1
|
Mead AF, Wood NB, Nelson SR, Palmer BM, Yang L, Previs SB, Ploysangngam A, Kennedy GG, McAdow JF, Tremble SM, Zimmermann MA, Cipolla MJ, Ebert AM, Johnson AN, Gurnett CA, Previs MJ, Warshaw DM. Functional role of myosin-binding protein H in thick filaments of developing vertebrate fast-twitch skeletal muscle. J Gen Physiol 2024; 156:e202413604. [PMID: 39373654 PMCID: PMC11461142 DOI: 10.1085/jgp.202413604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/01/2024] [Accepted: 09/20/2024] [Indexed: 10/08/2024] Open
Abstract
Myosin-binding protein H (MyBP-H) is a component of the vertebrate skeletal muscle sarcomere with sequence and domain homology to myosin-binding protein C (MyBP-C). Whereas skeletal muscle isoforms of MyBP-C (fMyBP-C, sMyBP-C) modulate muscle contractility via interactions with actin thin filaments and myosin motors within the muscle sarcomere "C-zone," MyBP-H has no known function. This is in part due to MyBP-H having limited expression in adult fast-twitch muscle and no known involvement in muscle disease. Quantitative proteomics reported here reveal that MyBP-H is highly expressed in prenatal rat fast-twitch muscles and larval zebrafish, suggesting a conserved role in muscle development and prompting studies to define its function. We take advantage of the genetic control of the zebrafish model and a combination of structural, functional, and biophysical techniques to interrogate the role of MyBP-H. Transgenic, FLAG-tagged MyBP-H or fMyBP-C both localize to the C-zones in larval myofibers, whereas genetic depletion of endogenous MyBP-H or fMyBP-C leads to increased accumulation of the other, suggesting competition for C-zone binding sites. Does MyBP-H modulate contractility in the C-zone? Globular domains critical to MyBP-C's modulatory functions are absent from MyBP-H, suggesting that MyBP-H may be functionally silent. However, our results suggest an active role. In vitro motility experiments indicate MyBP-H shares MyBP-C's capacity as a molecular "brake." These results provide new insights and raise questions about the role of the C-zone during muscle development.
Collapse
Affiliation(s)
- Andrew F. Mead
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Cardiovascular Research Institute, University of Vermont, Burlington, VT, USA
| | - Neil B. Wood
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Shane R. Nelson
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Cardiovascular Research Institute, University of Vermont, Burlington, VT, USA
| | - Bradley M. Palmer
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Cardiovascular Research Institute, University of Vermont, Burlington, VT, USA
| | - Lin Yang
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, USA
| | - Samantha Beck Previs
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Cardiovascular Research Institute, University of Vermont, Burlington, VT, USA
| | - Angela Ploysangngam
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Guy G. Kennedy
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Jennifer F. McAdow
- Department of Neurlogical Sciences, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Sarah M. Tremble
- Department of Electrical and Biomedical Engineering, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, VT, USA
| | - Marcus A. Zimmermann
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Cardiovascular Research Institute, University of Vermont, Burlington, VT, USA
| | - Marilyn J. Cipolla
- Department of Electrical and Biomedical Engineering, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, VT, USA
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Alicia M. Ebert
- Department of Biology, College of Arts and Sciences, University of Vermont, Burlington, VT, USA
| | - Aaron N. Johnson
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Christina A. Gurnett
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Michael J. Previs
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Cardiovascular Research Institute, University of Vermont, Burlington, VT, USA
| | - David M. Warshaw
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Cardiovascular Research Institute, University of Vermont, Burlington, VT, USA
| |
Collapse
|
2
|
Kochurova AM, Beldiia EA, Nefedova VV, Yampolskaya DS, Koubassova NA, Kleymenov SY, Antonets JY, Ryabkova NS, Katrukha IA, Bershitsky SY, Matyushenko AM, Kopylova GV, Shchepkin DV. The D75N and P161S Mutations in the C0-C2 Fragment of cMyBP-C Associated with Hypertrophic Cardiomyopathy Disturb the Thin Filament Activation, Nucleotide Exchange in Myosin, and Actin-Myosin Interaction. Int J Mol Sci 2024; 25:11195. [PMID: 39456977 PMCID: PMC11508426 DOI: 10.3390/ijms252011195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
About half of the mutations that lead to hypertrophic cardiomyopathy (HCM) occur in the MYBPC3 gene. However, the molecular mechanisms of pathogenicity of point mutations in cardiac myosin-binding protein C (cMyBP-C) remain poorly understood. In this study, we examined the effects of the D75N and P161S substitutions in the C0 and C1 domains of cMyBP-C on the structural and functional properties of the C0-C1-m-C2 fragment (C0-C2). Differential scanning calorimetry revealed that these mutations disorder the tertiary structure of the C0-C2 molecule. Functionally, the D75N mutation reduced the maximum sliding velocity of regulated thin filaments in an in vitro motility assay, while the P161S mutation increased it. Both mutations significantly reduced the calcium sensitivity of the actin-myosin interaction and impaired thin filament activation by cross-bridges. D75N and P161S C0-C2 fragments substantially decreased the sliding velocity of the F-actin-tropomyosin filament. ADP dose-dependently reduced filament sliding velocity in the presence of WT and P161S fragments, but the velocity remained unchanged with the D75N fragment. We suppose that the D75N mutation alters nucleotide exchange kinetics by decreasing ADP affinity to the ATPase pocket and slowing the myosin cycle. Our molecular dynamics simulations mean that the D75N mutation affects myosin S1 function. Both mutations impair cardiac contractility by disrupting thin filament activation. The results offer new insights into the HCM pathogenesis caused by missense mutations in N-terminal domains of cMyBP-C, highlighting the distinct effects of D75N and P161S mutations on cardiac contractile function.
Collapse
Affiliation(s)
- Anastasia M. Kochurova
- Institute of Immunology and Physiology of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia (D.V.S.)
| | - Evgenia A. Beldiia
- Institute of Immunology and Physiology of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia (D.V.S.)
| | - Victoria V. Nefedova
- Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Daria S. Yampolskaya
- Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | | | - Sergey Y. Kleymenov
- Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Julia Y. Antonets
- Institute of Immunology and Physiology of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia (D.V.S.)
| | - Natalia S. Ryabkova
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- HyTest Ltd., 20520 Turku, Finland
| | - Ivan A. Katrukha
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- HyTest Ltd., 20520 Turku, Finland
| | - Sergey Y. Bershitsky
- Institute of Immunology and Physiology of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia (D.V.S.)
| | | | - Galina V. Kopylova
- Institute of Immunology and Physiology of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia (D.V.S.)
| | - Daniil V. Shchepkin
- Institute of Immunology and Physiology of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia (D.V.S.)
| |
Collapse
|
3
|
Mertens J, De Lange WJ, Farrell ET, Harbaugh EC, Gauchan A, Fitzsimons DP, Moss RL, Ralphe JC. The W792R HCM missense mutation in the C6 domain of cardiac myosin binding protein-C increases contractility in neonatal mouse myocardium. J Mol Cell Cardiol 2024; 195:14-23. [PMID: 39059462 DOI: 10.1016/j.yjmcc.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Missense mutations in cardiac myosin binding protein C (cMyBP-C) are known to cause hypertrophic cardiomyopathy (HCM). The W792R mutation in the C6 domain of cMyBP-C causes severe, early onset HCM in humans, yet its impact on the function of cMyBP-C and the mechanism through which it causes disease remain unknown. To fully characterize the effect of the W792R mutation on cardiac morphology and function in vivo, we generated a murine knock-in model. We crossed heterozygous W792RWR mice to produce homozygous mutant W792RRR, heterozygous W792RWR, and control W792RWW mice. W792RRR mice present with cardiac hypertrophy, myofibrillar disarray and fibrosis by postnatal day 10 (PND10), and do not survive past PND21. Full-length cMyBP-C is present at similar levels in W792RWW, W792RWR and W792RRR mice and is properly incorporated into the sarcomere. Heterozygous W792RWR mice displayed normal heart morphology and contractility. Permeabilized myocardium from PND10 W792RRR mice showed increased Ca2+ sensitivity, accelerated cross-bridge cycling kinetics, decreased cooperativity in the activation of force, and increased expression of hypertrophy-related genes. In silico modeling suggests that the W792R mutation destabilizes the fold of the C6 domain and increases torsion in the C5-C7 region, possibly impacting regulatory interactions of cMyBP-C with myosin and actin. Based on the data presented here, we propose a model in which mutant W792R cMyBP-C preferentially forms Ca2+ sensitizing interactions with actin, rather than inhibitory interactions with myosin. The W792R-cMyBP-C mouse model provides mechanistic insights into the pathology of this mutation and may provide a mechanism by which other central domain missense mutations in cMyBP-C may alter contractility, leading to HCM.
Collapse
Affiliation(s)
- Jasmine Mertens
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America; UW Cardiovascular Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America
| | - Willem J De Lange
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America; UW Cardiovascular Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America
| | - Emily T Farrell
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America; UW Cardiovascular Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America
| | - Ella C Harbaugh
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America; UW Cardiovascular Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America
| | - Angeela Gauchan
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America; UW Cardiovascular Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America
| | - Daniel P Fitzsimons
- UW Cardiovascular Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America; Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America
| | - Richard L Moss
- UW Cardiovascular Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America; Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America
| | - J Carter Ralphe
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America; UW Cardiovascular Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America.
| |
Collapse
|
4
|
Mead AF, Wood NB, Nelson SR, Palmer BM, Yang L, Previs SB, Ploysangngam A, Kennedy GG, McAdow JF, Tremble SM, Cipolla MJ, Ebert AM, Johnson AN, Gurnett CA, Previs MJ, Warshaw DM. Functional role of myosin-binding protein H in thick filaments of developing vertebrate fast-twitch skeletal muscle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593199. [PMID: 38798399 PMCID: PMC11118323 DOI: 10.1101/2024.05.10.593199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Myosin-binding protein H (MyBP-H) is a component of the vertebrate skeletal muscle sarcomere with sequence and domain homology to myosin-binding protein C (MyBP-C). Whereas skeletal muscle isoforms of MyBP-C (fMyBP-C, sMyBP-C) modulate muscle contractility via interactions with actin thin filaments and myosin motors within the muscle sarcomere "C-zone," MyBP-H has no known function. This is in part due to MyBP-H having limited expression in adult fast-twitch muscle and no known involvement in muscle disease. Quantitative proteomics reported here reveal MyBP-H is highly expressed in prenatal rat fast-twitch muscles and larval zebrafish, suggesting a conserved role in muscle development, and promoting studies to define its function. We take advantage of the genetic control of the zebrafish model and a combination of structural, functional, and biophysical techniques to interrogate the role of MyBP-H. Transgenic, FLAG-tagged MyBP-H or fMyBP-C both localize to the C-zones in larval myofibers, whereas genetic depletion of endogenous MyBP-H or fMyBP-C leads to increased accumulation of the other, suggesting competition for C-zone binding sites. Does MyBP-H modulate contractility from the C-zone? Globular domains critical to MyBP-C's modulatory functions are absent from MyBP-H, suggesting MyBP-H may be functionally silent. However, our results suggest an active role. Small angle x-ray diffraction of intact larval tails revealed MyBP-H contributes to the compression of the myofilament lattice accompanying stretch or contraction, while in vitro motility experiments indicate MyBP-H shares MyBP-C's capacity as a molecular "brake". These results provide new insights and raise questions about the role of the C-zone during muscle development.
Collapse
Affiliation(s)
- Andrew F. Mead
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT 05405
- Cardiovascular Research Institute, University of Vermont, Burlington, VT 05405
| | - Neil B. Wood
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT 05405
| | - Shane R. Nelson
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT 05405
- Cardiovascular Research Institute, University of Vermont, Burlington, VT 05405
| | - Bradley M. Palmer
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT 05405
- Cardiovascular Research Institute, University of Vermont, Burlington, VT 05405
| | - Lin Yang
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973
| | - Samantha Beck Previs
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT 05405
- Cardiovascular Research Institute, University of Vermont, Burlington, VT 05405
| | - Angela Ploysangngam
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT 05405
| | - Guy G. Kennedy
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT 05405
| | - Jennifer F. McAdow
- Department of Neurlogical Sciences, Larner College of Medicine, University of Vermont, Burlington, VT 05405
| | - Sarah M. Tremble
- Department of Electrical and Biomedical Engineering, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, VT 05405
| | - Marilyn J. Cipolla
- Department of Electrical and Biomedical Engineering, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, VT 05405
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Alicia M. Ebert
- Department of Biology, College of Arts and Sciences, University of Vermont, Burlington, VT 05405
| | - Aaron N. Johnson
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Christina A. Gurnett
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Michael J. Previs
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT 05405
- Cardiovascular Research Institute, University of Vermont, Burlington, VT 05405
| | - David M. Warshaw
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT 05405
- Cardiovascular Research Institute, University of Vermont, Burlington, VT 05405
| |
Collapse
|
5
|
Janssens JV, Raaijmakers AJA, Weeks KL, Bell JR, Mellor KM, Curl CL, Delbridge LMD. The cardiomyocyte origins of diastolic dysfunction: cellular components of myocardial "stiffness". Am J Physiol Heart Circ Physiol 2024; 326:H584-H598. [PMID: 38180448 DOI: 10.1152/ajpheart.00334.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/07/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024]
Abstract
The impaired ability of the heart to relax and stretch to accommodate venous return is generally understood to represent a state of "diastolic dysfunction" and often described using the all-purpose noun "stiffness." Despite the now common qualitative usage of this term in fields of cardiac patho/physiology, the specific quantitative concept of stiffness as a molecular and biophysical entity with real practical interpretation in healthy and diseased hearts is sometimes obscure. The focus of this review is to characterize the concept of cardiomyocyte stiffness and to develop interpretation of "stiffness" attributes at the cellular and molecular levels. Here, we consider "stiffness"-related terminology interpretation and make links between cardiomyocyte stiffness and aspects of functional and structural cardiac performance. We discuss cross bridge-derived stiffness sources, considering the contributions of diastolic myofilament activation and impaired relaxation. This includes commentary relating to the role of cardiomyocyte Ca2+ flux and Ca2+ levels in diastole, the troponin-tropomyosin complex role as a Ca2+ effector in diastole, the myosin ADP dissociation rate as a modulator of cross bridge attachment and regulation of cross-bridge attachment by myosin binding protein C. We also discuss non-cross bridge-derived stiffness sources, including the titin sarcomeric spring protein, microtubule and intermediate filaments, and cytoskeletal extracellular matrix interactions. As the prevalence of conditions involving diastolic heart failure has escalated, a more sophisticated understanding of the molecular, cellular, and tissue determinants of cardiomyocyte stiffness offers potential to develop imaging and molecular intervention tools.
Collapse
Affiliation(s)
- Johannes V Janssens
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Antonia J A Raaijmakers
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Kate L Weeks
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
- Department of Diabetes, Monash University, Parkville, Victoria, Australia
| | - James R Bell
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, Victoria, Australia
| | - Kimberley M Mellor
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Physiology, University of Auckland, Auckland, New Zealand
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Claire L Curl
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Lea M D Delbridge
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
6
|
Burnham HV, Cizauskas HE, Barefield DY. Fine tuning contractility: atrial sarcomere function in health and disease. Am J Physiol Heart Circ Physiol 2024; 326:H568-H583. [PMID: 38156887 PMCID: PMC11221815 DOI: 10.1152/ajpheart.00252.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
The molecular mechanisms of sarcomere proteins underlie the contractile function of the heart. Although our understanding of the sarcomere has grown tremendously, the focus has been on ventricular sarcomere isoforms due to the critical role of the ventricle in health and disease. However, atrial-specific or -enriched myofilament protein isoforms, as well as isoforms that become expressed in disease, provide insight into ways this complex molecular machine is fine-tuned. Here, we explore how atrial-enriched sarcomere protein composition modulates contractile function to fulfill the physiological requirements of atrial function. We review how atrial dysfunction negatively affects the ventricle and the many cardiovascular diseases that have atrial dysfunction as a comorbidity. We also cover the pathophysiology of mutations in atrial-enriched contractile proteins and how they can cause primary atrial myopathies. Finally, we explore what is known about contractile function in various forms of atrial fibrillation. The differences in atrial function in health and disease underscore the importance of better studying atrial contractility, especially as therapeutics currently in development to modulate cardiac contractility may have different effects on atrial sarcomere function.
Collapse
Affiliation(s)
- Hope V Burnham
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois, United States
| | - Hannah E Cizauskas
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois, United States
| | - David Y Barefield
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois, United States
| |
Collapse
|
7
|
Aboonabi A, McCauley MD. Myofilament dysfunction in diastolic heart failure. Heart Fail Rev 2024; 29:79-93. [PMID: 37837495 PMCID: PMC10904515 DOI: 10.1007/s10741-023-10352-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/18/2023] [Indexed: 10/16/2023]
Abstract
Diastolic heart failure (DHF), in which impaired ventricular filling leads to typical heart failure symptoms, represents over 50% of all heart failure cases and is linked with risk factors, including metabolic syndrome, hypertension, diabetes, and aging. A substantial proportion of patients with this disorder maintain normal left ventricular systolic function, as assessed by ejection fraction. Despite the high prevalence of DHF, no effective therapeutic agents are available to treat this condition, partially because the molecular mechanisms of diastolic dysfunction remain poorly understood. As such, by focusing on the underlying molecular and cellular processes contributing to DHF can yield new insights that can represent an exciting new avenue and propose a novel therapeutic approach for DHF treatment. This review discusses new developments from basic and clinical/translational research to highlight current knowledge gaps, help define molecular determinants of diastolic dysfunction, and clarify new targets for treatment.
Collapse
Affiliation(s)
- Anahita Aboonabi
- Division of Cardiology, Department of Medicine, College of Medicine, University of Illinois at Chicago, 840 S. Wood St., 920S (MC 715), Chicago, IL, 60612, USA.
- Jesse Brown VA Medical Center, Chicago, IL, USA.
| | - Mark D McCauley
- Division of Cardiology, Department of Medicine, College of Medicine, University of Illinois at Chicago, 840 S. Wood St., 920S (MC 715), Chicago, IL, 60612, USA.
- Jesse Brown VA Medical Center, Chicago, IL, USA.
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
8
|
Tanner BCW. Design Principles and Benefits of Spatially Explicit Models of Myofilament Function. Methods Mol Biol 2024; 2735:43-62. [PMID: 38038843 DOI: 10.1007/978-1-0716-3527-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Spatially explicit models of muscle contraction include fine-scale details about the spatial, kinetic, and/or mechanical properties of the biological processes being represented within the model network. Over the past 25 years, this has primarily consisted of a set of mathematical and computational algorithms representing myosin cross-bridge activity, Ca2+-activation of contraction, and ensemble force production within a half-sarcomere representation of the myofilament network. Herein we discuss basic design principles associated with creating spatially explicit models of myofilament function, as well as model assumptions underlying model development. A brief overview of computational approaches is introduced. Opportunities for new model directions that could investigate coupled regulatory pathways between the thick-filament and thin-filaments are also presented. Given the modular design and flexibility associated with spatially explicit models, we highlight some advantages of this approach compared to other model formulations.
Collapse
Affiliation(s)
- Bertrand C W Tanner
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, USA.
| |
Collapse
|
9
|
Barefield DY, Tonino P, Woulfe KC, Rahmanseresht S, O’Leary TS, Burnham HV, Wasserstrom JA, Kirk JA, Previs MJ, Granzier HL, McNally EM. Myosin-binding protein H-like regulates myosin-binding protein distribution and function in atrial cardiomyocytes. Proc Natl Acad Sci U S A 2023; 120:e2314920120. [PMID: 38091294 PMCID: PMC10741380 DOI: 10.1073/pnas.2314920120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/25/2023] [Indexed: 12/18/2023] Open
Abstract
Mutations in atrial-enriched genes can cause a primary atrial myopathy that can contribute to overall cardiovascular dysfunction. MYBPHL encodes myosin-binding protein H-like (MyBP-HL), an atrial sarcomere protein that shares domain homology with the carboxy-terminus of cardiac myosin-binding protein-C (cMyBP-C). The function of MyBP-HL and the relationship between MyBP-HL and cMyBP-C is unknown. To decipher the roles of MyBP-HL, we used structured illumination microscopy, immuno-electron microscopy, and mass spectrometry to establish the localization and stoichiometry of MyBP-HL. We found levels of cMyBP-C, a major regulator of myosin function, were half as abundant compared to levels in the ventricle. In genetic mouse models, loss of MyBP-HL doubled cMyBP-C abundance in the atria, and loss of cMyBP-C doubled MyBP-HL abundance in the atria. Structured illumination microscopy showed that both proteins colocalize in the C-zone of the A-band, with MyBP-HL enriched closer to the M-line. Immuno-electron microscopy of mouse atria showed MyBP-HL strongly localized 161 nm from the M-line, consistent with localization to the third 43 nm repeat of myosin heads. Both cMyBP-C and MyBP-HL had less-defined sarcomere localization in the atria compared to ventricle, yet areas with the expected 43 nm repeat distance were observed for both proteins. Isometric force measurements taken from control and Mybphl null single atrial myofibrils revealed that loss of Mybphl accelerated the linear phase of relaxation. These findings support a mechanism where MyBP-HL regulates cMyBP-C abundance to alter the kinetics of sarcomere relaxation in atrial sarcomeres.
Collapse
Affiliation(s)
- David Y. Barefield
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL60153
| | - Paola Tonino
- Department of Cell and Molecular Medicine, University of Arizona, Tucson, AZ85724
| | - Kathleen C. Woulfe
- Division of Cardiology, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO80045
| | - Sheema Rahmanseresht
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT01655
| | - Thomas S. O’Leary
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT01655
| | - Hope V. Burnham
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL60153
| | - J. Andrew Wasserstrom
- Department of Medicine and The Feinberg Cardiovascular and Renal Institute, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Jonathan A. Kirk
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL60153
| | - Michael J. Previs
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT01655
| | - Henk L. Granzier
- Department of Cell and Molecular Medicine, University of Arizona, Tucson, AZ85724
| | - Elizabeth M. McNally
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| |
Collapse
|
10
|
Kelly CM, Martin JL, Coseno M, Previs MJ. Visualization of cardiac thick filament dynamics in ex vivo heart preparations. J Mol Cell Cardiol 2023; 185:88-98. [PMID: 37923195 PMCID: PMC10959293 DOI: 10.1016/j.yjmcc.2023.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
RATIONALE Cardiac muscle cells are terminally differentiated after birth and must beat continually throughout one's lifetime. This mechanical process is driven by the sliding of actin-based thin filaments along myosin-based thick filaments, organized within sarcomeres. Despite costly energetic demand, the half-life of the proteins that comprise the cardiac thick filaments is ∼10 days, with individual molecules being replaced stochastically, by unknown mechanisms. OBJECTIVES To allow for the stochastic replacement of molecules, we hypothesized that the structure of thick filaments must be highly dynamic in vivo. METHODS AND RESULTS To test this hypothesis in adult mouse hearts, we replaced a fraction of the endogenous myosin regulatory light chain (RLC), a component of thick filaments, with GFP-labeled RLC by adeno-associated viral (AAV) transduction. The RLC-GFP was properly localized to the heads of the myosin molecules within thick filaments in ex vivo heart preparations and had no effect on heart size or actin filament siding in vitro. However, the localization of the RLC-GFP molecules was highly mobile, changing its position within the sarcomere on the minute timescale, when quantified by fluorescence recovery after photobleaching (FRAP) using multiphoton microscopy. Interestingly, RLC-GFP mobility was restricted to within the boundaries of single sarcomeres. When cardiomyocytes were lysed, the RLC-GFP remained strongly bound to myosin heavy chain, and the intact myosin molecules adopted a folded, compact configuration, when disassociated from the filaments at physiological ionic conditions. CONCLUSIONS These data demonstrate that the structure of the thick filament is highly dynamic in the intact heart, with a rate of molecular exchange into and out of thick filaments that is ∼1500 times faster than that required for the replacement of molecules through protein synthesis or degradation.
Collapse
Affiliation(s)
- Colleen M Kelly
- Molecular Physiology and Biophysics Department, University of Vermont, Larner College of Medicine, Burlington, VT 05405, United States of America
| | - Jody L Martin
- Department of Pharmacology, University of California, Davis, Davis, CA 90095, United States of America
| | - Molly Coseno
- Fluidic Analytics, The Paddocks Business Centre, Cambridge CB1 8DH, United Kingdom
| | - Michael J Previs
- Molecular Physiology and Biophysics Department, University of Vermont, Larner College of Medicine, Burlington, VT 05405, United States of America.
| |
Collapse
|
11
|
Huang X, Torre I, Chiappi M, Yin Z, Vydyanath A, Cao S, Raschdorf O, Beeby M, Quigley B, de Tombe PP, Liu J, Morris EP, Luther PK. Cryo-electron tomography of intact cardiac muscle reveals myosin binding protein-C linking myosin and actin filaments. J Muscle Res Cell Motil 2023; 44:165-178. [PMID: 37115473 PMCID: PMC10542292 DOI: 10.1007/s10974-023-09647-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/29/2023] [Indexed: 04/29/2023]
Abstract
Myosin binding protein C (MyBP-C) is an accessory protein of the thick filament in vertebrate cardiac muscle arranged over 9 stripes of intervals of 430 Å in each half of the A-band in the region called the C-zone. Mutations in cardiac MyBP-C are a leading cause of hypertrophic cardiomyopathy the mechanism of which is unknown. It is a rod-shaped protein composed of 10 or 11 immunoglobulin- or fibronectin-like domains labelled C0 to C10 which binds to the thick filament via its C-terminal region. MyBP-C regulates contraction in a phosphorylation dependent fashion that may be through binding of its N-terminal domains with myosin or actin. Understanding the 3D organisation of MyBP-C in the sarcomere environment may provide new light on its function. We report here the fine structure of MyBP-C in relaxed rat cardiac muscle by cryo-electron tomography and subtomogram averaging of refrozen Tokuyasu cryosections. We find that on average MyBP-C connects via its distal end to actin across a disc perpendicular to the thick filament. The path of MyBP-C suggests that the central domains may interact with myosin heads. Surprisingly MyBP-C at Stripe 4 is different; it has weaker density than the other stripes which could result from a mainly axial or wavy path. Given that the same feature at Stripe 4 can also be found in several mammalian cardiac muscles and in some skeletal muscles, our finding may have broader implication and significance. In the D-zone, we show the first demonstration of myosin crowns arranged on a uniform 143 Å repeat.
Collapse
Affiliation(s)
- Xinrui Huang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, 06516, USA
| | - Iratxe Torre
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
| | - Michele Chiappi
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
| | - Zhan Yin
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
| | - Anupama Vydyanath
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
| | - Shuangyi Cao
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
| | | | - Morgan Beeby
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Bonnie Quigley
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Pieter P de Tombe
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 S. Wolcott Ave, Chicago, IL, 60612, USA
- Phymedexp, Université de Montpellier, Inserm, CNRS, Montpellier, France
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, 06516, USA
| | - Edward P Morris
- Division of Structural Biology, Institute of Cancer Research, London, SW3 6JB, UK
- School of Molecular Biosciences, University of Glasgow, Garscube Campus, Jarrett Building, 351, Bearsden Road, Glasgow, G61 1QH, UK
| | - Pradeep K Luther
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK.
- Cardiac Function Section, National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
12
|
Shiraishi C, Matsumoto A, Ichihara K, Yamamoto T, Yokoyama T, Mizoo T, Hatano A, Matsumoto M, Tanaka Y, Matsuura-Suzuki E, Iwasaki S, Matsushima S, Tsutsui H, Nakayama KI. RPL3L-containing ribosomes determine translation elongation dynamics required for cardiac function. Nat Commun 2023; 14:2131. [PMID: 37080962 PMCID: PMC10119107 DOI: 10.1038/s41467-023-37838-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 04/03/2023] [Indexed: 04/22/2023] Open
Abstract
Although several ribosomal protein paralogs are expressed in a tissue-specific manner, how these proteins affect translation and why they are required only in certain tissues have remained unclear. Here we show that RPL3L, a paralog of RPL3 specifically expressed in heart and skeletal muscle, influences translation elongation dynamics. Deficiency of RPL3L-containing ribosomes in RPL3L knockout male mice resulted in impaired cardiac contractility. Ribosome occupancy at mRNA codons was found to be altered in the RPL3L-deficient heart, and the changes were negatively correlated with those observed in myoblasts overexpressing RPL3L. RPL3L-containing ribosomes were less prone to collisions compared with RPL3-containing canonical ribosomes. Although the loss of RPL3L-containing ribosomes altered translation elongation dynamics for the entire transcriptome, its effects were most pronounced for transcripts related to cardiac muscle contraction and dilated cardiomyopathy, with the abundance of the encoded proteins being correspondingly decreased. Our results provide further insight into the mechanisms and physiological relevance of tissue-specific translational regulation.
Collapse
Affiliation(s)
- Chisa Shiraishi
- Division of Cell Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka, 812-8582, Japan
| | - Akinobu Matsumoto
- Division of Cell Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka, 812-8582, Japan.
| | - Kazuya Ichihara
- Division of Cell Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka, 812-8582, Japan
| | - Taishi Yamamoto
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Fukuoka, 812-8582, Japan
| | - Takeshi Yokoyama
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8577, Japan
| | - Taisuke Mizoo
- Division of Cell Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka, 812-8582, Japan
| | - Atsushi Hatano
- Department of Omics and Systems Biology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| | - Masaki Matsumoto
- Department of Omics and Systems Biology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| | - Yoshikazu Tanaka
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8577, Japan
| | - Eriko Matsuura-Suzuki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan
| | - Shouji Matsushima
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Fukuoka, 812-8582, Japan
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Fukuoka, 812-8582, Japan
| | - Keiichi I Nakayama
- Division of Cell Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka, 812-8582, Japan.
| |
Collapse
|
13
|
Strimaityte D, Tu C, Yanez A, Itzhaki I, Wu H, Wu JC, Yang H. Contractility and Calcium Transient Maturation in the Human iPSC-Derived Cardiac Microfibers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:35376-35388. [PMID: 35901275 PMCID: PMC9780031 DOI: 10.1021/acsami.2c07326] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are considered immature in the sarcomere organization, contractile machinery, calcium transient, and transcriptome profile, which prevent them from further applications in modeling and studying cardiac development and disease. To improve the maturity of hiPSC-CMs, here, we engineered the hiPSC-CMs into cardiac microfibers (iCMFs) by a stencil-based micropatterning method, which enables the hiPSC-CMs to be aligned in an end-to-end connection for prolonged culture on the hydrogel of physiological stiffness. A series of characterization approaches were performed to evaluate the maturation in iCMFs on both structural and functional levels, including immunohistochemistry, calcium transient, reverse-transcription quantitative PCR, cardiac contractility, and electrical pacing analysis. Our results demonstrate an improved cardiac maturation of hiPSC-CMs in iCMFs compared to micropatterned or random single hiPSC-CMs and hiPSC-CMs in a random cluster at the same cell number of iCMFs. We found an increased sarcomere length, better regularity and alignment of sarcomeres, enhanced contractility, matured calcium transient, and T-tubule formation and improved adherens junction and gap junction formation. The hiPSC-CMs in iCMFs showed a robust calcium cycling in response to the programmed and continuous electrical pacing from 0.5 to 7 Hz. Moreover, we generated the iCMFs with hiPSC-CMs with mutations in myosin-binding protein C (MYBPC3) to have a proof-of-concept of iCMFs in modeling cardiac hypertrophic phenotype. These findings suggest that the multipatterned iCMF connection of hiPSC-CMs boosts the cardiac maturation structurally and functionally, which will reveal the full potential of the application of hiPSC-CM models in disease modeling of cardiomyopathy and cardiac regenerative medicine.
Collapse
Affiliation(s)
- Dovile Strimaityte
- Department of Biomedical Engineering, University of North Texas, Denton, TX 76207, USA
| | - Chengyi Tu
- Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Apuleyo Yanez
- Department of Biomedical Engineering, University of North Texas, Denton, TX 76207, USA
| | - Ilanit Itzhaki
- Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Haodi Wu
- Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Joseph C. Wu
- Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Huaxiao Yang
- Department of Biomedical Engineering, University of North Texas, Denton, TX 76207, USA
| |
Collapse
|
14
|
Touma AM, Tang W, Rasicci DV, Vang D, Rai A, Previs SB, Warshaw DM, Yengo CM, Sivaramakrishnan S. Nanosurfer assay dissects β-cardiac myosin and cardiac myosin-binding protein C interactions. Biophys J 2022; 121:2449-2460. [PMID: 35591788 PMCID: PMC9279167 DOI: 10.1016/j.bpj.2022.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 04/13/2022] [Accepted: 05/13/2022] [Indexed: 11/02/2022] Open
Abstract
Cardiac myosin-binding protein C (cMyBP-C) modulates cardiac contractility through putative interactions with the myosin S2 tail and/or the thin filament. The relative contribution of these binding-partner interactions to cMyBP-C modulatory function remains unclear. Hence, we developed a "nanosurfer" assay as a model system to interrogate these cMyBP-C binding-partner interactions. Synthetic thick filaments were generated using recombinant human β-cardiac myosin subfragments (HMM or S1) attached to DNA nanotubes, with 14- or 28-nm spacing, corresponding to the 14.3-nm myosin spacing in native thick filaments. The nanosurfer assay consists of DNA nanotubes added to the in vitro motility assay so that myosins on the motility surface effectively deliver thin filaments to the DNA nanotubes, enhancing thin filament gliding probability on the DNA nanotubes. Thin filament velocities on nanotubes with either 14- or 28-nm myosin spacing were no different. We then characterized the effects of cMyBP-C on thin filament motility by alternating HMM and cMyBP-C N-terminal fragments (C0-C2 or C1-C2) on nanotubes every 14 nm. Both C0-C2 and C1-C2 reduced thin filament velocity four- to sixfold relative to HMM alone. Similar inhibition occurred using the myosin S1 construct, which lacks the myosin S2 region proposed to interact with cMyBP-C, suggesting that the cMyBP-C N terminus must interact with other myosin head domains and/or actin to slow thin filament velocity. Thin filament velocity was unaffected by the C0-C1f fragment, which lacks the majority of the M-domain, supporting the importance of this domain for inhibitory interaction(s). A C0-C2 fragment with phospho-mimetic replacement in the M-domain showed markedly less inhibition of thin filament velocity compared with its phospho-null counterpart, highlighting the modulatory role of M-domain phosphorylation on cMyBP-C function. Therefore, the nanosurfer assay provides a platform to precisely manipulate spatially dependent cMyBP-C binding-partner interactions, shedding light on the molecular regulation of β-cardiac myosin contractility.
Collapse
Affiliation(s)
- Anja M Touma
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota
| | - Wanjian Tang
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania
| | - David V Rasicci
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Duha Vang
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota
| | - Ashim Rai
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota
| | - Samantha B Previs
- Department of Molecular Physiology and Biophysics, Cardiovascular Research Institute, University of Vermont, Burlington, Vermont
| | - David M Warshaw
- Department of Molecular Physiology and Biophysics, Cardiovascular Research Institute, University of Vermont, Burlington, Vermont
| | - Christopher M Yengo
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Sivaraj Sivaramakrishnan
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
15
|
Dassanayake Mudiyanselage SP, Gage MJ. Regulation of Poly-E Motif Flexibility by pH, Ca 2+ and the PPAK Motif. Int J Mol Sci 2022; 23:ijms23094779. [PMID: 35563177 PMCID: PMC9100103 DOI: 10.3390/ijms23094779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/18/2022] [Accepted: 04/22/2022] [Indexed: 12/04/2022] Open
Abstract
The disordered PEVK region of titin contains two main structural motifs: PPAK and poly-E. The distribution of these motifs in the PEVK region contributes to the elastic properties of this region, but the specific mechanism of how these motifs work together remains unclear. Previous work from our lab has demonstrated that 28-amino acid peptides of the poly-E motif are sensitive to shifts in pH, becoming more flexible as the pH decreases. We extend this work to longer poly-E constructs, including constructs containing PPAK motifs. Our results demonstrate that longer poly-E motifs have a much larger range of pH sensitivity and that the inclusion of the PPAK motif reduces this sensitivity. We also demonstrate that binding calcium can increase the conformational flexibility of the poly-E motif, though the PPAK motif can block this calcium-dependent change. The data presented here suggest a model where PPAK and calcium can alter the stiffness of the poly-E motif by modulating the degree of charge repulsion in the glutamate clusters.
Collapse
Affiliation(s)
| | - Matthew J. Gage
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA 01854, USA;
- UMass Movement Center (UMOVE), University of Massachusetts Lowell, Lowell, MA 01854, USA
- Correspondence:
| |
Collapse
|
16
|
Suay-Corredera C, Alegre-Cebollada J. The mechanics of the heart: zooming in on hypertrophic cardiomyopathy and cMyBP-C. FEBS Lett 2022; 596:703-746. [PMID: 35224729 DOI: 10.1002/1873-3468.14301] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 11/10/2022]
Abstract
Hypertrophic cardiomyopathy (HCM), a disease characterized by cardiac muscle hypertrophy and hypercontractility, is the most frequently inherited disorder of the heart. HCM is mainly caused by variants in genes encoding proteins of the sarcomere, the basic contractile unit of cardiomyocytes. The most frequently mutated among them is MYBPC3, which encodes cardiac myosin-binding protein C (cMyBP-C), a key regulator of sarcomere contraction. In this review, we summarize clinical and genetic aspects of HCM and provide updated information on the function of the healthy and HCM sarcomere, as well as on emerging therapeutic options targeting sarcomere mechanical activity. Building on what is known about cMyBP-C activity, we examine different pathogenicity drivers by which MYBPC3 variants can cause disease, focussing on protein haploinsufficiency as a common pathomechanism also in nontruncating variants. Finally, we discuss recent evidence correlating altered cMyBP-C mechanical properties with HCM development.
Collapse
|
17
|
Pepper I, Galkin VE. Actomyosin Complex. Subcell Biochem 2022; 99:421-470. [PMID: 36151385 PMCID: PMC9710302 DOI: 10.1007/978-3-031-00793-4_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Formation of cross-bridges between actin and myosin occurs ubiquitously in eukaryotic cells and mediates muscle contraction, intracellular cargo transport, and cytoskeletal remodeling. Myosin motors repeatedly bind to and dissociate from actin filaments in a cycle that transduces the chemical energy from ATP hydrolysis into mechanical force generation. While the general layout of surface elements within the actin-binding interface is conserved among myosin classes, sequence divergence within these motifs alters the specific contacts involved in the actomyosin interaction as well as the kinetics of mechanochemical cycle phases. Additionally, diverse lever arm structures influence the motility and force production of myosin molecules during their actin interactions. The structural differences generated by myosin's molecular evolution have fine-tuned the kinetics of its isoforms and adapted them for their individual cellular roles. In this chapter, we will characterize the structural and biochemical basis of the actin-myosin interaction and explain its relationship with myosin's cellular roles, with emphasis on the structural variation among myosin isoforms that enables their functional specialization. We will also discuss the impact of accessory proteins, such as the troponin-tropomyosin complex and myosin-binding protein C, on the formation and regulation of actomyosin cross-bridges.
Collapse
Affiliation(s)
- Ian Pepper
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Vitold E Galkin
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA.
| |
Collapse
|
18
|
Geist Hauserman J, Stavusis J, Joca HC, Robinett JC, Hanft L, Vandermeulen J, Zhao R, Stains JP, Konstantopoulos K, McDonald KS, Ward C, Kontrogianni-Konstantopoulos A. Sarcomeric deficits underlie MYBPC1-associated myopathy with myogenic tremor. JCI Insight 2021; 6:e147612. [PMID: 34437302 PMCID: PMC8525646 DOI: 10.1172/jci.insight.147612] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 08/25/2021] [Indexed: 12/02/2022] Open
Abstract
Myosin binding protein-C slow (sMyBP-C) comprises a subfamily of cytoskeletal proteins encoded by MYBPC1 that is expressed in skeletal muscles where it contributes to myosin thick filament stabilization and actomyosin cross-bridge regulation. Recently, our group described the causal association of dominant missense pathogenic variants in MYBPC1 with an early-onset myopathy characterized by generalized muscle weakness, hypotonia, dysmorphia, skeletal deformities, and myogenic tremor, occurring in the absence of neuropathy. To mechanistically interrogate the etiologies of this MYBPC1-associated myopathy in vivo, we generated a knock-in mouse model carrying the E248K pathogenic variant. Using a battery of phenotypic, behavioral, and physiological measurements spanning neonatal to young adult life, we found that heterozygous E248K mice faithfully recapitulated the onset and progression of generalized myopathy, tremor occurrence, and skeletal deformities seen in human carriers. Moreover, using a combination of biochemical, ultrastructural, and contractile assessments at the level of the tissue, cell, and myofilaments, we show that the loss-of-function phenotype observed in mutant muscles is primarily driven by disordered and misaligned sarcomeres containing fragmented and out-of-register internal membranes that result in reduced force production and tremor initiation. Collectively, our findings provide mechanistic insights underscoring the E248K-disease pathogenesis and offer a relevant preclinical model for therapeutic discovery.
Collapse
Affiliation(s)
- Janelle Geist Hauserman
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Janis Stavusis
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Humberto C. Joca
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Joel C. Robinett
- Department of Medical Pharmacology and Physiology, University of Missouri, School of Medicine Columbia, Missouri, USA
| | - Laurin Hanft
- Department of Medical Pharmacology and Physiology, University of Missouri, School of Medicine Columbia, Missouri, USA
| | - Jack Vandermeulen
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Runchen Zhao
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Joseph P. Stains
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | - Kerry S. McDonald
- Department of Medical Pharmacology and Physiology, University of Missouri, School of Medicine Columbia, Missouri, USA
| | - Christopher Ward
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
19
|
Marcucci L, Fukunaga H, Yanagida T, Iwaki M. The Synergic Role of Actomyosin Architecture and Biased Detachment in Muscle Energetics: Insights in Cross Bridge Mechanism Beyond the Lever-Arm Swing. Int J Mol Sci 2021; 22:ijms22137037. [PMID: 34210098 PMCID: PMC8269045 DOI: 10.3390/ijms22137037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 02/04/2023] Open
Abstract
Muscle energetics reflects the ability of myosin motors to convert chemical energy into mechanical energy. How this process takes place remains one of the most elusive questions in the field. Here, we combined experimental measurements of in vitro sliding velocity based on DNA-origami built filaments carrying myosins with different lever arm length and Monte Carlo simulations based on a model which accounts for three basic components: (i) the geometrical hindrance, (ii) the mechano-sensing mechanism, and (iii) the biased kinetics for stretched or compressed motors. The model simulations showed that the geometrical hindrance due to acto-myosin spatial mismatching and the preferential detachment of compressed motors are synergic in generating the rapid increase in the ATP-ase rate from isometric to moderate velocities of contraction, thus acting as an energy-conservation strategy in muscle contraction. The velocity measurements on a DNA-origami filament that preserves the motors’ distribution showed that geometrical hindrance and biased detachment generate a non-zero sliding velocity even without rotation of the myosin lever-arm, which is widely recognized as the basic event in muscle contraction. Because biased detachment is a mechanism for the rectification of thermal fluctuations, in the Brownian-ratchet framework, we predict that it requires a non-negligible amount of energy to preserve the second law of thermodynamics. Taken together, our theoretical and experimental results elucidate less considered components in the chemo-mechanical energy transduction in muscle.
Collapse
Affiliation(s)
- Lorenzo Marcucci
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- Center for Biosystems Dynamics Research, RIKEN, Suita 5650874, Japan; (T.Y.); (M.I.)
- Correspondence:
| | - Hiroki Fukunaga
- Graduate School of Frontier Biosciences, Osaka University, Suita 5650871, Japan;
| | - Toshio Yanagida
- Center for Biosystems Dynamics Research, RIKEN, Suita 5650874, Japan; (T.Y.); (M.I.)
- Graduate School of Frontier Biosciences, Osaka University, Suita 5650871, Japan;
- Center for Information and Neural Networks, NICT, Suita 5650871, Japan
| | - Mitsuhiro Iwaki
- Center for Biosystems Dynamics Research, RIKEN, Suita 5650874, Japan; (T.Y.); (M.I.)
- Graduate School of Frontier Biosciences, Osaka University, Suita 5650871, Japan;
| |
Collapse
|
20
|
Pathogenic Intronic Splice-Affecting Variants in MYBPC3 in Three Patients with Hypertrophic Cardiomyopathy. CARDIOGENETICS 2021. [DOI: 10.3390/cardiogenetics11020009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Genetic variants in MYBPC3 are one of the most common causes of hypertrophic cardiomyopathy (HCM). While variants in MYBPC3 affecting canonical splice site dinucleotides are a well-characterised cause of HCM, only recently has work begun to investigate the pathogenicity of more deeply intronic variants. Here, we present three patients with HCM and intronic splice-affecting MYBPC3 variants and analyse the impact of variants on splicing using in vitro minigene assays. We show that the three variants, a novel c.927-8G>A variant and the previously reported c.1624+4A>T and c.3815-10T>G variants, result in MYBPC3 splicing errors. Analysis of blood-derived patient RNA for the c.3815-10T>G variant revealed only wild type spliced product, indicating that mis-spliced transcripts from the mutant allele are degraded. These data indicate that the c.927-8G>A variant of uncertain significance and likely benign c.3815-10T>G should be reclassified as likely pathogenic. Furthermore, we find shortcomings in commonly applied bioinformatics strategies to prioritise variants impacting MYBPC3 splicing and re-emphasise the need for functional assessment of variants of uncertain significance in diagnostic testing.
Collapse
|
21
|
Bunch TA, Guhathakurta P, Lepak VC, Thompson AR, Kanassatega RS, Wilson A, Thomas DD, Colson BA. Cardiac myosin-binding protein C interaction with actin is inhibited by compounds identified in a high-throughput fluorescence lifetime screen. J Biol Chem 2021; 297:100840. [PMID: 34052227 PMCID: PMC8233204 DOI: 10.1016/j.jbc.2021.100840] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/19/2021] [Accepted: 05/26/2021] [Indexed: 11/26/2022] Open
Abstract
Cardiac myosin-binding protein C (cMyBP-C) interacts with actin and myosin to modulate cardiac muscle contractility. These interactions are disfavored by cMyBP-C phosphorylation. Heart failure patients often display decreased cMyBP-C phosphorylation, and phosphorylation in model systems has been shown to be cardioprotective against heart failure. Therefore, cMyBP-C is a potential target for heart failure drugs that mimic phosphorylation or perturb its interactions with actin/myosin. Here we have used a novel fluorescence lifetime-based assay to identify small-molecule inhibitors of actin-cMyBP-C binding. Actin was labeled with a fluorescent dye (Alexa Fluor 568, AF568) near its cMyBP-C binding sites; when combined with the cMyBP-C N-terminal fragment, C0-C2, the fluorescence lifetime of AF568-actin decreases. Using this reduction in lifetime as a readout of actin binding, a high-throughput screen of a 1280-compound library identified three reproducible hit compounds (suramin, NF023, and aurintricarboxylic acid) that reduced C0-C2 binding to actin in the micromolar range. Binding of phosphorylated C0-C2 was also blocked by these compounds. That they specifically block binding was confirmed by an actin-C0-C2 time-resolved FRET (TR-FRET) binding assay. Isothermal titration calorimetry (ITC) and transient phosphorescence anisotropy (TPA) confirmed that these compounds bind to cMyBP-C, but not to actin. TPA results were also consistent with these compounds inhibiting C0-C2 binding to actin. We conclude that the actin-cMyBP-C fluorescence lifetime assay permits detection of pharmacologically active compounds that affect cMyBP-C-actin binding. We now have, for the first time, a validated high-throughput screen focused on cMyBP-C, a regulator of cardiac muscle contractility and known key factor in heart failure.
Collapse
Affiliation(s)
- Thomas A Bunch
- Department of Cellular & Molecular Medicine, University of Arizona, Tucson Arizona, USA
| | - Piyali Guhathakurta
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Victoria C Lepak
- Department of Cellular & Molecular Medicine, University of Arizona, Tucson Arizona, USA
| | - Andrew R Thompson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Anna Wilson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - David D Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Brett A Colson
- Department of Cellular & Molecular Medicine, University of Arizona, Tucson Arizona, USA.
| |
Collapse
|
22
|
Singh RR, McNamara JW, Sadayappan S. Mutations in myosin S2 alter cardiac myosin-binding protein-C interaction in hypertrophic cardiomyopathy in a phosphorylation-dependent manner. J Biol Chem 2021; 297:100836. [PMID: 34051236 PMCID: PMC8239744 DOI: 10.1016/j.jbc.2021.100836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/18/2021] [Accepted: 05/25/2021] [Indexed: 12/31/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is an inherited cardiovascular disorder primarily caused by mutations in the β-myosin heavy-chain gene. The proximal subfragment 2 region (S2), 126 amino acids of myosin, binds with the C0-C2 region of cardiac myosin-binding protein-C to regulate cardiac muscle contractility in a manner dependent on PKA-mediated phosphorylation. However, it is unknown if HCM-associated mutations within S2 dysregulate actomyosin dynamics by disrupting its interaction with C0-C2, ultimately leading to HCM. Herein, we study three S2 mutations known to cause HCM: R870H, E924K, and E930Δ. First, experiments using recombinant proteins, solid-phase binding, and isothermal titrating calorimetry assays independently revealed that mutant S2 proteins displayed significantly reduced binding with C0-C2. In addition, CD revealed greater instability of the coiled-coil structure in mutant S2 proteins compared with S2Wt proteins. Second, mutant S2 exhibited 5-fold greater affinity for PKA-treated C0-C2 proteins. Third, skinned papillary muscle fibers treated with mutant S2 proteins showed no change in the rate of force redevelopment as a measure of actin–myosin cross-bridge kinetics, whereas S2Wt showed increased the rate of force redevelopment. In summary, S2 and C0-C2 interaction mediated by phosphorylation is altered by mutations in S2, which augment the speed and force of contraction observed in HCM. Modulating this interaction could be a potential strategy to treat HCM in the future.
Collapse
Affiliation(s)
- Rohit R Singh
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, Cincinnati, Ohio, USA
| | - James W McNamara
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, Cincinnati, Ohio, USA
| | - Sakthivel Sadayappan
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, Cincinnati, Ohio, USA.
| |
Collapse
|
23
|
Powers JD, Malingen SA, Regnier M, Daniel TL. The Sliding Filament Theory Since Andrew Huxley: Multiscale and Multidisciplinary Muscle Research. Annu Rev Biophys 2021; 50:373-400. [PMID: 33637009 DOI: 10.1146/annurev-biophys-110320-062613] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Two groundbreaking papers published in 1954 laid out the theory of the mechanism of muscle contraction based on force-generating interactions between myofilaments in the sarcomere that cause filaments to slide past one another during muscle contraction. The succeeding decades of research in muscle physiology have revealed a unifying interest: to understand the multiscale processes-from atom to organ-that govern muscle function. Such an understanding would have profound consequences for a vast array of applications, from developing new biomimetic technologies to treating heart disease. However, connecting structural and functional properties that are relevant at one spatiotemporal scale to those that are relevant at other scales remains a great challenge. Through a lens of multiscale dynamics, we review in this article current and historical research in muscle physiology sparked by the sliding filament theory.
Collapse
Affiliation(s)
- Joseph D Powers
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, USA
| | - Sage A Malingen
- Department of Biology, University of Washington, Seattle, Washington 98195, USA;
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, Washington 98185, USA
- Center for Translational Muscle Research, University of Washington, Seattle, Washington 98185, USA
| | - Thomas L Daniel
- Department of Biology, University of Washington, Seattle, Washington 98195, USA;
- Department of Bioengineering, University of Washington, Seattle, Washington 98185, USA
- Center for Translational Muscle Research, University of Washington, Seattle, Washington 98185, USA
| |
Collapse
|
24
|
Fenwick AJ, Wood AM, Tanner BCW. The spatial distribution of thin filament activation influences force development and myosin activity in computational models of muscle contraction. Arch Biochem Biophys 2021; 703:108855. [PMID: 33781771 DOI: 10.1016/j.abb.2021.108855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 03/03/2021] [Accepted: 03/18/2021] [Indexed: 01/22/2023]
Abstract
Striated muscle contraction is initiated by Ca2+ binding to, and activating, thin filament regulatory units (RU) within the sarcomere, which then allows myosin cross-bridges from the opposing thick filament to bind actin and generate force. The amount of overlap between the filaments dictates how many potential cross-bridges are capable of binding, and thus how force is generated by the sarcomere. Myopathies and atrophy can impair muscle function by limiting cross-bridge interactions between the filaments, which can occur when the length of the thin filament is reduced or when RU function is disrupted. To investigate how variations in thin filament length and RU density affect ensemble cross-bridge behavior and force production, we simulated muscle contraction using a spatially explicit computational model of the half-sarcomere. Thin filament RUs were disabled either uniformly from the pointed end of the filament (to model shorter thin filament length) or randomly throughout the length of the half-sarcomere. Both uniform and random RU 'knockout' schemes decreased overall force generation during maximal and submaximal activation. The random knockout scheme also led to decreased calcium sensitivity and cooperativity of the force-pCa relationship. We also found that the rate of force development slowed with the random RU knockout, compared to the uniform RU knockout or conditions of normal RU activation. These findings imply that the relationship between RU density and force production within the sarcomere involves more complex coordination than simply the raw number of RUs available for myosin cross-bridge binding, and that the spatial pattern in which activatable RU are distributed throughout the sarcomere influences the dynamics of force production.
Collapse
Affiliation(s)
- Axel J Fenwick
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, 99164, USA
| | - Alexander M Wood
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, 99164, USA
| | - Bertrand C W Tanner
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
25
|
Solís C, Solaro RJ. Novel insights into sarcomere regulatory systems control of cardiac thin filament activation. J Gen Physiol 2021; 153:211903. [PMID: 33740037 PMCID: PMC7988513 DOI: 10.1085/jgp.202012777] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/23/2021] [Indexed: 12/11/2022] Open
Abstract
Our review focuses on sarcomere regulatory mechanisms with a discussion of cardiac-specific modifications to the three-state model of thin filament activation from a blocked to closed to open state. We discuss modulation of these thin filament transitions by Ca2+, by crossbridge interactions, and by thick filament–associated proteins, cardiac myosin–binding protein C (cMyBP-C), cardiac regulatory light chain (cRLC), and titin. Emerging evidence supports the idea that the cooperative activation of the thin filaments despite a single Ca2+ triggering regulatory site on troponin C (cTnC) cannot be considered in isolation of other functional domains of the sarcomere. We discuss long- and short-range interactions among these domains with the regulatory units of thin filaments, including proteins at the barbed end at the Z-disc and the pointed end near the M-band. Important to these discussions is the ever-increasing understanding of the role of cMyBP-C, cRLC, and titin filaments. Detailed knowledge of these control processes is critical to the understanding of mechanisms sustaining physiological cardiac state with varying hemodynamic load, to better defining genetic and acquired cardiac disorders, and to developing targets for therapies at the level of the sarcomeres.
Collapse
Affiliation(s)
- Christopher Solís
- University of Illinois at Chicago, College of Medicine, Department of Physiology and Biophysics and Center for Cardiovascular Research, Chicago, IL
| | - R John Solaro
- University of Illinois at Chicago, College of Medicine, Department of Physiology and Biophysics and Center for Cardiovascular Research, Chicago, IL
| |
Collapse
|
26
|
Harris SP. Making waves: A proposed new role for myosin-binding protein C in regulating oscillatory contractions in vertebrate striated muscle. J Gen Physiol 2021; 153:e202012729. [PMID: 33275758 PMCID: PMC7721898 DOI: 10.1085/jgp.202012729] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Myosin-binding protein C (MyBP-C) is a critical regulator of muscle performance that was first identified through its strong binding interactions with myosin, the force-generating protein of muscle. Almost simultaneously with its discovery, MyBP-C was soon found to bind to actin, the physiological catalyst for myosin's activity. However, the two observations posed an apparent paradox, in part because interactions of MyBP-C with myosin were on the thick filament, whereas MyBP-C interactions with actin were on the thin filament. Despite the intervening decades since these initial discoveries, it is only recently that the dual binding modes of MyBP-C are becoming reconciled in models that place MyBP-C at a central position between actin and myosin, where MyBP-C alternately stabilizes a newly discovered super-relaxed state (SRX) of myosin on thick filaments in resting muscle and then prolongs the "on" state of actin on thin filaments in active muscle. Recognition of these dual, alternating functions of MyBP-C reveals how it is central to the regulation of both muscle contraction and relaxation. The purpose of this Viewpoint is to briefly summarize the roles of MyBP-C in binding to myosin and actin and then to highlight a possible new role for MyBP-C in inducing and damping oscillatory waves of contraction and relaxation. Because the contractile waves bear similarity to cycles of contraction and relaxation in insect flight muscles, which evolved for fast, energetically efficient contraction, the ability of MyBP-C to damp so-called spontaneous oscillatory contractions (SPOCs) has broad implications for previously unrecognized regulatory mechanisms in vertebrate striated muscle. While the molecular mechanisms by which MyBP-C can function as a wave maker or a wave breaker are just beginning to be explored, it is likely that MyBP-C dual interactions with both myosin and actin will continue to be important for understanding the new functions of this enigmatic protein.
Collapse
|
27
|
Li J, Mamidi R, Doh CY, Holmes JB, Bharambe N, Ramachandran R, Stelzer JE. AAV9 gene transfer of cMyBPC N-terminal domains ameliorates cardiomyopathy in cMyBPC-deficient mice. JCI Insight 2020; 5:130182. [PMID: 32750038 PMCID: PMC7526450 DOI: 10.1172/jci.insight.130182] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/29/2020] [Indexed: 01/05/2023] Open
Abstract
Decreased cardiac myosin-binding protein C (cMyBPC) expression due to inheritable mutations is thought to contribute to the hypertrophic cardiomyopathy (HCM) phenotype, suggesting that increasing cMyBPC content is of therapeutic benefit. In vitro assays show that cMyBPC N-terminal domains (NTDs) contain structural elements necessary and sufficient to modulate actomyosin interactions, but it is unknown if they can regulate in vivo myocardial function. To test whether NTDs can recapitulate the effects of full-length (FL) cMyBPC in rescuing cardiac function in a cMyBPC-null mouse model of HCM, we assessed the efficacy of AAV9 gene transfer of a cMyBPC NTD that contained domains C0C2 and compared its therapeutic potential with AAV9-FL gene replacement. AAV9 vectors were administered systemically at neonatal day 1, when early-onset disease phenotypes begin to manifest. A comprehensive analysis of in vivo and in vitro function was performed following cMyBPC gene transfer. Our results show that a systemic injection of AAV9-C0C2 significantly improved cardiac function (e.g., 52.24 ± 1.69 ejection fraction in the C0C2-treated group compared with 40.07 ± 1.97 in the control cMyBPC–/– group, P < 0.05) and reduced the histopathologic signs of cardiomyopathy. Furthermore, C0C2 significantly slowed and normalized the accelerated cross-bridge kinetics found in cMyBPC–/– control myocardium, as evidenced by a 32.41% decrease in the rate of cross-bridge detachment (krel). Results indicate that C0C2 can rescue biomechanical defects of cMyBPC deficiency and that the NTD may be a target region for therapeutic myofilament kinetic manipulation. Cardiac function improves following AAV9-mediated delivery of the C0C2 domains of cardiac myosin-binding protein C in a mouse model of hypertrophic cardiomyopathy.
Collapse
|
28
|
Helms AS, Thompson AD, Glazier AA, Hafeez N, Kabani S, Rodriguez J, Yob JM, Woolcock H, Mazzarotto F, Lakdawala NK, Wittekind SG, Pereira AC, Jacoby DL, Colan SD, Ashley EA, Saberi S, Ware JS, Ingles J, Semsarian C, Michels M, Olivotto I, Ho CY, Day SM. Spatial and Functional Distribution of MYBPC3 Pathogenic Variants and Clinical Outcomes in Patients With Hypertrophic Cardiomyopathy. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2020; 13:396-405. [PMID: 32841044 PMCID: PMC7676622 DOI: 10.1161/circgen.120.002929] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Supplemental Digital Content is available in the text. Pathogenic variants in MYBPC3, encoding cardiac MyBP-C (myosin binding protein C), are the most common cause of familial hypertrophic cardiomyopathy. A large number of unique MYBPC3 variants and relatively small genotyped hypertrophic cardiomyopathy cohorts have precluded detailed genotype-phenotype correlations.
Collapse
Affiliation(s)
- Adam S Helms
- Cardiovascular Medicine (A.S.H., A.D.T., N.H., S.K., J.R., J.M.Y., H.W., S.S.), University of Michigan, Ann Arbor
| | - Andrea D Thompson
- Cardiovascular Medicine (A.S.H., A.D.T., N.H., S.K., J.R., J.M.Y., H.W., S.S.), University of Michigan, Ann Arbor
| | - Amelia A Glazier
- Molecular & Integrative Physiology (A.A.G.), University of Michigan, Ann Arbor
| | - Neha Hafeez
- Cardiovascular Medicine (A.S.H., A.D.T., N.H., S.K., J.R., J.M.Y., H.W., S.S.), University of Michigan, Ann Arbor
| | - Samat Kabani
- Cardiovascular Medicine (A.S.H., A.D.T., N.H., S.K., J.R., J.M.Y., H.W., S.S.), University of Michigan, Ann Arbor
| | - Juliani Rodriguez
- Cardiovascular Medicine (A.S.H., A.D.T., N.H., S.K., J.R., J.M.Y., H.W., S.S.), University of Michigan, Ann Arbor
| | - Jaime M Yob
- Cardiovascular Medicine (A.S.H., A.D.T., N.H., S.K., J.R., J.M.Y., H.W., S.S.), University of Michigan, Ann Arbor
| | - Helen Woolcock
- Cardiovascular Medicine (A.S.H., A.D.T., N.H., S.K., J.R., J.M.Y., H.W., S.S.), University of Michigan, Ann Arbor
| | - Francesco Mazzarotto
- Department of Experimental & Clinical Medicine, University of Florence, Italy (F.M., I.O.).,National Heart & Lung Institute & Royal Brompton Cardiovascular Research Center, Imperial College London, United Kingdom (F.M., J.S.W.)
| | - Neal K Lakdawala
- Cardiovascular Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA (N.K.L., C.Y.H.)
| | - Samuel G Wittekind
- Cincinnati Children's Hospital Medical Center, Heart Institute, Cincinnati, OH (S.G.W.)
| | - Alexandre C Pereira
- Heart Institute (InCor), University of Sao Paolo Medical School, Brazil (A.C.P.)
| | - Daniel L Jacoby
- Cardiovascular Medicine, Yale University, New Haven, CT (D.L.J.)
| | - Steven D Colan
- Department of Cardiology, Boston Children's Hospital, MA (S.D.C.)
| | - Euan A Ashley
- Center for Inherited Heart Disease, Stanford University, CA (E.A.A.)
| | - Sara Saberi
- Cardiovascular Medicine (A.S.H., A.D.T., N.H., S.K., J.R., J.M.Y., H.W., S.S.), University of Michigan, Ann Arbor
| | | | - Jodie Ingles
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, Australia (J.I., C.S.)
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, Australia (J.I., C.S.)
| | - Michelle Michels
- Department of Cardiology, Erasmus Medical Center, Rotterdam, the Netherlands (M.M.)
| | - Iacopo Olivotto
- Department of Experimental & Clinical Medicine, University of Florence, Italy (F.M., I.O.).,Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy (I.O.)
| | - Carolyn Y Ho
- Cardiovascular Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA (N.K.L., C.Y.H.)
| | - Sharlene M Day
- Cardiovascular Medicine, University of Pennsylvania, Philadelphia (S.M.D.)
| |
Collapse
|
29
|
Kumar M, Haghighi K, Kranias EG, Sadayappan S. Phosphorylation of cardiac myosin-binding protein-C contributes to calcium homeostasis. J Biol Chem 2020; 295:11275-11291. [PMID: 32554466 DOI: 10.1074/jbc.ra120.013296] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/17/2020] [Indexed: 12/13/2022] Open
Abstract
Cardiac myosin-binding protein-C (cMyBP-C) is highly phosphorylated under basal conditions. However, its phosphorylation level is decreased in individuals with heart failure. The necessity of cMyBP-C phosphorylation for proper contractile function is well-established, but the physiological and pathological consequences of decreased cMyBP-C phosphorylation in the heart are not clear. Herein, using intact adult cardiomyocytes from mouse models expressing phospho-ablated (AAA) and phosphomimetic (DDD) cMyBP-C as well as controls, we found that cMyBP-C dephosphorylation is sufficient to reduce contractile parameters and calcium kinetics associated with prolonged decay time of the calcium transient and increased diastolic calcium levels. Isoproterenol stimulation reversed the depressive contractile and Ca2+-kinetic parameters. Moreover, caffeine-induced calcium release yielded no difference between AAA/DDD and controls in calcium content of the sarcoplasmic reticulum. On the other hand, sodium-calcium exchanger function and phosphorylation levels of calcium-handling proteins were significantly decreased in AAA hearts compared with controls. Stress conditions caused increases in both spontaneous aftercontractions in AAA cardiomyocytes and the incidence of arrhythmias in vivo compared with the controls. Treatment with omecamtiv mecarbil, a positive cardiac inotropic drug, rescued the contractile deficit in AAA cardiomyocytes, but not the calcium-handling abnormalities. These findings indicate a cascade effect whereby cMyBP-C dephosphorylation causes contractile defects, which then lead to calcium-cycling abnormalities, resulting in aftercontractions and increased incidence of cardiac arrhythmias under stress conditions. We conclude that improvement of contractile deficits alone without improving calcium handling may be insufficient for effective management of heart failure.
Collapse
Affiliation(s)
- Mohit Kumar
- Heart, Lung, and Vascular Institute, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA.,Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Kobra Haghighi
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Evangelia G Kranias
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Sakthivel Sadayappan
- Heart, Lung, and Vascular Institute, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA .,Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
30
|
Heling LWHJ, Geeves MA, Kad NM. MyBP-C: one protein to govern them all. J Muscle Res Cell Motil 2020; 41:91-101. [PMID: 31960266 PMCID: PMC7109175 DOI: 10.1007/s10974-019-09567-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 11/29/2019] [Indexed: 12/19/2022]
Abstract
The heart is an extraordinarily versatile pump, finely tuned to respond to a multitude of demands. Given the heart pumps without rest for decades its efficiency is particularly relevant. Although many proteins in the heart are essential for viability, the non-essential components can attract numerous mutations which can cause disease, possibly through alterations in pumping efficiency. Of these, myosin binding protein C is strongly over-represented with ~ 40% of all known mutations in hypertrophic cardiomyopathy. Therefore, a complete understanding of its molecular function in the cardiac sarcomere is warranted. In this review, we revisit contemporary and classical literature to clarify both the current standing of this fast-moving field and frame future unresolved questions. To date, much effort has been directed at understanding MyBP-C function on either thick or thin filaments. Here we aim to focus questions on how MyBP-C functions at a molecular level in the context of both the thick and thin filaments together. A concept that emerges is MyBP-C acts to govern interactions on two levels; controlling myosin access to the thin filament by sequestration on the thick filament, and controlling the activation state and access of myosin to its binding sites on the thin filament. Such affects are achieved through directed interactions mediated by phosphorylation (of MyBP-C and other sarcomeric components) and calcium.
Collapse
Affiliation(s)
- L W H J Heling
- School of Biosciences, University of Kent, Canterbury, CT2 7NH, UK
| | - M A Geeves
- School of Biosciences, University of Kent, Canterbury, CT2 7NH, UK
| | - N M Kad
- School of Biosciences, University of Kent, Canterbury, CT2 7NH, UK.
| |
Collapse
|
31
|
Helms AS, Tang VT, O'Leary TS, Friedline S, Wauchope M, Arora A, Wasserman AH, Smith ED, Lee LM, Wen XW, Shavit JA, Liu AP, Previs MJ, Day SM. Effects of MYBPC3 loss-of-function mutations preceding hypertrophic cardiomyopathy. JCI Insight 2020; 5:133782. [PMID: 31877118 DOI: 10.1172/jci.insight.133782] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/10/2019] [Indexed: 12/21/2022] Open
Abstract
Mutations in cardiac myosin binding protein C (MyBP-C, encoded by MYBPC3) are the most common cause of hypertrophic cardiomyopathy (HCM). Most MYBPC3 mutations result in premature termination codons (PTCs) that cause RNA degradation and a reduction of MyBP-C in HCM patient hearts. However, a reduction in MyBP-C has not been consistently observed in MYBPC3-mutant induced pluripotent stem cell cardiomyocytes (iPSCMs). To determine early MYBPC3 mutation effects, we used patient and genome-engineered iPSCMs. iPSCMs with frameshift mutations were compared with iPSCMs with MYBPC3 promoter and translational start site deletions, revealing that allelic loss of function is the primary inciting consequence of mutations causing PTCs. Despite a reduction in wild-type mRNA in all heterozygous iPSCMs, no reduction in MyBP-C protein was observed, indicating protein-level compensation through what we believe is a previously uncharacterized mechanism. Although homozygous mutant iPSCMs exhibited contractile dysregulation, heterozygous mutant iPSCMs had normal contractile function in the context of compensated MyBP-C levels. Agnostic RNA-Seq analysis revealed differential expression in genes involved in protein folding as the only dysregulated gene set. To determine how MYBPC3-mutant iPSCMs achieve compensated MyBP-C levels, sarcomeric protein synthesis and degradation were measured with stable isotope labeling. Heterozygous mutant iPSCMs showed reduced MyBP-C synthesis rates but a slower rate of MyBP-C degradation. These findings indicate that cardiomyocytes have an innate capacity to attain normal MyBP-C stoichiometry despite MYBPC3 allelic loss of function due to truncating mutations. Modulating MyBP-C degradation to maintain MyBP-C protein levels may be a novel treatment approach upstream of contractile dysfunction for HCM.
Collapse
Affiliation(s)
- Adam S Helms
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Vi T Tang
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Thomas S O'Leary
- Department of Molecular Physiology & Biophysics, University of Vermont, Burlington, Vermont, USA
| | - Sabrina Friedline
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Mick Wauchope
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Akul Arora
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Eric D Smith
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | - Allen P Liu
- Mechanical Engineering.,Biophysics, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael J Previs
- Department of Molecular Physiology & Biophysics, University of Vermont, Burlington, Vermont, USA
| | - Sharlene M Day
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan, USA.,Departments of Molecular and Integrative Physiology
| |
Collapse
|
32
|
Bunch TA, Kanassatega RS, Lepak VC, Colson BA. Human cardiac myosin-binding protein C restricts actin structural dynamics in a cooperative and phosphorylation-sensitive manner. J Biol Chem 2019; 294:16228-16240. [PMID: 31519753 PMCID: PMC6827302 DOI: 10.1074/jbc.ra119.009543] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/11/2019] [Indexed: 11/20/2022] Open
Abstract
Cardiac myosin-binding protein C (cMyBP-C) is a thick filament-associated protein that influences actin-myosin interactions. cMyBP-C alters myofilament structure and contractile properties in a protein kinase A (PKA) phosphorylation-dependent manner. To determine the effects of cMyBP-C and its phosphorylation on the microsecond rotational dynamics of actin filaments, we attached a phosphorescent probe to F-actin at Cys-374 and performed transient phosphorescence anisotropy (TPA) experiments. Binding of cMyBP-C N-terminal domains (C0-C2) to labeled F-actin reduced rotational flexibility by 20-25°, indicated by increased final anisotropy of the TPA decay. The effects of C0-C2 on actin TPA were highly cooperative (n = ∼8), suggesting that the cMyBP-C N terminus impacts the rotational dynamics of actin spanning seven monomers (i.e. the length of tropomyosin). PKA-mediated phosphorylation of C0-C2 eliminated the cooperative effects on actin flexibility and modestly increased actin rotational rates. Effects of Ser to Asp phosphomimetic substitutions in the M-domain of C0-C2 on actin dynamics only partially recapitulated the phosphorylation effects. C0-C1 (lacking M-domain/C2) similarly exhibited reduced cooperativity, but not as reduced as by phosphorylated C0-C2. These results suggest an important regulatory role of the M-domain in cMyBP-C effects on actin structural dynamics. In contrast, phosphomimetic substitution of the glycogen synthase kinase (GSK3β) site in the Pro/Ala-rich linker of C0-C2 did not significantly affect the TPA results. We conclude that cMyBP-C binding and PKA-mediated phosphorylation can modulate actin dynamics. We propose that these N-terminal cMyBP-C-induced changes in actin dynamics help explain the functional effects of cMyBP-C phosphorylation on actin-myosin interactions.
Collapse
Affiliation(s)
- Thomas A Bunch
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona 85724
| | | | - Victoria C Lepak
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona 85724
| | - Brett A Colson
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona 85724
| |
Collapse
|
33
|
Burghardt TP. Demographic model for inheritable cardiac disease. Arch Biochem Biophys 2019; 672:108056. [PMID: 31356777 DOI: 10.1016/j.abb.2019.07.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 11/15/2022]
Abstract
The cardiac muscle proteins, generating and regulating energy transduction during a heartbeat, assemble in the sarcomere into a cyclical machine repetitively translating actin relative to myosin filaments. Myosin is the motor transducing ATP free energy into actin movement against resisting force. Cardiac myosin binding protein C (mybpc3) regulates shortening velocity probably by transient N-terminus binding to actin while its C-terminus strongly binds the myosin filament. Inheritable heart disease associated mutants frequently modify these proteins involving them in disease mechanisms. Nonsynonymous single nucleotide polymorphisms (SNPs) cause single residue substitutions with independent characteristics (sequence location, residue substitution, human demographic, and allele frequency) hypothesized to decide dependent phenotype and pathogenicity characteristics in a feed-forward neural network model. Trial models train and validate on a dynamic worldwide SNP database for cardiac muscle proteins then predict phenotype and pathogenicity for any single residue substitution in myosin, mybpc3, or actin. A separate Bayesian model formulates conditional probabilities for phenotype or pathogenicity given independent SNP characteristics. Neural/Bayes forecasting tests SNP pathogenicity vs (in)dependent SNP characteristics to assess individualized disease risk and in particular to elucidate gender and human subpopulation bias in disease. Evident subpopulation bias in myosin SNP pathogenicities imply myosin normally engages multiple sarcomere proteins functionally. Consistent with this observation, mybpc3 forms a third actomyosin interaction competing with myosin essential light chain N-terminus suggesting a novel strain-dependent mechanism adapting myosin force-velocity to load dynamics. The working models, and the integral myosin/mybpc3 motor concept, portends the wider considerations involved in understanding heart disease as a systemic maladaptation.
Collapse
Affiliation(s)
- Thomas P Burghardt
- Department of Biochemistry and Molecular Biology and Physiology and Biomedical Engineering, 200 First St. SW, Mayo Clinic Rochester, Rochester, MN, 55905, USA.
| |
Collapse
|
34
|
Affiliation(s)
- Stuart G Campbell
- From the Department of Biomedical Engineering (S.G.C.), Yale University, New Haven, CT.,Department of Cellular and Molecular Physiology (S.G.C.), Yale School of Medicine, New Haven, CT
| | - Yibing Qyang
- From the Department of Biomedical Engineering (S.G.C.), Yale University, New Haven, CT.,Yale Stem Cell Center (Y.Q.), Yale University, New Haven, CT.,Vascular Biology and Therapeutics Program (Y.Q.), Yale University, New Haven, CT.,Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine (Y.Q.), Yale School of Medicine, New Haven, CT
| | - J Travis Hinson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT (J.T.H.).,Department of Cardiology, UConn Health, Farmington, CT (J.T.H.)
| |
Collapse
|
35
|
Revealing the mechanism of how cardiac myosin-binding protein C N-terminal fragments sensitize thin filaments for myosin binding. Proc Natl Acad Sci U S A 2019; 116:6828-6835. [PMID: 30877248 PMCID: PMC6452674 DOI: 10.1073/pnas.1816480116] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Diverse demands on cardiac muscle require the fine-tuning of contraction. Cardiac myosin binding protein-C (cMyBP-C) is involved in this regulation; however, its precise molecular mechanism of action remains uncertain. By imaging the interactions of single myosin and cMyBP-C molecules interacting with suspended thin filaments in vitro we observe cMyBP-C N-terminal fragments assist activation and modulate contraction velocity by affecting myosin binding to the thin filament. Fluorescent imaging of Cy3-labeled cMyBP-C revealed that it diffusively scans the thin filament and then strongly binds to displace tropomyosin and activate at low calcium. At high calcium, cMyBP-C decorates the filament more extensively, reducing myosin binding through competing with binding sites. Understanding the mechanism of MyBP-C action has important implications for heart disease. Cardiac muscle contraction is triggered by calcium binding to troponin. The consequent movement of tropomyosin permits myosin binding to actin, generating force. Cardiac myosin-binding protein C (cMyBP-C) plays a modulatory role in this activation process. One potential mechanism for the N-terminal domains of cMyBP-C to achieve this is by binding directly to the actin-thin filament at low calcium levels to enhance the movement of tropomyosin. To determine the molecular mechanisms by which cMyBP-C enhances myosin recruitment to the actin-thin filament, we directly visualized fluorescently labeled cMyBP-C N-terminal fragments and GFP-labeled myosin molecules binding to suspended actin-thin filaments in a fluorescence-based single-molecule microscopy assay. Binding of the C0C3 N-terminal cMyBP-C fragment to the thin filament enhanced myosin association at low calcium levels. However, at high calcium levels, C0C3 bound in clusters, blocking myosin binding. Dynamic imaging of thin filament-bound Cy3-C0C3 molecules demonstrated that these fragments diffuse along the thin filament before statically binding, suggesting a mechanism that involves a weak-binding mode to search for access to the thin filament and a tight-binding mode to sensitize the thin filament to calcium, thus enhancing myosin binding. Although shorter N-terminal fragments (Cy3-C0C1 and Cy3-C0C1f) bound to the thin filaments and displayed modes of motion on the thin filament similar to that of the Cy3-C0C3 fragment, the shorter fragments were unable to sensitize the thin filament. Therefore, the longer N-terminal fragment (C0C3) must possess the requisite domains needed to bind specifically to the thin filament in order for the cMyBP-C N terminus to modulate cardiac contractility.
Collapse
|
36
|
Mamidi R, Li J, Doh CY, Holmes JB, Stelzer JE. Lost in translation: Interpreting cardiac muscle mechanics data in clinical practice. Arch Biochem Biophys 2019; 662:213-218. [PMID: 30576628 PMCID: PMC6345594 DOI: 10.1016/j.abb.2018.12.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/25/2018] [Accepted: 12/17/2018] [Indexed: 01/10/2023]
Abstract
Current inotropic therapies improve systolic function in heart failure patients but also elicit undesirable side effects such as arrhythmias and increased intracellular Ca2+ transients. In order to maintain myocyte Ca2+ homeostasis, the increased cytosolic Ca2+ needs to be actively transported back to sarcoplasmic reticulum leading to depleted ATP reserves. Thus, an emerging approach is to design sarcomere-based treatments to correct impaired contractility via a direct and allosteric modulation of myosin's intrinsic force-generating behavior -a concept that potentially avoids the "off-target" effects. To achieve this goal, various biophysical approaches are utilized to investigate the mechanistic impact of sarcomeric modulators but information derived from diverse approaches is not fully integrated into therapeutic applications. This is in part due to the lack of information that provides a coherent connecting link between biophysical data to in vivo function. Hence, our ability to clearly discern the drug-mediated impact on whole-heart function is diminished. Reducing this translational barrier can significantly accelerate clinical progress related to sarcomere-based therapies by optimizing drug-dosing and treatment duration protocols based on information obtained from biophysical studies. Therefore, we attempt to link biophysical mechanical measurements obtained in isolated cardiac muscle and in vivo contractile function.
Collapse
Affiliation(s)
- Ranganath Mamidi
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Jiayang Li
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Chang Yoon Doh
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Joshua B Holmes
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Julian E Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
37
|
Proposed mechanism for the length dependence of the force developed in maximally activated muscles. Sci Rep 2019; 9:1317. [PMID: 30718530 PMCID: PMC6362285 DOI: 10.1038/s41598-018-36706-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/20/2018] [Indexed: 11/08/2022] Open
Abstract
The molecular bases of the Frank-Starling law of the heart and of its cellular counterpart, the length dependent activation (LDA), are largely unknown. However, the recent discovery of the thick filament activation, a second pathway beside the well-known calcium mediated thin filament activation, is promising for elucidating these mechanisms. The thick filament activation is mediated by the tension acting on it through the mechano-sensing (MS) mechanism and can be related to the LDA via the titin passive tension. Here, we propose a mechanism to explain the higher maximum tension at longer sarcomere lengths generated by a maximally activated muscle and test it in-silico with a single fiber and a ventricle model. The active tension distribution along the thick filament generates a reservoir of inactive motors at its free-end that can be activated by passive tension on a beat-to-beat timescale. The proposed mechanism is able to quantitatively account for the observed increment in tension at the fiber level, however, the ventricle model suggests that this component of the LDA is not crucial in physiological conditions.
Collapse
|
38
|
Hypertrophic cardiomyopathy-linked variants of cardiac myosin-binding protein C3 display altered molecular properties and actin interaction. Biochem J 2018; 475:3933-3948. [PMID: 30446606 DOI: 10.1042/bcj20180685] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 12/31/2022]
Abstract
The most common inherited cardiac disorder, hypertrophic cardiomyopathy (HCM), is characterized by thickening of heart muscle, for which genetic mutations in cardiac myosin-binding protein C3 (c-MYBPC3) gene, is the leading cause. Notably, patients with HCM display a heterogeneous clinical presentation, onset and prognosis. Thus, delineating the molecular mechanisms that explain how disparate c-MYBPC3 variants lead to HCM is essential for correlating the impact of specific genotypes on clinical severity. Herein, five c-MYBPC3 missense variants clinically associated with HCM were investigated; namely V1 (R177H), V2 (A216T), V3 (E258K), V4 (E441K) and double mutation V5 (V3 + V4), all located within the C1 and C2 domains of MyBP-C, a region known to interact with sarcomeric protein, actin. Injection of the variant complementary RNAs in zebrafish embryos was observed to recapitulate phenotypic aspects of HCM in patients. Interestingly, V3- and V5-cRNA injection produced the most severe zebrafish cardiac phenotype, exhibiting increased diastolic/systolic myocardial thickness and significantly reduced heart rate compared with control zebrafish. Molecular analysis of recombinant C0-C2 protein fragments revealed that c-MYBPC3 variants alter the C0-C2 domain secondary structure, thermodynamic stability and importantly, result in a reduced binding affinity to cardiac actin. V5 (double mutant), displayed the greatest protein instability with concomitant loss of actin-binding function. Our study provides specific mechanistic insight into how c-MYBPC3 pathogenic variants alter both functional and structural characteristics of C0-C2 domains leading to impaired actin interaction and reduced contractility, which may provide a basis for elucidating the disease mechanism in HCM patients with c- MYBPC3 mutations.
Collapse
|
39
|
O'Leary TS, Snyder J, Sadayappan S, Day SM, Previs MJ. MYBPC3 truncation mutations enhance actomyosin contractile mechanics in human hypertrophic cardiomyopathy. J Mol Cell Cardiol 2018; 127:165-173. [PMID: 30550750 DOI: 10.1016/j.yjmcc.2018.12.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/05/2018] [Accepted: 12/07/2018] [Indexed: 01/15/2023]
Abstract
RATIONALE Truncation mutations in the MYBPC3 gene, encoding for cardiac myosin-binding protein C (MyBP-C), are the leading cause of hypertrophic cardiomyopathy (HCM). Whole heart, fiber and molecular studies demonstrate that MyBP-C is a potent modulator of cardiac contractility, but how these mutations contribute to HCM is unresolved. OBJECTIVES To readdress whether MYBPC3 truncation mutations result in loss of MyBP-C content and/or the expression of truncated MyBP-C from the mutant allele and determine how these mutations effect myofilament sliding in human myocardium. METHODS AND RESULTS Septal wall tissue samples were obtained from HCM patients undergoing myectomy (n = 18) and donor controls (n = 8). The HCM samples contained 40% less MyBP-C and reduced levels of MyBP-C phosphorylation, when compared to the donor control samples using quantitative mass spectrometry. These differences occurred in the absence of changes in the stoichiometry of other myofilament proteins or production of truncated MyBP-C from the mutant MYBPC3 allele. The functional impact of MYBPC3 truncation mutations on myofilament sliding was determined using a total internal reflection microscopy (TIRFM) single particle assay. Myosin-thick filaments containing their native complement of MyBP-C, and actin-thin filaments decorated with the troponin/tropomyosin calcium regulatory proteins, were isolated from a subgroup of the HCM (n = 4) and donor (n = 5) heart samples. The maximal sliding velocity of native thin filaments was enhanced within the C-zones of the native thick filaments isolated from the HCM samples, when compared to velocity within the C-zones of thick filaments isolated from the donor samples. Analytical modeling demonstrated that the 40% reduction in MyBP-C content was sufficient to enhance the myofilament sliding velocity, as observed in the TIRFM assay. CONCLUSIONS HCM-causing MYBPC3 truncation mutations result in a loss of MyBP-C content that enhances maximal myofilament sliding velocities, only where MyBP-C is localized within the C-zone. These findings support therapeutic rationale for restoring normal levels of MyBP-C and/or dampening maximal contractile velocities for the treatment of human HCM.
Collapse
Affiliation(s)
- Thomas S O'Leary
- Department of Molecular Physiology and Biophysics, Cardiovascular Research Institute of Vermont, University of Vermont, Burlington, VT, United States
| | - Julia Snyder
- Department of Molecular Physiology and Biophysics, Cardiovascular Research Institute of Vermont, University of Vermont, Burlington, VT, United States
| | - Sakthivel Sadayappan
- Heart, Lung and Vascular Institute, Division of Cardiovascular Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Sharlene M Day
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Michael J Previs
- Department of Molecular Physiology and Biophysics, Cardiovascular Research Institute of Vermont, University of Vermont, Burlington, VT, United States.
| |
Collapse
|
40
|
Janssen PML. Myocardial relaxation in human heart failure: Why sarcomere kinetics should be center-stage. Arch Biochem Biophys 2018; 661:145-148. [PMID: 30447209 DOI: 10.1016/j.abb.2018.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/12/2018] [Accepted: 11/13/2018] [Indexed: 12/19/2022]
Abstract
Myocardial relaxation is critical for the heart to allow for adequate filling of the ventricles prior to the next contraction. In human heart failure, impairment of myocardial relaxation is a major problem, and impacts most patients suffering from end-stage failure. Furthering our understanding of myocardial relaxation is critical in developing future treatment strategies. This review highlights processes involved in myocardial relaxation, as well as governing processes that modulate myocardial relaxation, with a focus on impairment of myocardium-level relaxation in human end-stage heart failure.
Collapse
Affiliation(s)
- Paul M L Janssen
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, USA; Department of Internal Medicine, The Ohio State University Wexner Medical Center, USA.
| |
Collapse
|
41
|
Papadaki M, Holewinski RJ, Previs SB, Martin TG, Stachowski MJ, Li A, Blair CA, Moravec CS, Van Eyk JE, Campbell KS, Warshaw DM, Kirk JA. Diabetes with heart failure increases methylglyoxal modifications in the sarcomere, which inhibit function. JCI Insight 2018; 3:121264. [PMID: 30333300 DOI: 10.1172/jci.insight.121264] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 09/04/2018] [Indexed: 12/27/2022] Open
Abstract
Patients with diabetes are at significantly higher risk of developing heart failure. Increases in advanced glycation end products are a proposed pathophysiological link, but their impact and mechanism remain incompletely understood. Methylglyoxal (MG) is a glycolysis byproduct, elevated in diabetes, and modifies arginine and lysine residues. We show that left ventricular myofilament from patients with diabetes and heart failure (dbHF) exhibited increased MG modifications compared with nonfailing controls (NF) or heart failure patients without diabetes. In skinned NF human and mouse cardiomyocytes, acute MG treatment depressed both calcium sensitivity and maximal calcium-activated force in a dose-dependent manner. Importantly, dbHF myocytes were resistant to myofilament functional changes from MG treatment, indicating that myofilaments from dbHF patients already had depressed function arising from MG modifications. In human dbHF and MG-treated mice, mass spectrometry identified increased MG modifications on actin and myosin. Cosedimentation and in vitro motility assays indicate that MG modifications on actin and myosin independently depress calcium sensitivity, and mechanistically, the functional consequence requires actin/myosin interaction with thin-filament regulatory proteins. MG modification of the myofilament may represent a critical mechanism by which diabetes induces heart failure, as well as a therapeutic target to avoid the development of or ameliorate heart failure in these patients.
Collapse
Affiliation(s)
- Maria Papadaki
- Loyola University Chicago, Department of Cell and Molecular Physiology, Chicago, Illinois, USA
| | | | - Samantha Beck Previs
- University of Vermont, Department of Molecular Physiology and Biophysics, Burlington, Vermont, USA
| | - Thomas G Martin
- Loyola University Chicago, Department of Cell and Molecular Physiology, Chicago, Illinois, USA
| | - Marisa J Stachowski
- Loyola University Chicago, Department of Cell and Molecular Physiology, Chicago, Illinois, USA
| | - Amy Li
- University of Vermont, Department of Molecular Physiology and Biophysics, Burlington, Vermont, USA
| | - Cheavar A Blair
- University of Kentucky, Department of Physiology, Lexington, Kentucky, USA
| | - Christine S Moravec
- The Cleveland Clinic, Department of Molecular Cardiology, Cleveland, Ohio, USA
| | - Jennifer E Van Eyk
- Cedars-Sinai Medical Center, Heart Institute, Los Angeles, California, USA
| | - Kenneth S Campbell
- University of Kentucky, Department of Physiology, Lexington, Kentucky, USA
| | - David M Warshaw
- University of Vermont, Department of Molecular Physiology and Biophysics, Burlington, Vermont, USA
| | - Jonathan A Kirk
- Loyola University Chicago, Department of Cell and Molecular Physiology, Chicago, Illinois, USA
| |
Collapse
|
42
|
Mamidi R, Li J, Doh CY, Verma S, Stelzer JE. Impact of the Myosin Modulator Mavacamten on Force Generation and Cross-Bridge Behavior in a Murine Model of Hypercontractility. J Am Heart Assoc 2018; 7:e009627. [PMID: 30371160 PMCID: PMC6201428 DOI: 10.1161/jaha.118.009627] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/27/2018] [Indexed: 01/09/2023]
Abstract
Background Recent studies suggest that mavacamten (Myk461), a small myosin-binding molecule, decreases hypercontractility in myocardium expressing hypertrophic cardiomyopathy-causing missense mutations in myosin heavy chain. However, the predominant feature of most mutations in cardiac myosin binding protein-C ( cMyBPC ) that cause hypertrophic cardiomyopathy is reduced total cMyBPC expression, and the impact of Myk461 on cMyBPC -deficient myocardium is currently unknown. Methods and Results We measured the impact of Myk461 on steady-state and dynamic cross-bridge ( XB ) behavior in detergent-skinned mouse wild-type myocardium and myocardium lacking cMyBPC (knockout (KO)). KO myocardium exhibited hypercontractile XB behavior as indicated by significant accelerations in rates of XB detachment (krel) and recruitment (kdf) at submaximal Ca2+ activations. Incubation of KO and wild-type myocardium with Myk461 resulted in a dose-dependent force depression, and this impact was more pronounced at low Ca2+ activations. Interestingly, Myk461-induced force depressions were less pronounced in KO myocardium, especially at low Ca2+ activations, which may be because of increased acto-myosin XB formation and potential disruption of super-relaxed XB s in KO myocardium. Additionally, Myk461 slowed krel in KO myocardium but not in wild-type myocardium, indicating increased XB " on" time. Furthermore, the greater degree of Myk461-induced slowing in kdf and reduction in XB recruitment magnitude in KO myocardium normalized the XB behavior back to wild-type levels. Conclusions This is the first study to demonstrate that Myk461-induced force depressions are modulated by cMyBPC expression levels in the sarcomere, and emphasizes that clinical use of Myk461 may need to be optimized based on the molecular trigger that underlies the hypertrophic cardiomyopathy phenotype.
Collapse
Affiliation(s)
- Ranganath Mamidi
- Department of Physiology and BiophysicsSchool of MedicineCase Western Reserve UniversityClevelandOH
| | - Jiayang Li
- Department of Physiology and BiophysicsSchool of MedicineCase Western Reserve UniversityClevelandOH
| | - Chang Yoon Doh
- Department of Physiology and BiophysicsSchool of MedicineCase Western Reserve UniversityClevelandOH
| | - Sujeet Verma
- Department of Horticulture SciencesIFAS, Gulf Coast Research and Education CenterUniversity of FloridaWimauma
| | - Julian E. Stelzer
- Department of Physiology and BiophysicsSchool of MedicineCase Western Reserve UniversityClevelandOH
| |
Collapse
|
43
|
Anderson RL, Trivedi DV, Sarkar SS, Henze M, Ma W, Gong H, Rogers CS, Gorham JM, Wong FL, Morck MM, Seidman JG, Ruppel KM, Irving TC, Cooke R, Green EM, Spudich JA. Deciphering the super relaxed state of human β-cardiac myosin and the mode of action of mavacamten from myosin molecules to muscle fibers. Proc Natl Acad Sci U S A 2018; 115:E8143-E8152. [PMID: 30104387 PMCID: PMC6126717 DOI: 10.1073/pnas.1809540115] [Citation(s) in RCA: 245] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutations in β-cardiac myosin, the predominant motor protein for human heart contraction, can alter power output and cause cardiomyopathy. However, measurements of the intrinsic force, velocity, and ATPase activity of myosin have not provided a consistent mechanism to link mutations to muscle pathology. An alternative model posits that mutations in myosin affect the stability of a sequestered, super relaxed state (SRX) of the protein with very slow ATP hydrolysis and thereby change the number of myosin heads accessible to actin. Here we show that purified human β-cardiac myosin exists partly in an SRX and may in part correspond to a folded-back conformation of myosin heads observed in muscle fibers around the thick filament backbone. Mutations that cause hypertrophic cardiomyopathy destabilize this state, while the small molecule mavacamten promotes it. These findings provide a biochemical and structural link between the genetics and physiology of cardiomyopathy with implications for therapeutic strategies.
Collapse
Affiliation(s)
| | - Darshan V Trivedi
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Saswata S Sarkar
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
| | | | - Weikang Ma
- BioCAT, Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616
| | - Henry Gong
- BioCAT, Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616
| | | | - Joshua M Gorham
- Department of Genetics, Harvard Medical School, Boston, MA 02115
| | | | - Makenna M Morck
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
| | | | - Kathleen M Ruppel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Stanford, CA 94305
| | - Thomas C Irving
- BioCAT, Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616
| | - Roger Cooke
- Department of Biochemistry, University of California, San Francisco, CA 94158
| | | | - James A Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305;
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
44
|
Affiliation(s)
- Paul M L Janssen
- From the Department of Physiology and Cell Biology and D. Davis Heart Lung Research Institute, College of Medicine, The Ohio State University, Columbus.
| | - Brandon J Biesiadecki
- From the Department of Physiology and Cell Biology and D. Davis Heart Lung Research Institute, College of Medicine, The Ohio State University, Columbus
| | - Mark T Ziolo
- From the Department of Physiology and Cell Biology and D. Davis Heart Lung Research Institute, College of Medicine, The Ohio State University, Columbus
| | - Jonathan P Davis
- From the Department of Physiology and Cell Biology and D. Davis Heart Lung Research Institute, College of Medicine, The Ohio State University, Columbus
| |
Collapse
|
45
|
Kampourakis T, Ponnam S, Sun YB, Sevrieva I, Irving M. Structural and functional effects of myosin-binding protein-C phosphorylation in heart muscle are not mimicked by serine-to-aspartate substitutions. J Biol Chem 2018; 293:14270-14275. [PMID: 30082313 PMCID: PMC6139572 DOI: 10.1074/jbc.ac118.004816] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/06/2018] [Indexed: 11/15/2022] Open
Abstract
Myosin-binding protein-C (cMyBP-C) is a key regulator of contractility in heart muscle, and its regulatory function is controlled in turn by phosphorylation of multiple serines in its m-domain. The structural and functional effects of m-domain phosphorylation have often been inferred from those of the corresponding serine-to-aspartate (Ser–Asp) substitutions, in both in vivo and in vitro studies. Here, using a combination of in vitro binding assays and in situ structural and functional assays in ventricular trabeculae of rat heart and the expressed C1mC2 region of cMyBP-C, containing the m-domain flanked by domains C1 and C2, we tested whether these substitutions do in fact mimic the effects of phosphorylation. In situ changes in thin and thick filament structure were determined from changes in polarized fluorescence from bifunctional probes attached to troponin C or myosin regulatory light chain, respectively. We show that both the action of exogenous C1mC2 to activate contraction in the absence of calcium and the accompanying change in thin filament structure are abolished by tris-phosphorylation of the m-domain, but unaffected by the corresponding Ser–Asp substitutions. The latter produced an intermediate change in thick filament structure. Both tris-phosphorylation and Ser–Asp substitutions abolished the interaction between C1mC2 and myosin sub-fragment 2 (myosin S2) in vitro, but yielded different effects on thin filament binding. These results suggest that some previous inferences from the effects of Ser–Asp substitutions in cMyBP-C should be reconsidered and that the distinct effects of tris-phosphorylation and Ser–Asp substitutions on cMyBP-C may provide a useful basis for future studies.
Collapse
Affiliation(s)
- Thomas Kampourakis
- From the Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, School of Basic and Medical Biosciences, King's College London, London SE1 1UL, United Kingdom
| | - Saraswathi Ponnam
- From the Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, School of Basic and Medical Biosciences, King's College London, London SE1 1UL, United Kingdom
| | - Yin-Biao Sun
- From the Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, School of Basic and Medical Biosciences, King's College London, London SE1 1UL, United Kingdom
| | - Ivanka Sevrieva
- From the Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, School of Basic and Medical Biosciences, King's College London, London SE1 1UL, United Kingdom
| | - Malcolm Irving
- From the Randall Centre for Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, School of Basic and Medical Biosciences, King's College London, London SE1 1UL, United Kingdom
| |
Collapse
|
46
|
Stanczyk PJ, Seidel M, White J, Viero C, George CH, Zissimopoulos S, Lai FA. Association of cardiac myosin-binding protein-C with the ryanodine receptor channel - putative retrograde regulation? J Cell Sci 2018; 131:jcs.210443. [PMID: 29930088 PMCID: PMC6104826 DOI: 10.1242/jcs.210443] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 05/31/2018] [Indexed: 11/20/2022] Open
Abstract
The cardiac muscle ryanodine receptor-Ca2+ release channel (RyR2) constitutes the sarcoplasmic reticulum (SR) Ca2+ efflux mechanism that initiates myocyte contraction, while cardiac myosin-binding protein-C (cMyBP-C; also known as MYBPC3) mediates regulation of acto-myosin cross-bridge cycling. In this paper, we provide the first evidence for the presence of direct interaction between these two proteins, forming a RyR2-cMyBP-C complex. The C-terminus of cMyBP-C binds with the RyR2 N-terminus in mammalian cells and the interaction is not mediated by a fibronectin-like domain. Notably, we detected complex formation between both recombinant cMyBP-C and RyR2, as well as between the native proteins in cardiac tissue. Cellular Ca2+ dynamics in HEK293 cells is altered upon co-expression of cMyBP-C and RyR2, with lowered frequency of RyR2-mediated spontaneous Ca2+ oscillations, suggesting that cMyBP-C exerts a potential inhibitory effect on RyR2-dependent Ca2+ release. Discovery of a functional RyR2 association with cMyBP-C provides direct evidence for a putative mechanistic link between cytosolic soluble cMyBP-C and SR-mediated Ca2+ release, via RyR2. Importantly, this interaction may have clinical relevance to the observed cMyBP-C and RyR2 dysfunction in cardiac pathologies, such as hypertrophic cardiomyopathy.
Collapse
Affiliation(s)
- Paulina J Stanczyk
- Sir Geraint Evans Wales Heart Research Institute, Department of Cardiology, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK.,School of Biosciences, Sir Martin Evans Building, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Monika Seidel
- Sir Geraint Evans Wales Heart Research Institute, Department of Cardiology, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK.,Swansea University Medical School, Institute of Life Science, Swansea SA2 8PP, UK
| | - Judith White
- Sir Geraint Evans Wales Heart Research Institute, Department of Cardiology, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK.,School of Biosciences, Sir Martin Evans Building, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Cedric Viero
- Sir Geraint Evans Wales Heart Research Institute, Department of Cardiology, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK.,Institute of Pharmacology and Toxicology, Medical School, Saarland University, Homburg/Saar, Germany
| | - Christopher H George
- Sir Geraint Evans Wales Heart Research Institute, Department of Cardiology, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK.,Swansea University Medical School, Institute of Life Science, Swansea SA2 8PP, UK
| | - Spyros Zissimopoulos
- Sir Geraint Evans Wales Heart Research Institute, Department of Cardiology, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK .,Swansea University Medical School, Institute of Life Science, Swansea SA2 8PP, UK
| | - F Anthony Lai
- Sir Geraint Evans Wales Heart Research Institute, Department of Cardiology, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK .,School of Biosciences, Sir Martin Evans Building, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF10 3AX, UK.,College of Medicine, Member of QU Health, Qatar University, P.O. Box 2013, Doha, Qatar
| |
Collapse
|
47
|
Lin BL, Li A, Mun JY, Previs MJ, Previs SB, Campbell SG, Dos Remedios CG, Tombe PDP, Craig R, Warshaw DM, Sadayappan S. Skeletal myosin binding protein-C isoforms regulate thin filament activity in a Ca 2+-dependent manner. Sci Rep 2018; 8:2604. [PMID: 29422607 PMCID: PMC5805719 DOI: 10.1038/s41598-018-21053-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/29/2018] [Indexed: 01/17/2023] Open
Abstract
Muscle contraction, which is initiated by Ca2+, results in precise sliding of myosin-based thick and actin-based thin filament contractile proteins. The interactions between myosin and actin are finely tuned by three isoforms of myosin binding protein-C (MyBP-C): slow-skeletal, fast-skeletal, and cardiac (ssMyBP-C, fsMyBP-C and cMyBP-C, respectively), each with distinct N-terminal regulatory regions. The skeletal MyBP-C isoforms are conditionally coexpressed in cardiac muscle, but little is known about their function. Therefore, to characterize the functional differences and regulatory mechanisms among these three isoforms, we expressed recombinant N-terminal fragments and examined their effect on contractile properties in biophysical assays. Addition of the fragments to in vitro motility assays demonstrated that ssMyBP-C and cMyBP-C activate thin filament sliding at low Ca2+. Corresponding 3D electron microscopy reconstructions of native thin filaments suggest that graded shifts of tropomyosin on actin are responsible for this activation (cardiac > slow-skeletal > fast-skeletal). Conversely, at higher Ca2+, addition of fsMyBP-C and cMyBP-C fragments reduced sliding velocities in the in vitro motility assays and increased force production in cardiac muscle fibers. We conclude that due to the high frequency of Ca2+ cycling in cardiac muscle, cardiac MyBP-C may play dual roles at both low and high Ca2+. However, skeletal MyBP-C isoforms may be tuned to meet the needs of specific skeletal muscles.
Collapse
Affiliation(s)
- Brian Leei Lin
- Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Amy Li
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, 05405, USA
- Bosch Institute, Discipline of Anatomy and Histology, University of Sydney, Sydney, 2006, Australia
| | - Ji Young Mun
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
- Department of Structure and Function of Neural Network, Korea Brain Research Institute, Dong-gu, Daegu, Korea
| | - Michael J Previs
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, 05405, USA
| | - Samantha Beck Previs
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, 05405, USA
| | - Stuart G Campbell
- Departments of Biomedical Engineering and Cellular and Molecular Physiology, Yale University, New Haven, CT, 06520, USA
| | - Cristobal G Dos Remedios
- Bosch Institute, Discipline of Anatomy and Histology, University of Sydney, Sydney, 2006, Australia
| | - Pieter de P Tombe
- Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Roger Craig
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - David M Warshaw
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, 05405, USA
| | - Sakthivel Sadayappan
- Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL, 60153, USA.
| |
Collapse
|
48
|
Tsukamoto S, Fujii T, Oyama K, Shintani SA, Shimozawa T, Kobirumaki-Shimozawa F, Ishiwata S, Fukuda N. Simultaneous imaging of local calcium and single sarcomere length in rat neonatal cardiomyocytes using yellow Cameleon-Nano140. J Gen Physiol 2017; 148:341-55. [PMID: 27670899 PMCID: PMC5037341 DOI: 10.1085/jgp.201611604] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 08/23/2016] [Indexed: 01/07/2023] Open
Abstract
In cardiac muscle, contraction is triggered by sarcolemmal depolarization, resulting in an intracellular Ca(2+) transient, binding of Ca(2+) to troponin, and subsequent cross-bridge formation (excitation-contraction [EC] coupling). Here, we develop a novel experimental system for simultaneous nano-imaging of intracellular Ca(2+) dynamics and single sarcomere length (SL) in rat neonatal cardiomyocytes. We achieve this by expressing a fluorescence resonance energy transfer (FRET)-based Ca(2+) sensor yellow Cameleon-Nano (YC-Nano) fused to α-actinin in order to localize to the Z disks. We find that, among four different YC-Nanos, α-actinin-YC-Nano140 is best suited for high-precision analysis of EC coupling and α-actinin-YC-Nano140 enables quantitative analyses of intracellular calcium transients and sarcomere dynamics at low and high temperatures, during spontaneous beating and with electrical stimulation. We use this tool to show that calcium transients are synchronized along the length of a myofibril. However, the averaging of SL along myofibrils causes a marked underestimate (∼50%) of the magnitude of displacement because of the different timing of individual SL changes, regardless of the absence or presence of positive inotropy (via β-adrenergic stimulation or enhanced actomyosin interaction). Finally, we find that β-adrenergic stimulation with 50 nM isoproterenol accelerated Ca(2+) dynamics, in association with an approximately twofold increase in sarcomere lengthening velocity. We conclude that our experimental system has a broad range of potential applications for the unveiling molecular mechanisms of EC coupling in cardiomyocytes at the single sarcomere level.
Collapse
Affiliation(s)
- Seiichi Tsukamoto
- Department of Cell Physiology, The Jikei University School of Medicine, Minato-ku, Tokyo 105-8461, Japan
| | - Teruyuki Fujii
- Department of Cell Physiology, The Jikei University School of Medicine, Minato-ku, Tokyo 105-8461, Japan
| | - Kotaro Oyama
- Department of Cell Physiology, The Jikei University School of Medicine, Minato-ku, Tokyo 105-8461, Japan
| | - Seine A Shintani
- Department of Physics, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Togo Shimozawa
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Sinjuku-ku, Tokyo 162-8480, Japan
| | - Fuyu Kobirumaki-Shimozawa
- Department of Cell Physiology, The Jikei University School of Medicine, Minato-ku, Tokyo 105-8461, Japan
| | - Shin'ichi Ishiwata
- Department of Physics, Faculty of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Norio Fukuda
- Department of Cell Physiology, The Jikei University School of Medicine, Minato-ku, Tokyo 105-8461, Japan
| |
Collapse
|
49
|
Trivedi DV, Adhikari AS, Sarkar SS, Ruppel KM, Spudich JA. Hypertrophic cardiomyopathy and the myosin mesa: viewing an old disease in a new light. Biophys Rev 2017; 10:27-48. [PMID: 28717924 PMCID: PMC5803174 DOI: 10.1007/s12551-017-0274-6] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 06/12/2017] [Indexed: 12/15/2022] Open
Abstract
The sarcomere is an exquisitely designed apparatus that is capable of generating force, which in the case of the heart results in the pumping of blood throughout the body. At the molecular level, an ATP-dependent interaction of myosin with actin drives the contraction and force generation of the sarcomere. Over the past six decades, work on muscle has yielded tremendous insights into the workings of the sarcomeric system. We now stand on the cusp where the acquired knowledge of how the sarcomere contracts and how that contraction is regulated can be extended to an understanding of the molecular mechanisms of sarcomeric diseases, such as hypertrophic cardiomyopathy (HCM). In this review we present a picture that combines current knowledge of the myosin mesa, the sequestered state of myosin heads on the thick filament, known as the interacting-heads motif (IHM), their possible interaction with myosin binding protein C (MyBP-C) and how these interactions can be abrogated leading to hyper-contractility, a key clinical manifestation of HCM. We discuss the structural and functional basis of the IHM state of the myosin heads and identify HCM-causing mutations that can directly impact the equilibrium between the 'on state' of the myosin heads (the open state) and the IHM 'off state'. We also hypothesize a role of MyBP-C in helping to maintain myosin heads in the IHM state on the thick filament, allowing release in a graded manner upon adrenergic stimulation. By viewing clinical hyper-contractility as the result of the destabilization of the IHM state, our aim is to view an old disease in a new light.
Collapse
Affiliation(s)
- Darshan V Trivedi
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Arjun S Adhikari
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Saswata S Sarkar
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Kathleen M Ruppel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, 94305, USA. .,Department of Pediatrics (Cardiology), Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - James A Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
50
|
Zile MA, Trayanova NA. Myofilament protein dynamics modulate EAD formation in human hypertrophic cardiomyopathy. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017. [PMID: 28648627 DOI: 10.1016/j.pbiomolbio.2017.06.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Patients with hypertrophic cardiomyopathy (HCM), a disease associated with sarcomeric protein mutations, often suffer from sudden cardiac death (SCD) resulting from arrhythmia. In order to advance SCD prevention strategies, our understanding of how sarcomeric mutations in HCM patients contribute to enhanced arrhythmogenesis needs to be improved. Early afterdepolarizations (EADs) are an important mechanism underlying arrhythmias associated with HCM-SCD. Although the ionic mechanisms underlying EADs have been studied in general, whether myofilament protein dynamics mechanisms also underlie EADs remains unknown. Thus, our goals were to investigate if myofilament protein dynamics mechanisms underlie EADs and to uncover how those mechanisms are affected by pacing rate, sarcomere length (SL), and different levels of HCM-induced myofilament remodeling. To achieve this, a mechanistically-based bidirectionally coupled human electrophysiology-force myocyte model under the conditions of HCM was constructed. HCM ionic remodeling included a reduced repolarization reserve, while HCM myofilament modeling involved altered thin filament activation. We found that the mechanoelectric feedback (MEF) on calcium dynamics in the bidirectionally coupled model, via Troponin C buffering of cytoplasmic Ca2+, was the myofilament mechanism underlying EADs. Incorporating MEF diminished the degree of repolarization reserve reduction necessary for EADs to emerge and increased the frequency of EAD occurrence, especially at faster pacing rates. Longer SLs and enhanced thin filament activation diminished the effects of MEF on EADs. Together these findings demonstrate that myofilament protein dynamics mechanisms play an important role in EAD formation.
Collapse
Affiliation(s)
- Melanie A Zile
- Institute for Computational Medicine and Department of Biomedical Engineering at Johns Hopkins University, 3400 N Charles St, 208 Hackerman Hall, Baltimore, MD 21218, USA.
| | - Natalia A Trayanova
- Institute for Computational Medicine and Department of Biomedical Engineering at Johns Hopkins University, 3400 N Charles St, 208 Hackerman Hall, Baltimore, MD 21218, USA.
| |
Collapse
|