractive seeds, as δ opioid receptor-specific agonists, for the development of novel opioid analgesics with reduced side effects.
Collapse
Affiliation(s)
- Yusuke Karasawa
- Department of Pain Medicine, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.K.); (Y.K.); (A.K.); (M.Y.); (K.Y.); (M.I.); (M.H.)
- Department of Pain Control Research, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (M.N.); (K.O.)
- Medical Affairs, Viatris Pharmaceuticals Japan Inc., 5-11-2, Toranomon, Minato-ku, Tokyo 105-0001, Japan
| | - Kanako Miyano
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan;
| | - Hideaki Fujii
- Laboratory of Medicinal Chemistry and Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan; (H.F.); (T.M.)
| | - Takaaki Mizuguchi
- Laboratory of Medicinal Chemistry and Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan; (H.F.); (T.M.)
| | - Yui Kuroda
- Department of Pain Medicine, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.K.); (Y.K.); (A.K.); (M.Y.); (K.Y.); (M.I.); (M.H.)
- Department of Pain Control Research, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (M.N.); (K.O.)
- Department of Anesthesiology and Pain Medicine, Faculty of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Miki Nonaka
- Department of Pain Control Research, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (M.N.); (K.O.)
| | - Akane Komatsu
- Department of Pain Medicine, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.K.); (Y.K.); (A.K.); (M.Y.); (K.Y.); (M.I.); (M.H.)
- Department of Pain Control Research, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (M.N.); (K.O.)
- Department of Anesthesiology and Pain Medicine, Faculty of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Kaori Ohshima
- Department of Pain Control Research, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (M.N.); (K.O.)
| | - Masahiro Yamaguchi
- Department of Pain Medicine, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.K.); (Y.K.); (A.K.); (M.Y.); (K.Y.); (M.I.); (M.H.)
- Department of Pain Control Research, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (M.N.); (K.O.)
- Medical Affairs, Pfizer Japan Inc., 3-22-7, Yoyogi, Shibuya-ku, Tokyo 151-0053, Japan
| | - Keisuke Yamaguchi
- Department of Pain Medicine, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.K.); (Y.K.); (A.K.); (M.Y.); (K.Y.); (M.I.); (M.H.)
- Department of Anesthesiology and Pain Medicine, Faculty of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Masako Iseki
- Department of Pain Medicine, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.K.); (Y.K.); (A.K.); (M.Y.); (K.Y.); (M.I.); (M.H.)
- Department of Anesthesiology and Pain Medicine, Faculty of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yasuhito Uezono
- Department of Pain Medicine, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.K.); (Y.K.); (A.K.); (M.Y.); (K.Y.); (M.I.); (M.H.)
- Department of Pain Control Research, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan; (M.N.); (K.O.)
- Correspondence:
| | - Masakazu Hayashida
- Department of Pain Medicine, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.K.); (Y.K.); (A.K.); (M.Y.); (K.Y.); (M.I.); (M.H.)
- Department of Anesthesiology and Pain Medicine, Faculty of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
34
|
Wicks C, Hudlicky T, Rinner U. Morphine alkaloids: History, biology, and synthesis. THE ALKALOIDS. CHEMISTRY AND BIOLOGY 2021; 86:145-342. [PMID: 34565506 DOI: 10.1016/bs.alkal.2021.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This chapter provides a short overview of the history of morphine since it's isolation by Sertürner in 1805. The biosynthesis of the title alkaloid as well as all total and formal syntheses of morphine and codeine published after 1996 are discussed in detail. The last section of this chapter provides a detailed overview of medicinally relevant derivatives of the title alkaloid.
Collapse
Affiliation(s)
- Christopher Wicks
- Department of Chemistry and Centre for Biotechnology, Brock University, St. Catharines, ON, Canada
| | - Tomas Hudlicky
- Department of Chemistry and Centre for Biotechnology, Brock University, St. Catharines, ON, Canada
| | - Uwe Rinner
- IMC Fachhochschule Krems/IMC University of Applied Sciences Krems, Krems, Austria.
| |
Collapse
|
35
|
Agonist dependency of the second phase access of β-arrestin 2 to the heteromeric µ-V1b receptor. Sci Rep 2021; 11:15813. [PMID: 34349143 PMCID: PMC8339129 DOI: 10.1038/s41598-021-94894-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 07/19/2021] [Indexed: 12/02/2022] Open
Abstract
During the development of analgesic tolerance to morphine, the V1b vasopressin receptor has been proposed to bind to β-arrestin 2 and the µ-opioid receptor to enable their interaction. However, direct evidence of such a high-order complex is lacking. Using bioluminescent resonance energy transfer between a split Nanoluciferase and the Venus fluorescent protein, the NanoBit-NanoBRET system, we found that β-arrestin 2 closely located near the heteromer µ-V1b receptor in the absence of an agonist and moved closer to the receptor carboxyl-termini upon agonist stimulation. An additive effect of the two agonists for opioid and vasopressin receptors was detected on the NanoBRET between the µ-V1b heteromer and β-arrestin 2. To increase the agonist response of NanoBRET, the ratio of the donor luminophore to the acceptor fluorophore was decreased to the detection limit of luminescence. In the first phase of access, β-arrestin 2 was likely to bind to the unstimulated V1b receptor in both its phosphorylated and unphosphorylated forms. In contrast, the second-phase access of β-arrestin 2 was agonist dependent, indicating a possible pharmacological intervention strategy. Therefore, our efficient method should be useful for evaluating chemicals that directly target the vasopressin binding site in the µ-V1b heteromer to reduce the second-phase access of β-arrestin 2 and thereby to alleviate tolerance to morphine analgesia.
Collapse
|
36
|
Brzezinski M, Hammer GB, Candiotti KA, Bergese SD, Pan PH, Bourne MH, Michalsky C, Wase L, Demitrack MA, Habib AS. Low Incidence of Opioid-Induced Respiratory Depression Observed with Oliceridine Regardless of Age or Body Mass Index: Exploratory Analysis from a Phase 3 Open-Label Trial in Postsurgical Pain. Pain Ther 2021; 10:457-473. [PMID: 33502739 PMCID: PMC8119589 DOI: 10.1007/s40122-020-00232-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/22/2020] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION Advanced age and obesity are reported to increase the risk of opioid-induced respiratory depression (OIRD). Oliceridine, an intravenous opioid, is a G-protein-biased agonist at the µ-opioid receptor that may provide improved safety. The recent phase 3 ATHENA open-label, multicenter study evaluated postoperative use of oliceridine in patients with moderate-to-severe acute pain. This exploratory analysis of the ATHENA data examined the incidence of OIRD in older (≥ 65 years) and/or obese (BMI ≥ 30 kg/m2) patients and analyzed risk factors of OIRD. METHODS Patients aged ≥ 18 years with a score ≥ 4 on an 11-point numeric pain rating scale (NPRS) received IV oliceridine as needed via bolus dosing and/or patient-controlled analgesia (PCA). OIRD occurring within 48 h of last dose of oliceridine was defined using two established definitions: (1) naloxone use, (2) respiratory rate < 10 breaths per minute and/or oxygen saturation < 90%. RESULTS A total of 724 surgical patients with a mean age of 54.5 ± 15.9 years and a mean NRS score of 6.2 ± 2.1 were included in this analysis; 33.3% (241/724) were ≥ 65 years of age and 46.3% (335/724) had BMI (body mass index) ≥ 30 kg/m2. The overall OIRD incidence was 13.7% with no patients requiring naloxone. The OIRD incidence was similar in the elderly and younger adults' cohorts [10.8 vs. 15.1%, OR 0.68 (0.42, 1.1), p = 0.11], and in obese and non-obese groups [14.0 vs. 13.4%, OR 1.06 (0.69, 1.62), p = 0.80]. In patients that were both elderly and obese (n = 120), the incidence was 10.8%. The multivariate analysis identified baseline NRS ≥ 6 [OR 1.6 (1.0, 2.4), p = 0.0499], PCA administration [OR 1.9 (1.2, 3.1), p = 0.005], and concomitant use of benzodiazepines and/or gabapentinoids [OR 1.6 (1.0, 2.6), p = 0.045], as being associated with OIRD. CONCLUSIONS Postoperative oliceridine use in patients with advanced age and/or increased BMI was not associated with increased risk of OIRD.
Collapse
Affiliation(s)
- Marek Brzezinski
- VA Medical Center, University of California San Francisco, San Francisco, CA, USA.
| | | | - Keith A Candiotti
- Department of Anesthesiology, University of Miami/Jackson Health System, Miami, FL, USA
| | - Sergio D Bergese
- School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Peter H Pan
- Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | | | | | | | | |
Collapse
|
37
|
Buprenorphine: Far Beyond the "Ceiling". Biomolecules 2021; 11:biom11060816. [PMID: 34072706 PMCID: PMC8230089 DOI: 10.3390/biom11060816] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 01/20/2023] Open
Abstract
Chronic pain, including neuropathic pain, represents an untreated disease with important repercussions on the quality of life and huge costs on the national health system. It is well known that opioids are the most powerful analgesic drugs, but they represent the second or third line in neuropathic pain, that remain difficult to manage. Moreover, these drugs show several side effects that limit their use. In addition, opioids possess addictive properties that are associated with misuse and drug abuse. Among available opioids compounds, buprenorphine has been suggested advantageous for a series of clinical reasons, including the effectiveness in neuropathic pain. Some properties are partly explained by its unique pharmacological characteristics. However, questions on the dynamic profile remain to be answered. Pharmacokinetics optimization strategies, and additional potentialities, are still to be explored. In this paper, we attempt to conceptualize the potential undiscovered dynamic profile of buprenorphine.
Collapse
|
38
|
Chakraborty S, Majumdar S. Natural Products for the Treatment of Pain: Chemistry and Pharmacology of Salvinorin A, Mitragynine, and Collybolide. Biochemistry 2021; 60:1381-1400. [PMID: 32930582 PMCID: PMC7982354 DOI: 10.1021/acs.biochem.0c00629] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pain remains a very pervasive problem throughout medicine. Classical pain management is achieved through the use of opiates belonging to the mu opioid receptor (MOR) class, which have significant side effects that hinder their utility. Pharmacologists have been trying to develop opioids devoid of side effects since the isolation of morphine from papaver somniferum, more commonly known as opium by Sertürner in 1804. The natural products salvinorin A, mitragynine, and collybolide represent three nonmorphinan natural product-based targets, which are potent selective agonists of opioid receptors, and emerging next-generation analgesics. In this work, we review the phytochemistry and medicinal chemistry efforts on these templates and their effects on affinity, selectivity, analgesic actions, and a myriad of other opioid-receptor-related behavioral effects.
Collapse
Affiliation(s)
- Soumen Chakraborty
- Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, Missouri 63110, United States; Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Susruta Majumdar
- Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, Missouri 63110, United States; Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| |
Collapse
|
39
|
Positive allosteric modulation of the mu-opioid receptor produces analgesia with reduced side effects. Proc Natl Acad Sci U S A 2021; 118:2000017118. [PMID: 33846240 DOI: 10.1073/pnas.2000017118] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Positive allosteric modulators (PAMs) of the mu-opioid receptor (MOR) have been hypothesized as potentially safer analgesics than traditional opioid drugs. This is based on the idea that PAMs will promote the action of endogenous opioid peptides while preserving their temporal and spatial release patterns and so have an improved therapeutic index. However, this hypothesis has never been tested. Here, we show that a mu-PAM, BMS-986122, enhances the ability of the endogenous opioid Methionine-enkephalin (Met-Enk) to stimulate G protein activity in mouse brain homogenates without activity on its own and to enhance G protein activation to a greater extent than β-arrestin recruitment in Chinese hamster ovary (CHO) cells expressing human mu-opioid receptors. Moreover, BMS-986122 increases the potency of Met-Enk to inhibit GABA release in the periaqueductal gray, an important site for antinociception. We describe in vivo experiments demonstrating that the mu-PAM produces antinociception in mouse models of acute noxious heat pain as well as inflammatory pain. These effects are blocked by MOR antagonists and are consistent with the hypothesis that in vivo mu-PAMs enhance the activity of endogenous opioid peptides. Because BMS-986122 does not bind to the orthosteric site and has no inherent agonist action at endogenously expressed levels of MOR, it produces a reduced level of morphine-like side effects of constipation, reward as measured by conditioned place preference, and respiratory depression. These data provide a rationale for the further exploration of the action and safety of mu-PAMs as an innovative approach to pain management.
Collapse
|
40
|
Kudla L, Przewlocki R. Influence of G protein-biased agonists of μ-opioid receptor on addiction-related behaviors. Pharmacol Rep 2021; 73:1033-1051. [PMID: 33835467 PMCID: PMC8413226 DOI: 10.1007/s43440-021-00251-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/05/2021] [Accepted: 03/16/2021] [Indexed: 01/09/2023]
Abstract
Opioid analgesics remain a gold standard for the treatment of moderate to severe pain. However, their clinical utility is seriously limited by a range of adverse effects. Among them, their high-addictive potential appears as very important, especially in the context of the opioid epidemic. Therefore, the development of safer opioid analgesics with low abuse potential appears as a challenging problem for opioid research. Among the last few decades, different approaches to the discovery of novel opioid drugs have been assessed. One of the most promising is the development of G protein-biased opioid agonists, which can activate only selected intracellular signaling pathways. To date, discoveries of several biased agonists acting via μ-opioid receptor were reported. According to the experimental data, such ligands may be devoid of at least some of the opioid side effects, such as respiratory depression or constipation. Nevertheless, most data regarding the addictive properties of biased μ-opioid receptor agonists are inconsistent. A global problem connected with opioid abuse also requires the search for effective pharmacotherapy for opioid addiction, which is another potential application of biased compounds. This review discusses the state-of-the-art on addictive properties of G protein-biased μ-opioid receptor agonists as well as we analyze whether these compounds can diminish any symptoms of opioid addiction. Finally, we provide a critical view on recent data connected with biased signaling and its implications to in vivo manifestations of addiction.
Collapse
Affiliation(s)
- Lucja Kudla
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, ul. Smetna 12, 31-343, Krakow, Poland
| | - Ryszard Przewlocki
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, ul. Smetna 12, 31-343, Krakow, Poland.
| |
Collapse
|
41
|
Abrimian A, Kraft T, Pan YX. Endogenous Opioid Peptides and Alternatively Spliced Mu Opioid Receptor Seven Transmembrane Carboxyl-Terminal Variants. Int J Mol Sci 2021; 22:3779. [PMID: 33917474 PMCID: PMC8038826 DOI: 10.3390/ijms22073779] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/02/2021] [Accepted: 04/04/2021] [Indexed: 12/20/2022] Open
Abstract
There exist three main types of endogenous opioid peptides, enkephalins, dynorphins and β-endorphin, all of which are derived from their precursors. These endogenous opioid peptides act through opioid receptors, including mu opioid receptor (MOR), delta opioid receptor (DOR) and kappa opioid receptor (KOR), and play important roles not only in analgesia, but also many other biological processes such as reward, stress response, feeding and emotion. The MOR gene, OPRM1, undergoes extensive alternative pre-mRNA splicing, generating multiple splice variants or isoforms. One type of these splice variants, the full-length 7 transmembrane (TM) Carboxyl (C)-terminal variants, has the same receptor structures but contains different intracellular C-terminal tails. The pharmacological functions of several endogenous opioid peptides through the mouse, rat and human OPRM1 7TM C-terminal variants have been considerably investigated together with various mu opioid ligands. The current review focuses on the studies of these endogenous opioid peptides and summarizes the results from early pharmacological studies, including receptor binding affinity and G protein activation, and recent studies of β-arrestin2 recruitment and biased signaling, aiming to provide new insights into the mechanisms and functions of endogenous opioid peptides, which are mediated through the OPRM1 7TM C-terminal splice variants.
Collapse
Affiliation(s)
| | | | - Ying-Xian Pan
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA; (A.A.); (T.K.)
| |
Collapse
|
42
|
Huang Q, Ford NC, Gao X, Chen Z, Guo R, Raja SN, Guan Y, He S. Ubiquitin-mediated receptor degradation contributes to development of tolerance to MrgC agonist-induced pain inhibition in neuropathic rats. Pain 2021; 162:1082-1094. [PMID: 33110031 PMCID: PMC7969388 DOI: 10.1097/j.pain.0000000000002119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 10/15/2020] [Indexed: 11/25/2022]
Abstract
ABSTRACT Agonists to subtype C of the Mas-related G-protein-coupled receptors (MrgC) induce pain inhibition after intrathecal (i.t.) administration in rodent models of nerve injury. Here, we investigated whether tolerance develops after repeated MrgC agonist treatments and examined the underlying mechanisms. In animal behavior studies conducted in male rats at 4 to 5 weeks after an L5 spinal nerve ligation (SNL), the ability of dipeptide MrgC agonist JHU58 (0.1 mM, 10 μL, i.t.) to inhibit mechanical and heat hypersensitivity decreased after 3 days of treatment with a tolerance-inducing dose (0.5 mM, 10 μL, i.t., twice/day). In HEK293T cells, acute treatment with JHU58 or BAM8-22 (a large peptide MrgC agonist) led to MrgC endocytosis from the cell membrane and later sorting to the membrane for reinsertion. However, chronic exposure to JHU58 increased the coupling of MrgC to β-arrestin-2 and led to the ubiquitination and degradation of MrgC. Importantly, pretreatment with TAK-243 (0.2 mM, 5 μL, i.t.), a small-molecule inhibitor of the ubiquitin-activating enzyme, during tolerance induction attenuated the development of tolerance to JHU58-induced inhibition of mechanical and heat hypersensitivity in SNL rats. Interestingly, morphine analgesia was also decreased in SNL rats that had become tolerant to JHU58, suggesting a cross-tolerance. Furthermore, i.t. pretreatment with TAK-243, which reduced JHU58 tolerance, also attenuated the cross-tolerance to morphine analgesia. These findings suggest that tolerance can develop to MrgC agonist-induced pain inhibition after repeated i.t. administrations. This tolerance development to JHU58 may involve increased coupling of MrgC to β-arrestin-2 and ubiquitin-mediated receptor degradation.
Collapse
Affiliation(s)
- Qian Huang
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Neil C. Ford
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Xinyan Gao
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Zhiyong Chen
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Ruijuan Guo
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Srinivasa N. Raja
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
- Department of Neurological Surgery, the Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Shaoqiu He
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW Opioid use disorder (OUD) remains a national epidemic with an immense consequence to the United States' healthcare system. Current therapeutic options are limited by adverse effects and limited efficacy. RECENT FINDINGS Recent advances in therapeutic options for OUD have shown promise in the fight against this ongoing health crisis. Modifications to approved medication-assisted treatment (MAT) include office-based methadone maintenance, implantable and monthly injectable buprenorphine, and an extended-release injectable naltrexone. Therapies under investigation include various strategies such as heroin vaccines, gene-targeted therapy, and biased agonism at the G protein-coupled receptor (GPCR), but several pharmacologic, clinical, and practical barriers limit these treatments' market viability. This manuscript provides a comprehensive review of the current literature regarding recent innovations in OUD treatment.
Collapse
|
44
|
Ehrlich AT, Darcq E. Recent advances in basic science methodology to evaluate opioid safety profiles and to understand opioid activities. Fac Rev 2021; 10:15. [PMID: 33718932 PMCID: PMC7946392 DOI: 10.12703/r/10-15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Opioids are powerful drugs used by humans for centuries to relieve pain and are still frequently used as pain treatment in current clinical practice. Medicinal opioids primarily target the mu opioid receptor (MOR), and MOR activation produces unmatched pain-alleviating properties, as well as side effects such as strong rewarding effects, and thus abuse potential, and respiratory depression contributing to death during overdose. Therefore, the ultimate goal is to create opioid pain-relievers with reduced respiratory depression and thus fewer chances of lethality. Efforts are also underway to reduce the euphoric effects of opioids and avoid abuse liability. In this review, recent advances in basic science methodology used to understand MOR pharmacology and activities will be summarized. The focus of the review will be to describe current technological advances that enable the study of opioid analgesics from subcellular mechanisms to mesoscale network responses. These advances in understanding MOR physiological responses will help to improve knowledge and future design of opioid analgesics.
Collapse
Affiliation(s)
- Aliza T Ehrlich
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
| | - Emmanuel Darcq
- Department of Psychiatry, Douglas Research Center, McGill University, Montréal, Canada
- INSERM U1114, UNISTRA University of Strasbourg, Strasbourg, France
| |
Collapse
|
45
|
Eleswarpu SS, Habib AS. Oliceridine in the treatment of moderate to severe acute pain. Pain Manag 2021; 11:237-248. [PMID: 33455450 DOI: 10.2217/pmt-2020-0087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Intravenous opioids are a mainstay for the management of moderate to severe acute pain. Opioid administration provides effective pain control at the cost of significant side effects. Commonly used opioids like morphine are nonselective μ-receptor agonists, which stimulate both the G-protein pathway, associated with the analgesic effect, and the β-arrestin pathway, associated with the side effects. Oliceridine is a G-protein selective ligand at the μ-receptor with less activation of the β-arrestin pathway. The drug has recently been US FDA approved. This review will focus on the efficacy and safety of intravenous oliceridine in the treatment of moderate to severe acute pain.
Collapse
Affiliation(s)
- Sarada S Eleswarpu
- Department of Anesthesiology, Duke University Medical Center, 2301 Erwin Road, 5666 HAFS Building, Box 3094 Med Ctr, Durham, NC 27710, USA
| | - Ashraf S Habib
- Department of Anesthesiology, Duke University Medical Center, 2301 Erwin Road, 5666 HAFS Building, Box 3094 Med Ctr, Durham, NC 27710, USA
| |
Collapse
|
46
|
Zhou W, Li Y, Meng X, Liu A, Mao Y, Zhu X, Meng Q, Jin Y, Zhang Z, Tao W. Switching of delta opioid receptor subtypes in central amygdala microcircuits is associated with anxiety states in pain. J Biol Chem 2021; 296:100277. [PMID: 33428940 PMCID: PMC7948800 DOI: 10.1016/j.jbc.2021.100277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 12/21/2020] [Accepted: 01/07/2021] [Indexed: 11/25/2022] Open
Abstract
Anxiety is often comorbid with pain. Delta opioid receptors (DORs) are promising targets for the treatment of pain and mental disorders with little addictive potential. However, their roles in anxiety symptoms at different stages of pain are unclear. In the current study, mice with inflammatory pain at the fourth hour following complete Freund’s adjuvant (CFA) injection displayed significant anxiety-like behavior, which disappeared at the seventh day. Combining electrophysiology, optogenetics, and pharmacology, we found that activation of delta opioid receptor 1 (DOR1) in the central nucleus amygdala (CeA) inhibited both the anxiolytic excitatory input from the basolateral amygdala (BLA) and the anxiogenic excitatory input from the parabrachial nucleus (PBN). In contrast, activation of delta opioid receptor 2 (DOR2) did not affect CeA excitatory synaptic transmission in normal and 4-h CFA mice but inhibited the excitatory projection from the PBN rather than the BLA in 7-day CFA mice. Furthermore, the function of both DOR1 and DOR2 was downregulated to the point of not being detectable in the CeA of mice at the 21st day following CFA injection. Taken together, these results suggest that functional switching of DOR1 and DOR2 is associated with anxiety states at different stages of pain via modulating the activity of specific pathways (BLA-CeA and PBN-CeA).
Collapse
Affiliation(s)
- Wenjie Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei, China
| | - Yanhua Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei, China
| | - Xiaojing Meng
- Department of Science and Education, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
| | - An Liu
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yu Mao
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei, China; Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Xia Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei, China
| | - Qian Meng
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei, China; Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yan Jin
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei, China
| | - Zhi Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei, China.
| | - Wenjuan Tao
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei, China; Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
47
|
Calebiro D, Koszegi Z, Lanoiselée Y, Miljus T, O'Brien S. G protein-coupled receptor-G protein interactions: a single-molecule perspective. Physiol Rev 2020; 101:857-906. [PMID: 33331229 DOI: 10.1152/physrev.00021.2020] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
G protein-coupled receptors (GPCRs) regulate many cellular and physiological processes, responding to a diverse range of extracellular stimuli including hormones, neurotransmitters, odorants, and light. Decades of biochemical and pharmacological studies have provided fundamental insights into the mechanisms of GPCR signaling. Thanks to recent advances in structural biology, we now possess an atomistic understanding of receptor activation and G protein coupling. However, how GPCRs and G proteins interact in living cells to confer signaling efficiency and specificity remains insufficiently understood. The development of advanced optical methods, including single-molecule microscopy, has provided the means to study receptors and G proteins in living cells with unprecedented spatio-temporal resolution. The results of these studies reveal an unexpected level of complexity, whereby GPCRs undergo transient interactions among themselves as well as with G proteins and structural elements of the plasma membrane to form short-lived signaling nanodomains that likely confer both rapidity and specificity to GPCR signaling. These findings may provide new strategies to pharmaceutically modulate GPCR function, which might eventually pave the way to innovative drugs for common diseases such as diabetes or heart failure.
Collapse
Affiliation(s)
- Davide Calebiro
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, United Kingdom
| | - Zsombor Koszegi
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, United Kingdom
| | - Yann Lanoiselée
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, United Kingdom
| | - Tamara Miljus
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, United Kingdom
| | - Shannon O'Brien
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, United Kingdom
| |
Collapse
|
48
|
Beard TL, Michalsky C, Candiotti KA, Rider P, Wase L, Habib AS, Demitrack MA, Fossler MJ, Viscusi ER. Oliceridine is Associated with Reduced Risk of Vomiting and Need for Rescue Antiemetics Compared to Morphine: Exploratory Analysis from Two Phase 3 Randomized Placebo and Active Controlled Trials. Pain Ther 2020; 10:401-413. [PMID: 33210266 PMCID: PMC8119517 DOI: 10.1007/s40122-020-00216-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 10/28/2020] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Use of parenteral opioids is a major risk factor for postoperative nausea and vomiting. Conventional opioids bind to µ-opioid receptors (MOR), stimulate both the G-protein signaling (achieving analgesia); and the β-arrestin pathway (associated with opioid-related adverse effects). Oliceridine, a next-generation IV opioid, is a G-protein selective MOR agonist, with limited recruitment of β-arrestin. In two randomized, placebo- and morphine-controlled phase 3 studies of patients with moderate-to-severe acute pain following bunionectomy or abdominoplasty, oliceridine at demand doses of 0.1, 0.35, and 0.5 mg provided rapid and sustained analgesia vs. placebo with favorable gastrointestinal (GI) tolerability. In this exploratory analysis, we utilized a clinical endpoint assessing gastrointestinal tolerability, "complete GI response" defined as the proportion of patients with no vomiting and no use of rescue antiemetic to characterize the GI tolerability profile of oliceridine vs. morphine. METHODS A logistic regression model was utilized to compare oliceridine (pooled regimens) vs. morphine, after controlling for analgesia (using the sum of pain intensity difference [SPID]-48/24 [bunionectomy/abdominoplasty] with pre-rescue scores carried forward for 6 h). This analysis excluded patients receiving placebo and was performed for each study separately and for pooled data from both studies. RESULTS In the unadjusted analysis, a significantly greater proportion of patients in the placebo (76.4%), oliceridine 0.1 mg (68.0%), and 0.35 mg (46.2%) demand dose achieved complete GI response vs. morphine 1 mg (30.8%), p ≤ 0.005. In the adjusted analysis, after controlling for analgesia, the odds ratio of experiencing a complete GI response with oliceridine (pooled regimens) vs. morphine was 3.14 (95% CI: 1.78, 5.56; p < 0.0001) in bunionectomy study and 1.92 (95% CI: 1.09, 3.36; p = 0.024) in abdominoplasty study. CONCLUSIONS When controlled for the analgesic effects (constant SPID-48/24), the odds ratio for complete GI response was higher with oliceridine than morphine, suggesting better GI tolerability with oliceridine.
Collapse
Affiliation(s)
- Timothy L Beard
- Department of Surgery and Clinical Research, Summit Medical Group, Bend Memorial Clinic, Bend, OR, USA.
| | | | - Keith A Candiotti
- Department of Anesthesiology, Perioperative Medicine, and Pain Management, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Paul Rider
- Department of Surgery, University of South Alabama Medical Center, Mobile, AL, USA
| | | | - Ashraf S Habib
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | | | | | - Eugene R Viscusi
- Department of Anesthesiology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
49
|
Miyano K, Manabe S, Komatsu A, Fujii Y, Mizobuchi Y, Uezono E, Ohshima K, Nonaka M, Kuroda Y, Narita M, Uezono Y. The G Protein Signal-Biased Compound TRV130; Structures, Its Site of Action and Clinical Studies. Curr Top Med Chem 2020; 20:2822-2829. [PMID: 33115393 DOI: 10.2174/1568026620999201027224229] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 11/22/2022]
Abstract
Opioid agonists elicit their analgesic action mainly via μ opioid receptors; however, their use is limited because of adverse events including constipation and respiratory depression. It has been shown that analgesic action is transduced by the G protein-mediated pathway whereas adverse events are by the β-arrestin-mediated pathway through μ opioid receptor signaling. The first new-generation opioid TRV130, which preferentially activates G protein- but not β-arrestin-mediated signal, was constructed and developed to reduce adverse events. TRV130 and other G protein-biased compounds tend to elicit desirable analgesic action with less adverse effects. In clinical trials, the intravenous TRV130 (oliceridine) was evaluated in Phase I, II and III clinical studies. Here we review the discovery and synthesis of TRV130, its main action as a novel analgesic having less adverse events, its up-to-date status in clinical trials, and additional concerns about TRV130 as demonstrated in the literature.
Collapse
Affiliation(s)
- Kanako Miyano
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo, Japan
| | - Sei Manabe
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo, Japan
| | - Akane Komatsu
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo, Japan
| | - Yuriko Fujii
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo, Japan
| | - Yusuke Mizobuchi
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo, Japan
| | - Eiko Uezono
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo, Japan
| | - Kaori Ohshima
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo, Japan
| | - Miki Nonaka
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo, Japan
| | - Yui Kuroda
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo,, Japan
| | - Minoru Narita
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo, Japan
| | - Yasuhito Uezono
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
50
|
Chen R, Tang LH, Sun T, Zeng Z, Zhang YY, Ding K, Meng QT. Mechanism and Management of Fentanyl-Induced Cough. Front Pharmacol 2020; 11:584177. [PMID: 33324214 PMCID: PMC7723435 DOI: 10.3389/fphar.2020.584177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/28/2020] [Indexed: 12/19/2022] Open
Abstract
Fentanyl-induced cough (FIC) often occurs after intravenous bolus administration of fentanyl analogs during induction of general anesthesia and analgesia procedure. The cough is generally benign, but sometimes it causes undesirable side effects, including elevated intra-abdominal, intracranial or intraocular pressure. Therefore, understanding the related mechanisms and influencing factors are of great significance to prevent and treat the cough. This paper reviews the molecular mechanism, influencing factors and preventive administration of FIC, focusing on the efficacy and side effects of various drugs in inhibiting FIC to provide some medical reference for anesthesiologists.
Collapse
Affiliation(s)
- Rong Chen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Anesthesiology, East Hospital, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ling-Hua Tang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tao Sun
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zi Zeng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yun-Yan Zhang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ke Ding
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qing-Tao Meng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Anesthesiology, East Hospital, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|