1
|
Wang Y, Shi J, Xin M, Kahkoska AR, Wang J, Gu Z. Cell-drug conjugates. Nat Biomed Eng 2024; 8:1347-1365. [PMID: 38951139 PMCID: PMC11646559 DOI: 10.1038/s41551-024-01230-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/01/2024] [Indexed: 07/03/2024]
Abstract
By combining living cells with therapeutics, cell-drug conjugates can potentiate the functions of both components, particularly for applications in drug delivery and therapy. The conjugates can be designed to persist in the bloodstream, undergo chemotaxis, evade surveillance by the immune system, proliferate, or maintain or transform their cellular phenotypes. In this Review, we discuss strategies for the design of cell-drug conjugates with specific functions, the techniques for their preparation, and their applications in the treatment of cancers, autoimmune diseases and other pathologies. We also discuss the translational challenges and opportunities of this class of drug-delivery systems and therapeutics.
Collapse
Affiliation(s)
- Yanfang Wang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Jiaqi Shi
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Minhang Xin
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Anna R Kahkoska
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jinqiang Wang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Jinhua Institute of Zhejiang University, Jinhua, China.
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
| | - Zhen Gu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Jinhua Institute of Zhejiang University, Jinhua, China.
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- Liangzhu Laboratory, Hangzhou, China.
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China.
| |
Collapse
|
2
|
Jajosky RP, Zerra PE, Chonat S, Stowell SR, Arthur CM. Harnessing the potential of red blood cells in immunotherapy. Hum Immunol 2024; 85:111084. [PMID: 39255557 DOI: 10.1016/j.humimm.2024.111084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 09/12/2024]
Abstract
Red blood cell (RBC) transfusion represents one of the earliest and most widespread forms of cellular therapy. While the primary purpose of RBC transfusions is to enhance the oxygen-carrying capacity of the recipient, RBCs also possess unique properties that make them attractive vehicles for inducing antigen-specific immune tolerance. Preclinical studies have demonstrated that RBC transfusion alone, in the absence of inflammatory stimuli, often fails to elicit detectable alloantibody formation against model RBC antigens. Several studies also suggest that RBC transfusion without inflammation may not only fail to generate a detectable alloantibody response but can also induce a state of antigen-specific non-responsiveness, a phenomenon potentially influenced by the density of the corresponding RBC alloantigen. The unique properties of RBCs, including their inability to divide and their stable surface antigen expression, make them attractive platforms for displaying exogenous antigens with the goal of leveraging their ability to induce antigen-specific non-responsiveness. This could facilitate antigen presentation to the host's immune system without triggering innate immune activation, potentially enabling the induction of antigen-specific tolerance for therapeutic applications in autoimmune disorders, preventing immune responses against protein therapeutics, or reducing alloreactivity in the setting of transfusion and transplantation.
Collapse
Affiliation(s)
- Ryan P Jajosky
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Patricia E Zerra
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States; Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Satheesh Chonat
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Sean R Stowell
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| | - Connie M Arthur
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
3
|
Rapp PB, Baccile JA, Galimidi RP, Vielmetter J. Engineering Antigen-Specific Tolerance to an Artificial Protein Hydrogel. ACS Biomater Sci Eng 2024; 10:2188-2199. [PMID: 38479351 DOI: 10.1021/acsbiomaterials.3c01430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Artificial protein hydrogels are an emerging class of biomaterials with numerous prospective applications in tissue engineering and regenerative medicine. These materials are likely to be immunogenic due to their frequent incorporation of novel amino acid sequence domains, which often serve a functional role within the material itself. We engineered injectable "self" and "nonself" artificial protein hydrogels, which were predicted to have divergent immune outcomes in vivo on the basis of their primary amino acid sequence. Following implantation in mouse, the nonself gels raised significantly higher antigel antibody titers than the corresponding self gels. Prophylactic administration of a fusion antibody targeting the nonself hydrogel epitopes to DEC-205, an endocytic receptor involved in Treg induction, fully suppressed the elevated antibody titer against the nonself gels. These results suggest that the clinical immune response to artificial protein biomaterials, including those that contain highly antigenic sequence domains, can be tuned through the induction of antigen-specific tolerance.
Collapse
Affiliation(s)
- Peter B Rapp
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, California 91125, United States
| | - Joshua A Baccile
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, California 91125, United States
| | - Rachel P Galimidi
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, California 91125, United States
| | - Jost Vielmetter
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, California 91125, United States
| |
Collapse
|
4
|
Miranda J, Lefin N, Beltran JF, Belén LH, Tsipa A, Farias JG, Zamorano M. Enzyme Engineering Strategies for the Bioenhancement of L-Asparaginase Used as a Biopharmaceutical. BioDrugs 2023; 37:793-811. [PMID: 37698749 DOI: 10.1007/s40259-023-00622-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2023] [Indexed: 09/13/2023]
Abstract
Over the past few years, there has been a surge in the industrial production of recombinant enzymes from microorganisms due to their catalytic characteristics being highly efficient, selective, and biocompatible. L-asparaginase (L-ASNase) is an enzyme belonging to the class of amidohydrolases that catalyzes the hydrolysis of L-asparagine into L-aspartic acid and ammonia. It has been widely investigated as a biologic agent for its antineoplastic properties in treating acute lymphoblastic leukemia. The demand for L-ASNase is mainly met by the production of recombinant type II L-ASNase from Escherichia coli and Erwinia chrysanthemi. However, the presence of immunogenic proteins in L-ASNase sourced from prokaryotes has been known to result in adverse reactions in patients undergoing treatment. As a result, efforts are being made to explore strategies that can help mitigate the immunogenicity of the drug. This review gives an overview of recent biotechnological breakthroughs in enzyme engineering techniques and technologies used to improve anti-leukemic L-ASNase, taking into account the pharmacological importance of L-ASNase.
Collapse
Affiliation(s)
- Javiera Miranda
- Chemical Engineering Department, Universidad de la Frontera, Francisco Salazar 1145, 4811230, Temuco, Región de la Araucanía, Chile
| | - Nicolás Lefin
- Chemical Engineering Department, Universidad de la Frontera, Francisco Salazar 1145, 4811230, Temuco, Región de la Araucanía, Chile
| | - Jorge F Beltran
- Chemical Engineering Department, Universidad de la Frontera, Francisco Salazar 1145, 4811230, Temuco, Región de la Araucanía, Chile
| | - Lisandra Herrera Belén
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Santiago, Chile
| | - Argyro Tsipa
- Department of Civil and Environmental Engineering, University of Cyprus, Nicosia, Cyprus
| | - Jorge G Farias
- Chemical Engineering Department, Universidad de la Frontera, Francisco Salazar 1145, 4811230, Temuco, Región de la Araucanía, Chile
| | - Mauricio Zamorano
- Chemical Engineering Department, Universidad de la Frontera, Francisco Salazar 1145, 4811230, Temuco, Región de la Araucanía, Chile.
| |
Collapse
|
5
|
Wang S, Zhang J, Zhou H, Lu YC, Jin X, Luo L, You J. The role of protein corona on nanodrugs for organ-targeting and its prospects of application. J Control Release 2023; 360:15-43. [PMID: 37328008 DOI: 10.1016/j.jconrel.2023.06.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/30/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
Nowadays, nanodrugs become a hotspot in the high-end medical field. They have the ability to deliver drugs to reach their destination more effectively due to their unique properties and flexible functionalization. However, the fate of nanodrugs in vivo is not the same as those presented in vitro, which indeed influenced their therapeutic efficacy in vivo. When entering the biological organism, nanodrugs will first come into contact with biological fluids and then be covered by some biomacromolecules, especially proteins. The proteins adsorbed on the surface of nanodrugs are known as protein corona (PC), which causes the loss of prospective organ-targeting abilities. Fortunately, the reasonable utilization of PC may determine the organ-targeting efficiency of systemically administered nanodrugs based on the diverse expression of receptors on cells in different organs. In addition, the nanodrugs for local administration targeting diverse lesion sites will also form unique PC, which plays an important role in the therapeutic effect of nanodrugs. This article introduced the formation of PC on the surface of nanodrugs and summarized the recent studies about the roles of diversified proteins adsorbed on nanodrugs and relevant protein for organ-targeting receptor through different administration pathways, which may deepen our understanding of the role that PC played on organ-targeting and improve the therapeutic efficacy of nanodrugs to promote their clinical translation.
Collapse
Affiliation(s)
- Sijie Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Junlei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Huanli Zhou
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Yi Chao Lu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Xizhi Jin
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China.
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China; Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou 310058, PR China; Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China.
| |
Collapse
|
6
|
Wang L, Zhang Y, Ma Y, Zhai Y, Ji J, Yang X, Zhai G. Cellular Drug Delivery System for Disease Treatment. Int J Pharm 2023; 641:123069. [PMID: 37225024 DOI: 10.1016/j.ijpharm.2023.123069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/08/2023] [Accepted: 05/21/2023] [Indexed: 05/26/2023]
Abstract
The application of variable novel drug delivery system has shown a flowering trend in recent years. Among them, the cell-based drug delivery system (DDS) utilizes the unique physiological function of cells to deliver drugs to the lesion area, which is the most complex and intelligent DDS at present. Compared with the traditional DDS, the cell-based DDS has the potential of prolonged circulation in body. Cellular DDS is expected to be the best carrier to realize multifunctional drug delivery. This paper introduces and analyzes common cellular DDSs such as blood cells, immune cells, stem cells, tumor cells and bacteria as well as relevant research examples in recent years. We hope that this review can provide a reference for future research on cell vectors and promote the innovative development and clinical transformation of cell-based DDS.
Collapse
Affiliation(s)
- Luyue Wang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Yu Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Yukun Ma
- Department of Pharmacy, Jinan Stomatologic Hospital, Jinan, Shandong, 250001, P.R. China
| | - Yujia Zhai
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84124, United States of America
| | - Jianbo Ji
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China.
| | - Xiaoye Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China.
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China.
| |
Collapse
|
7
|
Probing the Interaction Between Supercarrier RBC Membrane and Nanoparticles for Optimal Drug Delivery. J Mol Biol 2023; 435:167539. [PMID: 35292348 DOI: 10.1016/j.jmb.2022.167539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/25/2022] [Accepted: 03/08/2022] [Indexed: 02/04/2023]
Abstract
Red blood cell (RBC) membrane-hitchhiking nanoparticles (NPs) have been an increasingly popular supercarrier for targeted drug delivery. However, the kinetic details of the shear-induced NP detachment process from RBC in blood flow remain unclear. Here, we perform detailed computational simulations of the traversal dynamics of an RBC-NP composite supercarrier with tunable properties. We show that the detachment of NPs from RBC occurs in a shear-dependent manner which is consistent with previous experiment results. We quantify the NP detachment rate in the microcapillary flow, and our simulation results suggest that there may be an optimal adhesion strength span of 25-40 μJ/m2 for rigid spherical NPs to improve the supercarrier performance and targeting efficiency. In addition, we find that the stiffness and the shape of NPs alter the detachment efficiency by changing the RBC-NP contact areas. Together, these findings provide unique insights into the shear-dependent NP release from the RBC surface, facilitating the clinical utility of RBC-NP composite supercarriers in targeted and localized drug delivery with high precision and efficiency.
Collapse
|
8
|
Krivić H, Himbert S, Rheinstädter MC. Perspective on the Application of Erythrocyte Liposome-Based Drug Delivery for Infectious Diseases. MEMBRANES 2022; 12:1226. [PMID: 36557133 PMCID: PMC9785899 DOI: 10.3390/membranes12121226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Nanoparticles are explored as drug carriers with the promise for the treatment of diseases to increase the efficacy and also reduce side effects sometimes seen with conventional drugs. To accomplish this goal, drugs are encapsulated in or conjugated to the nanocarriers and selectively delivered to their targets. Potential applications include immunization, the delivery of anti-cancer drugs to tumours, antibiotics to infections, targeting resistant bacteria, and delivery of therapeutic agents to the brain. Despite this great promise and potential, drug delivery systems have yet to be established, mainly due to their limitations in physical instability and rapid clearance by the host's immune response. Recent interest has been taken in using red blood cells (RBC) as drug carriers due to their naturally long circulation time, flexible structure, and direct access to many target sites. This includes coating of nanoparticles with the membrane of red blood cells, and the fabrication and manipulation of liposomes made of the red blood cells' cytoplasmic membrane. The properties of these erythrocyte liposomes, such as charge and elastic properties, can be tuned through the incorporation of synthetic lipids to optimize physical properties and the loading efficiency and retention of different drugs. Specificity can be established through the anchorage of antigens and antibodies in the liposomal membrane to achieve targeted delivery. Although still at an early stage, this erythrocyte-based platform shows first promising results in vitro and in animal studies. However, their full potential in terms of increased efficacy and side effect minimization still needs to be explored in vivo.
Collapse
Affiliation(s)
- Hannah Krivić
- Department of Physics and Astronomy, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4M1, Canada
- Origins Institute, McMaster University, Hamilton, ON L8S 4M1, Canada
| | - Sebastian Himbert
- Department of Physics and Astronomy, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4M1, Canada
- Origins Institute, McMaster University, Hamilton, ON L8S 4M1, Canada
| | - Maikel C. Rheinstädter
- Department of Physics and Astronomy, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4M1, Canada
- Origins Institute, McMaster University, Hamilton, ON L8S 4M1, Canada
| |
Collapse
|
9
|
Krivić H, Himbert S, Sun R, Feigis M, Rheinstädter MC. Erythro-PmBs: A Selective Polymyxin B Delivery System Using Antibody-Conjugated Hybrid Erythrocyte Liposomes. ACS Infect Dis 2022; 8:2059-2072. [PMID: 36173819 DOI: 10.1021/acsinfecdis.2c00017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
As a result of the growing worldwide antibiotic resistance crisis, many currently existing antibiotics have become ineffective due to bacteria developing resistive mechanisms. There are a limited number of potent antibiotics that are successful at suppressing microbial growth, such as polymyxin B (PmB); however, these are often deemed as a last resort due to their toxicity. We present a novel PmB delivery system constructed by conjugating hybrid erythrocyte liposomes with antibacterial antibodies to combine a high loading efficiency with guided delivery. The retention of PmB is enhanced by incorporating negatively charged lipids into the red blood cells' cytoplasmic membrane (RBCcm). Anti-Escherichia coli antibodies are attached to these hybrid erythrocyte liposomes by the inclusion of DSPE-PEG maleimide linkers. We show that these erythro-PmBs have a loading efficiency of ∼90% and are effective in delivering PmB to E. coli, with values for the minimum inhibitory concentration (MIC) being comparable to those of free PmB. The MIC values for Klebsiella aerogenes, however, significantly increased well beyond the resistant breakpoint, indicating that the inclusion of the anti-E. coli antibodies enables the erythro-PmBs to selectively deliver antibiotics to specific targets.
Collapse
Affiliation(s)
- Hannah Krivić
- Department of Physics and Astronomy, McMaster University, HamiltonL8S 4M1, Ontario, Canada.,Origins Institute, McMaster University, HamiltonL8S 4M1, Ontario, Canada
| | - Sebastian Himbert
- Department of Physics and Astronomy, McMaster University, HamiltonL8S 4M1, Ontario, Canada.,Origins Institute, McMaster University, HamiltonL8S 4M1, Ontario, Canada
| | - Ruthie Sun
- Department of Physics and Astronomy, McMaster University, HamiltonL8S 4M1, Ontario, Canada.,Origins Institute, McMaster University, HamiltonL8S 4M1, Ontario, Canada
| | - Michal Feigis
- Department of Physics and Astronomy, McMaster University, HamiltonL8S 4M1, Ontario, Canada.,Origins Institute, McMaster University, HamiltonL8S 4M1, Ontario, Canada
| | - Maikel C Rheinstädter
- Department of Physics and Astronomy, McMaster University, HamiltonL8S 4M1, Ontario, Canada.,Origins Institute, McMaster University, HamiltonL8S 4M1, Ontario, Canada
| |
Collapse
|
10
|
Gaikwad H, Wang G, Li Y, Bourne D, Simberg D. Surface Modification of Erythrocytes with Lipid Anchors: Structure-Activity Relationship for Optimal Membrane Incorporation, in vivo Retention, and Immunocompatibility. ADVANCED NANOBIOMED RESEARCH 2022; 2:2200037. [PMID: 36591390 PMCID: PMC9797212 DOI: 10.1002/anbr.202200037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Red blood cells (RBCs) are natural carriers for sustained drug delivery, imaging, and in vivo sensing. One of the popular approaches to functionalize RBCs is through lipophilic anchors, but the structural requirements for anchor stability and in vivo longevity remain to be investigated. Using fluorescent lipids with the same cyanine 3 (Cy3) headgroup but different lipid chain and linker, the labeling efficiency of RBCs and in vivo stability are investigated. Short-chain derivatives exhibited better insertion efficiency, and mouse RBCs are better labeled than human RBCs. Short-chain derivatives demonstrate low retention in vivo. Derivatives with ester bonds are especially unstable, due to removal and degradation. On the other hand, long-chain, covalently linked derivatives show remarkably long retention and stability (over 80 days half life in the membrane). The clearance organs are liver and spleen with evidence of lipid transfer to the liver sinusoidal endothelium. Notably, RBCs modified with PEGylated lipid show decreased macrophage uptake. Some of the derivatives promote binding of antibodies in human plasma and mouse sera and modest increase in complement deposition and hemolysis, but these do not correlate with in vivo stability of RBCs. Ultra-stable anchors can enable functionalization of RBCs for drug delivery, imaging, and sensing.
Collapse
Affiliation(s)
- Hanmant Gaikwad
- Translational Bio-Nanosciences Laboratory, Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz, Medical Campus, Aurora, CO 80045, USA,Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Guankui Wang
- Translational Bio-Nanosciences Laboratory, Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz, Medical Campus, Aurora, CO 80045, USA,Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Yue Li
- Translational Bio-Nanosciences Laboratory, Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz, Medical Campus, Aurora, CO 80045, USA,Colorado Center for Nanomedicine and Nanosafety University of Colorado Anschutz Medical Campus Aurora, CO 80045, USA
| | - David Bourne
- Center for Translational Pharmacokinetics and Pharmacogenomics, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Dmitri Simberg
- Translational Bio-Nanosciences Laboratory, Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz, Medical Campus, Aurora, CO 80045, USA,Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
11
|
Red Blood Cell Inspired Strategies for Drug Delivery: Emerging Concepts and New Advances. Pharm Res 2022; 39:2673-2698. [PMID: 35794397 DOI: 10.1007/s11095-022-03328-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/29/2022] [Indexed: 12/09/2022]
Abstract
In the past five decades, red blood cells (RBCs) have been extensively explored as drug delivery systems due to their distinguishing potential in modulating the pharmacokinetic, pharmacodynamics, and biological activity of carried payloads. The extensive interests in RBC-mediated drug delivery technologies are in part derived from RBCs' unique biological features such as long circulation time, wide access to many tissues in the body, and low immunogenicity. Owing to these outstanding properties, a large body of efforts have led to the development of various RBC-inspired strategies to enable precise drug delivery with enhanced therapeutic efficacy and reduced off-target toxicity. In this review, we discuss emerging concepts and new advances in such RBC-inspired strategies, including native RBCs, ghost RBCs, RBC-mimetic nanoparticles, and RBC-derived extracellular vesicles, for drug delivery.
Collapse
|
12
|
Yao H, Wang Z, Wang N, Deng Z, Liu G, Zhou J, Chen S, Shi J, Zhu G. Enhancing Circulation and Tumor Accumulation of Carboplatin via an Erythrocyte-Anchored Prodrug Strategy. Angew Chem Int Ed Engl 2022; 61:e202203838. [PMID: 35352863 DOI: 10.1002/anie.202203838] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Indexed: 01/04/2023]
Abstract
The short circulatory half-lives and low tumor accumulation of carboplatin greatly limit the drug's efficacy in vivo. Herein, we address these challenges by using a prodrug strategy and present the rational design of a novel platinum(IV) anticancer prodrug that can hitchhike on erythrocytes. This prodrug, designated as ERY1-PtIV , can bind to erythrocytes efficiently and stably, possessing a circulatory half-life 18.5 times longer than that of carboplatin in mice. This elongated circulatory half-life enables platinum to accumulate at levels 7.7 times higher than with carboplatin, with steady levels in the tumors. As a consequence, the ERY1-PtIV prodrug is proved to exhibit significantly enhanced antitumor activity and reduced side effects compared with carboplatin. Collectively, our novel approach highlights an efficient strategy to utilize intrinsic erythrocytes as auto-binding carriers to enhance the tumor accumulation and subsequent antitumor efficacy of platinum drugs.
Collapse
Affiliation(s)
- Houzong Yao
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR 999077, P. R. China.,City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| | - Zhigang Wang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Na Wang
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR 999077, P. R. China.,City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| | - Zhiqin Deng
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR 999077, P. R. China.,City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| | - Gongyuan Liu
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR 999077, P. R. China.,City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| | - Jianghong Zhou
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Shu Chen
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR 999077, P. R. China.,City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| | - Jiahai Shi
- Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR 999077, P. R. China
| | - Guangyu Zhu
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR 999077, P. R. China.,City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| |
Collapse
|
13
|
Eras A, Castillo D, Suárez M, Vispo NS, Albericio F, Rodriguez H. Chemical Conjugation in Drug Delivery Systems. Front Chem 2022; 10:889083. [PMID: 35720996 PMCID: PMC9204480 DOI: 10.3389/fchem.2022.889083] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/11/2022] [Indexed: 11/18/2022] Open
Abstract
Cancer is one of the diseases with the highest mortality rate. Treatments to mitigate cancer are usually so intense and invasive that they weaken the patient to cure as dangerous as the own disease. From some time ago until today, to reduce resistance generated by the constant administration of the drug and improve its pharmacokinetics, scientists have been developing drug delivery system (DDS) technology. DDS platforms aim to maximize the drugs’ effectiveness by directing them to reach the affected area by the disease and, therefore, reduce the potential side effects. Erythrocytes, antibodies, and nanoparticles have been used as carriers. Eleven antibody–drug conjugates (ADCs) involving covalent linkage has been commercialized as a promising cancer treatment in the last years. This review describes the general features and applications of DDS focused on the covalent conjugation system that binds the antibody carrier to the cytotoxic drug.
Collapse
Affiliation(s)
- Alexis Eras
- School of Chemical Sciences and Engineering, Yachay Tech University, Urcuquí, Ecuador
| | - Danna Castillo
- School of Chemical Sciences and Engineering, Yachay Tech University, Urcuquí, Ecuador
| | - Margarita Suárez
- Laboratorio de Síntesis Orgánica, Facultad de Química, Universidad de la Habana, La Habana, Cuba
| | - Nelson Santiago Vispo
- School of Biological Sciences and Engineering, Yachay Tech University, Urcuquí, Ecuador
- *Correspondence: Nelson Santiago Vispo, ; Fernando Albericio, ; Hortensia Rodriguez,
| | - Fernando Albericio
- Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
- CIBER-BBN, Networking Centre of Bioengineering, Biomaterials, and Nanomedicine and Department of Organic Chemistry, University of Barcelona, Barcelona, Spain
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
- *Correspondence: Nelson Santiago Vispo, ; Fernando Albericio, ; Hortensia Rodriguez,
| | - Hortensia Rodriguez
- School of Chemical Sciences and Engineering, Yachay Tech University, Urcuquí, Ecuador
- *Correspondence: Nelson Santiago Vispo, ; Fernando Albericio, ; Hortensia Rodriguez,
| |
Collapse
|
14
|
Gottwick C, Carambia A, Herkel J. Harnessing the liver to induce antigen-specific immune tolerance. Semin Immunopathol 2022; 44:475-484. [PMID: 35513495 PMCID: PMC9256566 DOI: 10.1007/s00281-022-00942-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/20/2022] [Indexed: 12/17/2022]
Abstract
Autoimmune diseases develop when the adaptive immune system attacks the body’s own antigens leading to tissue damage. At least 80 different conditions are believed to have an autoimmune aetiology, including rheumatoid arthritis, type I diabetes, multiple sclerosis or systemic lupus erythematosus. Collectively, autoimmune diseases are a leading cause of severe health impairment along with substantial socioeconomic costs. Current treatments are mostly symptomatic and non-specific, and it is typically not possible to cure these diseases. Thus, the development of more causative treatments that suppress only the pathogenic immune responses, but spare general immunity is of great biomedical interest. The liver offers considerable potential for development of such antigen-specific immunotherapies, as it has a distinct physiological capacity to induce immune tolerance. Indeed, the liver has been shown to specifically suppress autoimmune responses to organ allografts co-transplanted with the liver or to autoantigens that were transferred to the liver. Liver tolerance is established by a unique microenvironment that facilitates interactions between liver-resident antigen-presenting cells and lymphocytes passing by in the low blood flow within the hepatic sinusoids. Here, we summarise current concepts and mechanisms of liver immune tolerance, and review present approaches to harness liver tolerance for antigen-specific immunotherapy.
Collapse
Affiliation(s)
- Cornelia Gottwick
- First Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.
| | - Antonella Carambia
- First Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.
| | - Johannes Herkel
- First Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
15
|
Raposo CJ, Cserny JD, Serena G, Chow JN, Cho P, Liu H, Kotler D, Sharei A, Bernstein H, John S. Engineered RBCs Encapsulating Antigen Induce Multi-Modal Antigen-Specific Tolerance and Protect Against Type 1 Diabetes. Front Immunol 2022; 13:869669. [PMID: 35444659 PMCID: PMC9014265 DOI: 10.3389/fimmu.2022.869669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/11/2022] [Indexed: 11/20/2022] Open
Abstract
Antigen-specific therapies that suppress autoreactive T cells without inducing systemic immunosuppression are a much-needed treatment for autoimmune diseases, yet effective strategies remain elusive. We describe a microfluidic Cell Squeeze® technology to engineer red blood cells (RBCs) encapsulating antigens to generate tolerizing antigen carriers (TACs). TACs exploit the natural route of RBC clearance enabling tolerogenic presentation of antigens. TAC treatment led to antigen-specific T cell tolerance towards exogenous and autoantigens in immunization and adoptive transfer mouse models of type 1 diabetes (T1D), respectively. Notably, in several accelerated models of T1D, TACs prevented hyperglycemia by blunting effector functions of pathogenic T cells, particularly in the pancreas. Mechanistically, TACs led to impaired trafficking of diabetogenic T cells to the pancreas, induced deletion of autoreactive CD8 T cells and expanded antigen specific Tregs that exerted bystander suppression. Our results highlight TACs as a novel approach for reinstating immune tolerance in CD4 and CD8 mediated autoimmune diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Shinu John
- SQZ Biotechnologies, Watertown, MA, United States
| |
Collapse
|
16
|
Alexandrova SS, Gladilina YA, Pokrovskaya MV, Sokolov NN, Zhdanov DD. [Mechanisms of development of side effects and drug resistance to asparaginase and ways to overcome them]. BIOMEDITSINSKAIA KHIMIIA 2022; 68:104-116. [PMID: 35485484 DOI: 10.18097/pbmc20226802104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Asparaginase is one of the most important chemotherapeutic agents against acute lymphoblastic leukemia, the most common form of blood cancer. To date, both asparaginases from E. coli and Dickeya dadantii (formerly known as Erwinia chrysanthemi), used in hematology, induce chemoresistance in cancer cells and side effects in the form of hypersensitivity of immune reactions. Leukemic cells may be resistant to asparaginase due to the increased activity of asparagine synthetase and other mechanisms associated with resistance to asparaginase. Therefore, the search for new sources of L-asparaginases with improved pharmacological properties remains a promising and prospective study. This article discusses the mechanisms of development of resistance and drug resistance to L-asparaginase, as well as possible ways to overcome them.
Collapse
Affiliation(s)
| | | | | | - N N Sokolov
- Institute of Biomedical Chemistry, Moscow, Russia
| | - D D Zhdanov
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
17
|
Casey LM, Hughes KR, Saunders MN, Miller SD, Pearson RM, Shea LD. Mechanistic contributions of Kupffer cells and liver sinusoidal endothelial cells in nanoparticle-induced antigen-specific immune tolerance. Biomaterials 2022; 283:121457. [PMID: 35286851 PMCID: PMC11225973 DOI: 10.1016/j.biomaterials.2022.121457] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/10/2022] [Accepted: 03/03/2022] [Indexed: 02/06/2023]
Abstract
The intravenous delivery of disease-relevant antigens (Ag) by polymeric nanoparticles (NP-Ags) has demonstrated Ag-specific immune tolerance in autoimmune and allergic disorders as well as allogeneic transplant rejection. NP-Ags are observed to distribute to the spleen, which has an established role in the induction of immune tolerance. However, studies have shown that the spleen is dispensable for NP-Ag-induced tolerance, suggesting significant contributions from other immunological sites. Here, we investigated the tolerogenic contributions of Kupffer cells (KCs) and liver sinusoidal endothelial cells (LSECs) to NP-Ag-induced tolerance in a mouse model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE). Intravenously delivered Ag-conjugated poly(lactide-co-glycolide) NPs (PLG-Ag) distributed largely to the liver, where they associated with both KCs and LSECs. This distribution was accompanied by CD4 T cell accumulation, clonal deletion, and PD-L1 expression by KCs and LSECs. Ex vivo co-cultures of PLG-Ag-treated KCs or LSECs with Ag-specific CD4 T cells resulted in PGE2 and IL-10 or PGE2 secretion, respectively. KC depletion and adoptive transfer experiments demonstrated that KCs were sufficient, but not necessary, to mediate PLG-Ag-induced tolerance in EAE. The durability of PLG-Ag-induced tolerance in the absence of KCs may be attributed to the distribution of PLG-Ags to LSECs, which demonstrated similar levels of PD-L1, PGE2, and T cell stimulatory ability. Collectively, these studies provide mechanistic support for the role of liver KCs and LSECs in Ag-specific tolerance for a biomaterial platform that is currently being evaluated in clinical trials.
Collapse
Affiliation(s)
- Liam M Casey
- Department of Chemical Engineering, University of Michigan, 2300 Hayward Avenue, Ann Arbor, MI, 48105, USA
| | - Kevin R Hughes
- Department of Biomedical Engineering, University of Michigan, 1119 Carl A. Gerstacker Building, 2200 Bonisteel Boulevard, Ann Arbor, MI, 48109, USA
| | - Michael N Saunders
- Department of Biomedical Engineering, University of Michigan, 1119 Carl A. Gerstacker Building, 2200 Bonisteel Boulevard, Ann Arbor, MI, 48109, USA; Medical Scientist Training Program, University of Michigan, 1135 Catherine St., 2965 Taubman Health Sciences Library, Ann Arbor, MI, 48109, USA
| | - Stephen D Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, 6-713 Tarry Building, 303 E. Chicago Avenue, Chicago, IL, 60611, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA; The Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, 60611, USA
| | - Ryan M Pearson
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD, 21201, USA; Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, Baltimore, MD, 21201, USA; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 22 S. Greene Street, Baltimore, MD, 21201, USA.
| | - Lonnie D Shea
- Department of Chemical Engineering, University of Michigan, 2300 Hayward Avenue, Ann Arbor, MI, 48105, USA; Department of Biomedical Engineering, University of Michigan, 1119 Carl A. Gerstacker Building, 2200 Bonisteel Boulevard, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
18
|
Yao H, Wang Z, Wang N, Deng Z, Liu G, Zhou J, Chen S, Shi J, Zhu G. Enhancing Circulation and Tumor Accumulation of Carboplatin via an Erythrocyte‐Anchored Prodrug Strategy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Houzong Yao
- City University of Hong Kong Chemistry HONG KONG
| | - Zhigang Wang
- Shenzhen University Pharmaceutical Sciences CHINA
| | - Na Wang
- City University of Hong Kong Chemistry HONG KONG
| | - Zhiqin Deng
- City University of Hong Kong Chemistry HONG KONG
| | - Gongyuan Liu
- City University of Hong Kong Chemistry HONG KONG
| | | | - Shu Chen
- City University of Hong Kong Chemistry HONG KONG
| | - Jiahai Shi
- City University of Hong Kong Biomedical Sciences HONG KONG
| | - Guangyu Zhu
- City University of Hong Kong Department of Biology and Chemistry 83 Tat Chee Ave 99907 Hong Kong HONG KONG
| |
Collapse
|
19
|
|
20
|
Erythrocyte-enabled immunomodulation for vaccine delivery. J Control Release 2021; 341:314-328. [PMID: 34838929 DOI: 10.1016/j.jconrel.2021.11.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 12/11/2022]
Abstract
Erythrocytes capture pathogens in circulation and present them to antigen-presenting cells (APCs) in the spleen. Senescent or apoptotic erythrocytes are physiologically eliminated by splenic APCs in a non-inflammatory manner as to not induce an immune reaction, while damaged erythrocytes tend to induce immune activation. The distinct characteristics of erythrocytes in their lifespan or different states inspire the design of targeting splenic APCs for vaccine delivery. Specifically, normal or damaged erythrocyte-driven immune targeting can induce antigen-specific immune activation, whereas senescent or apoptotic erythrocytes can be tailored to achieve antigen-specific immune tolerance. Recent studies have revealed the potential of erythrocyte-based vaccine delivery; however, there is still no in-depth review to describe the latest progress. This review summarizes the characteristics, different immune functions, and diverse vaccine delivery behaviors and biomedical applications of erythrocytes in different states. This review aims to contribute to the rational design and development of erythrocyte-based vaccine delivery systems for treating various infections, tumors, inflammatory diseases, and autoimmune diseases.
Collapse
|
21
|
Glassman PM, Hood ED, Ferguson LT, Zhao Z, Siegel DL, Mitragotri S, Brenner JS, Muzykantov VR. Red blood cells: The metamorphosis of a neglected carrier into the natural mothership for artificial nanocarriers. Adv Drug Deliv Rev 2021; 178:113992. [PMID: 34597748 PMCID: PMC8556370 DOI: 10.1016/j.addr.2021.113992] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/26/2021] [Accepted: 09/24/2021] [Indexed: 12/18/2022]
Abstract
Drug delivery research pursues many types of carriers including proteins and other macromolecules, natural and synthetic polymeric structures, nanocarriers of diverse compositions and cells. In particular, liposomes and lipid nanoparticles represent arguably the most advanced and popular human-made nanocarriers, already in multiple clinical applications. On the other hand, red blood cells (RBCs) represent attractive natural carriers for the vascular route, featuring at least two distinct compartments for loading pharmacological cargoes, namely inner space enclosed by the plasma membrane and the outer surface of this membrane. Historically, studies of liposomal drug delivery systems (DDS) astronomically outnumbered and surpassed the RBC-based DDS. Nevertheless, these two types of carriers have different profile of advantages and disadvantages. Recent studies showed that RBC-based drug carriers indeed may feature unique pharmacokinetic and biodistribution characteristics favorably changing benefit/risk ratio of some cargo agents. Furthermore, RBC carriage cardinally alters behavior and effect of nanocarriers in the bloodstream, so called RBC hitchhiking (RBC-HH). This article represents an attempt for the comparative analysis of liposomal vs RBC drug delivery, culminating with design of hybrid DDSs enabling mutual collaborative advantages such as RBC-HH and camouflaging nanoparticles by RBC membrane. Finally, we discuss the key current challenges faced by these and other RBC-based DDSs including the issue of potential unintended and adverse effect and contingency measures to ameliorate this and other concerns.
Collapse
Affiliation(s)
- Patrick M Glassman
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Elizabeth D Hood
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Laura T Ferguson
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Zongmin Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Don L Siegel
- Department of Pathology & Laboratory Medicine, Division of Transfusion Medicine & Therapeutic Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02138, United States
| | - Jacob S Brenner
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Vladimir R Muzykantov
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
22
|
Induction of antigen-specific tolerance by nanobody-antigen adducts that target class-II major histocompatibility complexes. Nat Biomed Eng 2021; 5:1389-1401. [PMID: 34127819 DOI: 10.1038/s41551-021-00738-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/27/2021] [Indexed: 02/05/2023]
Abstract
The association of autoimmune diseases with particular allellic products of the class-II major histocompatibility complex (MHCII) region implicates the presentation of the offending self-antigens to T cells. Because antigen-presenting cells are tolerogenic when they encounter an antigen under non-inflammatory conditions, the manipulation of antigen presentation may induce antigen-specific tolerance. Here, we show that, in mouse models of experimental autoimmune encephalomyelitis, type 1 diabetes and rheumatoid arthritis, the systemic administration of a single dose of nanobodies that recognize MHCII molecules and conjugated to the relevant self-antigen under non-inflammatory conditions confers long-lasting protection against these diseases. Moreover, co-administration of a nanobody-antigen adduct and the glucocorticoid dexamethasone, conjugated to the nanobody via a cleavable linker, halted the progression of established experimental autoimmune encephalomyelitis in symptomatic mice and alleviated their symptoms. This approach may represent a means of treating autoimmune conditions.
Collapse
|
23
|
Li Y, Raza F, Liu Y, Wei Y, Rong R, Zheng M, Yuan W, Su J, Qiu M, Li Y, Raza F, Liu Y, Wei Y, Rong R, Zheng M, Yuan W, Su J, Qiu M. Clinical progress and advanced research of red blood cells based drug delivery system. Biomaterials 2021; 279:121202. [PMID: 34749072 DOI: 10.1016/j.biomaterials.2021.121202] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 09/27/2021] [Accepted: 10/20/2021] [Indexed: 02/07/2023]
Abstract
Red blood cells (RBCs) are biocompatible carriers that can be employed to deliver different bioactive substances. In the past few decades, many strategies have been developed to encapsulate or attach drugs to RBCs. Osmotic-based encapsulation methods have been industrialized recently, and some encapsulated RBC formulations have reached the clinical stage for treating tumors and neurological diseases. Inspired by the intrinsic properties of intact RBCs, some advanced delivery strategies have also been proposed. These delivery systems combine RBCs with other novel systems to further exploit and expand the application of RBCs. This review summarizes the clinical progress of drugs encapsulated into intact RBCs, focusing on the loading and clinical trials. It also introduces the latest advanced research based on developing prospects and limitations of intact RBCs drug delivery system (DDS), hoping to provide a reference for related research fields and further application potential of intact RBCs based drug delivery system.
Collapse
Affiliation(s)
- Yichen Li
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - Faisal Raza
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - Yuhao Liu
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - Yiqi Wei
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - Ruonan Rong
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - Mengyuan Zheng
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - Weien Yuan
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - Jing Su
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China.
| | - Mingfeng Qiu
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China.
| | - Y Li
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - F Raza
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - Y Liu
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - Y Wei
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - R Rong
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - M Zheng
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - W Yuan
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - J Su
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - M Qiu
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| |
Collapse
|
24
|
Liu G, Zhu M, Zhao X, Nie G. Nanotechnology-empowered vaccine delivery for enhancing CD8 + T cells-mediated cellular immunity. Adv Drug Deliv Rev 2021; 176:113889. [PMID: 34364931 DOI: 10.1016/j.addr.2021.113889] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/17/2021] [Accepted: 07/18/2021] [Indexed: 12/18/2022]
Abstract
After centuries of development, using vaccination to stimulate immunity has become an effective method for prevention and treatment of a variety of diseases including infective diseases and cancers. However, the tailor-made efficient delivery system for specific antigens is still urgently needed due to the low immunogenicity and stability of antigens, especially for vaccines to induce CD8+ T cells-mediated cellular immunity. Unlike B cells-mediated humoral immunity, CD8+ T cells-mediated cellular immunity mainly aims at the intracellular antigens from microorganism in virus-infected cells or genetic mutations in tumor cells. Therefore, the vaccines for stimulating CD8+ T cells-mediated cellular immunity should deliver the antigens efficiently into the cytoplasm of antigen presenting cells (APCs) to form major histocompatibility complex I (MHCI)-antigen complex through cross-presentation, followed by activating CD8+ T cells for immune protection and clearance. Importantly, nanotechnology has been emerged as a powerful tool to facilitate these multiple processes specifically, allowing not only enhanced antigen immunogenicity and stability but also APCs-targeted delivery and elevated cross-presentation. This review summarizes the process of CD8+ T cells-mediated cellular immunity induced by vaccines and the technical advantages of nanotechnology implementation in general, then provides an overview of the whole spectrum of nanocarriers studied so far and the recent development of delivery nanotechnology in vaccines against infectious diseases and cancer. Finally, we look forward to the future development of nanotechnology for the next generation of vaccines to induce CD8+ T cells-mediated cellular immunity.
Collapse
Affiliation(s)
- Guangna Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Motao Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing 100190, China; Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; The GBA National Institute for Nanotechnology Innovation, Guangdong 510700, China.
| |
Collapse
|
25
|
An in vivo selection-derived d-peptide for engineering erythrocyte-binding antigens that promote immune tolerance. Proc Natl Acad Sci U S A 2021; 118:2101596118. [PMID: 34417313 DOI: 10.1073/pnas.2101596118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
When displayed on erythrocytes, peptides and proteins can drive antigen-specific immune tolerance. Here, we investigated a straightforward approach based on erythrocyte binding to promote antigen-specific tolerance to both peptides and proteins. We first identified a robust erythrocyte-binding ligand. A pool of one million fully d-chiral peptides was injected into mice, blood cells were isolated, and ligands enriched on these cells were identified using nano-liquid chromatography-tandem mass spectrometry. One round of selection yielded a murine erythrocyte-binding ligand with an 80 nM apparent dissociation constant, K d We modified an 83-kDa bacterial protein and a peptide antigen derived from ovalbumin (OVA) with the identified erythrocyte-binding ligand. An administration of the engineered bacterial protein led to decreased protein-specific antibodies in mice. Similarly, mice given the engineered OVA-derived peptide had decreased inflammatory anti-OVA CD8+ T cell responses. These findings suggest that our tolerance-induction strategy is applicable to both peptide and protein antigens and that our in vivo selection strategy can be used for de novo discovery of robust erythrocyte-binding ligands.
Collapse
|
26
|
Harmand TJ, Pishesha N, Rehm FBH, Ma W, Pinney WB, Xie YJ, Ploegh HL. Asparaginyl Ligase-Catalyzed One-Step Cell Surface Modification of Red Blood Cells. ACS Chem Biol 2021; 16:1201-1207. [PMID: 34129316 DOI: 10.1021/acschembio.1c00216] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Red blood cells (RBCs) can serve as vascular carriers for drugs, proteins, peptides, and nanoparticles. Human RBCs remain in the circulation for ∼120 days, are biocompatible, and are immunologically largely inert. RBCs are cleared by the reticuloendothelial system and can induce immune tolerance to foreign components attached to the RBC surface. RBC conjugates have been pursued in clinical trials to treat cancers and autoimmune diseases and to correct genetic disorders. Still, most methods used to modify RBCs require multiple steps, are resource-intensive and time-consuming, and increase the risk of inflicting damage to the RBCs. Here, we describe direct conjugation of peptides and proteins onto the surface of RBCs in a single step, catalyzed by a highly efficient, recombinant asparaginyl ligase under mild, physiological conditions. In mice, the modified RBCs remain intact in the circulation, display a normal circulatory half-life, and retain their immune tolerance-inducing properties, as shown for protection against an accelerated model for type 1 diabetes. We conjugated different nanobodies to RBCs with retention of their binding properties, and these modified RBCs can target cancer cells in vitro. This approach provides an appealing alternative to current methods of RBC engineering. It provides ready access to more complex RBC constructs and highlights the general utility of asparaginyl ligases for the modification of native cell surfaces.
Collapse
Affiliation(s)
- Thibault J Harmand
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachussets 02115, United States
| | - Novalia Pishesha
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachussets 02115, United States
| | - Fabian B H Rehm
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachussets 02115, United States
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Weiyi Ma
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachussets 02115, United States
| | - William B Pinney
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachussets 02115, United States
| | - Yushu J Xie
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachussets 02115, United States
| | - Hidde L Ploegh
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachussets 02115, United States
| |
Collapse
|
27
|
Brenner JS, Mitragotri S, Muzykantov VR. Red Blood Cell Hitchhiking: A Novel Approach for Vascular Delivery of Nanocarriers. Annu Rev Biomed Eng 2021; 23:225-248. [PMID: 33788581 PMCID: PMC8277719 DOI: 10.1146/annurev-bioeng-121219-024239] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Red blood cell (RBC) hitchhiking is a method of drug delivery that can increase drug concentration in target organs by orders of magnitude. In RBC hitchhiking, drug-loaded nanoparticles (NPs) are adsorbed onto red blood cells and then injected intravascularly, which causes the NPs to transfer to cells of the capillaries in the downstream organ. RBC hitchhiking has been demonstrated in multiple species and multiple organs. For example, RBC-hitchhiking NPs localized at unprecedented levels in the brain when using intra-arterial catheters, such as those in place immediately after mechanical thrombectomy for acute ischemic stroke. RBC hitchhiking has been successfully employed in numerous preclinical models of disease, ranging from pulmonary embolism to cancer metastasis. In addition to summarizing the versatility of RBC hitchhiking, we also describe studies into the surprisingly complex mechanisms of RBC hitchhiking as well as outline future studies to further improve RBC hitchhiking's clinical utility.
Collapse
Affiliation(s)
- Jacob S Brenner
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, USA
| | - Vladimir R Muzykantov
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
28
|
Mehrizi TZ. Hemocompatibility and Hemolytic Effects of Functionalized Nanoparticles on Red Blood Cells: A Recent Review Study. NANO 2021; 16:2130007. [DOI: 10.1142/s1793292021300073] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
In this paper (from 2010 to 2020), the effects of polymeric, metallic and nonmetallic nanoparticles on red blood cells’ hemocompatibility were investigated for the first time. Here, we have considered the latest findings which can help to improve the hemocompatibility of RBCs. It is important to maintain the quality of red blood cells for improving the hemocompatibility because blood products directly affect the health of patients after blood transfusion. Although RBCs can be stored for up to 42 days at 2–6∘C, hypothermic storage lesions (HSLs) are very common in these products. This problem affects the quality of RBC products. Thus, it is necessary to modify the surface molecules of RBCs during storage time to reduce HSLs and alloimmunization complications. Therefore, we reviewed the reported effects of polymeric, metallic and carbon-based nanoparticles on RBCs between 2010 and 2020. The results of our study have shown that the use of negatively charged dendrimers, unsaturated/uncharged liposomes, and PEGylated forms of NPs and RBCs are the best approaches to improve the hemocompatibility conditions of red blood cells. However, large cationic dendrimers, liposomes composed of saturated lipid with long acyl chain, and cationic chitosan nanoparticles have less RBC compatibility. In addition, polymeric nanoparticles have more capacity for surface modification, which makes it possible to make more hemocompatible derivatives. Among metallic nanoparticles, gold and iron nanoparticles were more RBC compatible. However, the smaller size, higher concentration and longer exposure time of these nanoparticles can induce hemolysis and morphological changes in RBCs. On the other side, nonmetallic nanoparticles mostly had poor RBC compatibility, but their effects on RBCs strongly depended on their concentration and physicochemical properties and could be controllable. As a result, the use of polyethylene glycol (PEG), gold, polymeric, and iron nanoparticles in the design of protocols to maintain the survival, structure and activity of red blood cells for improving hemocompatibility can be more effective.
Collapse
Affiliation(s)
- Tahereh Zadeh Mehrizi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
29
|
Hoffmann MA, Kieffer C, Bjorkman PJ. In vitro characterization of engineered red blood cells as viral traps against HIV-1 and SARS-CoV-2. Mol Ther Methods Clin Dev 2021; 21:161-170. [PMID: 33723514 PMCID: PMC7944778 DOI: 10.1016/j.omtm.2021.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/06/2021] [Indexed: 01/12/2023]
Abstract
Engineered red blood cells (RBCs) expressing viral receptors could be used therapeutically as viral traps, as RBCs lack nuclei and other organelles required for viral replication. However, expression of viral receptors on RBCs is difficult to achieve since mature erythrocytes lack the cellular machinery to synthesize proteins. Herein, we show that the combination of a powerful erythroid-specific expression system and transgene codon optimization yields high expression levels of the HIV-1 receptors CD4 and CCR5, as well as a CD4-glycophorin A (CD4-GpA) fusion protein in erythroid progenitor cells, which efficiently differentiated into enucleated RBCs. HIV-1 efficiently entered RBCs that co-expressed CD4 and CCR5, but viral entry was not required for neutralization, as CD4 or CD4-GpA expression in the absence of CCR5 was sufficient to potently neutralize HIV-1 and prevent infection of CD4+ T cells in vitro due to the formation of high-avidity interactions with trimeric HIV-1 Env spikes on virions. To facilitate continuous large-scale production of RBC viral traps, we generated erythroblast cell lines stably expressing CD4-GpA or ACE2-GpA fusion proteins, which produced potent RBC viral traps against HIV-1 and SARS-CoV-2. Our in vitro results suggest that this approach warrants further investigation as a potential treatment against acute and chronic viral infections.
Collapse
Affiliation(s)
- Magnus A.G. Hoffmann
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Collin Kieffer
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Pamela J. Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
30
|
Zhao Z, Ukidve A, Krishnan V, Fehnel A, Pan DC, Gao Y, Kim J, Evans MA, Mandal A, Guo J, Muzykantov VR, Mitragotri S. Systemic tumour suppression via the preferential accumulation of erythrocyte-anchored chemokine-encapsulating nanoparticles in lung metastases. Nat Biomed Eng 2021; 5:441-454. [PMID: 33199847 DOI: 10.1038/s41551-020-00644-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 10/07/2020] [Indexed: 02/03/2023]
Abstract
Eliciting immune responses against primary tumours is hampered by their immunosuppressive microenvironment and by the greater inaccessibility of deeper intratumoural cells. However, metastatic tumour cells are exposed to highly perfused and immunoactive organs, such as the lungs. Here, by taking advantage of the preferential colocalization of intravenously administered erythrocytes with metastases in the lungs, we show that treatment with chemokine-encapsulating nanoparticles that are non-covalently anchored onto the surface of injected erythrocytes results in local and systemic tumour suppression in mouse models of lung metastasis. Such erythrocyte-anchored systemic immunotherapy led to the infiltration of effector immune cells into the lungs, in situ immunization without the need for exogenous antigens, inhibition of the progression of lung metastasis, and significantly extended animal survival and systemic immunity that suppressed the growth of distant tumours after rechallenge. Erythrocyte-mediated systemic immunotherapy may represent a general and potent strategy for cancer vaccination.
Collapse
Affiliation(s)
- Zongmin Zhao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Anvay Ukidve
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Vinu Krishnan
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Alexandra Fehnel
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Daniel C Pan
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Yongsheng Gao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Jayoung Kim
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Michael A Evans
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Abhirup Mandal
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Junling Guo
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Vladimir R Muzykantov
- Department of Systems Pharmacology and Translational Therapeutics and Center for Translational Targeted Therapeutics and Nanomedicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
| |
Collapse
|
31
|
Organophosphate detoxification by membrane-engineered red blood cells. Acta Biomater 2021; 124:270-281. [PMID: 33529769 DOI: 10.1016/j.actbio.2021.01.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/31/2022]
Abstract
Biotherapeutics have achieved global economic success due to their high specificity towards their drug targets, providing exceptional safety and efficiency. The ongoing shift away from small molecule drugs towards biotherapeutics heightens the need to further improve the pharmacokinetics of these biological drugs. Three pervasive obstacles that limit the therapeutic capacity of biotherapeutics are proteolytic degradation, circulating half-life, and the development of anti-drug antibodies. These challenges can culminate in limited efficiency and consequently warrant the need for higher drug doses and more frequent administration. We have explored the coupling of biotherapeutics to long-lived and biocompatible red blood cells (RBCs) to address limited pharmacokinetics. Butyrylcholinesterase (BChE), for example, provides prophylactic protection against organophosphate nerve agents (OPNAs), yet the short circulation life of the drug requires extraordinary doses. Herein, we report the rapid and tunable chemical engineering of BChE to RBC membranes to create a cell-based delivery system that retains the enzyme activity and enhances stability. In a three-step process that first pre-modifies BChE with a cell-reactive polymer chain, primes the cells for engineering, and then grafts the conjugates to the cells, we attached over 2 million BChE molecules to the surface of each RBC without diminishing the bioscavenging capacity of the enzyme. Critically, this membrane-engineering approach was cell-tolerated with minimal hemolysis observed. These results provide strong evidence for the ability of engineered RBCs to serve as an enhanced biotherapeutic delivery vehicle. STATEMENT OF SIGNIFICANCE: Organophosphate nerve agents (OPNAs) are one of the most lethal forms of chemical warfare. After exposure to OPNAs, a patient is given life-saving therapeutics, such as atropine and oxime. However, these drugs are limited, and the patient can still suffer from irreparable injuries. Given the toxicity of OPNAs, access to a prophylactic is vital. We have created an enhanced delivery system for prophylactic butyrylcholinesterase (BChE) by engineering this biotherapeutic to the red blood cell (RBC) surface. In three simple steps that first pre-modifies BChE with a cell-reactive polymer, primes the cells for engineering, and then grafts the conjugates to the cells, we attached over 2 million BChE molecules to a single RBC while retaining the enzyme's activity and enhancing its stability.
Collapse
|
32
|
Tran JQ, Grover D, Zhang M, Stapels M, Brennan R, Bangari DS, Piepenhagen PA, Roberts E, Oliva P, Zubair F, Vela JL, Richards SM, Joseph AM. Expansion of immature, nucleated red blood cells by transient low-dose methotrexate immune tolerance induction in mice. Clin Exp Immunol 2021; 203:409-423. [PMID: 33205401 PMCID: PMC7874831 DOI: 10.1111/cei.13552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 11/28/2022] Open
Abstract
Biological treatments such as enzyme-replacement therapies (ERT) can generate anti-drug antibodies (ADA), which may reduce drug efficacy and impact patient safety and consequently led to research to mitigate ADA responses. Transient low-dose methotrexate (TLD-MTX) as a prophylactic ITI regimen, when administered concurrently with ERT, induces long-lived reduction of ADA to recombinant human alglucosidase alfa (rhGAA) in mice. In current clinical practice, a prophylactic ITI protocol that includes TLD-MTX, rituximab and intravenous immunoglobulin (optional), successfully induced lasting control of ADA to rhGAA in high-risk, cross-reactive immunological material (CRIM)-negative infantile-onset Pompe disease (IOPD) patients. More recently, evaluation of TLD-MTX demonstrated benefit in CRIM-positive IOPD patients. To more clearly understand the mechanism for the effectiveness of TLD-MTX, non-targeted transcriptional and proteomic screens were conducted and revealed up-regulation of erythropoiesis signatures. Confirmatory studies showed transiently larger spleens by weight, increased spleen cellularity and that following an initial reduction of mature red blood cells (RBCs) in the bone marrow and blood, a significant expansion of Ter-119+ CD71+ immature RBCs was observed in spleen and blood of mice. Histology sections revealed increased nucleated cells, including hematopoietic precursors, in the splenic red pulp of these mice. This study demonstrated that TLD-MTX induced a transient reduction of mature RBCs in the blood and immature RBCs in the bone marrow followed by significant enrichment of immature, nucleated RBCs in the spleen and blood during the time of immune tolerance induction, which suggested modulation of erythropoiesis may be associated with the induction of immune tolerance to rhGAA.
Collapse
Affiliation(s)
- J. Q. Tran
- Sanofi Immunology and Inflammation Research Therapeutic AreaCambridgeMAUSA
| | - D. Grover
- Sanofi Immunology and Inflammation Research Therapeutic AreaCambridgeMAUSA
| | - M. Zhang
- Sanofi Translational Sciences BioinformaticsCambridgeMAUSA
| | - M. Stapels
- Sanofi Biologics DevelopmentCambridgeMAUSA
| | | | | | | | - E. Roberts
- Sanofi Translational In Vivo ModelsCambridgeMAUSA
| | - P. Oliva
- Sanofi Immunology and Inflammation Research Therapeutic AreaCambridgeMAUSA
| | - F. Zubair
- Sanofi Immunology and Inflammation Research Therapeutic AreaCambridgeMAUSA
| | - J. L. Vela
- Sanofi Immunology and Inflammation Research Therapeutic AreaCambridgeMAUSA
| | - S. M. Richards
- Sanofi Translational Medicine and Early DevelopmentCambridgeMAUSA
| | - A. M. Joseph
- Sanofi Immunology and Inflammation Research Therapeutic AreaCambridgeMAUSA
| |
Collapse
|
33
|
Watkins EA, Antane JT, Roberts JL, Lorentz KM, Zuerndorfer S, Dunaif AC, Bailey LJ, Tremain AC, Nguyen M, De Loera RC, Wallace RP, Weathered RK, Kontos S, Hubbell JA. Persistent antigen exposure via the eryptotic pathway drives terminal T cell dysfunction. Sci Immunol 2021; 6:6/56/eabe1801. [PMID: 33637595 DOI: 10.1126/sciimmunol.abe1801] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/28/2021] [Indexed: 12/15/2022]
Abstract
Although most current treatments for autoimmunity involve broad immunosuppression, recent efforts have aimed to suppress T cells in an antigen-specific manner to minimize risk of infection. One such effort is through targeting antigen to the apoptotic pathway to increase presentation of the antigen of interest in a tolerogenic context. Erythrocytes present a rational candidate to target because of their high rate of eryptosis, which facilitates continual uptake by antigen-presenting cells in the spleen. Here, we develop an approach that binds antigens to erythrocytes to induce sustained T cell dysfunction. Transcriptomic and phenotypic analyses revealed signatures of self-tolerance and exhaustion, including up-regulation of PD-1, CTLA4, Lag3, and TOX. Antigen-specific T cells were incapable of responding to an adjuvanted antigenic challenge even months after antigen clearance. With this strategy, we prevented pathology in a mouse experimental autoimmune encephalomyelitis model. CD8+ T cell education occurred in the spleen and was dependent on cross-presenting Batf3+ dendritic cells. These results demonstrate that antigens associated with eryptotic erythrocytes induce lasting T cell dysfunction that could be protective in deactivating pathogenic T cells.
Collapse
Affiliation(s)
- Elyse A Watkins
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Jennifer T Antane
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Jaeda L Roberts
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | | | | | - Anya C Dunaif
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | | | - Andrew C Tremain
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.,Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Mindy Nguyen
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Roberto C De Loera
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Rachel P Wallace
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Rachel K Weathered
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | | | - Jeffrey A Hubbell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA. .,Committee on Immunology, University of Chicago, Chicago, IL 60637, USA.,Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
34
|
Tajbakhsh A, Farahani N, Gheibihayat SM, Mirkhabbaz AM, Savardashtaki A, Hamblin MR, Mirzaei H. Autoantigen-specific immune tolerance in pathological and physiological cell death: Nanotechnology comes into view. Int Immunopharmacol 2020; 90:107177. [PMID: 33249046 DOI: 10.1016/j.intimp.2020.107177] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/26/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023]
Abstract
Apoptotic cells are tolerogenic and can present self-antigens in the absence of inflammation, to antigen-presenting cells by the process of efferocytosis, resulting in anergy and depletion of immune effector cells. This tolerance is essential to maintain immune homeostasis and prevent systemic autoimmune diseases, such as rheumatoid arthritis and systemic lupus erythematosus. Consequently, effective efferocytosis can result in the induction of immune tolerance mediated via triggering modulatory lymphocytes and anti-inflammatory responses. Furthermore, several distinct soluble factors, receptors and pathways have been found to be involved in the efferocytosis, which are able to regulate immune tolerance by lessening antigen presentation, inhibition of T-cell proliferation and induction of regulatory T-cells. Some newly developed nanotechnology-based approaches can induce antigen-specific immunological tolerance without any systemic immunosuppression. These strategies have been explored to reverse autoimmune responses induced against various protein antigens in different diseases. In this review, we describe some nanotechnology-based approaches for the maintenance of self-tolerance using the apoptotic cell clearance process (efferocytosis) that may be able to induce immune tolerance and treat autoimmune diseases.
Collapse
Affiliation(s)
- Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Najmeh Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sayed Mohammad Gheibihayat
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Amir Savardashtaki
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R., Iran.
| |
Collapse
|
35
|
Zhang C, Zhang PQ, Guo S, Chen G, Zhao Z, Wang GX, Zhu B. Application of Biomimetic Cell-Derived Nanoparticles with Mannose Modification as a Novel Vaccine Delivery Platform against Teleost Fish Viral Disease. ACS Biomater Sci Eng 2020; 6:6770-6777. [DOI: 10.1021/acsbiomaterials.0c01302] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Chen Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Peng-Qi Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Sheng Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Guo Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Zhao Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Gao-Xue Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Bin Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
36
|
Zhao Z, Ukidve A, Kim J, Mitragotri S. Targeting Strategies for Tissue-Specific Drug Delivery. Cell 2020; 181:151-167. [PMID: 32243788 DOI: 10.1016/j.cell.2020.02.001] [Citation(s) in RCA: 505] [Impact Index Per Article: 101.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/19/2022]
Abstract
Off-target effects of systemically administered drugs have been a major hurdle in designing therapies with desired efficacy and acceptable toxicity. Developing targeting strategies to enable site-specific drug delivery holds promise in reducing off-target effects, decreasing unwanted toxicities, and thereby enhancing a drug's therapeutic efficacy. Over the past three decades, a large body of literature has focused on understanding the biological barriers that hinder tissue-specific drug delivery and strategies to overcome them. These efforts have led to several targeting strategies that modulate drug delivery in both the preclinical and clinical settings, including small molecule-, nucleic acid-, peptide-, antibody-, and cell-based strategies. Here, we discuss key advances and emerging concepts for tissue-specific drug delivery approaches and their clinical translation.
Collapse
Affiliation(s)
- Zongmin Zhao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, MA 02138, USA; Wyss Institute of Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - Anvay Ukidve
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, MA 02138, USA; Wyss Institute of Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - Jayoung Kim
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, MA 02138, USA; Wyss Institute of Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, MA 02138, USA; Wyss Institute of Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
37
|
Erythrocyte-driven immunization via biomimicry of their natural antigen-presenting function. Proc Natl Acad Sci U S A 2020; 117:17727-17736. [PMID: 32665441 DOI: 10.1073/pnas.2002880117] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Erythrocytes naturally capture certain bacterial pathogens in circulation, kill them through oxidative stress, and present them to the antigen-presenting cells (APCs) in the spleen. By leveraging this innate immune function of erythrocytes, we developed erythrocyte-driven immune targeting (EDIT), which presents nanoparticles from the surface of erythrocytes to the APCs in the spleen. Antigenic nanoparticles were adsorbed on the erythrocyte surface. By engineering the number density of adsorbed nanoparticles, (i.e., the number of nanoparticles loaded per erythrocyte), they were predominantly delivered to the spleen rather than lungs, which is conventionally the target of erythrocyte-mediated delivery systems. Presentation of erythrocyte-delivered nanoparticles to the spleen led to improved antibody response against the antigen, higher central memory T cell response, and lower regulatory T cell response, compared with controls. Enhanced immune response slowed down tumor progression in a prophylaxis model. These findings suggest that EDIT is an effective strategy to enhance systemic immunity.
Collapse
|
38
|
Lu Z, Paolella BR, Truex NL, Loftis AR, Liao X, Rabideau AE, Brown MS, Busanovich J, Beroukhim R, Pentelute BL. Targeting Cancer Gene Dependencies with Anthrax-Mediated Delivery of Peptide Nucleic Acids. ACS Chem Biol 2020; 15:1358-1369. [PMID: 32348107 PMCID: PMC7521945 DOI: 10.1021/acschembio.9b01027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Antisense oligonucleotide therapies are important cancer treatments, which can suppress genes in cancer cells that are critical for cell survival. SF3B1 has recently emerged as a promising gene target that encodes a key splicing factor in the SF3B protein complex. Over 10% of cancers have lost one or more copies of the SF3B1 gene, rendering these cancers vulnerable after further suppression. SF3B1 is just one example of a CYCLOPS (Copy-number alterations Yielding Cancer Liabilities Owing to Partial losS) gene, but over 120 additional candidate CYCLOPS genes are known. Antisense oligonucleotide therapies for cancer offer the promise of effective suppression for CYCLOPS genes, but developing these treatments is difficult due to their limited permeability into cells and poor cytosolic stability. Here, we develop an effective approach to suppress CYCLOPS genes by delivering antisense peptide nucleic acids (PNAs) into the cytosol of cancer cells. We achieve efficient cytosolic PNA delivery with the two main nontoxic components of the anthrax toxin: protective antigen (PA) and the 263-residue N-terminal domain of lethal factor (LFN). Sortase-mediated ligation readily enables the conjugation of PNAs to the C terminus of the LFN protein. LFN and PA work together in concert to translocate PNAs into the cytosol of mammalian cells. Antisense SF3B1 PNAs delivered with the LFN/PA system suppress the SF3B1 gene and decrease cell viability, particularly of cancer cells with partial copy-number loss of SF3B1. Moreover, antisense SF3B1 PNAs delivered with a HER2-binding PA variant selectively target cancer cells that overexpress the HER2 cell receptor, demonstrating receptor-specific targeting of cancer cells. Taken together, our efforts illustrate how PA-mediated delivery of PNAs provides an effective and general approach for delivering antisense PNA therapeutics and for targeting gene dependencies in cancer.
Collapse
Affiliation(s)
- Zeyu Lu
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Brenton R. Paolella
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02139, USA
| | - Nicholas L. Truex
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Alexander R. Loftis
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Xiaoli Liao
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Amy E. Rabideau
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Meredith S. Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02139, USA
| | - John Busanovich
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02139, USA
| | - Rameen Beroukhim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02139, USA
| | - Bradley L. Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
39
|
Fu K, March K, Alexaki A, Fabozzi G, Moysi E, Petrovas C. Immunogenicity of Protein Therapeutics: A Lymph Node Perspective. Front Immunol 2020; 11:791. [PMID: 32477334 PMCID: PMC7240201 DOI: 10.3389/fimmu.2020.00791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/07/2020] [Indexed: 12/31/2022] Open
Abstract
The continuous development of molecular biology and protein engineering technologies enables the expansion of the breadth and complexity of protein therapeutics for in vivo administration. However, the immunogenicity and associated in vivo development of antibodies against therapeutics are a major restriction factor for their usage. The B cell follicular and particularly germinal center areas in secondary lymphoid organs are the anatomical sites where the development of antibody responses against pathogens and immunogens takes place. A growing body of data has revealed the importance of the orchestrated function of highly differentiated adaptive immunity cells, including follicular helper CD4 T cells and germinal center B cells, for the optimal generation of these antibody responses. Understanding the cellular and molecular mechanisms mediating the antibody responses against therapeutics could lead to novel strategies to reduce their immunogenicity and increase their efficacy.
Collapse
Affiliation(s)
- Kristy Fu
- Tissue Analysis Core, Immunology Laboratory, Vaccine Research Center, NIAID, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Kylie March
- Tissue Analysis Core, Immunology Laboratory, Vaccine Research Center, NIAID, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Aikaterini Alexaki
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Giulia Fabozzi
- Tissue Analysis Core, Immunology Laboratory, Vaccine Research Center, NIAID, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Eirini Moysi
- Tissue Analysis Core, Immunology Laboratory, Vaccine Research Center, NIAID, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Constantinos Petrovas
- Tissue Analysis Core, Immunology Laboratory, Vaccine Research Center, NIAID, National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
40
|
Glassman PM, Villa CH, Ukidve A, Zhao Z, Smith P, Mitragotri S, Russell AJ, Brenner JS, Muzykantov VR. Vascular Drug Delivery Using Carrier Red Blood Cells: Focus on RBC Surface Loading and Pharmacokinetics. Pharmaceutics 2020; 12:E440. [PMID: 32397513 PMCID: PMC7284780 DOI: 10.3390/pharmaceutics12050440] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 04/30/2020] [Accepted: 05/08/2020] [Indexed: 01/26/2023] Open
Abstract
Red blood cells (RBC) have great potential as drug delivery systems, capable of producing unprecedented changes in pharmacokinetics, pharmacodynamics, and immunogenicity. Despite this great potential and nearly 50 years of research, it is only recently that RBC-mediated drug delivery has begun to move out of the academic lab and into industrial drug development. RBC loading with drugs can be performed in several ways-either via encapsulation within the RBC or surface coupling, and either ex vivo or in vivo-depending on the intended application. In this review, we briefly summarize currently used technologies for RBC loading/coupling with an eye on how pharmacokinetics is impacted. Additionally, we provide a detailed description of key ADME (absorption, distribution, metabolism, elimination) changes that would be expected for RBC-associated drugs and address unique features of RBC pharmacokinetics. As thorough understanding of pharmacokinetics is critical in successful translation to the clinic, we expect that this review will provide a jumping off point for further investigations into this area.
Collapse
Affiliation(s)
- Patrick M. Glassman
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA 19104, USA; (C.H.V.); (J.S.B.)
| | - Carlos H. Villa
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA 19104, USA; (C.H.V.); (J.S.B.)
| | - Anvay Ukidve
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; (A.U.); (Z.Z.); (S.M.)
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - Zongmin Zhao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; (A.U.); (Z.Z.); (S.M.)
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - Paige Smith
- Disruptive Health Technology Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA; (P.S.); (A.J.R.)
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; (A.U.); (Z.Z.); (S.M.)
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - Alan J. Russell
- Disruptive Health Technology Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA; (P.S.); (A.J.R.)
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Jacob S. Brenner
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA 19104, USA; (C.H.V.); (J.S.B.)
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vladimir R. Muzykantov
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA 19104, USA; (C.H.V.); (J.S.B.)
| |
Collapse
|
41
|
Shields CW, Wang LLW, Evans MA, Mitragotri S. Materials for Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1901633. [PMID: 31250498 DOI: 10.1002/adma.201901633] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/17/2019] [Indexed: 05/20/2023]
Abstract
Breakthroughs in materials engineering have accelerated the progress of immunotherapy in preclinical studies. The interplay of chemistry and materials has resulted in improved loading, targeting, and release of immunomodulatory agents. An overview of the materials that are used to enable or improve the success of immunotherapies in preclinical studies is presented, from immunosuppressive to proinflammatory strategies, with particular emphasis on technologies poised for clinical translation. The materials are organized based on their characteristic length scale, whereby the enabling feature of each technology is organized by the structure of that material. For example, the mechanisms by which i) nanoscale materials can improve targeting and infiltration of immunomodulatory payloads into tissues and cells, ii) microscale materials can facilitate cell-mediated transport and serve as artificial antigen-presenting cells, and iii) macroscale materials can form the basis of artificial microenvironments to promote cell infiltration and reprogramming are discussed. As a step toward establishing a set of design rules for future immunotherapies, materials that intrinsically activate or suppress the immune system are reviewed. Finally, a brief outlook on the trajectory of these systems and how they may be improved to address unsolved challenges in cancer, infectious diseases, and autoimmunity is presented.
Collapse
Affiliation(s)
- C Wyatt Shields
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Lily Li-Wen Wang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Michael A Evans
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
42
|
Carballido JM, Regairaz C, Rauld C, Raad L, Picard D, Kammüller M. The Emerging Jamboree of Transformative Therapies for Autoimmune Diseases. Front Immunol 2020; 11:472. [PMID: 32296421 PMCID: PMC7137386 DOI: 10.3389/fimmu.2020.00472] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/28/2020] [Indexed: 12/12/2022] Open
Abstract
Standard treatments for autoimmune and autoinflammatory disorders rely mainly on immunosuppression. These are predominantly symptomatic remedies that do not affect the root cause of the disease and are associated with multiple side effects. Immunotherapies are being developed during the last decades as more specific and safer alternatives to small molecules with broad immunosuppressive activity, but they still do not distinguish between disease-causing and protective cell targets and thus, they still have considerable risks of increasing susceptibility to infections and/or malignancy. Antigen-specific approaches inducing immune tolerance represent an emerging trend carrying the potential to be curative without inducing broad immunosuppression. These therapies are based on antigenic epitopes derived from the same proteins that are targeted by the autoreactive T and B cells, and which are administered to patients together with precise instructions to induce regulatory responses capable to restore homeostasis. They are not personalized medicines, and they do not need to be. They are precision therapies exquisitely targeting the disease-causing cells that drive pathology in defined patient populations. Immune tolerance approaches are truly transformative options for people suffering from autoimmune diseases.
Collapse
Affiliation(s)
- José M. Carballido
- Translational Medicine, Novartis Institutes for Biomedical Research, Basel, Switzerland
- Autoimmunity Transplantation and Inflammation, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Camille Regairaz
- Autoimmunity Transplantation and Inflammation, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Celine Rauld
- Autoimmunity Transplantation and Inflammation, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Layla Raad
- Autoimmunity Transplantation and Inflammation, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Damien Picard
- Translational Medicine, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Michael Kammüller
- Translational Medicine, Novartis Institutes for Biomedical Research, Basel, Switzerland
| |
Collapse
|
43
|
Himbert S, Blacker MJ, Kihm A, Pauli Q, Khondker A, Yang K, Sinjari S, Johnson M, Juhasz J, Wagner C, Stöver HDH, Rheinstädter MC. Hybrid Erythrocyte Liposomes: Functionalized Red Blood Cell Membranes for Molecule Encapsulation. ACTA ACUST UNITED AC 2020; 4:e1900185. [PMID: 32293142 DOI: 10.1002/adbi.201900185] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/26/2019] [Indexed: 12/28/2022]
Abstract
The modification of erythrocyte membrane properties provides a new tool towards improved drug delivery and biomedical applications. The fabrication of hybrid erythrocyte liposomes is presented by doping red blood cell membranes with synthetic lipid molecules of different classes (PC, PS, PG) and different degrees of saturation (14:0, 16:0-18:1). The respective solubility limits are determined, and material properties of the hybrid liposomes are studied by a combination of X-ray diffraction, epi-fluorescent microscopy, dynamic light scattering (DLS), Zeta potential, UV-vis spectroscopy, and Molecular Dynamics (MD) simulations. Membrane thickness and lipid orientation can be tuned through the addition of phosphatidylcholine lipids. The hybrid membranes can be fluorescently labelled by incorporating Texas-red DHPE, and their charge modified by incorporating phosphatidylserine and phosphatidylglycerol. By using fluorescein labeled dextran as an example, it is demonstrated that small molecules can be encapsulated into these hybrid liposomes.
Collapse
Affiliation(s)
- Sebastian Himbert
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, L8S 4M1, Canada.,Origins Institute, McMaster University, Hamilton, ON, L8S 4M1, Canada
| | - Matthew J Blacker
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, L8S 4M1, Canada.,Origins Institute, McMaster University, Hamilton, ON, L8S 4M1, Canada
| | - Alexander Kihm
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, L8S 4M1, Canada.,Origins Institute, McMaster University, Hamilton, ON, L8S 4M1, Canada.,Department of Experimental Physics, Saarland University, 66123, Saarbrücken, Germany
| | - Quinn Pauli
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, L8S 4M1, Canada.,Origins Institute, McMaster University, Hamilton, ON, L8S 4M1, Canada
| | - Adree Khondker
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, L8S 4M1, Canada.,Origins Institute, McMaster University, Hamilton, ON, L8S 4M1, Canada
| | - Kevin Yang
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, L8S 4M1, Canada.,Origins Institute, McMaster University, Hamilton, ON, L8S 4M1, Canada
| | - Sheilan Sinjari
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, L8S 4M1, Canada
| | - Mitchell Johnson
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, L8S 4M1, Canada
| | - Janos Juhasz
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, L8S 4M1, Canada.,Juravinski Cancer Centre, Department of Medical Physics, Hamilton, ON, L8V 5C2, Canada
| | - Christian Wagner
- Department of Experimental Physics, Saarland University, 66123, Saarbrücken, Germany
| | - Harald D H Stöver
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, L8S 4M1, Canada
| | - Maikel C Rheinstädter
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, L8S 4M1, Canada.,Origins Institute, McMaster University, Hamilton, ON, L8S 4M1, Canada
| |
Collapse
|
44
|
Rossi L, Fraternale A, Bianchi M, Magnani M. Red Blood Cell Membrane Processing for Biomedical Applications. Front Physiol 2019; 10:1070. [PMID: 31481901 PMCID: PMC6710399 DOI: 10.3389/fphys.2019.01070] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/05/2019] [Indexed: 01/06/2023] Open
Abstract
Red blood cells (RBC) are actually exploited as innovative drug delivery systems with unconventional and convenient properties. Because of a long in vivo survival and a non-random removal from circulation, RBC can be loaded with drugs and/or contrasting agents without affecting these properties and maintaining the original immune competence. However, native or drug-loaded RBC, can be modified decorating the membrane with peptides, antibodies or small chemical entities so favoring the targeting of the processed RBC to specific cells or organs. Convenient modifications have been exploited to induce immune tolerance or immunogenicity, to deliver antibodies capable of targeting other cells, and to deliver a number of constructs that can recognize circulating pathogens or toxins. The methods used to induce membrane processing useful for biomedical applications include the use of crosslinking agents and bifunctional antibodies, biotinylation and membrane insertion. Another approach includes the expression of engineered membrane proteins upon ex vivo transfection of immature erythroid precursors with lentiviral vectors, followed by in vitro expansion and differentiation into mature erythrocytes before administration to a patient in need. Several applications have now reached the clinic and a couple of companies that take advantage from these properties of RBC are already in Phase 3 with selected applications. The peculiar properties of the RBC and the active research in this field by a number of qualified investigators, have opened new exciting perspectives on the use of RBC as carriers of drugs or as cellular therapeutics.
Collapse
Affiliation(s)
- Luigia Rossi
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy.,EryDel SpA, Bresso, Italy
| | | | - Marzia Bianchi
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy.,EryDel SpA, Bresso, Italy
| |
Collapse
|
45
|
Gaikwad H, Wang G, Smith WJ, Alexander KL, D'Alessandro A, Zhang W, Purev E, Simberg D. Clickable Methyltetrazine-Indocarbocyanine Lipids: A Multicolor Tool Kit for Efficient Modifications of Cell Membranes. Bioconjug Chem 2019; 30:2106-2114. [PMID: 31050882 DOI: 10.1021/acs.bioconjchem.9b00202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cell-based therapeutics are one of the most promising and exciting breakthroughs in modern medicine. Modification of the cell surface with ligands, biologics, drugs, and nanoparticles can further enhance the functionality. Previously, we described the synthesis of a dioctadecyl indocarbocyanine Cy3 analog (aminomethyl-DiI) for efficient and stable modification (painting) of mouse erythrocytes with small molecules, enzymes, and biologics. Here, we synthesized a near-infrared aminomethyl dioctadecyl derivative of Cy7 (aminomethyl-DOCy7) and systematically compared it to aminomethyl-DiI as an anchor for the modification of human erythrocytes, Jurkat cells, and primary T cells with immunoglobulin G. To enable copper-free click chemistry modification of cell membranes, we conjugated a methyltetrazine (MTz) group to the amino-indocyanine lipids via a polyethylene glycol (PEG) linker. DOCy7-PEG3400-MTz showed over 99% modification efficiency of human red blood cells (RBCs) at 25 μM. Reaction of trans-cyclooctene (TCO) modified immunoglobulin G (IgG) with DOCy7-PEG4-MTz-modified RBCs (2-step method) resulted in ∼80,000 IgG molecules per erythrocyte, whereas modification with a preconjugated DOCy7-PEG3400-IgG construct (1-step method) resulted in ∼20,000 IgG molecules per erythrocyte as detected by immuno dot-blot. The number of IgG/RBC was controlled by the concentration of IgG. The incubation of RBCs with DiI-PEG3400-MTz resulted in a similar number of IgG/RBC. Modification of the T-lymphocyte cell line Jurkat with IgG resulted in ∼1 × 106 IgG/cell with the 1-step and 2-step methods, and the efficiency was similar for DOCy7 and DiI constructs. Finally, we used DOCy7 and DiI constructs to demonstrate efficient modification of primary CD3+T cells from healthy donors. In conclusion, click indocarbocyanine conjugates represent a novel multicolor chemical biology tool kit for efficient surface modification of different cells types and can be used for potential imaging and drug delivery applications involving engineered cells.
Collapse
Affiliation(s)
| | - Guankui Wang
- Colorado Center for Nanomedicine and Nanosafety , University of Colorado Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | | | - Keisha L Alexander
- Department of Biochemistry and Molecular Genetics , University of Colorado Denver-Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics , University of Colorado Denver-Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | - Wei Zhang
- Division of Hematology, School of Medicine , University of Colorado Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | - Enkhtsetseg Purev
- Division of Hematology, School of Medicine , University of Colorado Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | - Dmitri Simberg
- Colorado Center for Nanomedicine and Nanosafety , University of Colorado Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| |
Collapse
|
46
|
Serra P, Santamaria P. Antigen-specific therapeutic approaches for autoimmunity. Nat Biotechnol 2019; 37:238-251. [PMID: 30804535 DOI: 10.1038/s41587-019-0015-4] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 01/04/2019] [Indexed: 12/12/2022]
Abstract
The main function of the immune system in health is to protect the host from infection by microbes and parasites. Because immune responses to nonself bear the risk of unleashing accidental immunity against self, evolution has endowed the immune system with central and peripheral mechanisms of tolerance, including regulatory T and B cells. Although the past two decades have witnessed the successful clinical translation of a whole host of novel therapies for the treatment of chronic inflammation, the development of antigen-based approaches capable of selectively blunting autoimmune inflammation without impairing normal immunity has remained elusive. Earlier autoantigen-specific approaches employing peptides or whole antigens have evolved into strategies that seek to preferentially deliver these molecules to autoreactive T cells either indirectly, via antigen-presenting cells, or directly, via major histocompatibility complex molecules, in ways intended to promote clonal deletion and/or immunoregulation. The disease specificity, mechanistic underpinnings, developability and translational potential of many of these strategies remain unclear.
Collapse
Affiliation(s)
- Pau Serra
- Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.
| | - Pere Santamaria
- Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain. .,Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
47
|
Belén Castillo D, Rodriguez HM. General Approach to Drug Delivery Systems (DDS). BIONATURA 2019. [DOI: 10.21931/rb/cs/2019.02.01.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The field of drug discovery drives to find out efficient, selective, stable and biocompatible new drugs. The purpose of drug delivery systems (DDS) is to reduce the side effects that treatments usually cause to mitigate some diseases, especially cancer. Cancer treatments are usually so strong and invasive that they end up weakening the patient, so the cure became as dangerous as the disease. That is the reason that DDS try to maximize the effectiveness of the drugs administered by wanting them to reach specifically to the area affected by the disease (High specificity). In this regard, the fruitfully use of liposome-, erythrocytes-, nanoparticles- or antibodies-based therapies became a choice for the treatment of a huge range of diseases, due to the biocompatibility that these macromolecular systems present. In the last five years, a broad range of DDS have been developed, and some of them, specifically four ADC´s are approved by the FDA and commercializing. In this work, we summarized the most important approach to DDS obtained through chemical conjugation, highlighting ADC´s like the most promising controlled release systems.
Collapse
|
48
|
Gammon JM, Jewell CM. Engineering Immune Tolerance with Biomaterials. Adv Healthc Mater 2019; 8:e1801419. [PMID: 30605264 PMCID: PMC6384133 DOI: 10.1002/adhm.201801419] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/05/2018] [Indexed: 12/28/2022]
Abstract
Autoimmune diseases, rejection of transplanted organs and grafts, chronic inflammatory diseases, and immune-mediated rejection of biologic drugs impact a large number of people across the globe. New understanding of immune function is revealing exciting opportunities to help tackle these challenges by harnessing-or correcting-the specificity of immune function. However, realizing this potential requires precision control over the interaction between regulatory immune cues, antigens attacked during inflammation, and the tissues where these processes occur. Engineered materials-such as polymeric and lipid particles, scaffolds, and inorganic materials-offer powerful features that can help to selectively regulate immune function during disease without compromising healthy immune functions. This review highlights some of the exciting developments to leverage biomaterials as carriers, depots, scaffolds-and even as agents with intrinsic immunomodulatory features-to promote immunological tolerance.
Collapse
Affiliation(s)
- Joshua M. Gammon
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive RM 5110, College Park, MD 20742, USA
| | - Christopher M. Jewell
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive RM 5110, College Park, MD 20742, USA ; Robert E. Fischell Institute for Biomedical Devices, 8278 Paint Branch Drive, College Park, MD 20742, USA; United States Department of Veterans Affairs, Baltimore VA Medical center, 10. N Green Street, Baltimore, Maryland 21201, USA; Department of Microbiology and Immunology, University of Maryland Medical School, 685 West Baltimore Street, HSF-I Suite 380, Baltimore, MD, 21201, USA; Marlene and Stewart Greenebaum Cancer Center, 22 South Greene Street, Baltimore, MD 21201, USA
| |
Collapse
|
49
|
Biocompatible coupling of therapeutic fusion proteins to human erythrocytes. Blood Adv 2019; 2:165-176. [PMID: 29365311 DOI: 10.1182/bloodadvances.2017011734] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 12/29/2017] [Indexed: 01/16/2023] Open
Abstract
Carriage of drugs by red blood cells (RBCs) modulates pharmacokinetics, pharmacodynamics, and immunogenicity. However, optimal targets for attaching therapeutics to human RBCs and adverse effects have not been studied. We engineered nonhuman-primate single-chain antibody fragments (scFvs) directed to human RBCs and fused scFvs with human thrombomodulin (hTM) as a representative biotherapeutic cargo (hTM-scFv). Binding fusions to RBCs on band 3/glycophorin A (GPA; Wright b [Wrb] epitope) and RhCE (Rh17/Hr0 epitope) similarly endowed RBCs with hTM activity, but differed in their effects on RBC physiology. scFv and hTM-scFv targeted to band 3/GPA increased membrane rigidity and sensitized RBCs to hemolysis induced by mechanical stress, while reducing sensitivity to hypo-osmotic hemolysis. Similar properties were seen for other ligands bound to GPA and band 3 on human and murine RBCs. In contrast, binding of scFv or hTM-scFv to RhCE did not alter deformability or sensitivity to mechanical and osmotic stress at similar copy numbers bound per RBCs. Contrasting responses were also seen for immunoglobulin G antibodies against band 3, GPA, and RhCE. RBC-bound hTM-scFv generated activated protein C (APC) in the presence of thrombin, but RhCE-targeted hTM-scFv demonstrated greater APC generation per bound copy. Both Wrb- and RhCE-targeted fusion proteins inhibited fibrin deposition induced by tumor necrosis factor-α in an endothelialized microfluidic model using human whole blood. RhCE-bound hTM-scFv more effectively reduced platelet and leukocyte adhesion, whereas anti-Wrb scFv appeared to promote platelet adhesion. These data provide a translational framework for the development of engineered affinity ligands to safely couple therapeutics to human RBCs.
Collapse
|
50
|
Abstract
Biotechnology has revolutionized therapeutics for the treatment of a wide range of diseases. Recent advances in protein engineering and material science have made the targeted delivery of enzyme therapeutics using nanocarriers (NCs) a new model of treatment. Several NCs have been approved for clinical use in drug delivery. Despite their advantages, few NCs have been approved to deliver enzyme cargo in a targeted manner. This review details the current arsenal of platforms developed to deliver enzyme therapeutics as well as the advantages and challenges of using enzymes as drugs, with examples from the literature, and discusses the benefits and liabilities of a given approach. We conclude by providing a perspective on how this field may evolve over the near and long-term.
Collapse
|