1
|
Polat L, Harpaz T, Zaidel A. Rats rely on airflow cues for self-motion perception. Curr Biol 2024; 34:4248-4260.e5. [PMID: 39214088 DOI: 10.1016/j.cub.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 07/12/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024]
Abstract
Self-motion perception is a vital skill for all species. It is an inherently multisensory process that combines inertial (body-based) and relative (with respect to the environment) motion cues. Although extensively studied in human and non-human primates, there is currently no paradigm to test self-motion perception in rodents using both inertial and relative self-motion cues. We developed a novel rodent motion simulator using two synchronized robotic arms to generate inertial, relative, or combined (inertial and relative) cues of self-motion. Eight rats were trained to perform a task of heading discrimination, similar to the popular primate paradigm. Strikingly, the rats relied heavily on airflow for relative self-motion perception, with little contribution from the (limited) optic flow cues provided-performance in the dark was almost as good. Relative self-motion (airflow) was perceived with greater reliability vs. inertial. Disrupting airflow, using a fan or windshield, damaged relative, but not inertial, self-motion perception. However, whiskers were not needed for this function. Lastly, the rats integrated relative and inertial self-motion cues in a reliability-based (Bayesian-like) manner. These results implicate airflow as an important cue for self-motion perception in rats and provide a new domain to investigate the neural bases of self-motion perception and multisensory processing in awake behaving rodents.
Collapse
Affiliation(s)
- Lior Polat
- Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Tamar Harpaz
- Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Adam Zaidel
- Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan 5290002, Israel.
| |
Collapse
|
2
|
Graff MM, Belli HM, Wieskotten S, Bresee CS, Krüger Y, Janssen TL, Dehnhardt G, Hartmann MJZ. Spatial arrangement of the whiskers of harbor seals ( Phoca vitulina ) compared to whisker arrangements of house mice ( Mus musculus ) and brown rats ( Rattus norvegicus ). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575743. [PMID: 38293081 PMCID: PMC10827100 DOI: 10.1101/2024.01.15.575743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Whiskers (vibrissae) are important tactile sensors for most mammals. We introduce a novel approach to quantitatively compare 3D geometry of whisker arrays across species with different whisker numbers and arrangements, focusing on harbor seals ( Phoca vitulina ), house mice ( Mus musculus ) and Norway rats ( Rattus norvegicus ). Whiskers of all three species decrease in arclength and increase in curvature from caudal to rostral. They emerge from the face with elevation angles that vary linearly with dorsoventral position, and with curvature orientations that vary diagonally as linear combinations of dorsoventral and rostrocaudal positions. In seals, this diagonal varies linearly with horizontal emergence angles, and is orthogonal to the diagonal for rats and mice. This work provides the first evidence for common elements of whisker arrangements across species in different mammalian orders. Placing the equation-based whisker array on a CAD model of a seal head enables future mechanical studies of whisker-based sensing, including wake-tracking. SUMMARY STATEMENT We quantify the three-dimensional positions and orientations of the whiskers across the face of the harbor seal, and compare this geometry with the whisker arrays of rats and mice.
Collapse
|
3
|
Lewis SM, Suarez LM, Rigolli N, Franks KM, Steinmetz NA, Gire DH. The spiking output of the mouse olfactory bulb encodes large-scale temporal features of natural odor environments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.01.582978. [PMID: 38496526 PMCID: PMC10942328 DOI: 10.1101/2024.03.01.582978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
In natural odor environments, odor travels in plumes. Odor concentration dynamics change in characteristic ways across the width and length of a plume. Thus, spatiotemporal dynamics of plumes have informative features for animals navigating to an odor source. Population activity in the olfactory bulb (OB) has been shown to follow odor concentration across plumes to a moderate degree (Lewis et al., 2021). However, it is unknown whether the ability to follow plume dynamics is driven by individual cells or whether it emerges at the population level. Previous research has explored the responses of individual OB cells to isolated features of plumes, but it is difficult to adequately sample the full feature space of plumes as it is still undetermined which features navigating mice employ during olfactory guided search. Here we released odor from an upwind odor source and simultaneously recorded both odor concentration dynamics and cellular response dynamics in awake, head-fixed mice. We found that longer timescale features of odor concentration dynamics were encoded at both the cellular and population level. At the cellular level, responses were elicited at the beginning of the plume for each trial, signaling plume onset. Plumes with high odor concentration elicited responses at the end of the plume, signaling plume offset. Although cellular level tracking of plume dynamics was observed to be weak, we found that at the population level, OB activity distinguished whiffs and blanks (accurately detected odor presence versus absence) throughout the duration of a plume. Even ~20 OB cells were enough to accurately discern odor presence throughout a plume. Our findings indicate that the full range of odor concentration dynamics and high frequency fluctuations are not encoded by OB spiking activity. Instead, relatively lower-frequency temporal features of plumes, such as plume onset, plume offset, whiffs, and blanks, are represented in the OB.
Collapse
Affiliation(s)
- Suzanne M. Lewis
- Department of Psychology, University of Washington, Seattle, WA, United States
- Department of Neurobiology, Duke University, Durham, NC, USA
| | - Lucas M. Suarez
- Department of Psychology, University of Washington, Seattle, WA, United States
| | - Nicola Rigolli
- Laboratoire de Physique, École Normale Supérieure (LPENS), Paris, France
| | - Kevin M. Franks
- Department of Neurobiology, Duke University, Durham, NC, USA
| | - Nicholas A. Steinmetz
- Department of Biological Structure, University of Washington, Seattle, WA, United States
| | - David H. Gire
- Department of Psychology, University of Washington, Seattle, WA, United States
| |
Collapse
|
4
|
Cherif M, Brose U, Hirt MR, Ryser R, Silve V, Albert G, Arnott R, Berti E, Cirtwill A, Dyer A, Gauzens B, Gupta A, Ho HC, Portalier SMJ, Wain D, Wootton K. The environment to the rescue: can physics help predict predator-prey interactions? Biol Rev Camb Philos Soc 2024. [PMID: 38855988 DOI: 10.1111/brv.13105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024]
Abstract
Understanding the factors that determine the occurrence and strength of ecological interactions under specific abiotic and biotic conditions is fundamental since many aspects of ecological community stability and ecosystem functioning depend on patterns of interactions among species. Current approaches to mapping food webs are mostly based on traits, expert knowledge, experiments, and/or statistical inference. However, they do not offer clear mechanisms explaining how trophic interactions are affected by the interplay between organism characteristics and aspects of the physical environment, such as temperature, light intensity or viscosity. Hence, they cannot yet predict accurately how local food webs will respond to anthropogenic pressures, notably to climate change and species invasions. Herein, we propose a framework that synthesises recent developments in food-web theory, integrating body size and metabolism with the physical properties of ecosystems. We advocate for combination of the movement paradigm with a modular definition of the predation sequence, because movement is central to predator-prey interactions, and a generic, modular model is needed to describe all the possible variation in predator-prey interactions. Pending sufficient empirical and theoretical knowledge, our framework will help predict the food-web impacts of well-studied physical factors, such as temperature and oxygen availability, as well as less commonly considered variables such as wind, turbidity or electrical conductivity. An improved predictive capability will facilitate a better understanding of ecosystem responses to a changing world.
Collapse
Affiliation(s)
- Mehdi Cherif
- Aquatic Ecosystems and Global Change Research Unit, National Research Institute for Agriculture Food and the Environment, 50 avenue de Verdun, Cestas Cedex, 33612, France
| | - Ulrich Brose
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, Leipzig, 04103, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, Jena, 07743, Germany
| | - Myriam R Hirt
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, Leipzig, 04103, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, Jena, 07743, Germany
| | - Remo Ryser
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, Leipzig, 04103, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, Jena, 07743, Germany
| | - Violette Silve
- Aquatic Ecosystems and Global Change Research Unit, National Research Institute for Agriculture Food and the Environment, 50 avenue de Verdun, Cestas Cedex, 33612, France
| | - Georg Albert
- Department of Forest Nature Conservation, Georg-August-Universität, Büsgenweg 3, Göttingen, 37077, Germany
| | - Russell Arnott
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge, Cambridgeshire, CB2 1LR, UK
| | - Emilio Berti
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, Leipzig, 04103, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, Jena, 07743, Germany
| | - Alyssa Cirtwill
- Spatial Foodweb Ecology Group, Research Centre for Ecological Change (REC), Faculty of Biological and Environmental Sciences, University of Helsinki, P.O. Box 4 (Yliopistonkatu 3), Helsinki, 00014, Finland
| | - Alexander Dyer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, Leipzig, 04103, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, Jena, 07743, Germany
| | - Benoit Gauzens
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, Leipzig, 04103, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, Jena, 07743, Germany
| | - Anhubav Gupta
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zürich, 8057, Switzerland
| | - Hsi-Cheng Ho
- Institute of Ecology and Evolutionary Biology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 106, Taiwan
| | - Sébastien M J Portalier
- Department of Mathematics and Statistics, University of Ottawa, STEM Complex, room 342, 150 Louis-Pasteur Pvt, Ottawa, Ontario, K1N 6N5, Canada
| | - Danielle Wain
- 7 Lakes Alliance, Belgrade Lakes, 137 Main St, Belgrade Lakes, ME, 04918, USA
| | - Kate Wootton
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand
| |
Collapse
|
5
|
Varghese H, Priya K V, Hareesh UNS, Chandran A. Nanofibrous PAN-PDMS Films-Based High-Performance Triboelectric Artificial Whisker for Self-Powered Obstacle Detection. Macromol Rapid Commun 2024; 45:e2300462. [PMID: 37800886 DOI: 10.1002/marc.202300462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/24/2023] [Indexed: 10/07/2023]
Abstract
Avoiding collisions is a key necessity for any autonomous mobile robot, and obstacle mapping enables them to maneuver in an uncharted area. In this era of the Internet of Things, with the emerging need for a multitude of sensors, adopting self-powered technologies is more practically viable than batteries for powering the same. Herein, with the fabrication of a triboelectric artificial whisker (TAW), a self-powered obstacle detection is demonstrated via tactile perception. The mechanical contact with the obstacle gives rise to an electrical signal from the TAW owing to the embedded triboelectric sensor. In addition, the triboelectric nanogenerator (TENG) based on electrospun polyacrylonitrile (PAN) nanofibers and polydimethylsiloxane film, which facilitates this self-powered artificial sensation, generates an output voltage of 720 V and current density of 5 mA m-2 with 1.7 W m-2 of maximum power delivery from a force of 10 N. The electro-spinning aided enhancement in contact area of the PAN is responsible for the remarkable improvement in the performance of the TENG, 3.4 times enhancement in power density, when compared to the nonsurface-modified ones. In addition, the TENG is able to charge commercial capacitors up to appreciable values and demonstrates powering different electronic gadgets such as calculators and thermometers.
Collapse
Affiliation(s)
- Harris Varghese
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vaishna Priya K
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Unnikrishnan Nair Saraswathy Hareesh
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Achu Chandran
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
6
|
Parra-Barrero E, Vijayabaskaran S, Seabrook E, Wiskott L, Cheng S. A map of spatial navigation for neuroscience. Neurosci Biobehav Rev 2023; 152:105200. [PMID: 37178943 DOI: 10.1016/j.neubiorev.2023.105200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/13/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Spatial navigation has received much attention from neuroscientists, leading to the identification of key brain areas and the discovery of numerous spatially selective cells. Despite this progress, our understanding of how the pieces fit together to drive behavior is generally lacking. We argue that this is partly caused by insufficient communication between behavioral and neuroscientific researchers. This has led the latter to under-appreciate the relevance and complexity of spatial behavior, and to focus too narrowly on characterizing neural representations of space-disconnected from the computations these representations are meant to enable. We therefore propose a taxonomy of navigation processes in mammals that can serve as a common framework for structuring and facilitating interdisciplinary research in the field. Using the taxonomy as a guide, we review behavioral and neural studies of spatial navigation. In doing so, we validate the taxonomy and showcase its usefulness in identifying potential issues with common experimental approaches, designing experiments that adequately target particular behaviors, correctly interpreting neural activity, and pointing to new avenues of research.
Collapse
Affiliation(s)
- Eloy Parra-Barrero
- Institute for Neural Computation, Faculty of Computer Science, Ruhr University Bochum, Bochum, Germany; International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Sandhiya Vijayabaskaran
- Institute for Neural Computation, Faculty of Computer Science, Ruhr University Bochum, Bochum, Germany
| | - Eddie Seabrook
- Institute for Neural Computation, Faculty of Computer Science, Ruhr University Bochum, Bochum, Germany
| | - Laurenz Wiskott
- Institute for Neural Computation, Faculty of Computer Science, Ruhr University Bochum, Bochum, Germany; International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Sen Cheng
- Institute for Neural Computation, Faculty of Computer Science, Ruhr University Bochum, Bochum, Germany; International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
7
|
Mugnaini M, Mehrotra D, Davoine F, Sharma V, Mendes AR, Gerhardt B, Concha-Miranda M, Brecht M, Clemens AM. Supra-orbital whiskers act as wind-sensing antennae in rats. PLoS Biol 2023; 21:e3002168. [PMID: 37410722 DOI: 10.1371/journal.pbio.3002168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/23/2023] [Indexed: 07/08/2023] Open
Abstract
We know little about mammalian anemotaxis or wind sensing. Recently, however, Hartmann and colleagues showed whisker-based anemotaxis in rats. To investigate how whiskers sense airflow, we first tracked whisker tips in anesthetized rats under low (0.5 m/s) and high (1.5 m/s) airflow. Whisker tips showed increasing movement from low to high airflow conditions, with all whisker tips moving during high airflow. Low airflow conditions-most similar to naturally occurring wind stimuli-engaged whisker tips differentially. Most whiskers moved little, but the long supra-orbital (lSO) whisker showed maximal displacement, followed by the α, β, and A1 whiskers. The lSO whisker differs from other whiskers in its exposed dorsal position, upward bending, length and thin diameter. Ex vivo extracted lSO whiskers also showed exceptional airflow displacement, suggesting whisker-intrinsic biomechanics mediate the unique airflow-sensitivity. Micro computed tomography (micro-CT) revealed that the ring-wulst-the follicle structure receiving the most sensitive afferents-was more complete/closed in the lSO, and other wind-sensitive whiskers, than in non-wind-sensitive whiskers, suggesting specialization of the supra-orbital for omni-directional sensing. We localized and targeted the cortical supra-orbital whisker representation in simultaneous Neuropixels recordings with D/E-row whisker barrels. Responses to wind-stimuli were stronger in the supra-orbital whisker representation than in D/E-row barrel cortex. We assessed the behavioral significance of whiskers in an airflow-sensing paradigm. We observed that rats spontaneously turn towards airflow stimuli in complete darkness. Selective trimming of wind-responsive whiskers diminished airflow turning responses more than trimming of non-wind-responsive whiskers. Lidocaine injections targeted to supra-orbital whisker follicles also diminished airflow turning responses compared to control injections. We conclude that supra-orbital whiskers act as wind antennae.
Collapse
Affiliation(s)
- Matias Mugnaini
- Neural Systems & Behavior, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
- Laboratory of Physiology and Algorithms of the Brain, Leloir Institute (IIBBA-CONICET), Buenos Aires, Argentina
| | - Dhruv Mehrotra
- Neural Systems & Behavior, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
- Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
- Montreal Neurological Institute and Hospital, Montréal, Québec, Canada
| | - Federico Davoine
- Neural Systems & Behavior, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
- Instituto de Ingeniería Eléctrica, Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay
| | - Varun Sharma
- Neural Systems & Behavior, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
- School of Biological Sciences & Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Ana Rita Mendes
- Neural Systems & Behavior, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
- Champalimaud Neuroscience Programme; Champalimaud Foundation, Doca de Pedrouços, Lisbon, Portugal
| | - Ben Gerhardt
- Bernstein Center for Computational Neuroscience, Humboldt University of Berlin, Berlin, Germany
| | - Miguel Concha-Miranda
- Bernstein Center for Computational Neuroscience, Humboldt University of Berlin, Berlin, Germany
| | - Michael Brecht
- Neural Systems & Behavior, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
- Bernstein Center for Computational Neuroscience, Humboldt University of Berlin, Berlin, Germany
| | - Ann M Clemens
- Neural Systems & Behavior, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
- University of Edinburgh, Simons Initiative for the Developing Brain, Edinburgh, Scotland, United Kingdom
| |
Collapse
|
8
|
On the intrinsic curvature of animal whiskers. PLoS One 2023; 18:e0269210. [PMID: 36607960 PMCID: PMC9821693 DOI: 10.1371/journal.pone.0269210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 12/05/2022] [Indexed: 01/07/2023] Open
Abstract
Facial vibrissae (whiskers) are thin, tapered, flexible, hair-like structures that are an important source of tactile sensory information for many species of mammals. In contrast to insect antennae, whiskers have no sensors along their lengths. Instead, when a whisker touches an object, the resulting deformation is transmitted to mechanoreceptors in a follicle at the whisker base. Previous work has shown that the mechanical signals transmitted along the whisker will depend strongly on the whisker's geometric parameters, specifically on its taper (how diameter varies with arc length) and on the way in which the whisker curves, often called "intrinsic curvature." Although previous studies have largely agreed on how to define taper, multiple methods have been used to quantify intrinsic curvature. The present work compares and contrasts different mathematical approaches towards quantifying this important parameter. We begin by reviewing and clarifying the definition of "intrinsic curvature," and then show results of fitting whisker shapes with several different functions, including polynomial, fractional exponent, elliptical, and Cesàro. Comparisons are performed across ten species of whiskered animals, ranging from rodents to pinnipeds. We conclude with a discussion of the advantages and disadvantages of using the various models for different modeling situations. The fractional exponent model offers an approach towards developing a species-specific parameter to characterize whisker shapes within a species. Constructing models of how the whisker curves is important for the creation of mechanical models of tactile sensory acquisition behaviors, for studies of comparative evolution, morphology, and anatomy, and for designing artificial systems that can begin to emulate the whisker-based tactile sensing of animals.
Collapse
|
9
|
Jacobs LF. The PROUST hypothesis: the embodiment of olfactory cognition. Anim Cogn 2023; 26:59-72. [PMID: 36542172 PMCID: PMC9877075 DOI: 10.1007/s10071-022-01734-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/20/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
The extension of cognition beyond the brain to the body and beyond the body to the environment is an area of debate in philosophy and the cognitive sciences. Yet, these debates largely overlook olfaction, a sensory modality used by most animals. Here, I use the philosopher's framework to explore the implications of embodiment for olfactory cognition. The philosopher's 4E framework comprises embodied cognition, emerging from a nervous system characterized by its interactions with its body. The necessity of action for perception adds enacted cognition. Cognition is further embedded in the sensory inputs of the individual and is extended beyond the individual to information stored in its physical and social environments. Further, embodiment must fulfill the criterion of mutual manipulability, where an agent's cognitive state is involved in continual, reciprocal influences with its environment. Cognition cannot be understood divorced from evolutionary history, however, and I propose adding evolved, as a fifth term to the 4E framework. We must, therefore, begin at the beginning, with chemosensation, a sensory modality that underlies purposive behavior, from bacteria to humans. The PROUST hypothesis (perceiving and reconstructing odor utility in space and time) describers how olfaction, this ancient scaffold and common denominator of animal cognition, fulfills the criteria of embodied cognition. Olfactory cognition, with its near universal taxonomic distribution as well as the near absence of conscious representation in humans, may offer us the best sensorimotor system for the study of embodiment.
Collapse
Affiliation(s)
- Lucia F. Jacobs
- Department of Psychology, University of California, Berkeley, 2121 Berkeley Way, Berkeley, CA 94720-1650 USA
| |
Collapse
|
10
|
Wijers M, Trethowan P, du Preez B, Loveridge AJ, Markham A, Macdonald DW, Montgomery RA. Something in the wind: the influence of wind speed and direction on African lion movement behavior. Behav Ecol 2022. [DOI: 10.1093/beheco/arac087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Olfaction is a key sense, enabling animals to locate forage, select mates, navigate their environment, and avoid predation. Wind is an important abiotic factor that modulates the strength of olfactory information detected by animals. In theory, when airflow is unidirectional, an animal can increase odor detection probability and maximize the amount of olfactory information gained by moving crosswind. Given energetic costs inherent to activity and locomotion, behavioral search strategies that optimize the benefit-cost ratio should be advantageous. We tested whether African lions (Panthera leo) modify their movement directionality and distance according to wind speed and direction during hours of darkness when they are most active. We tracked 29 lions in southern Zimbabwe using GPS collars and deployed a weather station to collect detailed abiotic data. We found that when wind speeds increased lions were more likely to move crosswind. We also found that female lions, which tend to hunt more often than males, traveled farther when wind speeds were stronger. The results of our analysis suggest that lions adjust their movement behavior according to wind speed and direction. We inferred that this was a behavioral decision to maximize the amount of olfactory information gained per unit of energy spent. Our findings not only offer one of the first detailed insights on large carnivore anemotaxis (movement direction relative to wind) but also make an important contribution towards understanding the influence of wind on predator ecology in general which remains understudied to date.
Collapse
Affiliation(s)
- Matthew Wijers
- Wildlife Conservation Research Unit, Department of Biology, University of Oxford, Recanati-Kaplan Centre , Abingdon Road, Tubney , United Kingdom
| | - Paul Trethowan
- Wildlife Conservation Research Unit, Department of Biology, University of Oxford, Recanati-Kaplan Centre , Abingdon Road, Tubney , United Kingdom
| | - Byron du Preez
- Wildlife Conservation Research Unit, Department of Biology, University of Oxford, Recanati-Kaplan Centre , Abingdon Road, Tubney , United Kingdom
| | - Andrew J Loveridge
- Wildlife Conservation Research Unit, Department of Biology, University of Oxford, Recanati-Kaplan Centre , Abingdon Road, Tubney , United Kingdom
| | - Andrew Markham
- Department of Computer Science, University of Oxford , Parks Road, Oxford , United Kingdom
| | - David W Macdonald
- Wildlife Conservation Research Unit, Department of Biology, University of Oxford, Recanati-Kaplan Centre , Abingdon Road, Tubney , United Kingdom
| | - Robert A Montgomery
- Wildlife Conservation Research Unit, Department of Biology, University of Oxford, Recanati-Kaplan Centre , Abingdon Road, Tubney , United Kingdom
| |
Collapse
|
11
|
Riedel J, Schwarzkopf L. Variation in density, but not morphology, of cutaneous sensilla among body regions in nine species of Australian geckos. J Morphol 2022; 283:637-652. [PMID: 35174531 DOI: 10.1002/jmor.21462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/07/2022] [Accepted: 02/13/2022] [Indexed: 11/07/2022]
Abstract
Skin sense organs, i.e., cutaneous sensilla, are a well-known feature of the integument of squamate reptiles, and particularly geckos. They vary widely in morphology among species, and are thought to be mechanosensitive, associated with prey capture and handling, tail autotomy, and placement of the adhesive toepads in pad-bearing species. Some authors suggest that they may also sense abiotic environmental features, such as temperature, or humidity. Here, we describe the morphology and distribution of cutaneous sensilla among body regions of nine Australian gecko species, in four genera. We hypothesised that if sensilla morphology was distinct, or sensilla density high, around the mouth, on the tail, and on extremities, sensilla were likely used for these direct tactile functions. We found that sensilla morphology was uniform among body regions within species, but varied among species, while sensilla densities varied among species and body regions. In gecko species studied, sensilla density was highest on the labials and the dorsal tail scales, and low on the feet, head and body, providing strong support for the hypothesis that sensilla serve tactile mechanoreceptive functions for prey capture and handling and for predator avoidance, but not for toepad placement. We suggest sensilla density may be explained by mechanoreception, whereas structure may be influenced by other factors.
Collapse
Affiliation(s)
- Jendrian Riedel
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia.,Department of Evolutionary Biology, Bielefeld University, Bielefeld, Germany.,Herpetology Section, Zoological Research Museum Alexander Koenig (ZFMK) - Leibniz Institute for the Analysis of Biodiversity Change (LIB), Bonn, Germany
| | - Lin Schwarzkopf
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
12
|
Jacobs LF. How the evolution of air breathing shaped hippocampal function. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200532. [PMID: 34957846 PMCID: PMC8710879 DOI: 10.1098/rstb.2020.0532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/15/2021] [Indexed: 12/25/2022] Open
Abstract
To make maps from airborne odours requires dynamic respiratory patterns. I propose that this constraint explains the modulation of memory by nasal respiration in mammals, including murine rodents (e.g. laboratory mouse, laboratory rat) and humans. My prior theories of limbic system evolution offer a framework to understand why this occurs. The answer begins with the evolution of nasal respiration in Devonian lobe-finned fishes. This evolutionary innovation led to adaptive radiations in chemosensory systems, including the emergence of the vomeronasal system and a specialization of the main olfactory system for spatial orientation. As mammals continued to radiate into environments hostile to spatial olfaction (air, water), there was a loss of hippocampal structure and function in lineages that evolved sensory modalities adapted to these new environments. Hence the independent evolution of echolocation in bats and toothed whales was accompanied by a loss of hippocampal structure (whales) and an absence of hippocampal theta oscillations during navigation (bats). In conclusion, models of hippocampal function that are divorced from considerations of ecology and evolution fall short of explaining hippocampal diversity across mammals and even hippocampal function in humans. This article is part of the theme issue 'Systems neuroscience through the lens of evolutionary theory'.
Collapse
Affiliation(s)
- Lucia F. Jacobs
- Department of Psychology, University of California, 2121 Berkeley Way, Berkeley, CA 94720-1650, USA
| |
Collapse
|
13
|
Boublil BL, Diebold CA, Moss CF. Mechanosensory Hairs and Hair-like Structures in the Animal Kingdom: Specializations and Shared Functions Serve to Inspire Technology Applications. SENSORS (BASEL, SWITZERLAND) 2021; 21:6375. [PMID: 34640694 PMCID: PMC8512044 DOI: 10.3390/s21196375] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 11/17/2022]
Abstract
Biological mechanosensation has been a source of inspiration for advancements in artificial sensory systems. Animals rely on sensory feedback to guide and adapt their behaviors and are equipped with a wide variety of sensors that carry stimulus information from the environment. Hair and hair-like sensors have evolved to support survival behaviors in different ecological niches. Here, we review the diversity of biological hair and hair-like sensors across the animal kingdom and their roles in behaviors, such as locomotion, exploration, navigation, and feeding, which point to shared functional properties of hair and hair-like structures among invertebrates and vertebrates. By reviewing research on the role of biological hair and hair-like sensors in diverse species, we aim to highlight biological sensors that could inspire the engineering community and contribute to the advancement of mechanosensing in artificial systems, such as robotics.
Collapse
Affiliation(s)
| | | | - Cynthia F. Moss
- Department of Psychological and Brain Sciences, Johns Hopkins University, 3400 N Charles St., Baltimore, MD 21218, USA; (B.L.B.); (C.A.D.)
| |
Collapse
|
14
|
Bush NE, Solla SA, Hartmann MJZ. Continuous, multidimensional coding of 3D complex tactile stimuli by primary sensory neurons of the vibrissal system. Proc Natl Acad Sci U S A 2021; 118:e2020194118. [PMID: 34353902 PMCID: PMC8364131 DOI: 10.1073/pnas.2020194118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Across all sensory modalities, first-stage sensory neurons are an information bottleneck: they must convey all information available for an animal to perceive and act in its environment. Our understanding of coding properties of primary sensory neurons in the auditory and visual systems has been aided by the use of increasingly complex, naturalistic stimulus sets. By comparison, encoding properties of primary somatosensory afferents are poorly understood. Here, we use the rodent whisker system to examine how tactile information is represented in primary sensory neurons of the trigeminal ganglion (Vg). Vg neurons have long been thought to segregate into functional classes associated with separate streams of information processing. However, this view is based on Vg responses to restricted stimulus sets which potentially underreport the coding capabilities of these neurons. In contrast, the current study records Vg responses to complex three-dimensional (3D) stimulation while quantifying the complete 3D whisker shape and mechanics, thereby beginning to reveal their full representational capabilities. The results show that individual Vg neurons simultaneously represent multiple mechanical features of a stimulus, do not preferentially encode principal components of the stimuli, and represent continuous and tiled variations of all available mechanical information. These results directly contrast with proposed codes in which subpopulations of Vg neurons encode select stimulus features. Instead, individual Vg neurons likely overcome the information bottleneck by encoding large regions of a complex sensory space. This proposed tiled and multidimensional representation at the Vg directly constrains the computations performed by more central neurons of the vibrissotrigeminal pathway.
Collapse
Affiliation(s)
- Nicholas E Bush
- Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL 60208
| | - Sara A Solla
- Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208
- Department of Physiology, Northwestern University, Chicago, IL 60611
| | - Mitra J Z Hartmann
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208;
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208
| |
Collapse
|
15
|
Lewis SM, Xu L, Rigolli N, Tariq MF, Suarez LM, Stern M, Seminara A, Gire DH. Plume Dynamics Structure the Spatiotemporal Activity of Mitral/Tufted Cell Networks in the Mouse Olfactory Bulb. Front Cell Neurosci 2021; 15:633757. [PMID: 34012385 PMCID: PMC8127944 DOI: 10.3389/fncel.2021.633757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/15/2021] [Indexed: 11/13/2022] Open
Abstract
Although mice locate resources using turbulent airborne odor plumes, the stochasticity and intermittency of fluctuating plumes create challenges for interpreting odor cues in natural environments. Population activity within the olfactory bulb (OB) is thought to process this complex spatial and temporal information, but how plume dynamics impact odor representation in this early stage of the mouse olfactory system is unknown. Limitations in odor detection technology have made it difficult to measure plume fluctuations while simultaneously recording from the mouse's brain. Thus, previous studies have measured OB activity following controlled odor pulses of varying profiles or frequencies, but this approach only captures a subset of features found within olfactory plumes. Adequately sampling this feature space is difficult given a lack of knowledge regarding which features the brain extracts during exposure to natural olfactory scenes. Here we measured OB responses to naturally fluctuating odor plumes using a miniature, adapted odor sensor combined with wide-field GCaMP6f signaling from the dendrites of mitral and tufted (MT) cells imaged in olfactory glomeruli of head-fixed mice. We precisely tracked plume dynamics and imaged glomerular responses to this fluctuating input, while varying flow conditions across a range of ethologically-relevant values. We found that a consistent portion of MT activity in glomeruli follows odor concentration dynamics, and the strongest responding glomeruli are the best at following fluctuations within odor plumes. Further, the reliability and average response magnitude of glomerular populations of MT cells are affected by the flow condition in which the animal samples the plume, with the fidelity of plume following by MT cells increasing in conditions of higher flow velocity where odor dynamics result in intermittent whiffs of stronger concentration. Thus, the flow environment in which an animal encounters an odor has a large-scale impact on the temporal representation of an odor plume in the OB. Additionally, across flow conditions odor dynamics are a major driver of activity in many glomerular networks. Taken together, these data demonstrate that plume dynamics structure olfactory representations in the first stage of odor processing in the mouse olfactory system.
Collapse
Affiliation(s)
- Suzanne M. Lewis
- Department of Psychology, University of Washington, Seattle, WA, United States
| | - Lai Xu
- Department of Psychology, University of Washington, Seattle, WA, United States
| | - Nicola Rigolli
- Dipartimento di Fisica, Istituto Nazionale Fisica Nucleare (INFN) Genova, Universitá di Genova, Genova, Italy
- CNRS, Institut de Physique de Nice, Université Côte d'Azur, Nice, France
| | - Mohammad F. Tariq
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, United States
| | - Lucas M. Suarez
- Department of Psychology, University of Washington, Seattle, WA, United States
| | - Merav Stern
- Department of Applied Mathematics, University of Washington, Seattle, WA, United States
| | - Agnese Seminara
- CNRS, Institut de Physique de Nice, Université Côte d'Azur, Nice, France
| | - David H. Gire
- Department of Psychology, University of Washington, Seattle, WA, United States
| |
Collapse
|
16
|
Luo Y, Bresee CS, Rudnicki JW, Hartmann MJZ. Constraints on the deformation of the vibrissa within the follicle. PLoS Comput Biol 2021; 17:e1007887. [PMID: 33793548 PMCID: PMC8016108 DOI: 10.1371/journal.pcbi.1007887] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 12/10/2020] [Indexed: 11/26/2022] Open
Abstract
Nearly all mammals have a vibrissal system specialized for tactile sensation, composed of whiskers growing from sensor-rich follicles in the skin. When a whisker deflects against an object, it deforms within the follicle and exerts forces on the mechanoreceptors inside. In addition, during active whisking behavior, muscle contractions around the follicle and increases in blood pressure in the ring sinus will affect the whisker deformation profile. To date, however, it is not yet possible to experimentally measure how the whisker deforms in an intact follicle or its effects on different groups of mechanoreceptors. The present study develops a novel model to predict vibrissal deformation within the follicle sinus complex. The model is based on experimental results from a previous ex vivo study on whisker deformation within the follicle, and on a new histological analysis of follicle tissue. It is then used to simulate whisker deformation within the follicle during passive touch and active whisking. Results suggest that the most likely whisker deformation profile is “S-shaped,” crossing the midline of the follicle right below the ring sinus. Simulations of active whisking indicate that an increase in overall muscle stiffness, an increase in the ratio between deep and superficial intrinsic muscle stiffness, and an increase in sinus blood pressure will all enhance tactile sensitivity. Finally, we discuss how the deformation profiles might map to the responses of primary afferents of each mechanoreceptor type. The mechanical model presented in this study is an important first step in simulating mechanical interactions within whisker follicles. Many mammals rely on whiskers as a mode of tactile sensation, especially when exploring in darkness. Active, rhythmic protraction and retraction of the whiskers, commonly referred to as “whisking,” is observed among many whisker specialist animals. During whisker-based sensing, forces and moments generated by external stimuli are transmitted to the base of the whisker shaft inside the follicle. Within the follicle, the interaction between the whisker’s deformation and the surrounding tissue determines how different groups of mechanoreceptors will deform, thereby transducing the mechanical signals into electrical signals. However, it is not yet possible to experimentally measure this interaction in vivo. We therefore created a mechanical model of the follicle sinus complex to simulate whisker deformation within the follicle resulting from external whisker deflection. Our results provide the first estimate of whisker shape as it deforms in the follicle, during both passive touch and active whisking. In turn, these shape estimates allow us to predict how the whisker will deform against different types of mechanoreceptors at different locations within the follicle. In addition, we find that both intrinsic muscle contraction and an increase in blood pressure will improve the tactile sensitivity of the whisker system.
Collapse
Affiliation(s)
- Yifu Luo
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois, United States of America
| | - Chris S. Bresee
- Interdepartmental Neuroscience Program, Northwestern University, Evanston, Illinois, United States of America
| | - John W. Rudnicki
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois, United States of America
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois, United States of America
| | - Mitra J. Z. Hartmann
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois, United States of America
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America
- * E-mail:
| |
Collapse
|
17
|
Jiang Y, Li J, Wang Z, Qin Y, Guo G, Zheng Z, Bian Y. Design and fabrication of an E-whisker using a PVDF ring. BIOINSPIRATION & BIOMIMETICS 2021; 16:036007. [PMID: 33530062 DOI: 10.1088/1748-3190/abe27a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Mammalian whiskers can perceive obstacles and airflows. In this study, an electronic whisker (E-whisker) sensor was designed and fabricated by setting a PVDF ring with symmetrical electrodes on the root of a fiber beam. Vibration displacements with different waveforms were applied at the free end of the E-whisker beam to study the relationship between the vibration displacements and the output signals. The E-whisker protrusion sensing ability was investigated by driving it to sweep through the surface of a base platform. A static E-whisker beam and a swinging E-whisker were then separately placed in a wind tunnel to detect the airflow perception of the sensor. The experimental results suggested that the E-whisker could sense the frequencies and amplitudes of displacements at its free end, the height and width of a platform or the heights of other irregular protrusions; the static E-whisker could sense the magnitude or direction of an impact airflow, while the swinging E-whisker could sense the magnitude of a constant airflow. Thus, this kind of E-whisker could perceive the environment and airflow through touch sensation and could be used as a physical model to study the principles and abilities of animal whiskers to perceive obstacles and airflows.
Collapse
Affiliation(s)
- Yani Jiang
- College of Mechanical Engineering, Yangzhou University, People's Republic of China
| | - Jialing Li
- College of Mechanical Engineering, Yangzhou University, People's Republic of China
| | - Zhi Wang
- College of Mechanical Engineering, Yangzhou University, People's Republic of China
| | - Yongbin Qin
- College of Mechanical Engineering, Yangzhou University, People's Republic of China
| | - Guangming Guo
- College of Mechanical Engineering, Yangzhou University, People's Republic of China
| | - Zaixiang Zheng
- College of Mechanical Engineering, Yangzhou University, People's Republic of China
| | - Yixiang Bian
- College of Mechanical Engineering, Yangzhou University, People's Republic of China
| |
Collapse
|
18
|
Currier TA, Matheson AMM, Nagel KI. Encoding and control of orientation to airflow by a set of Drosophila fan-shaped body neurons. eLife 2020; 9:e61510. [PMID: 33377868 PMCID: PMC7793622 DOI: 10.7554/elife.61510] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/29/2020] [Indexed: 12/25/2022] Open
Abstract
The insect central complex (CX) is thought to underlie goal-oriented navigation but its functional organization is not fully understood. We recorded from genetically-identified CX cell types in Drosophila and presented directional visual, olfactory, and airflow cues known to elicit orienting behavior. We found that a group of neurons targeting the ventral fan-shaped body (ventral P-FNs) are robustly tuned for airflow direction. Ventral P-FNs did not generate a 'map' of airflow direction. Instead, cells in each hemisphere were tuned to 45° ipsilateral, forming a pair of orthogonal bases. Imaging experiments suggest that ventral P-FNs inherit their airflow tuning from neurons that provide input from the lateral accessory lobe (LAL) to the noduli (NO). Silencing ventral P-FNs prevented flies from selecting appropriate corrective turns following changes in airflow direction. Our results identify a group of CX neurons that robustly encode airflow direction and are required for proper orientation to this stimulus.
Collapse
Affiliation(s)
- Timothy A Currier
- Neuroscience Institute, New York University Langone Medical CenterNew YorkUnited States
- Center for Neural Science, New York UniversityNew YorkUnited States
| | - Andrew MM Matheson
- Neuroscience Institute, New York University Langone Medical CenterNew YorkUnited States
| | - Katherine I Nagel
- Neuroscience Institute, New York University Langone Medical CenterNew YorkUnited States
- Center for Neural Science, New York UniversityNew YorkUnited States
| |
Collapse
|
19
|
A Comparison between Mouse, In Silico, and Robot Odor Plume Navigation Reveals Advantages of Mouse Odor Tracking. eNeuro 2020; 7:ENEURO.0212-19.2019. [PMID: 31924732 PMCID: PMC7004486 DOI: 10.1523/eneuro.0212-19.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 11/04/2019] [Accepted: 12/19/2019] [Indexed: 11/26/2022] Open
Abstract
Localization of odors is essential to animal survival, and thus animals are adept at odor navigation. In natural conditions animals encounter odor sources in which odor is carried by air flow varying in complexity. We sought to identify potential minimalist strategies that can effectively be used for odor-based navigation and asses their performance in an increasingly chaotic environment. Localization of odors is essential to animal survival, and thus animals are adept at odor navigation. In natural conditions animals encounter odor sources in which odor is carried by air flow varying in complexity. We sought to identify potential minimalist strategies that can effectively be used for odor-based navigation and asses their performance in an increasingly chaotic environment. To do so, we compared mouse, in silico model, and Arduino-based robot odor-localization behavior in a standardized odor landscape. Mouse performance remains robust in the presence of increased complexity, showing a shift in strategy towards faster movement with increased environmental complexity. Implementing simple binaral and temporal models of tropotaxis and klinotaxis, an in silico model and Arduino robot, in the same environment as the mice, are equally successful in locating the odor source within a plume of low complexity. However, performance of these algorithms significantly drops when the chaotic nature of the plume is increased. Additionally, both algorithm-driven systems show more successful performance when using a strictly binaral model at a larger sensor separation distance and more successful performance when using a temporal and binaral model when using a smaller sensor separation distance. This suggests that with an increasingly chaotic odor environment, mice rely on complex strategies that allow for robust odor localization that cannot be resolved by minimal algorithms that display robust performance at low levels of complexity. Thus, highlighting that an animal’s ability to modulate behavior with environmental complexity is beneficial for odor localization.
Collapse
|
20
|
Scharff M, Schorr P, Becker T, Resagk C, Alencastre Miranda JH, Behn C. An Artificial Vibrissa-Like Sensor for Detection of Flows. SENSORS (BASEL, SWITZERLAND) 2019; 19:E3892. [PMID: 31509939 PMCID: PMC6767205 DOI: 10.3390/s19183892] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 11/30/2022]
Abstract
In nature, there are several examples of sophisticated sensory systems to sense flows, e.g., the vibrissae of mammals. Seals can detect the flow of their prey, and rats are able to perceive the flow of surrounding air. The vibrissae are arranged around muzzle of an animal. A vibrissa consists of two major components: a shaft (infector) and a follicle-sinus complex (receptor), whereby the base of the shaft is supported by the follicle-sinus complex. The vibrissa shaft collects and transmits stimuli, e.g., flows, while the follicle-sinus complex transduces them for further processing. Beside detecting flows, the animals can also recognize the size of an object or determine the surface texture. Here, the combination of these functionalities in a single sensory system serves as paragon for artificial tactile sensors. The detection of flows becomes important regarding the measurement of flow characteristics, e.g., velocity, as well as the influence of the sensor during the scanning of objects. These aspects are closely related to each other, but, how can the characteristics of flow be represented by the signals at the base of a vibrissa shaft or by an artificial vibrissa-like sensor respectively? In this work, the structure of a natural vibrissa shaft is simplified to a slender, cylindrical/tapered elastic beam. The model is analyzed in simulation and experiment in order to identify the necessary observables to evaluate flows based on the quasi-static large deflection of the sensor shaft inside a steady, non-uniform, laminar, in-compressible flow.
Collapse
Affiliation(s)
- Moritz Scharff
- Technical Mechanics Group, Technische Universität Ilmenau, Max-Planck-Ring 12, 98693 Ilmenau, Germany.
- Section of Mechanical Engineering, Pontificial Catholic University of Peru, San Miguel 15088, Lima, Peru.
| | - Philipp Schorr
- Technical Mechanics Group, Technische Universität Ilmenau, Max-Planck-Ring 12, 98693 Ilmenau, Germany.
| | - Tatiana Becker
- Technical Mechanics Group, Technische Universität Ilmenau, Max-Planck-Ring 12, 98693 Ilmenau, Germany.
| | - Christian Resagk
- Institute of Thermodynamics and Fluid Mechanics, Technische Universität Ilmenau, 98693 Ilmenau, Germany.
| | - Jorge H Alencastre Miranda
- Section of Mechanical Engineering, Pontificial Catholic University of Peru, San Miguel 15088, Lima, Peru.
| | - Carsten Behn
- Faculty of Mechanical Engineering, Schmalkalden University of Applied Sciences, 98574 Schmalkalden, Germany.
| |
Collapse
|
21
|
Suver MP, Matheson AMM, Sarkar S, Damiata M, Schoppik D, Nagel KI. Encoding of Wind Direction by Central Neurons in Drosophila. Neuron 2019; 102:828-842.e7. [PMID: 30948249 PMCID: PMC6533146 DOI: 10.1016/j.neuron.2019.03.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/21/2018] [Accepted: 03/05/2019] [Indexed: 11/30/2022]
Abstract
Wind is a major navigational cue for insects, but how wind direction is decoded by central neurons in the insect brain is unknown. Here we find that walking flies combine signals from both antennae to orient to wind during olfactory search behavior. Movements of single antennae are ambiguous with respect to wind direction, but the difference between left and right antennal displacements yields a linear code for wind direction in azimuth. Second-order mechanosensory neurons share the ambiguous responses of a single antenna and receive input primarily from the ipsilateral antenna. Finally, we identify novel "wedge projection neurons" that integrate signals across the two antennae and receive input from at least three classes of second-order neurons to produce a more linear representation of wind direction. This study establishes how a feature of the sensory environment-wind direction-is decoded by neurons that compare information across two sensors.
Collapse
Affiliation(s)
- Marie P Suver
- NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Andrew M M Matheson
- NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Sinekdha Sarkar
- NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Matthew Damiata
- NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - David Schoppik
- NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Katherine I Nagel
- NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
22
|
Whisker Vibrations and the Activity of Trigeminal Primary Afferents in Response to Airflow. J Neurosci 2019; 39:5881-5896. [PMID: 31097620 DOI: 10.1523/jneurosci.2971-18.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 04/18/2019] [Accepted: 04/30/2019] [Indexed: 11/21/2022] Open
Abstract
Rodents are the most commonly studied model system in neuroscience, but surprisingly few studies investigate the natural sensory stimuli that rodent nervous systems evolved to interpret. Even fewer studies examine neural responses to these natural stimuli. Decades of research have investigated the rat vibrissal (whisker) system in the context of direct touch and tactile stimulation, but recent work has shown that rats also use their whiskers to help detect and localize airflow. The present study investigates the neural basis for this ability as dictated by the mechanical response of whiskers to airflow. Mechanical experiments show that a whisker's vibration magnitude depends on airspeed and the intrinsic shape of the whisker. Surprisingly, the direction of the whisker's vibration changes as a function of airflow speed: vibrations transition from parallel to perpendicular with respect to the airflow as airspeed increases. Recordings from primary sensory trigeminal ganglion neurons show that these neurons exhibit responses consistent with those that would be predicted from direct touch. Trigeminal neuron firing rate increases with airspeed, is modulated by the orientation of the whisker relative to the airflow, and is influenced by the whisker's resonant frequencies. We develop a simple model to describe how a population of neurons could leverage mechanical relationships to decode both airspeed and direction. These results open new avenues for studying vibrissotactile regions of the brain in the context of evolutionarily important airflow-sensing behaviors and olfactory search. Although this study used only female rats, all results are expected to generalize to male rats.SIGNIFICANCE STATEMENT The rodent vibrissal (whisker) system has been studied for decades in the context of direct tactile sensation, but recent work has indicated that rats also use whiskers to help localize airflow. Neural circuits in somatosensory regions of the rodent brain thus likely evolved in part to process airflow information. This study investigates the whiskers' mechanical response to airflow and the associated neural response. Airspeed affects the magnitude of whisker vibration and the response magnitude of whisker-sensitive primary sensory neurons in the trigeminal ganglion. Surprisingly, the direction of vibration and the associated directionally dependent neural response changes with airspeed. These findings suggest a population code for airflow speed and direction and open new avenues for studying vibrissotactile regions of the brain.
Collapse
|
23
|
Wang X, Chou X, Peng B, Shen L, Huang JJ, Zhang LI, Tao HW. A cross-modality enhancement of defensive flight via parvalbumin neurons in zona incerta. eLife 2019; 8:42728. [PMID: 30985276 PMCID: PMC6486150 DOI: 10.7554/elife.42728] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 04/14/2019] [Indexed: 12/13/2022] Open
Abstract
The ability to adjust defensive behavior is critical for animal survival in dynamic environments. However, neural circuits underlying the modulation of innate defensive behavior remain not well-understood. In particular, environmental threats are commonly associated with cues of multiple sensory modalities. It remains to be investigated how these modalities interact to shape defensive behavior. In this study, we report that auditory-induced defensive flight behavior can be facilitated by somatosensory input in mice. This cross-modality modulation of defensive behavior is mediated by the projection from the primary somatosensory cortex (SSp) to the ventral sector of zona incerta (ZIv). Parvalbumin (PV)-positive neurons in ZIv, receiving direct input from SSp, mediate the enhancement of the flight behavior via their projections to the medial posterior complex of thalamus (POm). Thus, defensive flight can be enhanced in a somatosensory context-dependent manner via recruiting PV neurons in ZIv, which may be important for increasing survival of prey animals.
Collapse
Affiliation(s)
- Xiyue Wang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, United States.,Graduate Program in Neuroscience, University of Southern California, Los Angeles, United States
| | - Xiaolin Chou
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, United States.,Graduate Program in Neuroscience, University of Southern California, Los Angeles, United States
| | - Bo Peng
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, United States.,Graduate Program in Neuroscience, University of Southern California, Los Angeles, United States
| | - Li Shen
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, United States
| | - Junxiang J Huang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, United States.,Graduate Program in Biomedical and Biological Sciences, University of Southern California, Los Angeles, United States
| | - Li I Zhang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, United States.,Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, United States
| | - Huizhong W Tao
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, United States.,Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, United States
| |
Collapse
|
24
|
Jovanic T, Winding M, Cardona A, Truman JW, Gershow M, Zlatic M. Neural Substrates of Drosophila Larval Anemotaxis. Curr Biol 2019; 29:554-566.e4. [PMID: 30744969 PMCID: PMC6380933 DOI: 10.1016/j.cub.2019.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 11/29/2018] [Accepted: 01/04/2019] [Indexed: 01/08/2023]
Abstract
Animals use sensory information to move toward more favorable conditions. Drosophila larvae can move up or down gradients of odors (chemotax), light (phototax), and temperature (thermotax) by modulating the probability, direction, and size of turns based on sensory input. Whether larvae can anemotax in gradients of mechanosensory cues is unknown. Further, although many of the sensory neurons that mediate taxis have been described, the central circuits are not well understood. Here, we used high-throughput, quantitative behavioral assays to demonstrate Drosophila larvae anemotax in gradients of wind speeds and to characterize the behavioral strategies involved. We found that larvae modulate the probability, direction, and size of turns to move away from higher wind speeds. This suggests that similar central decision-making mechanisms underlie taxis in somatosensory and other sensory modalities. By silencing the activity of single or very few neuron types in a behavioral screen, we found two sensory (chordotonal and multidendritic class III) and six nerve cord neuron types involved in anemotaxis. We reconstructed the identified neurons in an electron microscopy volume that spans the entire larval nervous system and found they received direct input from the mechanosensory neurons or from each other. In this way, we identified local interneurons and first- and second-order subesophageal zone (SEZ) and brain projection neurons. Finally, silencing a dopaminergic brain neuron type impairs anemotaxis. These findings suggest that anemotaxis involves both nerve cord and brain circuits. The candidate neurons and circuitry identified in our study provide a basis for future detailed mechanistic understanding of the circuit principles of anemotaxis.
Collapse
Affiliation(s)
- Tihana Jovanic
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA.
| | - Michael Winding
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Albert Cardona
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA; Department of Physiology, Development, and Neuroscience, Cambridge University, Cambridge, UK
| | - James W Truman
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA; Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
| | - Marc Gershow
- Department of Physics, New York University, New York, NY, USA; Center for Neural Science, New York University, New York, NY, USA; Neuroscience Institute, New York University, New York, NY, USA.
| | - Marta Zlatic
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA; Department of Zoology, Cambridge University, Cambridge, UK.
| |
Collapse
|
25
|
Jacobs LF. The navigational nose: a new hypothesis for the function of the human external pyramid. ACTA ACUST UNITED AC 2019; 222:222/Suppl_1/jeb186924. [PMID: 30728230 DOI: 10.1242/jeb.186924] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
One of the outstanding questions in evolution is why Homo erectus became the first primate species to evolve the external pyramid, i.e. an external nose. The accepted hypothesis for this trait has been its role in respiration, to warm and humidify air as it is inspired. However, new studies testing the key assumptions of the conditioning hypothesis, such as the importance of turbulence to enhance heat and moisture exchange, have called this hypothesis into question. The human nose has two functions, however, respiration and olfaction. It is thus also possible that the external nose evolved in response to selection for olfaction. The genus Homo had many adaptations for long-distance locomotion, which allowed Homo erectus to greatly expand its species range, from Africa to Asia. Long-distance navigation in birds and other species is often accomplished by orientation to environmental odors. Such olfactory navigation, in turn, is enhanced by stereo olfaction, made possible by the separation of the olfactory sensors. By these principles, the human external nose could have evolved to separate olfactory inputs to enhance stereo olfaction. This could also explain why nose shape later became so variable: as humans became more sedentary in the Neolithic, a decreasing need for long-distance movements could have been replaced by selection for other olfactory functions, such as detecting disease, that would have been critical to survival in newly dense human settlements.
Collapse
Affiliation(s)
- Lucia F Jacobs
- Department of Psychology and Helen Wills Neuroscience Institute, University of California, 2121 Berkeley Way, Berkeley, CA 94720-1650, USA
| |
Collapse
|
26
|
Baker KL, Dickinson M, Findley TM, Gire DH, Louis M, Suver MP, Verhagen JV, Nagel KI, Smear MC. Algorithms for Olfactory Search across Species. J Neurosci 2018; 38:9383-9389. [PMID: 30381430 PMCID: PMC6209839 DOI: 10.1523/jneurosci.1668-18.2018] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/15/2018] [Accepted: 09/18/2018] [Indexed: 11/21/2022] Open
Abstract
Localizing the sources of stimuli is essential. Most organisms cannot eat, mate, or escape without knowing where the relevant stimuli originate. For many, if not most, animals, olfaction plays an essential role in search. While microorganismal chemotaxis is relatively well understood, in larger animals the algorithms and mechanisms of olfactory search remain mysterious. In this symposium, we will present recent advances in our understanding of olfactory search in flies and rodents. Despite their different sizes and behaviors, both species must solve similar problems, including meeting the challenges of turbulent airflow, sampling the environment to optimize olfactory information, and incorporating odor information into broader navigational systems.
Collapse
Affiliation(s)
- Keeley L Baker
- Department of Neuroscience, Yale School of Medicine, New Haven 06519, Connecticut
- John B. Pierce Laboratory, New Haven 06519, Connecticut
| | - Michael Dickinson
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena 91125, California
| | - Teresa M Findley
- Institute of Neuroscience, University of Oregon, Eugene 97403, Oregon
- Department of Biology, University of Oregon, Eugene 97403, Oregon
| | - David H Gire
- Department of Psychology, University of Washington, Seattle 98195, Washington
| | - Matthieu Louis
- Neuroscience Research Institute, University of Santa Barbara, Santa Barbara 93106, California
- Department of Molecular, Cellular, and Developmental Biology, University of Santa Barbara, Santa Barbara 93106, California
- Department of Physics, University of Santa Barbara, Santa Barbara 93106, California
| | - Marie P Suver
- Neuroscience Institute, New York University Langone Medical Center, New York 10016, New York, and
| | - Justus V Verhagen
- Department of Neuroscience, Yale School of Medicine, New Haven 06519, Connecticut
- John B. Pierce Laboratory, New Haven 06519, Connecticut
| | - Katherine I Nagel
- Neuroscience Institute, New York University Langone Medical Center, New York 10016, New York, and
| | - Matthew C Smear
- Institute of Neuroscience, University of Oregon, Eugene 97403, Oregon,
- Department of Psychology, University of Oregon, Eugene 97403, Oregon
| |
Collapse
|
27
|
Nielsen BL. Making sense of it all: The importance of taking into account the sensory abilities of animals in their housing and management. Appl Anim Behav Sci 2018. [DOI: 10.1016/j.applanim.2018.04.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
28
|
Seale M, Cummins C, Viola IM, Mastropaolo E, Nakayama N. Design principles of hair-like structures as biological machines. J R Soc Interface 2018; 15:20180206. [PMID: 29848593 PMCID: PMC6000178 DOI: 10.1098/rsif.2018.0206] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/08/2018] [Indexed: 12/02/2022] Open
Abstract
Hair-like structures are prevalent throughout biology and frequently act to sense or alter interactions with an organism's environment. The overall shape of a hair is simple: a long, filamentous object that protrudes from the surface of an organism. This basic design, however, can confer a wide range of functions, owing largely to the flexibility and large surface area that it usually possesses. From this simple structural basis, small changes in geometry, such as diameter, curvature and inter-hair spacing, can have considerable effects on mechanical properties, allowing functions such as mechanosensing, attachment, movement and protection. Here, we explore how passive features of hair-like structures, both individually and within arrays, enable diverse functions across biology. Understanding the relationships between form and function can provide biologists with an appreciation for the constraints and possibilities on hair-like structures. Additionally, such structures have already been used in biomimetic engineering with applications in sensing, water capture and adhesion. By examining hairs as a functional mechanical unit, geometry and arrangement can be rationally designed to generate new engineering devices and ideas.
Collapse
Affiliation(s)
- Madeleine Seale
- School of Biological Sciences, Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, UK
- School of Engineering, Institute for Integrated Micro and Nano Systems, University of Edinburgh, Edinburgh, UK
- SynthSys Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, UK
| | - Cathal Cummins
- School of Biological Sciences, Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, UK
- SynthSys Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, UK
- School of Engineering, Institute for Energy Systems, University of Edinburgh, Edinburgh, UK
| | - Ignazio Maria Viola
- School of Engineering, Institute for Energy Systems, University of Edinburgh, Edinburgh, UK
| | - Enrico Mastropaolo
- School of Engineering, Institute for Integrated Micro and Nano Systems, University of Edinburgh, Edinburgh, UK
| | - Naomi Nakayama
- School of Biological Sciences, Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, UK
- SynthSys Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, UK
- Centre for Science at Extreme Conditions, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
29
|
Belli HM, Bresee CS, Graff MM, Hartmann MJZ. Quantifying the three-dimensional facial morphology of the laboratory rat with a focus on the vibrissae. PLoS One 2018; 13:e0194981. [PMID: 29621356 PMCID: PMC5886528 DOI: 10.1371/journal.pone.0194981] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/14/2018] [Indexed: 11/24/2022] Open
Abstract
The morphology of an animal's face will have large effects on the sensory information it can acquire. Here we quantify the arrangement of cranial sensory structures of the rat, with special emphasis on the mystacial vibrissae (whiskers). Nearly all mammals have vibrissae, which are generally arranged in rows and columns across the face. The vibrissae serve a wide variety of important behavioral functions, including navigation, climbing, wake following, anemotaxis, and social interactions. To date, however, there are few studies that compare the morphology of vibrissal arrays across species, or that describe the arrangement of the vibrissae relative to other facial sensory structures. The few studies that do exist have exploited the whiskers' grid-like arrangement to quantify array morphology in terms of row and column identity. However, relying on whisker identity poses a challenge for comparative research because different species have different numbers and arrangements of whiskers. The present work introduces an approach to quantify vibrissal array morphology regardless of the number of rows and columns, and to quantify the array's location relative to other sensory structures. We use the three-dimensional locations of the whisker basepoints as fundamental parameters to generate equations describing the length, curvature, and orientation of each whisker. Results show that in the rat, whisker length varies exponentially across the array, and that a hard limit on intrinsic curvature constrains the whisker height-to-length ratio. Whiskers are oriented to "fan out" approximately equally in dorsal-ventral and rostral-caudal directions. Quantifying positions of the other sensory structures relative to the whisker basepoints shows remarkable alignment to the somatosensory cortical homunculus, an alignment that would not occur for other choices of coordinate systems (e.g., centered on the midpoint of the eyes). We anticipate that the quantification of facial sensory structures, including the vibrissae, will ultimately enable cross-species comparisons of multi-modal sensing volumes.
Collapse
Affiliation(s)
- Hayley M. Belli
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America
| | - Chris S. Bresee
- Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Evanston, Illinois, United States of America
| | - Matthew M. Graff
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois, United States of America
| | - Mitra J. Z. Hartmann
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois, United States of America
| |
Collapse
|
30
|
McElvain LE, Friedman B, Karten HJ, Svoboda K, Wang F, Deschênes M, Kleinfeld D. Circuits in the rodent brainstem that control whisking in concert with other orofacial motor actions. Neuroscience 2018; 368:152-170. [PMID: 28843993 PMCID: PMC5849401 DOI: 10.1016/j.neuroscience.2017.08.034] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/12/2017] [Accepted: 08/15/2017] [Indexed: 12/25/2022]
Abstract
The world view of rodents is largely determined by sensation on two length scales. One is within the animal's peri-personal space; sensorimotor control on this scale involves active movements of the nose, tongue, head, and vibrissa, along with sniffing to determine olfactory clues. The second scale involves the detection of more distant space through vision and audition; these detection processes also impact repositioning of the head, eyes, and ears. Here we focus on orofacial motor actions, primarily vibrissa-based touch but including nose twitching, head bobbing, and licking, that control sensation at short, peri-personal distances. The orofacial nuclei for control of the motor plants, as well as primary and secondary sensory nuclei associated with these motor actions, lie within the hindbrain. The current data support three themes: First, the position of the sensors is determined by the summation of two drive signals, i.e., a fast rhythmic component and an evolving orienting component. Second, the rhythmic component is coordinated across all orofacial motor actions and is phase-locked to sniffing as the animal explores. Reverse engineering reveals that the preBötzinger inspiratory complex provides the reset to the relevant premotor oscillators. Third, direct feedback from somatosensory trigeminal nuclei can rapidly alter motion of the sensors. This feedback is disynaptic and can be tuned by high-level inputs. A holistic model for the coordination of orofacial motor actions into behaviors will encompass feedback pathways through the midbrain and forebrain, as well as hindbrain areas.
Collapse
Affiliation(s)
- Lauren E McElvain
- Department of Physics, University of California at San Diego, La Jolla, CA 92093, USA
| | - Beth Friedman
- Department of Physics, University of California at San Diego, La Jolla, CA 92093, USA
| | - Harvey J Karten
- Department of Neurosciences, University of California at San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Karel Svoboda
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA
| | - Fan Wang
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Martin Deschênes
- Department of Psychiatry and Neuroscience, Laval University, Québec City, G1J 2G3, Canada
| | - David Kleinfeld
- Department of Physics, University of California at San Diego, La Jolla, CA 92093, USA; Section of Neurobiology, University of California at San Diego, La Jolla, CA 92093, USA; Department of Electrical and Computer Engineering, University of California at San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
31
|
Kurnikova A, Moore JD, Liao SM, Deschênes M, Kleinfeld D. Coordination of Orofacial Motor Actions into Exploratory Behavior by Rat. Curr Biol 2017; 27:688-696. [PMID: 28216320 DOI: 10.1016/j.cub.2017.01.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/11/2016] [Accepted: 01/09/2017] [Indexed: 11/25/2022]
Abstract
The delineation of sensorimotor circuits that guide exploration begins with an understanding of the pattern of motor outputs [1]. These motor patterns provide a clue to the form of the underlying circuits [2-4] (but see [5]). We focus on the behaviors that rodents use to explore their peripersonal space through goal-directed positioning of their nose, head, and vibrissae. Rodents sniff in response to novel odors, reward expectation, and as part of social interactions [6-12]. Sniffing serves olfaction [13, 14], while whisking synchronized to sniffing serves vibrissa-based touch [6, 15, 16]. We quantify the ethology of exploratory nose and head movements in relation to breathing. We find that sniffing is accompanied by prominent lateral and vertical deflections of the nose, i.e., twitches, which are driven by activation of the deflector nasi muscles [17]. On the timescale of individual breaths, nose motion is rhythmic and has a maximum deflection following the onset of inspiration. On a longer timescale, excursions of the nose persist for several breaths and are accompanied by an asymmetry in vibrissa positioning toward the same side of the face. Such directed deflections can be triggered by a lateralized source of odor. Lastly, bobbing of the head as the animal cranes and explores is phase-locked to sniffing and to movement of the nose. These data, along with prior results on the resetting of the whisk cycle at the onset of inspiration [15, 16, 18], reveal that the onset of each breath initiates a "snapshot" of the orofacial sensory environment. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Anastasia Kurnikova
- Neurosciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Jeffrey D Moore
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Song-Mao Liao
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Martin Deschênes
- Centre de Recherche Université Laval Robert-Giffard, Québec City, Québec G1J 2R3, Canada
| | - David Kleinfeld
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA; Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA; Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|