1
|
Sun YJ, Sahakian BJ, Langley C, Yang A, Jiang Y, Kang J, Zhao X, Li C, Cheng W, Feng J. Early-initiated childhood reading for pleasure: associations with better cognitive performance, mental well-being and brain structure in young adolescence. Psychol Med 2024; 54:359-373. [PMID: 37376848 DOI: 10.1017/s0033291723001381] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
BACKGROUND Childhood is a crucial neurodevelopmental period. We investigated whether childhood reading for pleasure (RfP) was related to young adolescent assessments of cognition, mental health, and brain structure. METHODS We conducted a cross-sectional and longitudinal study in a large-scale US national cohort (10 000 + young adolescents), using the well-established linear mixed model and structural equation methods for twin study, longitudinal and mediation analyses. A 2-sample Mendelian randomization (MR) analysis for potential causal inference was also performed. Important factors including socio-economic status were controlled. RESULTS Early-initiated long-standing childhood RfP (early RfP) was highly positively correlated with performance on cognitive tests and significantly negatively correlated with mental health problem scores of young adolescents. These participants with higher early RfP scores exhibited moderately larger total brain cortical areas and volumes, with increased regions including the temporal, frontal, insula, supramarginal; left angular, para-hippocampal; right middle-occipital, anterior-cingulate, orbital areas; and subcortical ventral-diencephalon and thalamus. These brain structures were significantly related to their cognitive and mental health scores, and displayed significant mediation effects. Early RfP was longitudinally associated with higher crystallized cognition and lower attention symptoms at follow-up. Approximately 12 h/week of youth regular RfP was cognitively optimal. We further observed a moderately significant heritability of early RfP, with considerable contribution from environments. MR analysis revealed beneficial causal associations of early RfP with adult cognitive performance and left superior temporal structure. CONCLUSIONS These findings, for the first time, revealed the important relationships of early RfP with subsequent brain and cognitive development and mental well-being.
Collapse
Affiliation(s)
- Yun-Jun Sun
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Barbara J Sahakian
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Christelle Langley
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Anyi Yang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Yuchao Jiang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Jujiao Kang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Xingming Zhao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Zhangjiang Fudan International Innovation Center, Shanghai, China
| | - Chunhe Li
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Wei Cheng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK
- Zhangjiang Fudan International Innovation Center, Shanghai, China
| |
Collapse
|
2
|
Wang Y, Guan H, Ma L, Luo J, Chu C, Hu M, Zhao G, Men W, Tan S, Gao JH, Qin S, He Y, Dong Q, Tao S. Learning to read may help promote attention by increasing the volume of the left middle frontal gyrus and enhancing its connectivity to the ventral attention network. Cereb Cortex 2023; 33:2260-2272. [PMID: 35641153 DOI: 10.1093/cercor/bhac206] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Attention and reading are essential skills for successful schooling and in adult life. While previous studies have documented that attention development supports reading acquisition, whether and how learning to read may improve attention among school-age children and the brain structural and functional development that may be involved remain unknown. In this prospective longitudinal study, we examined bidirectional and longitudinal predictions between attention and reading development and the neural mediators of attention and reading development among school-age children using cross-lagged panel modeling. The results showed that better baseline reading performance significantly predicted better attention performance one year later after controlling for baseline attention performance. In contrast, after controlling for baseline reading performance, attention did not significantly predict reading performance one year later, while more attention problems also significantly predicted worse reading performance. Both the increasing gray matter volume of the left middle frontal gyrus and the increasing connectivity between the left middle frontal gyrus and the ventral attention network mediated the above significant longitudinal predictions. This study, directly revealed that reading skills may predict the development of important cognitive functions, such as attention, in school-age children. Therefore, learning to read is not only a challenge for school-age children but is also an important way to optimize attention and brain development.
Collapse
Affiliation(s)
- Yanpei Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Xinjiekouwai St, Haidian District, Beijing 100875, China.,IDG/McGovern Institute for Brain Research, Beijing Normal University, Xinjiekouwai St, Haidian District, Beijing 100875, China
| | - Haoran Guan
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Xinjiekouwai St, Haidian District, Beijing 100875, China.,IDG/McGovern Institute for Brain Research, Beijing Normal University, Xinjiekouwai St, Haidian District, Beijing 100875, China
| | - Leilei Ma
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Xinjiekouwai St, Haidian District, Beijing 100875, China.,IDG/McGovern Institute for Brain Research, Beijing Normal University, Xinjiekouwai St, Haidian District, Beijing 100875, China
| | - Jie Luo
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Xinjiekouwai St, Haidian District, Beijing 100875, China.,IDG/McGovern Institute for Brain Research, Beijing Normal University, Xinjiekouwai St, Haidian District, Beijing 100875, China
| | - Congying Chu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Xinjiekouwai St, Haidian District, Beijing 100875, China.,IDG/McGovern Institute for Brain Research, Beijing Normal University, Xinjiekouwai St, Haidian District, Beijing 100875, China
| | - Mingming Hu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Xinjiekouwai St, Haidian District, Beijing 100875, China.,IDG/McGovern Institute for Brain Research, Beijing Normal University, Xinjiekouwai St, Haidian District, Beijing 100875, China
| | - Gai Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Xinjiekouwai St, Haidian District, Beijing 100875, China.,IDG/McGovern Institute for Brain Research, Beijing Normal University, Xinjiekouwai St, Haidian District, Beijing 100875, China
| | - Weiwei Men
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Shuping Tan
- Psychiatry Research Center, Beijing HuiLongGuan Hospital, Peking University, Nandian North Road, Huilongguan Town, Changping District, Beijing 100096, China
| | - Jia-Hong Gao
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Shaozheng Qin
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Xinjiekouwai St, Haidian District, Beijing 100875, China.,IDG/McGovern Institute for Brain Research, Beijing Normal University, Xinjiekouwai St, Haidian District, Beijing 100875, China
| | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Xinjiekouwai St, Haidian District, Beijing 100875, China.,IDG/McGovern Institute for Brain Research, Beijing Normal University, Xinjiekouwai St, Haidian District, Beijing 100875, China
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Xinjiekouwai St, Haidian District, Beijing 100875, China.,IDG/McGovern Institute for Brain Research, Beijing Normal University, Xinjiekouwai St, Haidian District, Beijing 100875, China
| | - Sha Tao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Xinjiekouwai St, Haidian District, Beijing 100875, China.,IDG/McGovern Institute for Brain Research, Beijing Normal University, Xinjiekouwai St, Haidian District, Beijing 100875, China
| |
Collapse
|
3
|
Lachmann T, Bergström K. The multiple-level framework of developmental dyslexia: the long trace from a neurodevelopmental deficit to an impaired cultural technique. JOURNAL OF CULTURAL COGNITIVE SCIENCE 2023. [DOI: 10.1007/s41809-023-00118-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
AbstractDevelopmental dyslexia is a neurodevelopmental disorder characterized by an unexpected impairment in literacy acquisition leading to specific poor academic achievement and possible secondary symptoms. The multi-level framework of developmental dyslexia considers five levels of a causal pathway on which a given genotype is expressed and hierarchically transmitted from one level to the next under the increasing influence of individual learning-relevant traits and environmental factors moderated by cultural conditions. These levels are the neurobiological, the information processing and the skill level (prerequisites and acquisition of literacy skills), the academic achievement level and the level of secondary effects. Various risk factors are present at each level within the assumed causal pathway and can increase the likelihood of exhibiting developmental dyslexia. Transition from one level to the next is neither unidirectional nor inevitable. This fact has direct implications for prevention and intervention which can mitigate transitions from one level to the next. In this paper, various evidence-based theories and findings regarding deficits at different levels are placed in the proposed framework. In addition, the moderating effect of cultural impact at and between information processing and skill levels are further elaborated based on a review of findings regarding influences of different writing systems and orthographies. These differences impose culture-specific demands for literacy-specific cognitive procedures, influencing both literacy acquisition and the manifestation of developmental dyslexia.
Collapse
|
4
|
Ozernov‐Palchik O, Sury D, Turesky TK, Yu X, Gaab N. Longitudinal changes in brain activation underlying reading fluency. Hum Brain Mapp 2023; 44:18-34. [PMID: 35984111 PMCID: PMC9783447 DOI: 10.1002/hbm.26048] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 05/23/2022] [Accepted: 07/16/2022] [Indexed: 02/05/2023] Open
Abstract
Reading fluency-the speed and accuracy of reading connected text-is foundational to educational success. The current longitudinal study investigates the neural correlates of fluency development using a connected-text paradigm with an individualized presentation rate. Twenty-six children completed a functional MRI task in 1st/2nd grade (time 1) and again 1-2 years later (time 2). There was a longitudinal increase in activation in the ventral occipito-temporal (vOT) cortex from time 1 to time 2. This increase was also associated with improvements in reading fluency skills and modulated by individual speed demands. These findings highlight the reciprocal relationship of the vOT region with reading proficiency and its importance for supporting the developmental transition to fluent reading. These results have implications for developing effective interventions to target increased automaticity in reading.
Collapse
Affiliation(s)
- Ola Ozernov‐Palchik
- McGovern Institute for Brain ResearchMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Harvard Graduate School of EducationHarvard UniversityCambridgeMassachusettsUSA
| | - Dana Sury
- Department of Learning Disabilities, Faculty of EducationBeit Berl CollegeHasharonIsrael
| | - Ted K. Turesky
- Harvard Graduate School of EducationHarvard UniversityCambridgeMassachusettsUSA
| | - Xi Yu
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
| | - Nadine Gaab
- Harvard Graduate School of EducationHarvard UniversityCambridgeMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
5
|
Bertoni S, Franceschini S, Campana G, Facoetti A. The effects of bilateral posterior parietal cortex tRNS on reading performance. Cereb Cortex 2022; 33:5538-5546. [PMID: 36336338 DOI: 10.1093/cercor/bhac440] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/09/2022] Open
Abstract
Abstract
According to established cognitive neuroscience knowledge based on studies on disabled and typically developing readers, reading is based on a dual-stream model in which a phonological-dorsal stream (left temporo-parietal and inferior frontal areas) processes unfamiliar words and pseudowords, whereas an orthographic-ventral stream (left occipito-temporal and inferior frontal areas) processes known words. However, correlational neuroimaging, causal longitudinal, training, and pharmacological studies have suggested the critical role of visuo-spatial attention in reading development. In a double blind, crossover within-subjects experiment, we manipulated the neuromodulatory effect of a short-term bilateral stimulation of posterior parietal cortex (PPC) by using active and sham tRNS during reading tasks in a large sample of young adults. In contrast to the dual-stream model predicting either no effect or a selective effect on the stimulated phonological-dorsal stream (as well as to a general multisensory effect on both reading streams), we found that only word-reading performance improved after active bilateral PPC tRNS. These findings demonstrate a direct neural connectivity between the PPC, controlling visuo-spatial attention, and the ventral stream for visual word recognition. These results support a neurobiological model of reading where performance of the orthographic-ventral stream is boosted by an efficient deployment of visuo-spatial attention from bilateral PPC stimulation.
Collapse
Affiliation(s)
- Sara Bertoni
- Developmental and Cognitive Neuroscience Lab , Department of General Psychology, , Padua 35131 , Italy
- University of Padua , Department of General Psychology, , Padua 35131 , Italy
- Department of Human and Social Sciences, University of Bergamo , Bergamo 24129 , Italy
| | - Sandro Franceschini
- Developmental and Cognitive Neuroscience Lab , Department of General Psychology, , Padua 35131 , Italy
- University of Padua , Department of General Psychology, , Padua 35131 , Italy
| | - Gianluca Campana
- PercUp Lab , Department of General Psychology, , Padua 35131 , Italy
- University of Padua , Department of General Psychology, , Padua 35131 , Italy
| | - Andrea Facoetti
- Developmental and Cognitive Neuroscience Lab , Department of General Psychology, , Padua 35131 , Italy
- University of Padua , Department of General Psychology, , Padua 35131 , Italy
| |
Collapse
|
6
|
Liu CY, Tao R, Qin L, Matthews S, Siok WT. Functional connectivity during orthographic, phonological, and semantic processing of Chinese characters identifies distinct visuospatial and phonosemantic networks. Hum Brain Mapp 2022; 43:5066-5080. [PMID: 36097409 PMCID: PMC9582368 DOI: 10.1002/hbm.26075] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/22/2022] [Accepted: 08/14/2022] [Indexed: 11/12/2022] Open
Abstract
While neuroimaging studies have identified brain regions associated with single word reading, its three constituents, namely, orthography, phonology, and meaning, and the functional connectivity of their networks remain underexplored. This study examined the neurocognitive underpinnings of these neural activations and functional connectivity of the identified brain regions using a within-subject design. Thirty-one native Mandarin speakers performed orthographic, phonological, and semantic judgment tasks during functional magnetic resonance imaging. The results indicated that the three processes shared a core network consisting of a large region in the left prefrontal cortex, fusiform gyrus, and medial superior frontal gyrus but not the superior temporal gyrus. Orthographic processing more strongly recruited the left dorsolateral prefrontal cortex, left superior parietal lobule and bilateral fusiform gyri; semantic processing more strongly recruited the left inferior frontal gyrus and left middle temporal gyrus, whereas phonological processing more strongly activated the dorsal part of the precentral gyrus. Functional connectivity analysis identified a posterior visuospatial network and a frontal phonosemantic network interfaced by the left middle frontal gyrus. We conclude that reading Chinese recruits cognitive resources that correspond to basic task demands with unique features best explained in connection with the individual reading subprocesses.
Collapse
Affiliation(s)
- Chun Yin Liu
- Department of LinguisticsThe University of Hong KongHong Kong SARChina
| | - Ran Tao
- Department of LinguisticsThe University of Hong KongHong Kong SARChina
- Research Centre for Language, Cognition, and Neuroscience, Department of Chinese and Bilingual StudiesThe Hong Kong Polytechnic UniversityHong Kong SARChina
| | - Lang Qin
- Department of LinguisticsThe University of Hong KongHong Kong SARChina
- Center for MRI Research, Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijingChina
| | - Stephen Matthews
- Department of LinguisticsThe University of Hong KongHong Kong SARChina
| | - Wai Ting Siok
- Department of LinguisticsThe University of Hong KongHong Kong SARChina
| |
Collapse
|
7
|
Wang Y, Luo J, Ma L, Chen R, Wang J, Chu C, Men W, Tan S, Gao JH, Qin S, He Y, Dong Q, Tao S. Learning to read Chinese promotes two cortico-subcortical pathways: The development of thalamo-occipital and fronto-striatal circuits. Front Neurosci 2022; 16:983084. [PMID: 36090289 PMCID: PMC9448958 DOI: 10.3389/fnins.2022.983084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
Learning to read may result in network reorganization in the developing brain. The thalamus and striatum are two important subcortical structures involved in learning to read. It remains unclear whether the thalamus and striatum may form two independent cortico-subcortical reading pathways during reading acquisition. In this prospective longitudinal study, we aimed to identify whether there may be two independent cortico-subcortical reading pathways involving the thalamus and striatum and to examine the longitudinal predictions between these two cortico-subcortical pathways and reading development in school-age children using cross-lagged panel modeling. A total of 334 children aged 6-12 years completed two reading assessments and resting functional imaging scans at approximately 12-month intervals. The results showed that there were two independent cortico-subcortical pathways, the thalamo-occipital and fronto-striatal circuits. The former may be part of a visual pathway and was predicted longitudinally by reading ability, and the prediction was stronger in children in lower grades and weaker in children in higher grades. The latter may be part of a cognitive pathway related to attention, memory, and reasoning, which was bidirectionally predicted with reading ability, and the predictive effect gradually increasing with reading development. These results extend previous findings on the relationship between functional connectivity and reading competence in children, highlighting the dynamic relationships between the thalamo-occipital and fronto-striatal circuits and reading acquisition.
Collapse
Affiliation(s)
- Yanpei Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Jie Luo
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States
| | - Leilei Ma
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Rui Chen
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Jiali Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Congying Chu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Weiwei Men
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Shuping Tan
- Psychiatry Research Center, Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Jia-Hong Gao
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Shaozheng Qin
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Sha Tao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
8
|
Caffarra S, Karipidis II, Yablonski M, Yeatman JD. Anatomy and physiology of word-selective visual cortex: from visual features to lexical processing. Brain Struct Funct 2021; 226:3051-3065. [PMID: 34636985 PMCID: PMC8639194 DOI: 10.1007/s00429-021-02384-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/07/2021] [Indexed: 12/20/2022]
Abstract
Over the past 2 decades, researchers have tried to uncover how the human brain can extract linguistic information from a sequence of visual symbols. The description of how the brain's visual system processes words and enables reading has improved with the progressive refinement of experimental methodologies and neuroimaging techniques. This review provides a brief overview of this research journey. We start by describing classical models of object recognition in non-human primates, which represent the foundation for many of the early models of visual word recognition in humans. We then review functional neuroimaging studies investigating the word-selective regions in visual cortex. This research led to the differentiation of highly specialized areas, which are involved in the analysis of different aspects of written language. We then consider the corresponding anatomical measurements and provide a description of the main white matter pathways carrying neural signals crucial to word recognition. Finally, in an attempt to integrate structural, functional, and electrophysiological findings, we propose a view of visual word recognition, accounting for spatial and temporal facets of word-selective neural processes. This multi-modal perspective on the neural circuitry of literacy highlights the relevance of a posterior-anterior differentiation in ventral occipitotemporal cortex for visual processing of written language and lexical features. It also highlights unanswered questions that can guide us towards future research directions. Bridging measures of brain structure and function will help us reach a more precise understanding of the transformation from vision to language.
Collapse
Affiliation(s)
- Sendy Caffarra
- Division of Developmental-Behavioral Pediatrics, Stanford University School of Medicine, 291 Campus Drive, Li Ka Shing Building, Stanford, CA, 94305-5101, USA
- Stanford University Graduate School of Education, 485 Lasuen Mall, Stanford, CA, 94305, USA
- Basque Center on Cognition, Brain and Language, Mikeletegi 69, 20009, San Sebastian, Spain
- University of Modena and Reggio Emilia, Via Campi 287, 41125, Modena, Italy
| | - Iliana I Karipidis
- Department of Psychiatry and Behavioral Sciences, Center for Interdisciplinary Brain Sciences Research, School of Medicine, Stanford University, 401 Quarry Road, Stanford, CA, 94305-5717, USA.
| | - Maya Yablonski
- Division of Developmental-Behavioral Pediatrics, Stanford University School of Medicine, 291 Campus Drive, Li Ka Shing Building, Stanford, CA, 94305-5101, USA
- Stanford University Graduate School of Education, 485 Lasuen Mall, Stanford, CA, 94305, USA
| | - Jason D Yeatman
- Division of Developmental-Behavioral Pediatrics, Stanford University School of Medicine, 291 Campus Drive, Li Ka Shing Building, Stanford, CA, 94305-5101, USA
- Stanford University Graduate School of Education, 485 Lasuen Mall, Stanford, CA, 94305, USA
| |
Collapse
|
9
|
Is human face recognition lateralized to the right hemisphere due to neural competition with left-lateralized visual word recognition? A critical review. Brain Struct Funct 2021; 227:599-629. [PMID: 34731327 DOI: 10.1007/s00429-021-02370-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023]
Abstract
The right hemispheric lateralization of face recognition, which is well documented and appears to be specific to the human species, remains a scientific mystery. According to a long-standing view, the evolution of language, which is typically substantiated in the left hemisphere, competes with the cortical space in that hemisphere available for visuospatial processes, including face recognition. Over the last decade, a specific hypothesis derived from this view according to which neural competition in the left ventral occipito-temporal cortex with selective representations of letter strings causes right hemispheric lateralization of face recognition, has generated considerable interest and research in the scientific community. Here, a systematic review of studies performed in various populations (infants, children, literate and illiterate adults, left-handed adults) and methodologies (behavior, lesion studies, (intra)electroencephalography, neuroimaging) offers little if any support for this reading lateralized neural competition hypothesis. Specifically, right-lateralized face-selective neural activity already emerges at a few months of age, well before reading acquisition. Moreover, consistent evidence of face recognition performance and its right hemispheric lateralization being modulated by literacy level during development or at adulthood is lacking. Given the absence of solid alternative hypotheses and the key role of neural competition in the sensory-motor cortices for selectivity of representations, learning, and plasticity, a revised language-related neural competition hypothesis for the right hemispheric lateralization of face recognition should be further explored in future research, albeit with substantial conceptual clarification and advances in methodological rigor.
Collapse
|
10
|
Xia Z, Wang C, Hancock R, Vandermosten M, Hoeft F. Development of thalamus mediates paternal age effect on offspring reading: A preliminary investigation. Hum Brain Mapp 2021; 42:4580-4596. [PMID: 34219304 PMCID: PMC8410543 DOI: 10.1002/hbm.25567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/31/2021] [Accepted: 06/13/2021] [Indexed: 12/20/2022] Open
Abstract
The importance of (inherited) genetic impact in reading development is well established. De novo mutation is another important contributor that is recently gathering interest as a major liability of neurodevelopmental disorders, but has been neglected in reading research to date. Paternal age at childbirth (PatAGE) is known as the most prominent risk factor for de novo mutation, which has been repeatedly shown by molecular genetic studies. As one of the first efforts, we performed a preliminary investigation of the relationship between PatAGE, offspring's reading, and brain structure in a longitudinal neuroimaging study following 51 children from kindergarten through third grade. The results showed that greater PatAGE was significantly associated with worse reading, explaining an additional 9.5% of the variance after controlling for a number of confounds-including familial factors and cognitive-linguistic reading precursors. Moreover, this effect was mediated by volumetric maturation of the left posterior thalamus from ages 5 to 8. Complementary analyses indicated the PatAGE-related thalamic region was most likely located in the pulvinar nuclei and related to the dorsal attention network by using brain atlases, public datasets, and offspring's diffusion imaging data. Altogether, these findings provide novel insights into neurocognitive mechanisms underlying the PatAGE effect on reading acquisition during its earliest phase and suggest promising areas of future research.
Collapse
Affiliation(s)
- Zhichao Xia
- Department of Psychiatry and Weill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
- School of Systems ScienceBeijing Normal UniversityBeijingChina
| | - Cheng Wang
- Department of Psychiatry and Weill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Roeland Hancock
- Department of Psychological Sciences and Brain Imaging Research CenterUniversity of ConnecticutStorrsConnecticutUSA
| | - Maaike Vandermosten
- Department of Psychiatry and Weill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Department of NeuroscienceExperimental ORL, KU LeuvenLeuvenBelgium
| | - Fumiko Hoeft
- Department of Psychiatry and Weill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Department of Psychological Sciences and Brain Imaging Research CenterUniversity of ConnecticutStorrsConnecticutUSA
- Haskins LaboratoriesNew HavenConnecticutUSA
- Department of NeuropsychiatryKeio University School of MedicineShinjuku‐kuTokyoJapan
| |
Collapse
|
11
|
|
12
|
The literate mind. JOURNAL OF CULTURAL COGNITIVE SCIENCE 2021. [DOI: 10.1007/s41809-021-00086-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Bandeira ID, Lins-Silva DH, Barouh JL, Faria-Guimarães D, Dorea-Bandeira I, Souza LS, Alves GS, Brunoni AR, Nitsche M, Fregni F, Lucena R. Neuroplasticity and non-invasive brain stimulation in the developing brain. PROGRESS IN BRAIN RESEARCH 2021; 264:57-89. [PMID: 34167665 DOI: 10.1016/bs.pbr.2021.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The brain is a dynamic organ whose growth and organization varies according to each subject's life experiences. Through adaptations in gene expression and the release of neurotrophins and neurotransmitters, these experiences induce a process of cellular realignment and neural network reorganization, which consolidate what is called neuroplasticity. However, despite the brain's resilience and dynamism, neuroplasticity is maximized during the first years of life, when the developing brain is more sensitive to structural reorganization and the repair of damaged neurons. This review presents an overview of non-invasive brain stimulation (NIBS) techniques that have increasingly been a focus for experimental research and the development of therapeutic methods involving neuroplasticity, especially Transcranial Magnetic Stimulation (TMS) and Transcranial Direct Current Stimulation (tDCS). Due to its safety risk profile and extensive tolerability, several trials have demonstrated the benefits of NIBS as a feasible experimental alternative for the treatment of brain and mind disorders in children and adolescents. However, little is known about the late impact of neuroplasticity-inducing tools on the developing brain, and there are concerns about aberrant plasticity. There are also ethical considerations when performing interventions in the pediatric population. This article will therefore review these aspects and also obstacles related to the premature application of NIBS, given the limited evidence available concerning the extent to which these methods interfere with the developing brain.
Collapse
Affiliation(s)
- Igor D Bandeira
- Laboratory of Neuropsychopharmacology, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil; Programa de Pós-Graduação em Medicina e Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil.
| | - Daniel H Lins-Silva
- Laboratory of Neuropsychopharmacology, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil; Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| | - Judah L Barouh
- Laboratory of Neuropsychopharmacology, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil; Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| | - Daniela Faria-Guimarães
- Laboratory of Neuropsychopharmacology, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil; Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| | - Ingrid Dorea-Bandeira
- Laboratory of Neuropsychopharmacology, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
| | - Lucca S Souza
- Laboratory of Neuropsychopharmacology, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil; Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| | - Gustavo S Alves
- Laboratory of Neuropsychopharmacology, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil; Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| | - André R Brunoni
- Service of Interdisciplinary Neuromodulation, Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Michael Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Center for Working Environment and Human Factors, Dortmund, Germany; Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard University, Charlestown, MA, United States
| | - Rita Lucena
- Department of Neuroscience and Mental Health, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| |
Collapse
|
14
|
Do illiterates have illusions? A conceptual (non)replication of Luria (1976). JOURNAL OF CULTURAL COGNITIVE SCIENCE 2021. [DOI: 10.1007/s41809-021-00080-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AbstractLuria (Luria, Cognitive development: Its cultural and social foundations, Harvard University Press, 1976) famously observed that people who never learnt to read and write do not perceive visual illusions. We conducted a conceptual replication of the Luria study of the effect of literacy on the processing of visual illusions. We designed two carefully controlled experiments with 161 participants with varying literacy levels ranging from complete illiterates to high literates in Chennai, India. Accuracy and reaction time in the identification of visual shape and color illusions and the identification of appropriate control images were measured. Separate statistical analyses of Experiments 1 and 2 as well as pooled analyses of both experiments do not provide any support for the notion that literacy affects the perception of visual illusions. Our large sample, carefully controlled study strongly suggests that literacy does not meaningfully affect the identification of visual illusions and raises some questions about other reports of cultural effects on illusion perception.
Collapse
|
15
|
Liebig J, Froehlich E, Sylvester T, Braun M, Heekeren HR, Ziegler JC, Jacobs AM. Neural processing of vision and language in kindergarten is associated with prereading skills and predicts future literacy. Hum Brain Mapp 2021; 42:3517-3533. [PMID: 33942958 PMCID: PMC8249894 DOI: 10.1002/hbm.25449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/15/2021] [Accepted: 04/06/2021] [Indexed: 01/13/2023] Open
Abstract
The main objective of this longitudinal study was to investigate the neural predictors of reading acquisition. For this purpose, we followed a sample of 54 children from the end of kindergarten to the end of second grade. Preliterate children were tested for visual symbol (checkerboards, houses, faces, written words) and auditory language processing (spoken words) using a passive functional magnetic resonance imaging paradigm. To examine brain-behavior relationships, we also tested cognitive-linguistic prereading skills at kindergarten age and reading performance of 48 of the same children 2 years later. Face-selective response in the bilateral fusiform gyrus was positively associated with rapid automatized naming (RAN). Response to both spoken and written words at preliterate age was negatively associated with RAN in the dorsal temporo-parietal language system. Longitudinally, neural response to faces in the ventral stream predicted future reading fluency. Here, stronger neural activity in inferior and middle temporal gyri at kindergarten age was associated with higher reading performance. Our results suggest that interindividual differences in the neural system of language and reading affect literacy acquisition and thus might serve as a marker for successful reading acquisition in preliterate children.
Collapse
Affiliation(s)
- Johanna Liebig
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany.,Center for Cognitive Neuroscience Berlin, Freie Universität Berlin, Berlin, Germany
| | - Eva Froehlich
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany.,Center for Cognitive Neuroscience Berlin, Freie Universität Berlin, Berlin, Germany
| | - Teresa Sylvester
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany.,Center for Cognitive Neuroscience Berlin, Freie Universität Berlin, Berlin, Germany
| | - Mario Braun
- Centre for Cognitive Neuroscience, Universität Salzburg, Salzburg, Austria
| | - Hauke R Heekeren
- Center for Cognitive Neuroscience Berlin, Freie Universität Berlin, Berlin, Germany.,Deparment of Biological Psychology and Cognitive Neuroscience, Freie Universität Berlin, Berlin, Germany
| | - Johannes C Ziegler
- Aix-Marseille Université and Centre National de la Recherche Scientifique, Laboratoire de Psychologie Cognitive, Marseille, France
| | - Arthur M Jacobs
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany.,Center for Cognitive Neuroscience Berlin, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
16
|
Nguyen BN, Kolbe SC, Verghese A, Nearchou C, McKendrick AM, Egan GF, Vidyasagar TR. Visual search efficiency and functional visual cortical size in children with and without dyslexia. Neuropsychologia 2021; 155:107819. [PMID: 33684399 DOI: 10.1016/j.neuropsychologia.2021.107819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/28/2021] [Accepted: 03/02/2021] [Indexed: 01/01/2023]
Abstract
Dyslexia is characterised by poor reading ability. Its aetiology is probably multifactorial, with abnormal visual processing playing an important role. Among adults with normal reading ability, there is a larger representation of central visual field in the primary visual cortex (V1) in those with more efficient visuospatial attention. In this study, we tested the hypothesis that poor reading ability in school-aged children (17 children with dyslexia, 14 control children with normal reading ability) is associated with deficits in visuospatial attention using a visual search task. We corroborated the psychophysical findings with neuroimaging, by measuring the functional size of V1 in response to a central 12° visual stimulus. Consistent with other literature, visual search was impaired and less efficient in the dyslexic children, particularly with more distractor elements in the search array (p = 0.04). We also found atypical interhemispheric asymmetry in functional V1 size in the dyslexia group (p = 0.02). Reading impaired children showed poorer visual search efficiency (p = 0.01), needing more time per unit distractor (higher ms/item). Reading ability was also correlated with V1 size asymmetry (p = 0.03), such that poorer readers showed less left hemisphere bias relative to the right hemisphere. Our findings support the view that dyslexic children have abnormal visuospatial attention and interhemispheric V1 asymmetry, relative to chronological age-matched peers, and that these factors may contribute to inter-individual variation in reading performance in children.
Collapse
Affiliation(s)
- Bao N Nguyen
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, Australia.
| | - Scott C Kolbe
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia.
| | - Ashika Verghese
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, Australia.
| | - Christine Nearchou
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, Australia.
| | - Allison M McKendrick
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, Australia.
| | - Gary F Egan
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia.
| | - Trichur R Vidyasagar
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
17
|
Mohammadi B, Münte TF, Cole DM, Sami A, Boltzmann M, Rüsseler J. Changed functional connectivity at rest in functional illiterates after extensive literacy training. Neurol Res Pract 2020; 2:12. [PMID: 33324918 PMCID: PMC7650047 DOI: 10.1186/s42466-020-00058-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 04/22/2020] [Indexed: 12/25/2022] Open
Abstract
Background About 6.2 million adults in Germany cannot read and write properly despite attending school for several years. They are considered to be functional illiterates (FI). Since the ability to read and write is crucial for being employed and socially accepted, we developed a special literacy training to overcome these deficits. Methods In this study, we investigate training-related changes in intrinsic functional connectivity (iFC) at rest in a group of 20 FI and 20 adult normal readers using resting state functional magnetic resonance imaging (rsfMRI). We used independent component analysis (ICA) to define different networks. Results Before training, the between group analysis showed increased iFC in FI in a left-fronto-parietal network (LFPN; anterior insula, medial frontal cortex, lateral and frontal parietal regions) and in the Basal Ganglia network (BGN: thalamus, caudate, putamen, pallidum, amygdala, supplementary motor cortex and cingulate gyrus). Furthermore, the Visual Network-1 (VN1; temporal occipital fusiform gyrus, lateral occipital cortex, occipital pole, lingual gyrus, thalamus) showed decreased iFC in FI. After training the FI group showed reversal of the “hyperconnectivity” in middle frontal gyrus and in the frontal orbital cortex and between supramarginal gyrus and the BGN. Furthermore, functional connectivity increased in FI VN1 (lateral occipital cortex, insular cortex). These changes in connectivity correlated with gains in reading speed and spelling accuracy. Conclusions These findings show that poor reading and writing abilities are associated with abnormalities in iFC in several brain areas subserving cognitive processes important for reading. Intensive literacy training induces changes in the functional connectivity between and within neural networks important for literacy skills.
Collapse
Affiliation(s)
- Bahram Mohammadi
- CNS-LAB, International Neuroscience Institute (INI), Hannover, Germany.,Department of Neurology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Thomas F Münte
- Department of Neurology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany.,Institute of Psychology II, University of Lübeck, Lübeck, Germany
| | - David M Cole
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Amir Sami
- CNS-LAB, International Neuroscience Institute (INI), Hannover, Germany
| | - Melanie Boltzmann
- Department of Psychology, University of Bamberg, Bamberg, Germany.,Bamberg Graduate School of Cognitive and Affective Sciences (BAGrACS), Bamberg, Germany.,Neurologische Klinik Hessisch Oldendorf, Hessisch Oldendorf, Germany
| | - Jascha Rüsseler
- Department of Psychology, University of Bamberg, Bamberg, Germany.,Bamberg Graduate School of Cognitive and Affective Sciences (BAGrACS), Bamberg, Germany
| |
Collapse
|
18
|
Literacy Advantages Beyond Reading: Prediction of Spoken Language. Trends Cogn Sci 2020; 23:464-475. [PMID: 31097411 DOI: 10.1016/j.tics.2019.03.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/28/2019] [Accepted: 03/28/2019] [Indexed: 01/28/2023]
Abstract
Literacy has many obvious benefits: it exposes the reader to a wealth of new information and enhances syntactic knowledge. However, we argue that literacy has an additional, often overlooked, benefit: it enhances people's ability to predict spoken language thereby aiding comprehension. Readers are under pressure to process information more quickly than listeners and reading provides excellent conditions - in particular, a stable environment - for training the predictive system. It also leads to increased awareness of words as linguistic units and to more fine-grained phonological and additional orthographic representations, which sharpen lexical representations and facilitate the retrieval of predicted representations. Thus, reading trains core processes and representations involved in language prediction that are common to both reading and listening.
Collapse
|
19
|
Rima S, Schmid MC. V1-bypassing thalamo-cortical visual circuits in blindsight and developmental dyslexia. CURRENT OPINION IN PHYSIOLOGY 2020; 16:14-20. [PMID: 39649037 PMCID: PMC7617028 DOI: 10.1016/j.cophys.2020.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Vision rests on computations that primarily rely on the parvocellular and magnocellular geniculate relay of retinal signals to V1. Secondary pathways involving superior colliculus, koniocellular lateral geniculate nucleus and pulvinar and their V1-bypassing projections to higher order cortex are known to exist. While they may form an evolutionary old visual system, their contribution to perception and visually guided behaviour remain largely obscure. Recent developments in tract tracing and circuit manipulation technologies provide new insights. Here we discuss how secondary visual pathways mediate residual vision (blindsight) after V1 injury by relaying signals directly into higher order cortical areas. We contrast these findings on blindsight with new studies on dyslexia suggesting that dysfunction of secondary visual pathways might contribute to dyslexic's perceptual difficulties. Emerging from these considerations, secondary visual pathways involving koniocellular LGN may be critical for detection of visual change, whereas pulvinar function appears more linked to visuomotor planning.
Collapse
|
20
|
Xu W, Kolozsvari OB, Oostenveld R, Hämäläinen JA. Rapid changes in brain activity during learning of grapheme-phoneme associations in adults. Neuroimage 2020; 220:117058. [PMID: 32561476 DOI: 10.1016/j.neuroimage.2020.117058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023] Open
Abstract
Learning to associate written letters with speech sounds is crucial for the initial phase of acquiring reading skills. However, little is known about the cortical reorganization for supporting letter-speech sound learning, particularly the brain dynamics during the learning of grapheme-phoneme associations. In the present study, we trained 30 Finnish participants (mean age: 24.33 years, SD: 3.50 years) to associate novel foreign letters with familiar Finnish speech sounds on two consecutive days (first day ~ 50 min; second day ~ 25 min), while neural activity was measured using magnetoencephalography (MEG). Two sets of audiovisual stimuli were used for the training in which the grapheme-phoneme association in one set (Learnable) could be learned based on the different learning cues provided, but not in the other set (Control). The learning progress was tracked at a trial-by-trial basis and used to segment different learning stages for the MEG source analysis. The learning-related changes were examined by comparing the brain responses to Learnable and Control uni/multi-sensory stimuli, as well as the brain responses to learning cues at different learning stages over the two days. We found dynamic changes in brain responses related to multi-sensory processing when grapheme-phoneme associations were learned. Further, changes were observed in the brain responses to the novel letters during the learning process. We also found that some of these learning effects were observed only after memory consolidation the following day. Overall, the learning process modulated the activity in a large network of brain regions, including the superior temporal cortex and the dorsal (parietal) pathway. Most interestingly, middle- and inferior-temporal regions were engaged during multi-sensory memory encoding after the cross-modal relationship was extracted from the learning cues. Our findings highlight the brain dynamics and plasticity related to the learning of letter-speech sound associations and provide a more refined model of grapheme-phoneme learning in reading acquisition.
Collapse
Affiliation(s)
- Weiyong Xu
- Department of Psychology, University of Jyväskylä, Jyväskylä, Finland; Jyväskylä Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland.
| | - Orsolya Beatrix Kolozsvari
- Department of Psychology, University of Jyväskylä, Jyväskylä, Finland; Jyväskylä Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland.
| | - Robert Oostenveld
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands; NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Jarmo Arvid Hämäläinen
- Department of Psychology, University of Jyväskylä, Jyväskylä, Finland; Jyväskylä Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland.
| |
Collapse
|
21
|
Impact of literacy on the functional connectivity of vision and language related networks. Neuroimage 2020; 213:116722. [DOI: 10.1016/j.neuroimage.2020.116722] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 11/15/2022] Open
|
22
|
Abstract
Developmental dyslexia, a severe deficit in literacy learning, is a neurodevelopmental learning disorder. Yet, it is not clear whether existing neurobiological accounts of dyslexia capture potential predispositions of the deficit or consequences of reduced reading experience. Here, we longitudinally followed 32 children from preliterate to school age using functional and structural magnetic resonance imaging techniques. Based on standardised and age-normed reading and spelling tests administered at school age, children were classified as 16 dyslexic participants and 16 controls. This longitudinal design allowed us to disentangle possible neurobiological predispositions for developing dyslexia from effects of individual differences in literacy experience. In our sample, the disorder can be predicted already before literacy learning from auditory cortex gyrification and aberrant downstream connectivity within the speech processing system. These results provide evidence for the notion that dyslexia may originate from an atypical maturation of the speech network that precedes literacy instruction.
Collapse
|
23
|
Abstract
Reading causes widespread changes in the brain, but its effect on visual word representations is unknown. Learning to read may facilitate visual processing by forming specialized detectors for longer strings or by making word responses more predictable from single letters—that is, by increasing compositionality. We provided evidence for the latter hypothesis using experiments that compared nonoverlapping groups of readers of two Indian languages (Telugu and Malayalam). Readers showed increased single-letter discrimination and decreased letter interactions for bigrams during visual search. Importantly, these interactions predicted subjects’ overall reading fluency. In a separate brain-imaging experiment, we observed increased compositionality in readers, whereby responses to bigrams were more predictable from single letters. This effect was specific to the anterior lateral occipital region, where activations best matched behavior. Thus, learning to read facilitates visual processing by increasing the compositionality of visual word representations.
Collapse
Affiliation(s)
- Aakash Agrawal
- Centre for BioSystems Science and Engineering, Indian Institute of Science
| | - K V S Hari
- Department of Electrical Communication Engineering, Indian Institute of Science
| | - S P Arun
- Centre for Neuroscience, Indian Institute of Science
| |
Collapse
|
24
|
Pleisch G, Karipidis II, Brem A, Röthlisberger M, Roth A, Brandeis D, Walitza S, Brem S. Simultaneous EEG and fMRI reveals stronger sensitivity to orthographic strings in the left occipito-temporal cortex of typical versus poor beginning readers. Dev Cogn Neurosci 2019; 40:100717. [PMID: 31704655 PMCID: PMC6974919 DOI: 10.1016/j.dcn.2019.100717] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/23/2019] [Accepted: 10/01/2019] [Indexed: 01/18/2023] Open
Abstract
The level of reading skills in children and adults is reflected in the strength of preferential neural activation to print. Such preferential activation appears in the N1 event-related potential (ERP) over the occipitotemporal scalp after around 150–250 ms and the corresponding blood oxygen level dependent (BOLD) signal in the ventral occipitotemporal (vOT) cortex. Here, orthography-sensitive (print vs. false font) processing was examined using simultaneous EEG-fMRI in 38 first grade children with poor and typical reading skills, and at varying familial risk for developmental dyslexia. Coarse orthographic sensitivity was observed as an increased activation to print in the N1 ERP and in the BOLD signal of individually varying vOT regions in 57% of beginning readers. Finer differentiation in processing orthographic strings (words vs. nonwords) further occurred in specific vOT clusters. Neither method alone showed robust differences in orthography-sensitive processing between typical and poor reading children. Importantly, using single-trial N1 ERP-informed fMRI analysis, we found differential modulation of the orthography-sensitive BOLD response in the left vOT for typical readers only. This result, thus, confirms subtle functional alterations in a brain structure known to be critical for fluent reading at the very beginning of reading instruction.
Collapse
Affiliation(s)
- Georgette Pleisch
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland
| | - Iliana I Karipidis
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland; Center for Interdisciplinary Brain Sciences Research, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexandra Brem
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Switzerland
| | - Martina Röthlisberger
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Switzerland
| | - Alexander Roth
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Switzerland
| | - Daniel Brandeis
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland; Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany; Center for Integrative Human Physiology Zurich, University of Zurich, Switzerland
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland; Center for Integrative Human Physiology Zurich, University of Zurich, Switzerland
| | - Silvia Brem
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland; MR-Center of the University Hospital of Psychiatry and the Department of Child and Adolescent Psychiatry and Psychotherapy, University of Zurich, Switzerland.
| |
Collapse
|
25
|
Hervais-Adelman A, Kumar U, Mishra RK, Tripathi VN, Guleria A, Singh JP, Eisner F, Huettig F. Learning to read recycles visual cortical networks without destruction. SCIENCE ADVANCES 2019; 5:eaax0262. [PMID: 31555732 PMCID: PMC6750915 DOI: 10.1126/sciadv.aax0262] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 08/19/2019] [Indexed: 05/05/2023]
Abstract
Learning to read is associated with the appearance of an orthographically sensitive brain region known as the visual word form area. It has been claimed that development of this area proceeds by impinging upon territory otherwise available for the processing of culturally relevant stimuli such as faces and houses. In a large-scale functional magnetic resonance imaging study of a group of individuals of varying degrees of literacy (from completely illiterate to highly literate), we examined cortical responses to orthographic and nonorthographic visual stimuli. We found that literacy enhances responses to other visual input in early visual areas and enhances representational similarity between text and faces, without reducing the extent of response to nonorthographic input. Thus, acquisition of literacy in childhood recycles existing object representation mechanisms but without destructive competition.
Collapse
Affiliation(s)
- Alexis Hervais-Adelman
- Neurobiology of Language Department, Max Planck Institute for Psycholinguistics, Wundtlaan 1, 6525 XD Nijmegen, Netherlands
- Neurolinguistics, University of Zürich, Department of Psychology, Binzmühlerstrasse 14, 8050, Zürich, Switzerland
- Corresponding author.
| | - Uttam Kumar
- Centre of Biomedical Research, Raibareli Road, Lucknow, 226014 Uttar Pradesh, India
| | - Ramesh K. Mishra
- University of Hyderabad, Prof. C.R. Rao Road, Gachibowli, Hyderabad 500046, Telangana, India
| | - Viveka N. Tripathi
- Centre for Behavioural and Cognitive Sciences, University of Allahabad, University Road, Old Katra, Prayagraj, 211002 Uttar Pradesh, India
- Department of Psychology, Iswar Saran Degree College, Prayagraj, 211002 Uttar Pradesh, India
| | - Anupam Guleria
- Centre of Biomedical Research, Raibareli Road, Lucknow, 226014 Uttar Pradesh, India
| | - Jay P. Singh
- Centre for Behavioural and Cognitive Sciences, University of Allahabad, University Road, Old Katra, Prayagraj, 211002 Uttar Pradesh, India
| | - Frank Eisner
- Donders Institute, Radboud University, Montessorilaan 3, 6525 HR Nijmegen, Netherlands
| | - Falk Huettig
- Psychology of Language Department, Max Planck Institute for Psycholinguistics, Wundtlaan 1, 6525 XD Nijmegen, Netherlands
- Centre for Language Studies, Radboud University, Houtlaan 4, 6525 XZ Nijmegen, Netherlands
| |
Collapse
|
26
|
Schwartz ZH. Psychiatric Skepticism in Medical Education: Why We Need Philosophy. ACADEMIC PSYCHIATRY : THE JOURNAL OF THE AMERICAN ASSOCIATION OF DIRECTORS OF PSYCHIATRIC RESIDENCY TRAINING AND THE ASSOCIATION FOR ACADEMIC PSYCHIATRY 2019; 43:461-463. [PMID: 30891684 DOI: 10.1007/s40596-019-01049-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 02/24/2019] [Indexed: 06/09/2023]
|
27
|
Vidyasagar TR. Visual attention and neural oscillations in reading and dyslexia: Are they possible targets for remediation? Neuropsychologia 2019; 130:59-65. [DOI: 10.1016/j.neuropsychologia.2019.02.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 01/07/2023]
|
28
|
White Matter Microstructure in Illiterate and Low-Literate Elderly Brazilians: Preliminary Findings. Cogn Behav Neurol 2019; 31:193-200. [PMID: 30562228 DOI: 10.1097/wnn.0000000000000173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To investigate differences in white matter microstructure between illiterate and low-literate elderly Brazilians. BACKGROUND High literacy levels are believed to partially counteract the negative effects of neurodegenerative diseases. Investigating the impact of low literacy versus illiteracy on brain structure can contribute knowledge about cognitive reserve in elderly populations with low educational attainment. Fractional anisotropy is a measure derived from diffusion tensor imaging sequences that positively correlate with the integrity of the brain's white matter microstructure. METHODS Older adults who participated in an epidemiological study to investigate brain aging in Brazil and had magnetic resonance scans with the diffusion tensor imaging acquisition were selected (n=31). Participants were divided into two groups: (a) low-literate (n=21), with 3.4 (1.4) years of education, 79.8 (3.8) years of age, 17 cognitively healthy and four with cognitive impairment-no dementia; and (b) illiterate (n=10) with no formal schooling, 80.7 (4.1) years of age, six cognitively healthy and four with cognitive impairment-no dementia. We contrasted the two groups' white matter microstructure measures using whole-brain and region of interest approaches. RESULTS The low-literate participants had significantly higher fractional anisotropy values in the right superior longitudinal fasciculus than did the illiterate ones. CONCLUSIONS Although our results are preliminary because of the sample size, they suggest that low literacy, versus illiteracy, is associated with higher fractional anisotropy values, which are indirect measurements of white matter microstructure. This finding provides insight into a possible mechanism by which literacy, even at low levels, may contribute to cognitive reserve.
Collapse
|
29
|
Barakat B, Shields R. Just Another Level? Comparing Quantitative Patterns of Global Expansion of School and Higher Education Attainment. Demography 2019; 56:917-934. [PMID: 31001732 PMCID: PMC6592959 DOI: 10.1007/s13524-019-00775-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The expansion of higher education enrollment and attainment is a key uncertainty in the education profile of future populations. Many studies have examined cross-national determinants of higher education expansion as well the understanding of expansion through the relationship between higher education and the labor market. Early work established a typology for levels of enrollment, but recent empirical studies on the global growth of higher education attainment are scarce, and available projections resort to imposing ad hoc limits on future expansion. This study addresses this gap by comparing the trajectories of higher education expansion with those experienced at other levels on their course to universal or near-universal access. We demonstrate that a population-level model of expansion toward universal access fits higher education as well as lower levels of education (i.e., primary and secondary education). In other words, that there is no prima facie evidence of a ceiling in higher education enrollment that would indicate saturation significantly below 100 % participation. Claims that are premised on such a ceiling should therefore consider empirical evidence for this assumption in their analysis. These findings contribute to discussions on higher education expansion as well as studies of higher education and the labor market.
Collapse
Affiliation(s)
- Bilal Barakat
- Vienna Institute of Demography (VID), Austrian Academy of Sciences, Welthandelsplatz 2, 1020, Vienna, Austria.
| | | |
Collapse
|
30
|
Kolodny O, Edelman S. The evolution of the capacity for language: the ecological context and adaptive value of a process of cognitive hijacking. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2017.0052. [PMID: 29440518 DOI: 10.1098/rstb.2017.0052] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2017] [Indexed: 01/10/2023] Open
Abstract
Language plays a pivotal role in the evolution of human culture, yet the evolution of the capacity for language-uniquely within the hominin lineage-remains little understood. Bringing together insights from cognitive psychology, neuroscience, archaeology and behavioural ecology, we hypothesize that this singular occurrence was triggered by exaptation, or 'hijacking', of existing cognitive mechanisms related to sequential processing and motor execution. Observed coupling of the communication system with circuits related to complex action planning and control supports this proposition, but the prehistoric ecological contexts in which this coupling may have occurred and its adaptive value remain elusive. Evolutionary reasoning rules out most existing hypotheses regarding the ecological context of language evolution, which focus on ultimate explanations and ignore proximate mechanisms. Coupling of communication and motor systems, although possible in a short period on evolutionary timescales, required a multi-stepped adaptive process, involving multiple genes and gene networks. We suggest that the behavioural context that exerted the selective pressure to drive these sequential adaptations had to be one in which each of the systems undergoing coupling was independently necessary or highly beneficial, as well as frequent and recurring over evolutionary time. One such context could have been the teaching of tool production or tool use. In the present study, we propose the Cognitive Coupling hypothesis, which brings together these insights and outlines a unifying theory for the evolution of the capacity for language.This article is part of the theme issue 'Bridging cultural gaps: interdisciplinary studies in human cultural evolution'.
Collapse
Affiliation(s)
- Oren Kolodny
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Shimon Edelman
- Department of Psychology, Cornell University, Ithaca, NY 14853-7601, USA
| |
Collapse
|
31
|
Lutz W, Kebede E. Education and Health: Redrawing the Preston Curve. POPULATION AND DEVELOPMENT REVIEW 2018; 44:343-361. [PMID: 29937609 PMCID: PMC6001628 DOI: 10.1111/padr.12141] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
|
32
|
Lumaca M, Ravignani A, Baggio G. Music Evolution in the Laboratory: Cultural Transmission Meets Neurophysiology. Front Neurosci 2018; 12:246. [PMID: 29713263 PMCID: PMC5911491 DOI: 10.3389/fnins.2018.00246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 03/29/2018] [Indexed: 11/16/2022] Open
Abstract
In recent years, there has been renewed interest in the biological and cultural evolution of music, and specifically in the role played by perceptual and cognitive factors in shaping core features of musical systems, such as melody, harmony, and rhythm. One proposal originates in the language sciences. It holds that aspects of musical systems evolve by adapting gradually, in the course of successive generations, to the structural and functional characteristics of the sensory and memory systems of learners and “users” of music. This hypothesis has found initial support in laboratory experiments on music transmission. In this article, we first review some of the most important theoretical and empirical contributions to the field of music evolution. Next, we identify a major current limitation of these studies, i.e., the lack of direct neural support for the hypothesis of cognitive adaptation. Finally, we discuss a recent experiment in which this issue was addressed by using event-related potentials (ERPs). We suggest that the introduction of neurophysiology in cultural transmission research may provide novel insights on the micro-evolutionary origins of forms of variation observed in cultural systems.
Collapse
Affiliation(s)
- Massimo Lumaca
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University and The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
| | - Andrea Ravignani
- Artificial Intelligence Lab, Vrije Universiteit Brussel, Brussels, Belgium.,Research Department, Sealcentre Pieterburen, Pieterburen, Netherlands.,Language and Cognition Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
| | - Giosuè Baggio
- Language Acquisition and Language Processing Lab, Department of Language and Literature, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
33
|
The emergence of the visual word form: Longitudinal evolution of category-specific ventral visual areas during reading acquisition. PLoS Biol 2018; 16:e2004103. [PMID: 29509766 PMCID: PMC5856411 DOI: 10.1371/journal.pbio.2004103] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 03/16/2018] [Accepted: 02/13/2018] [Indexed: 11/19/2022] Open
Abstract
How does education affect cortical organization? All literate adults possess a region specialized for letter strings, the visual word form area (VWFA), within the mosaic of ventral regions involved in processing other visual categories such as objects, places, faces, or body parts. Therefore, the acquisition of literacy may induce a reorientation of cortical maps towards letters at the expense of other categories such as faces. To test this cortical recycling hypothesis, we studied how the visual cortex of individual children changes during the first months of reading acquisition. Ten 6-year-old children were scanned longitudinally 6 or 7 times with functional magnetic resonance imaging (fMRI) before and throughout the first year of school. Subjects were exposed to a variety of pictures (words, numbers, tools, houses, faces, and bodies) while performing an unrelated target-detection task. Behavioral assessment indicated a sharp rise in grapheme-phoneme knowledge and reading speed in the first trimester of school. Concurrently, voxels specific to written words and digits emerged at the VWFA location. The responses to other categories remained largely stable, although right-hemispheric face-related activity increased in proportion to reading scores. Retrospective examination of the VWFA voxels prior to reading acquisition showed that reading encroaches on voxels that are initially weakly specialized for tools and close to but distinct from those responsive to faces. Remarkably, those voxels appear to keep their initial category selectivity while acquiring an additional and stronger responsivity to words. We propose a revised model of the neuronal recycling process in which new visual categories invade weakly specified cortex while leaving previously stabilized cortical responses unchanged.
Collapse
|
34
|
Kermani M, Verghese A, Vidyasagar TR. Attentional asymmetry between visual hemifields is related to habitual direction of reading and its implications for debate on cause and effects of dyslexia. DYSLEXIA (CHICHESTER, ENGLAND) 2018; 24:33-43. [PMID: 29214682 DOI: 10.1002/dys.1574] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 10/11/2017] [Accepted: 11/01/2017] [Indexed: 06/07/2023]
Abstract
A major controversy regarding dyslexia is whether any of the many visual and phonological deficits found to be correlated with reading difficulty cause the impairment or result from the reduced amount of reading done by dyslexics. We studied this question by comparing a visual capacity in the left and right visual hemifields in people habitually reading scripts written right-to-left or left-to-right. Selective visual attention is necessary for efficient visual search and also for the sequential recognition of letters in words. Because such attentional allocation during reading depends on the direction in which one is reading, asymmetries in search efficiency may reflect biases arising from the habitual direction of reading. We studied this by examining search performance in three cohorts: (a) left-to-right readers who read English fluently; (b) right-to-left readers fluent in reading Farsi but not any left-to-right script; and (c) bilingual readers fluent in English and in Farsi, Arabic, or Hebrew. Left-to-right readers showed better search performance in the right hemifield and right-to-left readers in the left hemifield, but bilingual readers showed no such asymmetries. Thus, reading experience biases search performance in the direction of reading, which has implications for the cause and effect relationships between reading and cognitive functions.
Collapse
Affiliation(s)
- Mojtaba Kermani
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Vic, Australia
| | - Ashika Verghese
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Vic, Australia
- School of Psychology, University of Queensland, St. Lucia, QLD, Australia
| | - Trichur R Vidyasagar
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Vic, Australia
- Melbourne Neuroscience Institute, University of Melbourne, Parkville, Vic, Australia
| |
Collapse
|