1
|
Hwang J, Ihm Y, Nam D, Shin J, Park E, Lee SY, Lee H, Heo SP, Kim S, Ahn JY, Shim JH, Kim M, Eom I, Noh DY, Song C. Inverted nucleation for photoinduced nonequilibrium melting. SCIENCE ADVANCES 2024; 10:eadl6409. [PMID: 38701215 DOI: 10.1126/sciadv.adl6409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 04/01/2024] [Indexed: 05/05/2024]
Abstract
Ultrafast photoinduced melting provides an essential platform for studying nonequilibrium phase transitions by linking the kinetics of electron dynamics to ionic motions. Knowledge of dynamic balance in their energetics is essential to understanding how the ionic reaction is influenced by femtosecond photoexcited electrons with notable time lag depending on reaction mechanisms. Here, by directly imaging fluctuating density distributions and evaluating the ionic pressure and Gibbs free energy from two-temperature molecular dynamics that verified experimental results, we uncovered that transient ionic pressure, triggered by photoexcited electrons, controls the overall melting kinetics. In particular, ultrafast nonequilibrium melting can be described by the reverse nucleation process with voids as nucleation seeds. The strongly driven solid-to-liquid transition of metallic gold is successfully explained by void nucleation facilitated by photoexcited electron-initiated ionic pressure, establishing a solid knowledge base for understanding ultrafast nonequilibrium kinetics.
Collapse
Affiliation(s)
- Junha Hwang
- Department of Physics, POSTECH, Pohang 37673, Korea
- Center for Ultrafast Science on Quantum Matter, Max Planck POSTECH Korea Research Initiative, Pohang 37673, Korea
- Photon Science Center, POSTECH, Pohang 37673, Korea
| | - Yungok Ihm
- Photon Science Center, POSTECH, Pohang 37673, Korea
- Department of Chemistry, POSTECH, Pohang 37673, Korea
| | - Daewoong Nam
- Photon Science Center, POSTECH, Pohang 37673, Korea
- Pohang Accelerator Laboratory, Pohang 37673, Korea
| | - Jaeyong Shin
- Department of Physics, POSTECH, Pohang 37673, Korea
- Center for Ultrafast Science on Quantum Matter, Max Planck POSTECH Korea Research Initiative, Pohang 37673, Korea
- Photon Science Center, POSTECH, Pohang 37673, Korea
| | - Eunyoung Park
- Department of Physics, POSTECH, Pohang 37673, Korea
- Center for Ultrafast Science on Quantum Matter, Max Planck POSTECH Korea Research Initiative, Pohang 37673, Korea
- Photon Science Center, POSTECH, Pohang 37673, Korea
| | - Sung Yun Lee
- Department of Physics, POSTECH, Pohang 37673, Korea
- Center for Ultrafast Science on Quantum Matter, Max Planck POSTECH Korea Research Initiative, Pohang 37673, Korea
- Photon Science Center, POSTECH, Pohang 37673, Korea
| | - Heemin Lee
- Department of Physics, POSTECH, Pohang 37673, Korea
- Center for Ultrafast Science on Quantum Matter, Max Planck POSTECH Korea Research Initiative, Pohang 37673, Korea
- Photon Science Center, POSTECH, Pohang 37673, Korea
| | - Seung-Phil Heo
- Department of Physics, POSTECH, Pohang 37673, Korea
- Center for Ultrafast Science on Quantum Matter, Max Planck POSTECH Korea Research Initiative, Pohang 37673, Korea
- Photon Science Center, POSTECH, Pohang 37673, Korea
| | - Sangsoo Kim
- Pohang Accelerator Laboratory, Pohang 37673, Korea
| | - Je Young Ahn
- Department of Chemistry, POSTECH, Pohang 37673, Korea
| | - Ji Hoon Shim
- Photon Science Center, POSTECH, Pohang 37673, Korea
- Department of Chemistry, POSTECH, Pohang 37673, Korea
| | - Minseok Kim
- Pohang Accelerator Laboratory, Pohang 37673, Korea
| | - Intae Eom
- Photon Science Center, POSTECH, Pohang 37673, Korea
- Pohang Accelerator Laboratory, Pohang 37673, Korea
| | - Do Young Noh
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
- Institute for Basic Science, Daejeon 34126, Korea
| | - Changyong Song
- Department of Physics, POSTECH, Pohang 37673, Korea
- Center for Ultrafast Science on Quantum Matter, Max Planck POSTECH Korea Research Initiative, Pohang 37673, Korea
- Photon Science Center, POSTECH, Pohang 37673, Korea
| |
Collapse
|
2
|
Lee Y, Oang KY, Kim D, Ihee H. A comparative review of time-resolved x-ray and electron scattering to probe structural dynamics. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2024; 11:031301. [PMID: 38706888 PMCID: PMC11065455 DOI: 10.1063/4.0000249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/10/2024] [Indexed: 05/07/2024]
Abstract
The structure of molecules, particularly the dynamic changes in structure, plays an essential role in understanding physical and chemical phenomena. Time-resolved (TR) scattering techniques serve as crucial experimental tools for studying structural dynamics, offering direct sensitivity to molecular structures through scattering signals. Over the past decade, the advent of x-ray free-electron lasers (XFELs) and mega-electron-volt ultrafast electron diffraction (MeV-UED) facilities has ushered TR scattering experiments into a new era, garnering significant attention. In this review, we delve into the basic principles of TR scattering experiments, especially focusing on those that employ x-rays and electrons. We highlight the variations in experimental conditions when employing x-rays vs electrons and discuss their complementarity. Additionally, cutting-edge XFELs and MeV-UED facilities for TR x-ray and electron scattering experiments and the experiments performed at those facilities are reviewed. As new facilities are constructed and existing ones undergo upgrades, the landscape for TR x-ray and electron scattering experiments is poised for further expansion. Through this review, we aim to facilitate the effective utilization of these emerging opportunities, assisting researchers in delving deeper into the intricate dynamics of molecular structures.
Collapse
Affiliation(s)
| | - Key Young Oang
- Radiation Center for Ultrafast Science, Korea Atomic Energy Research Institute (KAERI), Daejeon 34057, South Korea
| | | | | |
Collapse
|
3
|
MacNider B, Jones D, Callanan J, Beason M, Gray GT, Dattelbaum DM, Boechler N, Fensin S. In situ measurement of damage evolution in shocked magnesium as a function of microstructure. SCIENCE ADVANCES 2023; 9:eadi2606. [PMID: 37948528 PMCID: PMC10637753 DOI: 10.1126/sciadv.adi2606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/10/2023] [Indexed: 11/12/2023]
Abstract
Accurate modeling and prediction of damage induced by dynamic loading in materials have long proved to be a difficult task. Examination of postmortem recovered samples cannot capture the time-dependent evolution of void nucleation and growth, and attempts at analytical models are hindered by the necessity to make simplifying assumptions, because of the lack of high-resolution, in situ, time-resolved experimental data. We use absorption contrast imaging to directly image the time evolution of spall damage in metals at ∼1.6-μm spatial resolution. We observe a dependence of void distribution and size on time and microstructure. The insights gained from these data can be used to validate and improve dynamic damage prediction models, which have the potential to lead to the design of superior damage-resistant materials.
Collapse
Affiliation(s)
- Brianna MacNider
- Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - David Jones
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Jesse Callanan
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Matt Beason
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - George T. Gray
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | | - Nicholas Boechler
- Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Program in Materials Science and Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Saryu Fensin
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| |
Collapse
|
4
|
Kardani A, Montazeri A, Urbassek HM. Strain-rate-dependent plasticity of Ta-Cu nanocomposites for therapeutic implants. Sci Rep 2023; 13:15788. [PMID: 37737499 PMCID: PMC10516883 DOI: 10.1038/s41598-023-43126-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/20/2023] [Indexed: 09/23/2023] Open
Abstract
Recently, Ta/Cu nanocomposites have been widely used in therapeutic medical devices due to their excellent bioactivity and biocompatibility, antimicrobial property, and outstanding corrosion and wear resistance. Since mechanical yielding and any other deformation in the patient's body during treatment are unacceptable in medicine, the characterization of the mechanical behavior of these nanomaterials is of great importance. We focus on the microstructural evolution of Ta/Cu nanocomposite samples under uniaxial tensile loading conditions at different strain rates using a series of molecular dynamics simulations and compare to the reference case of pure Ta. The results show that the increase in dislocation density at lower strain rates leads to the significant weakening of the mechanical properties. The strain rate-dependent plastic deformation mechanism of the samples can be divided into three main categories: phase transitions at the extreme strain rates, dislocation slip/twinning at lower strain rates for coarse-grained samples, and grain-boundary based activities for the finer-grained samples. Finally, we demonstrate that the load transfer from the Ta matrix to the Cu nanoparticles via the interfacial region can significantly affect the plastic deformation of the matrix in all nanocomposite samples. These results will prove useful for the design of therapeutic implants based on Ta/Cu nanocomposites.
Collapse
Affiliation(s)
- Arash Kardani
- Computational Nanomaterials Lab (CNL), Faculty of Materials Science and Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Abbas Montazeri
- Computational Nanomaterials Lab (CNL), Faculty of Materials Science and Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Herbert M Urbassek
- Physics Department and Research Center OPTIMAS, University Kaiserslautern-Landau, Erwin-Schrödinger-Straße, 67663, Kaiserslautern, Germany.
| |
Collapse
|
5
|
Sarosi PM, Furmanski J, Reese WC, Carpenter DL, Nittoli MA, Myers MG, Callen NM, Neeraj T. Damage evolution during fracture by correlative microscopy with hyperspectral electron microscopy and laboratory-based microtomography. SCIENCE ADVANCES 2022; 8:eabj6738. [PMID: 35385319 PMCID: PMC8986107 DOI: 10.1126/sciadv.abj6738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Damage evolution during fracture of metals is a critical factor in determining the reliability and integrity of the infrastructure that the society relies upon. However, experimental techniques for directly observing these phenomena have remained challenged. We have addressed this gap by developing a correlative microscopy framework combining high-resolution hyperspectral electron microscopy with laboratory x-ray microtomography (XMT) and applied it to study fracture mechanisms in a steel inclusion system. We observed damage nucleation and growth to be inhomogeneous and anisotropic. Fracture resistance was observed to be controlled by inclusion distribution and the size scale of an inclusion-depleted zone. Furthermore, our studies demonstrate that laboratory XMT can characterize damage to the micrometer scale with a large field of view in dense metals like steel, offering a more accessible alternative to synchrotron-based tomography. The framework presented provides a means to broadly adopt correlative microscopy for studies of degradation phenomena and help accelerate discovery of new materials solutions.
Collapse
Affiliation(s)
- Peter M. Sarosi
- Corporate Strategic Research, ExxonMobil Research and Engineering Company, Annandale, NJ 08801, USA
| | - Jevan Furmanski
- Corporate Strategic Research, ExxonMobil Research and Engineering Company, Annandale, NJ 08801, USA
| | - William C. Reese
- Research and Technology Department, ExxonMobil Upstream Integrated Solutions, Spring, TX 77389, USA
| | - Donald L. Carpenter
- Corporate Strategic Research, ExxonMobil Research and Engineering Company, Annandale, NJ 08801, USA
| | - Mikel A. Nittoli
- Corporate Strategic Research, ExxonMobil Research and Engineering Company, Annandale, NJ 08801, USA
| | - Michael G. Myers
- Corporate Strategic Research, ExxonMobil Research and Engineering Company, Annandale, NJ 08801, USA
| | - Nicole M. Callen
- Corporate Strategic Research, ExxonMobil Research and Engineering Company, Annandale, NJ 08801, USA
| | - Thirumalai Neeraj
- Corporate Strategic Research, ExxonMobil Research and Engineering Company, Annandale, NJ 08801, USA
| |
Collapse
|
6
|
Krivtsov AM, Murachev AS, Tsvetkov DV. Transient diffusion and thermal processes in a finite one-dimensional harmonic crystal. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 34:095401. [PMID: 34706359 DOI: 10.1088/1361-648x/ac33dc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
In this paper, an instant homogeneous thermal perturbation in the periodic one-dimensional harmonic crystal is studied. The exact solution for thermal and diffusive characteristics is obtained, namely, particle velocity dispersion (kinetic temperature) and particle displacement dispersion. It is found that thermal and diffusion processes demonstrate a quasi-periodic recurrence. The recurrence interval is equal to the time it takes the sound wave to travel the half-length of the crystal. The 'thermal echo' (sharp peaks in kinetic temperature) occurs in the system with the specified periodicity. Diffusion characteristics reveal large-scale time changes with a nearly complete return to the initial state at each quasi-period. It is also shown that the spatial mean squared displacements of particles are significantly different from the ensemble mean squared displacements.
Collapse
Affiliation(s)
- A M Krivtsov
- Department of Theoretical Mechanics, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
- Laboratory of Discrete Models in Mechanics, Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences, Saint Petersburg, Russia
| | - A S Murachev
- Department of Theoretical Mechanics, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
| | - D V Tsvetkov
- Department of Theoretical Mechanics, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
| |
Collapse
|
7
|
Ultrafast olivine-ringwoodite transformation during shock compression. Nat Commun 2021; 12:4305. [PMID: 34262045 PMCID: PMC8280208 DOI: 10.1038/s41467-021-24633-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/22/2021] [Indexed: 11/30/2022] Open
Abstract
Meteorites from interplanetary space often include high-pressure polymorphs of their constituent minerals, which provide records of past hypervelocity collisions. These collisions were expected to occur between kilometre-sized asteroids, generating transient high-pressure states lasting for several seconds to facilitate mineral transformations across the relevant phase boundaries. However, their mechanisms in such a short timescale were never experimentally evaluated and remained speculative. Here, we show a nanosecond transformation mechanism yielding ringwoodite, which is the most typical high-pressure mineral in meteorites. An olivine crystal was shock-compressed by a focused high-power laser pulse, and the transformation was time-resolved by femtosecond diffractometry using an X-ray free electron laser. Our results show the formation of ringwoodite through a faster, diffusionless process, suggesting that ringwoodite can form from collisions between much smaller bodies, such as metre to submetre-sized asteroids, at common relative velocities. Even nominally unshocked meteorites could therefore contain signatures of high-pressure states from past collisions. Meteorites from space often include denser polymorphs of their minerals, providing records of past hypervelocity collisions. An olivine mineral crystal was shock-compressed by a high-power laser, and its transformation into denser ringwoodite was time-resolved using an X-ray free electron laser.
Collapse
|
8
|
Mishra A, Kunka C, Echeverria MJ, Dingreville R, Dongare AM. Fingerprinting shock-induced deformations via diffraction. Sci Rep 2021; 11:9872. [PMID: 33972567 PMCID: PMC8111029 DOI: 10.1038/s41598-021-88908-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 11/17/2022] Open
Abstract
During the various stages of shock loading, many transient modes of deformation can activate and deactivate to affect the final state of a material. In order to fundamentally understand and optimize a shock response, researchers seek the ability to probe these modes in real-time and measure the microstructural evolutions with nanoscale resolution. Neither post-mortem analysis on recovered samples nor continuum-based methods during shock testing meet both requirements. High-speed diffraction offers a solution, but the interpretation of diffractograms suffers numerous debates and uncertainties. By atomistically simulating the shock, X-ray diffraction, and electron diffraction of three representative BCC and FCC metallic systems, we systematically isolated the characteristic fingerprints of salient deformation modes, such as dislocation slip (stacking faults), deformation twinning, and phase transformation as observed in experimental diffractograms. This study demonstrates how to use simulated diffractograms to connect the contributions from concurrent deformation modes to the evolutions of both 1D line profiles and 2D patterns for diffractograms from single crystals. Harnessing these fingerprints alongside information on local pressures and plasticity contributions facilitate the interpretation of shock experiments with cutting-edge resolution in both space and time.
Collapse
Affiliation(s)
- Avanish Mishra
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, 06269, USA.,Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA
| | - Cody Kunka
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, NM, 87123, USA
| | - Marco J Echeverria
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Rémi Dingreville
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, NM, 87123, USA.
| | - Avinash M Dongare
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, 06269, USA. .,Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA.
| |
Collapse
|
9
|
Katagiri K, Ozaki N, Ohmura S, Albertazzi B, Hironaka Y, Inubushi Y, Ishida K, Koenig M, Miyanishi K, Nakamura H, Nishikino M, Okuchi T, Sato T, Seto Y, Shigemori K, Sueda K, Tange Y, Togashi T, Umeda Y, Yabashi M, Yabuuchi T, Kodama R. Liquid Structure of Tantalum under Internal Negative Pressure. PHYSICAL REVIEW LETTERS 2021; 126:175503. [PMID: 33988455 DOI: 10.1103/physrevlett.126.175503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/09/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
In situ femtosecond x-ray diffraction measurements and ab initio molecular dynamics simulations were performed to study the liquid structure of tantalum shock released from several hundred gigapascals (GPa) on the nanosecond timescale. The results show that the internal negative pressure applied to the liquid tantalum reached -5.6 (0.8) GPa, suggesting the existence of a liquid-gas mixing state due to cavitation. This is the first direct evidence to prove the classical nucleation theory which predicts that liquids with high surface tension can support GPa regime tensile stress.
Collapse
Affiliation(s)
- K Katagiri
- Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
- Institute of Laser Engineering, Osaka University, Osaka 565-0871, Japan
| | - N Ozaki
- Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
- Institute of Laser Engineering, Osaka University, Osaka 565-0871, Japan
| | - S Ohmura
- Research Center for Condensed Matter Physics, Department of Environmental and Civil Engineering, Hiroshima Institute of Technology, Hiroshima 731-5193 Japan
| | - B Albertazzi
- LULI, CNRS, CEA, Ecole Polytechnique, UPMC, Université Paris 06: Sorbonne Universites, Institut Polytechnique de Paris, F-91128 Palaiseau cedex, France
| | - Y Hironaka
- Institute of Laser Engineering, Osaka University, Osaka 565-0871, Japan
- Open and Transdisciplinary Research Initiative, OTRI, Osaka University, Osaka 565-0871, Japan
| | - Y Inubushi
- Japan Synchrotron Radiation Research Institute, Hyogo 679-5198, Japan
- RIKEN SPring-8 Center, Hyogo 679-5148, Japan
| | - K Ishida
- Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - M Koenig
- Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
- LULI, CNRS, CEA, Ecole Polytechnique, UPMC, Université Paris 06: Sorbonne Universites, Institut Polytechnique de Paris, F-91128 Palaiseau cedex, France
| | - K Miyanishi
- RIKEN SPring-8 Center, Hyogo 679-5148, Japan
| | - H Nakamura
- Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - M Nishikino
- Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology, Kyoto 619-0215, Japan
| | - T Okuchi
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka 590-0494, Japan
| | - T Sato
- Graduate School of Science, Hiroshima University, Hiroshima 739-8526, Japan
| | - Y Seto
- Graduate School of Science, Kobe University, Hyogo 657-0013, Japan
| | - K Shigemori
- Institute of Laser Engineering, Osaka University, Osaka 565-0871, Japan
| | - K Sueda
- RIKEN SPring-8 Center, Hyogo 679-5148, Japan
| | - Y Tange
- Japan Synchrotron Radiation Research Institute, Hyogo 679-5198, Japan
| | - T Togashi
- Japan Synchrotron Radiation Research Institute, Hyogo 679-5198, Japan
- RIKEN SPring-8 Center, Hyogo 679-5148, Japan
| | - Y Umeda
- Institute for Planetary Materials, Okayama University, Tottori 682-0193, Japan
| | - M Yabashi
- Japan Synchrotron Radiation Research Institute, Hyogo 679-5198, Japan
- RIKEN SPring-8 Center, Hyogo 679-5148, Japan
| | - T Yabuuchi
- Japan Synchrotron Radiation Research Institute, Hyogo 679-5198, Japan
- RIKEN SPring-8 Center, Hyogo 679-5148, Japan
| | - R Kodama
- Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
- Institute of Laser Engineering, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
10
|
Development of an Experimental Platform for Combinative Use of an XFEL and a High-Power Nanosecond Laser. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10072224] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We developed an experimental platform for combinative use of an X-ray free electron laser (XFEL) and a high-power nanosecond laser. The main target of the platform is an investigation of matter under high-pressure states produced by a laser-shock compression. In this paper, we show details of the experimental platform, including XFEL parameters and the focusing optics, the laser irradiation system and X-ray diagnostics. As a demonstration of the high-power laser-pump XFEL-probe experiment, we performed an X-ray diffraction measurement. An in-situ single-shot X-ray diffraction pattern expands to a large angle side, which shows a corundum was compressed by laser irradiation.
Collapse
|
11
|
Takagi S, Ichiyanagi K, Kyono A, Nozawa S, Kawai N, Fukaya R, Funamori N, Adachi SI. Development of shock-dynamics study with synchrotron-based time-resolved X-ray diffraction using an Nd:glass laser system. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:371-377. [PMID: 32153275 DOI: 10.1107/s1600577519016084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
The combination of high-power laser and synchrotron X-ray pulses allows us to observe material responses under shock compression and release states at the crystal structure on a nanosecond time scale. A higher-power Nd:glass laser system for laser shock experiments was installed as a shock driving source at the NW14A beamline of PF-AR, KEK, Japan. It had a maximum pulse energy of 16 J, a pulse duration of 12 ns and a flat-top intensity profile on the target position. The shock-induced deformation dynamics of polycrystalline aluminium was investigated using synchrotron-based time-resolved X-ray diffraction (XRD) under laser-induced shock. The shock pressure reached up to about 17 GPa with a strain rate of at least 4.6 × 107 s-1 and remained there for nanoseconds. The plastic deformation caused by the shock-wave loading led to crystallite fragmentation. The preferred orientation of the polycrystalline aluminium remained essentially unchanged during the shock compression and release processes in this strain rate. The newly established time-resolved XRD experimental system can provide useful information for understanding the complex dynamic compression and release behaviors.
Collapse
Affiliation(s)
- Sota Takagi
- Division of Earth Evolution Sciences, Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Kouhei Ichiyanagi
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Atsushi Kyono
- Division of Earth Evolution Sciences, Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Shunsuke Nozawa
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Nobuaki Kawai
- Institute of Pulsed Power Science, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
| | - Ryo Fukaya
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Nobumasa Funamori
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Shin Ichi Adachi
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| |
Collapse
|
12
|
Yabuuchi T, Kon A, Inubushi Y, Togahi T, Sueda K, Itoga T, Nakajima K, Habara H, Kodama R, Tomizawa H, Yabashi M. An experimental platform using high-power, high-intensity optical lasers with the hard X-ray free-electron laser at SACLA. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:585-594. [PMID: 30855271 PMCID: PMC6412175 DOI: 10.1107/s1600577519000882] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/17/2019] [Indexed: 05/25/2023]
Abstract
An experimental platform using X-ray free-electron laser (XFEL) pulses with high-intensity optical laser pulses is open for early users' experiments at the SACLA XFEL facility after completion of the commissioning. The combination of the hard XFEL and the high-intensity laser provides capabilities to open new frontiers of laser-based high-energy-density science. During the commissioning phase, characterization of the XFEL and the laser at the platform has been carried out for the combinative utilization as well as the development of instruments and basic diagnostics for user experiments. An overview of the commissioning and the current capabilities of the experimental platform is presented.
Collapse
Affiliation(s)
| | - Akira Kon
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Japan Synchrotoron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Yuichi Inubushi
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Japan Synchrotoron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Tadashi Togahi
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Japan Synchrotoron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Keiichi Sueda
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Toshiro Itoga
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Japan Synchrotoron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Kyo Nakajima
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Hideaki Habara
- Graduate School of Engineering, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Ryosuke Kodama
- Graduate School of Engineering, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
- Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Hiromitsu Tomizawa
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Japan Synchrotoron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Makina Yabashi
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Japan Synchrotoron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| |
Collapse
|
13
|
Tono K, Hara T, Yabashi M, Tanaka H. Multiple-beamline operation of SACLA. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:595-602. [PMID: 30855272 PMCID: PMC6412171 DOI: 10.1107/s1600577519001607] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/28/2019] [Indexed: 05/11/2023]
Abstract
The SPring-8 Ångstrom Compact free-electron LAser (SACLA) began parallel operation of three beamlines (BL1-3) in autumn 2017 to increase the user beam time of the X-ray free-electron laser. The success of the multiple-beamline operation is based on two technological achievements: (i) the fast switching operation of the SACLA main linear accelerator, which provides BL2 and BL3 with pulse-by-pulse electron beams, and (ii) the relocation and upgrade of the SPring-8 Compact SASE Source for BL1, for the generation of a soft X-ray free-electron laser. Moreover, the photon beamlines and experimental stations were upgraded to facilitate concurrent user experiments at the three beamlines and accommodate more advanced experiments.
Collapse
Affiliation(s)
- Kensuke Tono
- XFEL Utilization Division, Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Toru Hara
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Makina Yabashi
- XFEL Utilization Division, Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Hitoshi Tanaka
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| |
Collapse
|
14
|
Chen X, Xue T, Liu D, Yang Q, Luo B, Li M, Li X, Li J. Graphical method for analyzing wide-angle x-ray diffraction. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:013904. [PMID: 29390646 DOI: 10.1063/1.5003452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Wide-angle X-ray diffraction on large-scale laser facility is a well-established experimental method, which is used to study the shock response of single crystal materials by recording X-rays diffracted from numerous lattice planes. We present a three-dimensional graphical method for extracting physical understanding from the raw diffraction data in shocked experiments. This method advances beyond the previous iterative process by turning abstract diffraction theories in shock physics into mathematic issues, providing three-dimensional visualization and quick extraction of data characteristics. The capability and versatility of the method are exhibited by identifying lattice planes for single crystal samples with different orientations and quantitatively measuring the lattice compression and rotation under dynamic loading.
Collapse
Affiliation(s)
- XiaoHui Chen
- National Key Laboratory of Shock Wave and Detonation Physics, Mianyang, 621900 Sichuan, China
| | - Tao Xue
- National Key Laboratory of Shock Wave and Detonation Physics, Mianyang, 621900 Sichuan, China
| | - DongBing Liu
- National Key Laboratory of Shock Wave and Detonation Physics, Mianyang, 621900 Sichuan, China
| | - QingGuo Yang
- National Key Laboratory of Shock Wave and Detonation Physics, Mianyang, 621900 Sichuan, China
| | - BinQiang Luo
- National Key Laboratory of Shock Wave and Detonation Physics, Mianyang, 621900 Sichuan, China
| | - Mu Li
- National Key Laboratory of Shock Wave and Detonation Physics, Mianyang, 621900 Sichuan, China
| | - XiaoYa Li
- National Key Laboratory of Shock Wave and Detonation Physics, Mianyang, 621900 Sichuan, China
| | - Jun Li
- National Key Laboratory of Shock Wave and Detonation Physics, Mianyang, 621900 Sichuan, China
| |
Collapse
|