1
|
Li T, Liu J, Bin FC, Duan Q, Wu XY, Dong XZ, Zheng ML. Multipatterned Chondrocytes' Scaffolds by FL-MOPL with a BSA-GMA Hydrogel to Regulate Chondrocytes' Morphology. ACS APPLIED BIO MATERIALS 2024; 7:2594-2603. [PMID: 38523342 DOI: 10.1021/acsabm.4c00253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Repairing articular cartilage damage is challenging due to its low regenerative capacity. In vitro, cartilage regeneration is a potential strategy for the functional reconstruction of cartilage defects. A hydrogel is an advanced material for mimicking the extracellular matrix (ECM) due to its hydrophilicity and biocompatibility, which is known as an ideal scaffold for cartilage regeneration. However, chondrocyte culture in vitro tends to dedifferentiate, leading to fibrosis and reduced mechanical properties of the newly formed cartilage tissue. Therefore, it is necessary to understand the mechanism of modulating the chondrocytes' morphology. In this study, we synthesize photo-cross-linkable bovine serum albumin-glycidyl methacrylate (BSA-GMA) with 65% methacrylation. The scaffolds are found to be suitable for chondrocyte growth, which are fabricated by homemade femtosecond laser maskless optical projection lithography (FL-MOPL). The large-area chondrocyte scaffolds have holes with interior angles of triangle (T), quadrilateral (Q), pentagon (P), hexagonal (H), and round (R). The FL-MOPL polymerization mechanism, swelling, degradation, and biocompatibility of the BSA-GMA hydrogel have been investigated. Furthermore, cytoskeleton and nucleus staining reveals that the R-scaffold with larger interior angle is more effective in maintaining chondrocyte morphology and preventing dedifferentiation. The scaffold's ability to maintain the chondrocytes' morphology improves as its shape matches that of the chondrocytes. These results suggest that the BSA-GMA scaffold is a suitable candidate for preventing chondrocyte differentiation and supporting cartilage tissue repair and regeneration. The proposed method for chondrocyte in vitro culture by developing biocompatible materials and flexible fabrication techniques would broaden the potential application of chondrocyte transplants as a viable treatment for cartilage-related diseases.
Collapse
Affiliation(s)
- Teng Li
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No.29 Zhongguancun East Road, Beijing 100190, PR China
- School of Future Technologies University of Chinese Academy of Sciences, Yanqihu Campus, Beijing 101407, PR China
| | - Jie Liu
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No.29 Zhongguancun East Road, Beijing 100190, PR China
| | - Fan-Chun Bin
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No.29 Zhongguancun East Road, Beijing 100190, PR China
- School of Future Technologies University of Chinese Academy of Sciences, Yanqihu Campus, Beijing 101407, PR China
| | - Qi Duan
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No.29 Zhongguancun East Road, Beijing 100190, PR China
- School of Future Technologies University of Chinese Academy of Sciences, Yanqihu Campus, Beijing 101407, PR China
| | - Xin-Yi Wu
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No.29 Zhongguancun East Road, Beijing 100190, PR China
- School of Future Technologies University of Chinese Academy of Sciences, Yanqihu Campus, Beijing 101407, PR China
| | - Xian-Zi Dong
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No.29 Zhongguancun East Road, Beijing 100190, PR China
| | - Mei-Ling Zheng
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No.29 Zhongguancun East Road, Beijing 100190, PR China
| |
Collapse
|
2
|
Guo M, Liu XY, Li T, Duan Q, Dong XZ, Liu J, Jin F, Zheng ML. Cross-Scale Topography Achieved by MOPL with Positive Photoresist to Regulate the Cell Behavior. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303572. [PMID: 37592111 DOI: 10.1002/smll.202303572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/24/2023] [Indexed: 08/19/2023]
Abstract
Cross-scale micro-nano structures play an important role in semiconductors, MEMS, chemistry, and cell biology. Positive photoresist is widely used in lithography due to the advantages of high resolution and environmental friendliness. However, cross-scale micro-nano structures of positive photoresist are difficult to flexibly pattern, and the feature resolution is limited by the optical diffraction. Here, cross-scale patterned micro-nano structures are achieved using the positive photoresist based on the femtosecond laser maskless optical projection lithography (MOPL) technique. The dependence between exposure dose and groove width is comprehensively analyzed, and a feature size of 112 nm is obtained at 110 µW. Furthermore, large-area topography considering cell size is efficiently fabricated by the MOPL technique, which enables the regulation of cell behavior. The proposed protocol of achieving cross-scale structures with the exact size by MOPL of positive photoresist would provide new avenues for potential applications in nanoelectronics and tissue engineering.
Collapse
Affiliation(s)
- Min Guo
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Yanqihu Campus, Beijing, 101407, P. R. China
| | - Xiang-Yang Liu
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Yanqihu Campus, Beijing, 101407, P. R. China
| | - Teng Li
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Yanqihu Campus, Beijing, 101407, P. R. China
| | - Qi Duan
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Yanqihu Campus, Beijing, 101407, P. R. China
| | - Xian-Zi Dong
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, P. R. China
| | - Jie Liu
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, P. R. China
| | - Feng Jin
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, P. R. China
| | - Mei-Ling Zheng
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, P. R. China
| |
Collapse
|
3
|
Wang TW, Dong XZ, Jin F, Zhao YY, Liu XY, Zheng ML, Duan XM. Consistent pattern printing of the gap structure in femtosecond laser DMD projection lithography. OPTICS EXPRESS 2022; 30:36791-36801. [PMID: 36258601 DOI: 10.1364/oe.471315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Maskless lithography technologies have been developed and played an important role in the fabrication of functional micronano devices for microelectronics, biochips and photonics. Optical projection lithography based on digital micromirror device (DMD) is an efficient maskless lithography technology that can rapidly fabricate complex structures. The precise modulation of gap width by DMD maskless optical projection lithography (MOPL) using femtosecond laser becomes important for achieving micronano structures. Herein, we have investigated the relationship between the structure morphology and the light intensity distribution at the image plane by multi-slit diffraction model and Abbe imaging principle, and optimized the gap width more accurately by modulating exposure energy. The aperture diameter of the objective lens has a substantial effect on the pattern consistency. The continuously adjustable structural gap widths of 2144 nm, 2158 nm and 1703 nm corresponding to 6, 12, 24 pixels are obtained by varying the exposure energy in the home-built MOPL system. However, the ideal gap structure cannot be obtained only by adjusting the exposure energy when the gap width is small, such as 1 or 2 pixels. Furthermore, we have proposed an alternative way to achieve fine gap structures through the structural decomposition design and precise control of exposure energy in different regions without changing the MOPL optical system. This study would provide a promising protocol for fabricating gap microstructures with controllable configuration using MOPL technique.
Collapse
|
4
|
Sun M, Tian J, Chen Q. The studies on wet chemical etching via in situ liquid cell TEM. Ultramicroscopy 2021; 231:113271. [PMID: 33879369 DOI: 10.1016/j.ultramic.2021.113271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 03/11/2021] [Accepted: 04/02/2021] [Indexed: 12/31/2022]
Abstract
Wet chemical etching is a widely used process to fabricate fascinating nanomaterials, such as nanoparticles with precisely controlled size and shape. Understanding the etching mechanism and kinetic evolution process is crucial for controlling wet chemical etching. The development of in situ liquid cell transmission electron microscopy (LCTEM) enables the study on wet chemical etching with high temporal and spatial resolutions. However, there still lack a detailed literature review on the wet chemical etching studies by in situ LCTEM. In this review, we summarize the studies on wet etching nanoparticles, one-dimensional nanomaterials and nanoribbons by in situ LCTEM, including etching rate, anisotropic etching, morphology evolution process, and etching mechanism. The challenges and opportunities of in situ LCTEM are also discussed.
Collapse
Affiliation(s)
- Mei Sun
- Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871, China; Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Jiamin Tian
- Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871, China
| | - Qing Chen
- Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871, China.
| |
Collapse
|
5
|
Tan SF, Reidy K, Klein J, Pinkowitz A, Wang B, Ross FM. Real-time imaging of nanoscale electrochemical Ni etching under thermal conditions. Chem Sci 2021; 12:5259-5268. [PMID: 34163761 PMCID: PMC8179569 DOI: 10.1039/d0sc06057g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The ability to vary the temperature of an electrochemical cell provides opportunities to control reaction rates and pathways and to drive processes that are inaccessible at ambient temperature. Here, we explore the effect of temperature on electrochemical etching of Ni–Pt bimetallic nanoparticles. To observe the process at nanoscale resolution we use liquid cell transmission electron microscopy with a modified liquid cell that enables simultaneous heating and biasing. By controlling the cell temperature, we demonstrate that the reaction rate and dissolution potential of the electrochemical Ni etching process can be changed. The in situ measurements suggest that the destabilization of the native nickel oxide layer is the slow step prior to subsequent fast Ni removal in the electrochemical Ni dissolution process. These experiments highlight the importance of in situ structural characterization under electrochemical and thermal conditions as a strategy to provide deeper insights into nanomaterial transformations as a function of temperature and potential. The combination of electrochemical analysis, temperature control and in situ TEM imaging directly probes the etching of Ni from bimetallic Ni–Pt nanoparticles.![]()
Collapse
Affiliation(s)
- Shu Fen Tan
- Department of Materials Science and Engineering, Massachusetts Institute of Technology MA 02139 Cambridge USA
| | - Kate Reidy
- Department of Materials Science and Engineering, Massachusetts Institute of Technology MA 02139 Cambridge USA
| | - Julian Klein
- Department of Materials Science and Engineering, Massachusetts Institute of Technology MA 02139 Cambridge USA
| | - Ainsley Pinkowitz
- Department of Materials Science and Engineering, Massachusetts Institute of Technology MA 02139 Cambridge USA
| | - Baoming Wang
- Department of Materials Science and Engineering, Massachusetts Institute of Technology MA 02139 Cambridge USA
| | - Frances M Ross
- Department of Materials Science and Engineering, Massachusetts Institute of Technology MA 02139 Cambridge USA
| |
Collapse
|
6
|
Lami SK, Kaphle AP, Briot NJ, Botman A, Todd Hastings J. Nanoscale focused electron beam induced etching of nickel using a liquid reactant. NANOTECHNOLOGY 2020; 31:425301. [PMID: 32580183 DOI: 10.1088/1361-6528/ab9fb4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nickel nanostructures have found widespread application as both functional components, e.g. in magnetic systems, and as part of the lithographic pattern transfer process as etch masks, EUV mask absorbers, and imprint templates. Electron-beam induced etching of nickel is highly desirable for the repair and editing of masks and templates with high resolution and without substrate damage. However, there are no known gas-phase reactants that produce volatile nickel products under e-beam irradiation. Here we report the successful local etching of nickel by a focused electron beam in an environmental scanning electron microscope using a liquid reactant, aqueous sulfuric acid. Sulfuric acid did not spontaneously etch nickel under ESEM conditions, but nickel was etched in areas exposed to the electron beam. Etching parameters such as dose, refresh time, and addition of a surfactant were investigated. The extent of the etch increases with dose before terminating at sub-micron feature sizes. The etch resolution improves with the addition of surfactant. This approach enables local nickel patterning with complete film removal but without damaging underlying layers. With further refinement, the process may enable nickel absorber repair and editing and remove a significant obstacle to the use of nickel in EUV lithography.
Collapse
Affiliation(s)
- Sarah K Lami
- Department of Electrical and Computer Engineering, University of Kentucky, Lexington, Kentucky 40506, United States of America. AL-Furat AL-Awsat Technical University, Najaf 54003, Iraq
| | | | | | | | | |
Collapse
|
7
|
Pu S, Gong C, Robertson AW. Liquid cell transmission electron microscopy and its applications. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191204. [PMID: 32218950 PMCID: PMC7029903 DOI: 10.1098/rsos.191204] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
Transmission electron microscopy (TEM) has long been an essential tool for understanding the structure of materials. Over the past couple of decades, this venerable technique has undergone a number of revolutions, such as the development of aberration correction for atomic level imaging, the realization of cryogenic TEM for imaging biological specimens, and new instrumentation permitting the observation of dynamic systems in situ. Research in the latter has rapidly accelerated in recent years, based on a silicon-chip architecture that permits a versatile array of experiments to be performed under the high vacuum of the TEM. Of particular interest is using these silicon chips to enclose fluids safely inside the TEM, allowing us to observe liquid dynamics at the nanoscale. In situ imaging of liquid phase reactions under TEM can greatly enhance our understanding of fundamental processes in fields from electrochemistry to cell biology. Here, we review how in situ TEM experiments of liquids can be performed, with a particular focus on microchip-encapsulated liquid cell TEM. We will cover the basics of the technique, and its strengths and weaknesses with respect to related in situ TEM methods for characterizing liquid systems. We will show how this technique has provided unique insights into nanomaterial synthesis and manipulation, battery science and biological cells. A discussion on the main challenges of the technique, and potential means to mitigate and overcome them, will also be presented.
Collapse
|
8
|
Wang ST, Lin Y, Nielsen MH, Song CY, Thomas MR, Spicer CD, Kröger R, Ercius P, Aloni S, Stevens MM. Shape-controlled synthesis and in situ characterisation of anisotropic Au nanomaterials using liquid cell transmission electron microscopy. NANOSCALE 2019; 11:16801-16809. [PMID: 31469380 DOI: 10.1039/c9nr01474h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Understanding the mechanisms behind crystal nucleation and growth is a fundamental requirement for the design and production of bespoke nanomaterials with controlled sizes and morphologies. Herein, we select gold (Au) nanoparticles as the model system for our study due to their representative applications in biology, electronics and optoelectronics. We investigate the radiation-induced in situ growth of gold (Au) particles using liquid cell transmission electron microscopy (LCTEM) and study the growth kinetics of non-spherical Au structures. Under controlled electron fluence, liquid flow rate and Au3+ ion supply, we show the favoured diffusion-limited growth of multi-twinned nascent Au seed particles into branched structures when using thin liquid cells (100 nm and 250 nm) in LCTEM, whereas faceted structures (e.g., spheres, rods, and prisms) formed when using a 1 μm thick liquid cell. In addition, we observed that anisotropic Au growth could be modulated by Au-binding amyloid fibrils, which we ascribe to their capability to regulate Au3+ ion diffusion and mass transfer in solution. We anticipate that this study will provide new perspectives on the shape-controlled synthesis of anisotropic metallic nanomaterials using LCTEM.
Collapse
Affiliation(s)
- Shih-Ting Wang
- Department of Materials, Imperial College London, Exhibition Road, London, SW7 2AZ, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Ambrožič B, Prašnikar A, Hodnik N, Kostevšek N, Likozar B, Rožman KŽ, Šturm S. Controlling the radical-induced redox chemistry inside a liquid-cell TEM. Chem Sci 2019; 10:8735-8743. [PMID: 32133124 PMCID: PMC6991189 DOI: 10.1039/c9sc02227a] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/14/2019] [Indexed: 12/15/2022] Open
Abstract
A holistically described radical-induced redox chemistry modelling allows for a direct assessment of the in situ experiments inside a liquid-cell TEM.
With Liquid-Cell Transmission Electron Microscopy (LCTEM) we can observe the kinetic processes taking place in nanoscale materials that are in a solvated environment. However, the beam-driven solvent radiolysis, which results from the microscope's high-energy electron beam, can dramatically influence the dynamics of the system. Recent research suggests that radical-induced redox chemistry can be used to investigate the various redox-driven dynamics for a wide range of functional nanomaterials. In view of this, the interplay between the formation of various highly reactive radiolysis species and the nanomaterials under investigation needs to be quantified in order to formulate new strategies for nanomaterials research. We have developed a comprehensive radiolysis model by using the electron-dose rate, the temperature of the solvent, the H2 and O2 gas saturation concentrations and the pH values as the key variables. These improved kinetic models make it possible to simulate the material's specific radical-induced redox reactions. As in the case of the Au model system, the kinetic models are presented using Temperature/Dose-rate Redox potential (TDR) diagrams, which indicate the equilibrium [Au0]/[Au+] concentration ratios that are directly related to the temperature-/dose-rate-dependent precipitation or dissolution regions of the Au nanoparticles. Our radiolysis and radical-induced redox models were successfully verified using previously reported data from low-dose experiments with γ radiation and experimentally via TDR-dependent LCTEM. The presented study represents a holistic approach to the radical-induced redox chemistry in LCTEM, including the complex kinetics of the radiolysis species and their influence on the redox chemistry of the materials under investigation, which are represented here by Au nanoparticles.
Collapse
Affiliation(s)
- Bojan Ambrožič
- Jožef Stefan Institute , Department for Nanostructured Materials , Jamova 39 , Ljubljana , Slovenia . .,Jožef Stefan International Postgraduate School , Jamova 39 , Ljubljana , Slovenia
| | - Anže Prašnikar
- National Institute of Chemistry , Department of Catalysis and Chemical Reaction Engineering , Hajdrihova 19 , Ljubljana , Slovenia
| | - Nejc Hodnik
- National Institute of Chemistry , Department of Catalysis and Chemical Reaction Engineering , Hajdrihova 19 , Ljubljana , Slovenia
| | - Nina Kostevšek
- Jožef Stefan Institute , Department for Nanostructured Materials , Jamova 39 , Ljubljana , Slovenia .
| | - Blaž Likozar
- National Institute of Chemistry , Department of Catalysis and Chemical Reaction Engineering , Hajdrihova 19 , Ljubljana , Slovenia
| | - Kristina Žužek Rožman
- Jožef Stefan Institute , Department for Nanostructured Materials , Jamova 39 , Ljubljana , Slovenia .
| | - Sašo Šturm
- Jožef Stefan Institute , Department for Nanostructured Materials , Jamova 39 , Ljubljana , Slovenia .
| |
Collapse
|
10
|
Lami SK, Smith G, Cao E, Hastings JT. The radiation chemistry of focused electron-beam induced etching of copper in liquids. NANOSCALE 2019; 11:11550-11561. [PMID: 31168552 DOI: 10.1039/c9nr01857c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Well-controlled, focused electron-beam induced etching of copper thin films has been successfully conducted on bulk substrates in an environmental scanning electron microscope by controlling liquid-film thickness with an in situ correlative interferometry system. Knowledge of the liquid-film thickness enables a hybrid Monte Carlo/continuum model of the radiation chemistry to accurately predict the copper etch rate using only electron scattering cross-sections, radical yields, and reaction rates from previous studies. Etch rates depended strongly on the thickness of the liquid film and simulations confirmed that this was a result of increased oxidizing radical generation. Etch rates also depended strongly, but non-linearly, on electron beam current, and simulations showed that this effect arises through the dose-rate dependence of reactions of radical species.
Collapse
Affiliation(s)
- Sarah K Lami
- Department of Electrical and Computer Engineering, University of Kentucky, Lexington, Kentucky 40506, USA.
| | | | | | | |
Collapse
|
11
|
Ma H, Jiang Z, Xie X, Huang L, Huang W. Multiplexed Biomolecular Arrays Generated via Parallel Dip-Pen Nanolithography. ACS APPLIED MATERIALS & INTERFACES 2018; 10:25121-25126. [PMID: 29986136 DOI: 10.1021/acsami.8b07369] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The capability of transferring target materials especially functionality-reliable biomolecules, into specific locations and with arbitrarily designed patterns are of critical importance for high-throughput disease diagnosis, multiplexing, and drug screening. Herein, we report the simultaneous patterning of two types of biomolecules using the parallel dip-pen nanolithography technology where an array of the atomic force microscope (AFM) tips can be selectively and alternately coated with target biomolecules via a specially designed inkwell array. Moreover, mixing target biomolecules at a proper volumetric ratio with polyethylene glycol dissolved in PBS buffer solution that works as an ink carrier can not only facilitate the smooth transfer of ink materials from the AFM tip to the substrate, it can also help to adjust the ink diffusion constant of different biomolecules to be highly similar so that the multiplexed biofunctional dot and/or line arrays at similar sizes can be reliably generated.
Collapse
Affiliation(s)
- Hui Ma
- Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University , 30 South Puzhu Road , Nanjing 211816 , China
| | - Zhang Jiang
- Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University , 30 South Puzhu Road , Nanjing 211816 , China
| | - Xiaoji Xie
- Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University , 30 South Puzhu Road , Nanjing 211816 , China
| | - Ling Huang
- Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University , 30 South Puzhu Road , Nanjing 211816 , China
| | - Wei Huang
- Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University , 30 South Puzhu Road , Nanjing 211816 , China
| |
Collapse
|
12
|
Park JH, Schneider NM, Steingart DA, Deligianni H, Kodambaka S, Ross FM. Control of Growth Front Evolution by Bi Additives during ZnAu Electrodeposition. NANO LETTERS 2018; 18:1093-1098. [PMID: 29309157 DOI: 10.1021/acs.nanolett.7b04640] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The performance of many electrochemical energy storage systems can be compromised by the formation of metal dendrites during charging. Additives in the electrolyte represent a useful strategy to mitigate dendrite formation, but understanding the mechanisms involved requires knowledge of the nanoscale effects of additives during electrochemical deposition. Here we quantify the effects of an inorganic additive on the morphology of an evolving electrochemical growth front, using liquid cell electron microscopy to provide the necessary spatial and temporal resolution. We examine deposition of ZnAu on Au in the presence of Bi additive, and show that low concentrations of Bi delay but do not prevent the formation of growth front instabilities. We describe a model in which Bi segregates at the growth front and promotes the surface diffusion and relaxation of Zn, allowing better coverage of the initial Au electrode surface. A more precise knowledge of the mechanism of inorganic additive effects may help in designing electrolyte chemistry for battery and other applications where morphology control is essential.
Collapse
Affiliation(s)
- Jeung Hun Park
- IBM T. J. Watson Research Center , 1101 Kitchawan Road, Yorktown Heights, New York 10598, United States
- Department of Mechanical and Aerospace Engineering, and Andlinger Center for Energy and the Environment, Princeton University , 86 Olden Street, Princeton, New Jersey 08544, United States
- Department of Materials Science and Engineering, University of California Los Angeles , 410 Westwood Plaza, Los Angeles, California 90095, United States
| | - Nicholas M Schneider
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania , 220 South 33rd Street, Philadelphia, Pennsylvania 19147, United States
| | - Daniel A Steingart
- Department of Mechanical and Aerospace Engineering, and Andlinger Center for Energy and the Environment, Princeton University , 86 Olden Street, Princeton, New Jersey 08544, United States
| | - Hariklia Deligianni
- IBM T. J. Watson Research Center , 1101 Kitchawan Road, Yorktown Heights, New York 10598, United States
| | - Suneel Kodambaka
- Department of Materials Science and Engineering, University of California Los Angeles , 410 Westwood Plaza, Los Angeles, California 90095, United States
| | - Frances M Ross
- IBM T. J. Watson Research Center , 1101 Kitchawan Road, Yorktown Heights, New York 10598, United States
| |
Collapse
|