1
|
Oh HS, Kim KJ, Lee J, Kim JB, Ku KH. Unveiling the structural influence of nematic mesogens on customizable temperature and spectral responses. J Colloid Interface Sci 2025; 677:250-258. [PMID: 39146813 DOI: 10.1016/j.jcis.2024.08.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/17/2024]
Abstract
Rapid and accurate detection and visualization of temperature variations near the human body hold significant importance. This study presents thermochromic colloids capable of adjusting the detectable temperature range and reflection wavelength over a wide spectrum. The systematic investigation focuses on understanding the influence of the molecular structure of nematic mesogens on the morphological dynamics of cholesteric liquid crystal droplets and their associated thermochromic behaviors. A tunable colorimetric temperature range (i.e., from 10 to 40 °C) and high sensitivity (i.e., Δλ ΔT-1 > 100nm °C-1) are realized through precise modulation of the alkyl chain lengths in cyanobiphenyls molecules, combined with a cholesteryl oleyl carbonate as a chiral dopant. We demonstrate the efficiency of a binary mixture of different mesogens, enabling customized structural colors with desired temperature responses. Finally, inspired by the ability of the octopus to camouflage through the elongation or contraction of its pigment cells, thermochromic droplets are embedded within a polymer matrix, resulting in a portable skin patch that offers quick, reversible, and direct temperature visualization of the human body.
Collapse
Affiliation(s)
- Hyeong Seok Oh
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Kyeong Jin Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Juyoung Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jong Bin Kim
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Kang Hee Ku
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
2
|
Wang J, Liu S, Fan W, Wang S, Lu C, He Y, Liu F, Hu X. Plasma photonic crystal 'kaleidoscope' with flexible control of topology and electromagnetism. FRONTIERS OF OPTOELECTRONICS 2024; 17:34. [PMID: 39414676 PMCID: PMC11485005 DOI: 10.1007/s12200-024-00137-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/04/2024] [Indexed: 10/18/2024]
Abstract
Continuous development of photonic crystals (PCs) over the last 30 years has carved out many new scientific frontiers. However, creating tunable PCs that enable flexible control of geometric configurations remains a challenge. Here we present a scheme to produce a tunable plasma photonic crystal (PPC) 'kaleidoscope' with rich diversity of structural configurations in dielectric barrier discharge. Multi-freedom control of the PPCs, including the symmetry, dielectric constant, crystal orientation, lattice constant, topological state, and structures of scattering elements, has been realized. Four types of lattice reconfigurations are demonstrated, including transitions from periodic to periodic, disordered to ordered, non-topological to topological, and striped to honeycomb Moiré lattices. Furthermore, alterations in photonic band structures corresponding to the reconstruction of various PPCs have been investigated. Our system presents a promising platform for generating a PPC 'kaleidoscope', offering benefits such as reduced equipment requirements, low cost, rapid response, and enhanced flexibility. This development opens up new opportunities for both fundamental and applied research.
Collapse
Affiliation(s)
- Jing Wang
- College of Physics Science and Technology, Hebei University, Baoding, 071002, China
| | - Shuang Liu
- College of Physics Science and Technology, Hebei University, Baoding, 071002, China
| | - Weili Fan
- College of Physics Science and Technology, Hebei University, Baoding, 071002, China.
| | - Shuo Wang
- College of Physics Science and Technology, Hebei University, Baoding, 071002, China
| | - Cuicui Lu
- School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Yafeng He
- College of Physics Science and Technology, Hebei University, Baoding, 071002, China
| | - Fucheng Liu
- College of Physics Science and Technology, Hebei University, Baoding, 071002, China.
| | - Xiaoyong Hu
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing, 100871, China.
| |
Collapse
|
3
|
Liu M, Yang S. Exploiting Molecular Orders at the Interface of Microdroplets for Intelligent Materials. Acc Chem Res 2024; 57:739-750. [PMID: 38403956 DOI: 10.1021/acs.accounts.3c00761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
ConspectusThe intrinsic molecular order of liquid crystals (LCs) and liquid crystalline elastomers (LCEs) is the origin of their stimuli-responsive properties. The programmable responsiveness and functionality, such as shape morphing and color change under external stimuli, are the key features that attract interest in designing LC- and LCE-based intelligent material platforms. Methods such as mechanical stretching and shearing, surface alignment, and field-assisted alignment have been exploited to program the order of LC molecules for the desired responsiveness. However, the huge size mismatch between the nanometer-sized LC mesogens and the targeted macroscopic objects calls for questions about how to delicately control molecular order for desired performance. Microparticles that can be synthesized with intrinsic molecular order precisely controlled to micrometer size can be used as building blocks for bulk materials, thus offering opportunities to bridge the gap and transcend molecular orders across scales. By taking advantage of the interfacial anchoring effects, we can control and engineer the molecular orders inside the microdroplets, allowing for the realization of various responsive behaviors. Furthermore, designer LC microparticles with multiple responsiveness can be assembled and confined within a matrix, opening a new pathway to engineering LC-enabled intelligent materials.In this Account, we present our recent work on exploiting the molecular order inside microdroplets for the construction of intelligent materials. We briefly introduce the typical chemicals used in the synthesis and the methods developed to control LC molecular alignment within a microdroplets. We then present examples of microparticles synthesized from microdroplets that can transform into complex morphologies upon cooling from the isotropic to nematic phase or due to phase separation within the droplets coupled with the segregation of LC oligomers (LCOs) with polydisperse chain lengths. Furthermore, we show the synthesis of elliptical LCE microparticles and exploit their thermal and magnetic responsiveness to program shape-morphing behaviors and microarrays with switchable optical polarization. By mixing magnetic nanoparticles in cholesteric liquid crystals (CLCs) and silicone oils, we created Janus microparticles capable of color switching for camouflage and information encryption. Moreover, we can engineer complex molecular orders in LCE microparticles by mixing different surfactants, yielding microparticles of diverse anisotropic, temperature-responsive shapes after photopolymerization and extraction of the template LC molecules with different solvents. We conclude the Account with an outlook on the design of intelligent material systems via the design of unprecedented molecular ordering within the microparticles and their coupling with bulk materials.
Collapse
Affiliation(s)
- Mingzhu Liu
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Shu Yang
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
4
|
Titze VM, Caixeiro S, Dinh VS, König M, Rübsam M, Pathak N, Schumacher AL, Germer M, Kukat C, Niessen CM, Schubert M, Gather MC. Hyperspectral confocal imaging for high-throughput readout and analysis of bio-integrated microlasers. Nat Protoc 2024; 19:928-959. [PMID: 38238582 DOI: 10.1038/s41596-023-00924-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 10/03/2023] [Indexed: 03/10/2024]
Abstract
Integrating micro- and nanolasers into live cells, tissue cultures and small animals is an emerging and rapidly evolving technique that offers noninvasive interrogation and labeling with unprecedented information density. The bright and distinct spectra of such lasers make this approach particularly attractive for high-throughput applications requiring single-cell specificity, such as multiplexed cell tracking and intracellular biosensing. The implementation of these applications requires high-resolution, high-speed spectral readout and advanced analysis routines, which leads to unique technical challenges. Here, we present a modular approach consisting of two separate procedures. The first procedure instructs users on how to efficiently integrate different types of lasers into living cells, and the second procedure presents a workflow for obtaining intracellular lasing spectra with high spectral resolution and up to 125-kHz readout rate and starts from the construction of a custom hyperspectral confocal microscope. We provide guidance on running hyperspectral imaging routines for various experimental designs and recommend specific workflows for processing the resulting large data sets along with an open-source Python library of functions covering the analysis pipeline. We illustrate three applications including the rapid, large-volume mapping of absolute refractive index by using polystyrene microbead lasers, the intracellular sensing of cardiac contractility with polystyrene microbead lasers and long-term cell tracking by using semiconductor nanodisk lasers. Our sample preparation and imaging procedures require 2 days, and setting up the hyperspectral confocal microscope for microlaser characterization requires <2 weeks to complete for users with limited experience in optical and software engineering.
Collapse
Affiliation(s)
- Vera M Titze
- Centre of Biophotonics, School of Physics and Astronomy, University of St Andrews, St Andrews, UK.
- Humboldt Centre for Nano- and Biophotonics, University of Cologne, Cologne, Germany.
| | - Soraya Caixeiro
- Humboldt Centre for Nano- and Biophotonics, University of Cologne, Cologne, Germany
| | - Vinh San Dinh
- Centre of Biophotonics, School of Physics and Astronomy, University of St Andrews, St Andrews, UK
- Graduate Program in Applied Physics, Northwestern University, Evanston, Illinois, USA
| | - Matthias König
- Humboldt Centre for Nano- and Biophotonics, University of Cologne, Cologne, Germany
| | - Matthias Rübsam
- Department of Cell Biology of the Skin, University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Disease (CECAD), University of Cologne, Cologne, Germany
| | - Nachiket Pathak
- Humboldt Centre for Nano- and Biophotonics, University of Cologne, Cologne, Germany
| | - Anna-Lena Schumacher
- FACS & Imaging Core Facility, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Maximilian Germer
- FACS & Imaging Core Facility, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Christian Kukat
- FACS & Imaging Core Facility, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Carien M Niessen
- Department of Cell Biology of the Skin, University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Disease (CECAD), University of Cologne, Cologne, Germany
| | - Marcel Schubert
- Centre of Biophotonics, School of Physics and Astronomy, University of St Andrews, St Andrews, UK.
- Humboldt Centre for Nano- and Biophotonics, University of Cologne, Cologne, Germany.
| | - Malte C Gather
- Centre of Biophotonics, School of Physics and Astronomy, University of St Andrews, St Andrews, UK.
- Humboldt Centre for Nano- and Biophotonics, University of Cologne, Cologne, Germany.
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Disease (CECAD), University of Cologne, Cologne, Germany.
| |
Collapse
|
5
|
Zhang YH, Liu SJ, Chen P, Zhu D, Chen W, Ge SJ, Wang Y, Zhang ZF, Lu YQ. Logical rotation of non-separable states via uniformly self-assembled chiral superstructures. Nat Commun 2024; 15:1108. [PMID: 38321000 PMCID: PMC10847456 DOI: 10.1038/s41467-024-45299-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 01/18/2024] [Indexed: 02/08/2024] Open
Abstract
The next generation of high-capacity, multi-task optical informatics requires sophisticated manipulation of multiple degrees of freedom (DoFs) of light, especially when they are coupled in a non-separable way. Vector beam, as a typical non-separable state between the spin and orbital angular momentum DoFs, mathematically akin to entangled qubits, has inspired multifarious theories and applications in both quantum and classical regimes. Although qubit rotation is a vital and ubiquitous operation in quantum informatics, its classical analogue is rarely studied. Here, we demonstrate the logical rotation of vectorial non-separable states via the uniform self-assembled chiral superstructures, with favorable controllability, high compactness and exemption from formidable alignment. Photonic band engineering of such 1D chiral photonic crystal renders the incident-angle-dependent evolution of the spatially-variant polarizations. The logical rotation angle of a non-separable state can be tuned in a wide range over 4π by this single homogeneous device, flexibly providing a set of distinguished logic gates. Potential applications, including angular motion tracking and proof-of-principle logic network, are demonstrated by specific configuration. This work brings important insight into soft matter photonics and present an elegant strategy to harness high-dimensional photonic states.
Collapse
Affiliation(s)
- Yi-Heng Zhang
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, China
| | - Si-Jia Liu
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, China
| | - Peng Chen
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, China.
| | - Dong Zhu
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, China
| | - Wen Chen
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, China
| | - Shi-Jun Ge
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, China
| | - Yu Wang
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, China
| | - Zhi-Feng Zhang
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, China
| | - Yan-Qing Lu
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, China.
| |
Collapse
|
6
|
Qi L, Liu J, Liu S, Liu Y, Xiao Y, Zhang Z, Zhou W, Jiang Y, Fang X. Ultrasensitive Point-of-Care Detection of Protein Markers Using an Aptamer-CRISPR/Cas12a-Regulated Liquid Crystal Sensor (ALICS). Anal Chem 2024; 96:866-875. [PMID: 38164718 DOI: 10.1021/acs.analchem.3c04492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Despite extensive efforts, point-of-care testing (POCT) of protein markers with high sensitivity and specificity and at a low cost remains challenging. In this work, we developed an aptamer-CRISPR/Cas12a-regulated liquid crystal sensor (ALICS), which achieved ultrasensitive protein detection using a smartphone-coupled portable device. Specifically, a DNA probe that contained an aptamer sequence for the protein target and an activation sequence for the Cas12a-crRNA complex was prefixed on a substrate and was released in the presence of target. The activation sequence of the DNA probe then bound to the Cas12a-crRNA complex to activate the collateral cleavage reaction, producing a bright-to-dark optical change in a DNA-functionalized liquid crystal interface. The optical image was captured by a smartphone for quantification of the target concentration. For the two model proteins, SARS-CoV-2 nucleocapsid protein (N protein) and carcino-embryonic antigen (CEA), ALICS achieved detection limits of 0.4 and 20 pg/mL, respectively, which are higher than the typical sensitivity of the SARS-CoV-2 test and the clinical CEA test. In the clinical sample tests, ALICS also exhibited superior performances compared to those of the commercial ELISA and lateral flow test kits. Overall, ALICS represents an ultrasensitive and cost-effective platform for POCT, showing a great potential for pathogen detection and disease monitoring under resource-limited conditions.
Collapse
Affiliation(s)
- Lubin Qi
- Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, PR China
| | - Jie Liu
- Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, PR China
| | - Songlin Liu
- Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, PR China
| | - Yang Liu
- Department of Orthopedics, Second Affiliated Hospital of Shandong First Medical University, Taian 271000, PR China
| | - Yating Xiao
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, PR China
| | - Zhen Zhang
- Beijing National Research Center for Molecular Sciences, Institute of Chemistry, Key Laboratory of Molecular Nanostructure and Nanotechnology, Chinese Academy of Science, Beijing 100190, PR China
| | - Wei Zhou
- Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, PR China
| | - Yifei Jiang
- Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, PR China
| | - Xiaohong Fang
- Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, PR China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, PR China
- Beijing National Research Center for Molecular Sciences, Institute of Chemistry, Key Laboratory of Molecular Nanostructure and Nanotechnology, Chinese Academy of Science, Beijing 100190, PR China
| |
Collapse
|
7
|
Saadaoui L, Yang D, Wang Y, Hassan F, Drevensek-Olenik I, Zhang X, Gan Z, Li Y, Xu J. Electrically Tunable Two-Color Cholesteric Laser. Polymers (Basel) 2023; 15:4656. [PMID: 38139908 PMCID: PMC10747753 DOI: 10.3390/polym15244656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/21/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Two-color lasing emission from an asymmetric structure, consisting of two dye-doped cholesteric liquid crystal (DD-CLC) layers separated by a transparent interlayer, is demonstrated. The DD-CLC mixtures have different reflection bands with long-wavelength band edges located at the green and red wavelengths of the visible spectrum, respectively. For the laser action, the CLC hosts provide the feedback, and the fluorescent laser dyes represent the active medium. When the stacked structure is optically pumped above the threshold, two simultaneous laser lines separated by 123 nm are observed at the long-wavelength band edges of the DD-CLC mixtures. The influence of an electric field on lasing behavior is also analyzed and discussed in terms of the reflection spectrum and laser action. The results show a reversible tuning of the reflection band, accompanied by a modification of the lasing characteristics under the application of an external field. Above a specific threshold voltage, one of the emission lines is suppressed and the other is conserved. With a further increase in the voltage, both laser emissions are entirely inhibited. The investigated structure demonstrates a simple technique to obtain an electrically tunable multi-wavelength laser, which might pave the way for a new generation of organic laser sources.
Collapse
Affiliation(s)
- Lotfi Saadaoui
- The MOE Key Laboratory of Weak-Light Nonlinear Photonics and International Sino-Slovenian Join Research Center on Liquid Crystal Photonics, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin 300457, China; (L.S.); (D.Y.); (Y.W.); (F.H.); (Z.G.); (Y.L.); (J.X.)
- Physics Laboratory of Soft Matter and Electromagnetic Modelling, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia
| | - Donghao Yang
- The MOE Key Laboratory of Weak-Light Nonlinear Photonics and International Sino-Slovenian Join Research Center on Liquid Crystal Photonics, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin 300457, China; (L.S.); (D.Y.); (Y.W.); (F.H.); (Z.G.); (Y.L.); (J.X.)
| | - Yu Wang
- The MOE Key Laboratory of Weak-Light Nonlinear Photonics and International Sino-Slovenian Join Research Center on Liquid Crystal Photonics, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin 300457, China; (L.S.); (D.Y.); (Y.W.); (F.H.); (Z.G.); (Y.L.); (J.X.)
| | - Faheem Hassan
- The MOE Key Laboratory of Weak-Light Nonlinear Photonics and International Sino-Slovenian Join Research Center on Liquid Crystal Photonics, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin 300457, China; (L.S.); (D.Y.); (Y.W.); (F.H.); (Z.G.); (Y.L.); (J.X.)
| | - Irena Drevensek-Olenik
- Faculty of Mathematics and Physics, University of Ljubljana, SI-1000 Ljubljana, Slovenia
- Department of Complex Matter, J. Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Xinzheng Zhang
- The MOE Key Laboratory of Weak-Light Nonlinear Photonics and International Sino-Slovenian Join Research Center on Liquid Crystal Photonics, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin 300457, China; (L.S.); (D.Y.); (Y.W.); (F.H.); (Z.G.); (Y.L.); (J.X.)
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Zenghua Gan
- The MOE Key Laboratory of Weak-Light Nonlinear Photonics and International Sino-Slovenian Join Research Center on Liquid Crystal Photonics, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin 300457, China; (L.S.); (D.Y.); (Y.W.); (F.H.); (Z.G.); (Y.L.); (J.X.)
| | - Yigang Li
- The MOE Key Laboratory of Weak-Light Nonlinear Photonics and International Sino-Slovenian Join Research Center on Liquid Crystal Photonics, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin 300457, China; (L.S.); (D.Y.); (Y.W.); (F.H.); (Z.G.); (Y.L.); (J.X.)
| | - Jingjun Xu
- The MOE Key Laboratory of Weak-Light Nonlinear Photonics and International Sino-Slovenian Join Research Center on Liquid Crystal Photonics, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin 300457, China; (L.S.); (D.Y.); (Y.W.); (F.H.); (Z.G.); (Y.L.); (J.X.)
| |
Collapse
|
8
|
Park S, Lee SS, Yang S, Kim SH. Asymmetric Pairing of Cholesteric Liquid Crystal Droplets for Programmable Photonic Cross-Communication. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303728. [PMID: 37293688 DOI: 10.1002/smll.202303728] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Indexed: 06/10/2023]
Abstract
The photonic cross-communication between photonic droplets has provided complex color patterns through multiple reflections, potentially serving as novel optical codes. However, the cross-communication is mostly restricted to symmetric pairs of identical droplets. Here, a design rule is reported for the asymmetric pairing of two distinct droplets to provide bright color patterns through strong cross-communication and enrich a variety of optical codes. Cholesteric liquid crystal (CLC) droplets with different stopband positions and sizes are paired. The brightness of corresponding color patterns is maximized when the pairs are selected to effectively guide light along the double reflection path by stopbands of two droplets. The experimental results are in good agreement with a geometric model where the blueshift of stopbands is better described by the angles of refraction rather than reflection. The model predicts the effectiveness of pairing quantitatively, which serves as a design rule for programming the asymmetric photonic cross-communication. Moreover, three distinct droplets can be paired in triangular arrays, where all three cross-communication paths yield bright color patterns when three droplets are selected to simultaneously satisfy the rule. It is believed that asymmetric pairing of distinct CLC droplets opens new opportunities for programmable optical encoding in security and anti-counterfeiting applications.
Collapse
Affiliation(s)
- Sihun Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 34141, Daejeon, South Korea
| | - Sang Seok Lee
- Functional Composite Materials Research Center, Institute of Advanced Composite Materials, KIST, 55324, Jeollabuk-do, South Korea
| | - Sehee Yang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 34141, Daejeon, South Korea
| | - Shin-Hyun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 34141, Daejeon, South Korea
| |
Collapse
|
9
|
Liu M, Fu J, Yang S, Wang Y, Jin L, Nah SH, Gao Y, Ning Y, Murray CB, Yang S. Janus Microdroplets with Tunable Self-Recoverable and Switchable Reflective Structural Colors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207985. [PMID: 36341517 DOI: 10.1002/adma.202207985] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Microdroplets made from chiral liquid crystals (CLCs) can display reflective structural colors. However, the small area of reflection and their isotropic shape limit their performance. Here, Janus microdroplets are synthesized through phase separation between CLCs and silicone oil. The as-synthesized Janus microdroplets show primary structural colors with ≈14 times larger area compared to their spherical counterparts at a specific orientation; the orientation and thus the colored/transparent states can be switched by applying a magnetic field. The color of the Janus microdroplets can be tuned ranging from red to violet by varying the concentration of the chiral dopant in the CLC phase. Due to the density difference between the two phases, the Janus microdroplets prefer to orientate the silicone oil side up vertically, enabling the self-recoverable structural color after distortion. The Janus microdroplets can be dispersed in aqueous media to track the configuration and speed of magnetic objects. They can also be patterned as multiplexed labels for data encryption. The magnetic field-responsive Janus CLC microdroplets presented here offer new insights to generate and switch reflective colors with high color saturation. It also paves the way for broader applications of CLCs, including anti-counterfeiting, data encryption, display, and untethered speed sensors.
Collapse
Affiliation(s)
- Mingzhu Liu
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104, USA
| | - Jiemin Fu
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104, USA
| | - Shengsong Yang
- Department of Chemistry, University of Pennsylvania, 231 S 34th St, Philadelphia, PA, 19104, USA
| | - Yuchen Wang
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104, USA
| | - Lishuai Jin
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104, USA
| | - So Hee Nah
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104, USA
| | - Yuchong Gao
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104, USA
| | - Yifan Ning
- Department of Chemistry, University of Pennsylvania, 231 S 34th St, Philadelphia, PA, 19104, USA
| | - Christopher B Murray
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104, USA
- Department of Chemistry, University of Pennsylvania, 231 S 34th St, Philadelphia, PA, 19104, USA
| | - Shu Yang
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104, USA
| |
Collapse
|
10
|
Froyen AAF, Schenning APHJ. A multifunctional structural coloured electronic skin monitoring body motion and temperature. SOFT MATTER 2023; 19:361-365. [PMID: 36625272 PMCID: PMC9846708 DOI: 10.1039/d2sm01503j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Multifunctional e-skins provide information on physiological and environmental parameters. However, the development and fabrication of such devices is challenging. Here, structural coloured electronic skins are presented, which are prepared via scalable methods that can simultaneously monitor the skin temperature and body motion when patched onto the human skin.
Collapse
Affiliation(s)
- Arne A F Froyen
- Stimuli-responsive Functional Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, Eindhoven 5600 MB, The Netherlands
| | - Albert P H J Schenning
- Stimuli-responsive Functional Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, Eindhoven 5600 MB, The Netherlands
- SCNU-TUE Joint Laboratory of Device Integrated Responsive Materials (DIRM), South China Normal University, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| |
Collapse
|
11
|
Qu G, Zhang X, Li S, Lu L, Gao J, Yu B, Wu S, Zhang Q, Hu Z. Liquid crystal random lasers. Phys Chem Chem Phys 2022; 25:48-63. [PMID: 36477742 DOI: 10.1039/d2cp02859j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The enthusiasm for research on liquid crystal random lasers (LCRLs) is driven by their unusual optical properties and promising potential for broad applications in manufacturing, communications, medicine and entertainment. From this perspective, we will summarize the most attractive advances in the development of LCRLs in the last decade and propose future prospects. This article will begin with a fundamental description of LCRLs, including the principle of laser generation and a description of LC substances. Then, we spend several chapters on the lasing performance control methods of LCRLs, including random lasing wavelength, threshold, and polarization properties. In addition, we analyze how the LC chiral agent structures, LC core-shell structures and new light-amplifying materials affect the design of LCRL devices. In the last chapter, we discuss the application of LCRLs in 3D displays, information encryption, biochemical sensing and other optoelectronics devices and finally end the perspective with LCRLs' likely directions in future research.
Collapse
Affiliation(s)
- Guangyin Qu
- Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, Information Materials and Intelligent Sensing Laboratory of Anhui Province, School of Physics and Optoelectronic Engineering, Anhui University, Hefei 230601, China.
| | - Xiaojuan Zhang
- Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, Information Materials and Intelligent Sensing Laboratory of Anhui Province, School of Physics and Optoelectronic Engineering, Anhui University, Hefei 230601, China.
| | - Siqi Li
- Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, Information Materials and Intelligent Sensing Laboratory of Anhui Province, School of Physics and Optoelectronic Engineering, Anhui University, Hefei 230601, China.
| | - Liang Lu
- Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, Information Materials and Intelligent Sensing Laboratory of Anhui Province, School of Physics and Optoelectronic Engineering, Anhui University, Hefei 230601, China.
| | - Jiangang Gao
- Department of Polymeric Materials and Engineering, School of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| | - Benli Yu
- Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, Information Materials and Intelligent Sensing Laboratory of Anhui Province, School of Physics and Optoelectronic Engineering, Anhui University, Hefei 230601, China.
| | - Si Wu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Qijin Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Zhijia Hu
- Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, Information Materials and Intelligent Sensing Laboratory of Anhui Province, School of Physics and Optoelectronic Engineering, Anhui University, Hefei 230601, China.
| |
Collapse
|
12
|
Agha H, Geng Y, Ma X, Avşar DI, Kizhakidathazhath R, Zhang YS, Tourani A, Bavle H, Sanchez-Lopez JL, Voos H, Schwartz M, Lagerwall JPF. Unclonable human-invisible machine vision markers leveraging the omnidirectional chiral Bragg diffraction of cholesteric spherical reflectors. LIGHT, SCIENCE & APPLICATIONS 2022; 11:309. [PMID: 36284089 PMCID: PMC9592545 DOI: 10.1038/s41377-022-01002-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 05/16/2023]
Abstract
The seemingly simple step of molding a cholesteric liquid crystal into spherical shape, yielding a Cholesteric Spherical Reflector (CSR), has profound optical consequences that open a range of opportunities for potentially transformative technologies. The chiral Bragg diffraction resulting from the helical self-assembly of cholesterics becomes omnidirectional in CSRs. This turns them into selective retroreflectors that are exceptionally easy to distinguish-regardless of background-by simple and low-cost machine vision, while at the same time they can be made largely imperceptible to human vision. This allows them to be distributed in human-populated environments, laid out in the form of QR-code-like markers that help robots and Augmented Reality (AR) devices to operate reliably, and to identify items in their surroundings. At the scale of individual CSRs, unpredictable features within each marker turn them into Physical Unclonable Functions (PUFs), of great value for secure authentication. Via the machines reading them, CSR markers can thus act as trustworthy yet unobtrusive links between the physical world (buildings, vehicles, packaging,…) and its digital twin computer representation. This opens opportunities to address pressing challenges in logistics and supply chain management, recycling and the circular economy, sustainable construction of the built environment, and many other fields of individual, societal and commercial importance.
Collapse
Affiliation(s)
- Hakam Agha
- University of Luxembourg, Department of Physics & Materials Science, 1511, Luxembourg, Luxembourg
| | - Yong Geng
- University of Luxembourg, Department of Physics & Materials Science, 1511, Luxembourg, Luxembourg
| | - Xu Ma
- University of Luxembourg, Department of Physics & Materials Science, 1511, Luxembourg, Luxembourg
| | - Deniz Işınsu Avşar
- University of Luxembourg, Department of Physics & Materials Science, 1511, Luxembourg, Luxembourg
| | | | - Yan-Song Zhang
- University of Luxembourg, Department of Physics & Materials Science, 1511, Luxembourg, Luxembourg
| | - Ali Tourani
- University of Luxembourg, Interdisciplinary Centre for Security, Reliability and Trust (SnT), 1855, Luxembourg, Luxembourg
| | - Hriday Bavle
- University of Luxembourg, Interdisciplinary Centre for Security, Reliability and Trust (SnT), 1855, Luxembourg, Luxembourg
| | - Jose-Luis Sanchez-Lopez
- University of Luxembourg, Interdisciplinary Centre for Security, Reliability and Trust (SnT), 1855, Luxembourg, Luxembourg
| | - Holger Voos
- University of Luxembourg, Interdisciplinary Centre for Security, Reliability and Trust (SnT), 1855, Luxembourg, Luxembourg
- University of Luxembourg,University of Luxembourg, Department of Engineering, L-1359, Luxembourg, Luxembourg
| | - Mathew Schwartz
- New Jersey Institute of Technology, College of Architecture and Design, University Heights, Newark, NJ, USA
| | - Jan P F Lagerwall
- University of Luxembourg, Department of Physics & Materials Science, 1511, Luxembourg, Luxembourg.
| |
Collapse
|
13
|
Kim YG, Park S, Kim SH. Designing photonic microparticles with droplet microfluidics. Chem Commun (Camb) 2022; 58:10303-10328. [PMID: 36043863 DOI: 10.1039/d2cc03629k] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Photonic materials with a periodic change of refractive index show unique optical properties through wavelength-selective diffraction and modulation of the optical density of state, which is promising for various optical applications. In particular, photonic structures have been produced in the format of microparticles using emulsion templates to achieve advanced properties and applications beyond those of a conventional film format. Photonic microparticles can be used as a building block to construct macroscopic photonic materials, and the individual microparticles can serve as miniaturized photonic devices. Droplet microfluidics enables the production of emulsion drops with a controlled size, composition, and configuration that serve as the optimal confining geometry for designing photonic microparticles. This feature article reviews the recent progress and current state of the art in the field of photonic microparticles, covering all aspects of microfluidic production methods, microparticle geometries, optical properties, and applications. Two distinct bottom-up approaches based on colloidal assembly and liquid crystals are, respectively, discussed and compared.
Collapse
Affiliation(s)
- Young Geon Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Sihun Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Shin-Hyun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
14
|
Zhang P, de Haan LT, Debije MG, Schenning APHJ. Liquid crystal-based structural color actuators. LIGHT, SCIENCE & APPLICATIONS 2022; 11:248. [PMID: 35931672 PMCID: PMC9356073 DOI: 10.1038/s41377-022-00937-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/25/2022] [Accepted: 07/17/2022] [Indexed: 05/08/2023]
Abstract
Animals can modify their body shape and/or color for protection, camouflage and communication. This adaptability has inspired fabrication of actuators with structural color changes to endow soft robots with additional functionalities. Using liquid crystal-based materials for actuators with structural color changes is a promising approach. In this review, we discuss the current state of liquid crystal-based actuators with structural color changes and the potential applications of these structural color actuators in soft robotic devices.
Collapse
Affiliation(s)
- Pei Zhang
- Stimuli-responsive Functional Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5600 MB, Eindhoven, The Netherlands
| | - Laurens T de Haan
- Stimuli-responsive Functional Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Michael G Debije
- Stimuli-responsive Functional Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5600 MB, Eindhoven, The Netherlands.
| | - Albert P H J Schenning
- Stimuli-responsive Functional Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5600 MB, Eindhoven, The Netherlands.
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
15
|
Kim JW, Han SH, Choi YH, Hamonangan WM, Oh Y, Kim SH. Recent advances in the microfluidic production of functional microcapsules by multiple-emulsion templating. LAB ON A CHIP 2022; 22:2259-2291. [PMID: 35608122 DOI: 10.1039/d2lc00196a] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Multiple-emulsion drops serve as versatile templates to design functional microcapsules due to their core-shell geometry and multiple compartments. Microfluidics has been used for the elaborate production of multiple-emulsion drops with a controlled composition, order, and dimensions, elevating the value of multiple-emulsion templates. Moreover, recent advances in the microfluidic control of the emulsification and parallelization of drop-making junctions significantly enhance the production throughput for practical use. Metastable multiple-emulsion drops are converted into stable microcapsules through the solidification of selected phases, among which solid shells are designed to function in a programmed manner. Functional microcapsules are used for the storage and release of active materials as drug carriers. Beyond their conventional uses, microcapsules can serve as microcompartments responsible for transmembrane communication, which is promising for their application in advanced microreactors, artificial cells, and microsensors. Given that post-processing provides additional control over the composition and construction of multiple-emulsion drops, they are excellent confining geometries to study the self-assembly of colloids and liquid crystals and produce miniaturized photonic devices. This review article presents the recent progress and current state of the art in the microfluidic production of multiple-emulsion drops, functionalization of solid shells, and applications of microcapsules.
Collapse
Affiliation(s)
- Ji-Won Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Sang Hoon Han
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Ye Hun Choi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Wahyu Martumpal Hamonangan
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Yoonjin Oh
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Shin-Hyun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
16
|
Kim JB, Kim JW, Kim M, Kim SH. Dual-Colored Janus Microspheres with Photonic and Plasmonic Faces. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201437. [PMID: 35491521 DOI: 10.1002/smll.202201437] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Photonic and plasmonic colors, stemming from nanostructures of dielectric materials and metals, are promising for pigment-free coloration. In particular, nanostructures with structural colors have been employed in stimuli-responsive Janus microparticles to provide active color pixels. Here, the authors report a simple strategy to produce electro-responsive Janus microspheres composed of photonic and plasmonic faces for active color change. The photonic microspheres are first prepared by self-assembly of silica particles in emulsion droplets of photocurable resin. The silica particles form 3D crystalline arrays in the interior and 2D hexagonal arrays on the interface. The emulsion droplets are photocured and the silica particles are selectively removed to make porous photonic microspheres with hexagonal arrays of dimples on the surface. Directional deposition of gold or aluminum on the photonic microsphere develops plasmonic color on the top hemisphere while maintaining photonic color on the bottom hemisphere. Moreover, the metal deposited on one side renders the Janus microspheres electro-responsive. Therefore, the photonic and plasmonic colors are switchable by the orientation control of the Janus microspheres with an external electric field. The photonic and plasmonic colors are independently adjustable by employing two different sizes of silica particles in core-shell emulsion drops.
Collapse
Affiliation(s)
- Jong Bin Kim
- Department of Chemical and Biomolecular Engineering and KAIST Institute for the NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Ji-Won Kim
- Department of Chemical and Biomolecular Engineering and KAIST Institute for the NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Minjung Kim
- Department of Chemical and Biomolecular Engineering and KAIST Institute for the NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Shin-Hyun Kim
- Department of Chemical and Biomolecular Engineering and KAIST Institute for the NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| |
Collapse
|
17
|
Shi J, Ma C, Ren M, Xu M, Zhu J, Qiu L, Ding Y, Zhang J, Lu H. Stable and tunable single-mode lasers based on cholesteric liquid crystal microdroplets. APPLIED OPTICS 2022; 61:2937-2942. [PMID: 35471268 DOI: 10.1364/ao.456377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Although many studies on cholesteric liquid crystal (CLC) microdroplet single-mode lasers are available, it has been shown that the stability and tunability of such microdroplets are difficult to achieve simultaneously. In this paper, a new, to the best of our knowledge, method is proposed for the mass and rapid preparation of stable and tunable monodisperse CLC microdroplet single-mode lasers. This is based on the formation of polymer networks on the surface of the microdroplet via interfacial polymerization and a disruption of the orderliness of the polymer networks by increasing the temperature during polymerization, which results in a single pitch inside the microdroplets. This approach enables CLC microdroplet single-mode lasers to achieve improved environmental robustness, while maintaining the same temperature tunability as the unpolymerized sample. Our method has promising future applications in integrated optics, flexible devices, and sensors.
Collapse
|
18
|
Yang T, Yuan D, Liu W, Zhang Z, Wang K, You Y, Ye H, de Haan LT, Zhang Z, Zhou G. Thermochromic Cholesteric Liquid Crystal Microcapsules with Cellulose Nanocrystals and a Melamine Resin Hybrid Shell. ACS APPLIED MATERIALS & INTERFACES 2022; 14:4588-4597. [PMID: 35038863 DOI: 10.1021/acsami.1c23101] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Thermochromic coatings that can change their color in response to variations in ambient temperature have various potential applications. Cholesteric liquid crystals (CLCs) are promising thermochromic materials due to their selective light reflection and wide regulation range. However, it remains a challenge to fabricate thermochromic coatings that combine good responsivity, mechanical strength, fabrication feasibility, and flexibility. In this study, CLC microcapsules containing cellulose nanocrystals (CNCs) and a melamine-formaldehyde (MF) resin hybrid shell were fabricated via in situ polymerization using CNC-stabilized Pickering emulsions as templates. The CNCs were employed as both Pickering emulsifiers and alignment agents of CLCs to prepare CLC Pickering emulsions. The CLC microcapsules were mixed with curable binders to obtain coating slurries, and thermochromic coatings were prepared by painting the slurries on substrates and drying. The thermochromic coatings could adjust their color in the visible wavelength range in a temperature range of 12 to 42 °C. Moreover, the obtained thermochromic coatings displayed a relatively high reflectance of up to 30-40% and can even be applied to flexible substrates. The CLC microcapsules with CNCs and an MF hybrid shell are promising in the field of smart decorative paints, anti-counterfeit labels, and artificial skins.
Collapse
Affiliation(s)
- Tingjiao Yang
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Dong Yuan
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Wei Liu
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Zhe Zhang
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Kaiyu Wang
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Yuxin You
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Huapeng Ye
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Laurens T de Haan
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Zhen Zhang
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Guofu Zhou
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
- Shenzhen Guohua Optoelectronics Tech. Co. Ltd., Shenzhen 518110, P. R. China
| |
Collapse
|
19
|
Allahyarli K, Reithofer MR, Cheng F, Young AJ, Kiss E, Tan TTY, Prado-Roller A, Chin JM. Metal-Organic Framework superstructures with long-ranged orientational order via E-field assisted liquid crystal assembly. J Colloid Interface Sci 2021; 610:1027-1034. [PMID: 34920862 DOI: 10.1016/j.jcis.2021.11.151] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/15/2021] [Accepted: 11/24/2021] [Indexed: 10/19/2022]
Abstract
Most MOFs are non-cubic, with functionality dependent upon crystallographic direction, and are largely prepared as microcrystalline powders. Therefore, general methods to orient and assemble free-standing MOF crystals are especially important and urgently needed. This is addressed here through the novel strategy of E-field assisted liquid crystal assembly, applied to MIL-53-NH2(Al), MIL-68(In) and NU-1000 MOF crystals, with aspect ratios ranging from 10 to 1.2, to form highly oriented MOF superstructures which were photopolymerized to fix their long-ranged order. This new strategy for controlling MOF orientation and packing side-steps the traditional requirements of particle monodispersity, shape homogeneity and high aspect ratios (>4.7) typical of colloidal and liquid crystal assembly, and is applicable even to polydispersed MOF crystals, thereby paving the way towards the development of highly oriented MOF composites with improved functionality.
Collapse
Affiliation(s)
- Kamal Allahyarli
- Faculty of Chemistry, Institute of Physical Chemistry, University of Vienna, Währingerstr. 42, Vienna A-1090, Austria
| | - Michael R Reithofer
- Faculty of Chemistry, Department of Inorganic Chemistry, University of Vienna, Währingerstr. 42, Vienna A-1090, Austria
| | - Fei Cheng
- Department of Chemistry, University of Hull, HU6 7RX, United Kingdom
| | - Adam J Young
- Faculty of Chemistry, Department of Inorganic Chemistry, University of Vienna, Währingerstr. 42, Vienna A-1090, Austria
| | - Endre Kiss
- Faculty of Chemistry, Core Facility Multimodal Imaging, University of Vienna, Währingerstr. 38-42, Vienna A-1090, Austria
| | - Tristan Tsai Yuan Tan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, 138634, Singapore
| | - Alexander Prado-Roller
- Faculty of Chemistry, Department of Inorganic Chemistry - Functional Materials, University of Vienna, Währingerstr. 42, Vienna A-1090, Austria
| | - Jia Min Chin
- Faculty of Chemistry, Institute of Physical Chemistry, University of Vienna, Währingerstr. 42, Vienna A-1090, Austria.
| |
Collapse
|
20
|
Wang H, Cai L, Zhang D, Shang L, Zhao Y. Responsive Janus Structural Color Hydrogel Micromotors for Label-Free Multiplex Assays. RESEARCH (WASHINGTON, D.C.) 2021; 2021:9829068. [PMID: 34888526 PMCID: PMC8628110 DOI: 10.34133/2021/9829068] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/17/2021] [Indexed: 12/12/2022]
Abstract
Micromotors with self-propelling ability demonstrate great values in highly sensitive analysis. Developing novel micromotors to achieve label-free multiplex assay is particularly intriguing in terms of detection efficiency. Herein, structural color micromotors (SCMs) were developed and employed for this purpose. The SCMs were derived from phase separation of droplet templates and exhibited a Janus structure with two distinct sections, including one with structural colors and the other providing catalytic self-propelling functions. Besides, the SCMs were functionalized with ion-responsive aptamers, through which the interaction between the ions and aptamers resulted in the shift of the intrinsic color of the SCMs. It was demonstrated that the SCMs could realize multiplex label-free detection of ions based on their optical coding capacity and responsive behaviors. Moreover, the detection sensitivity was greatly improved benefiting from the autonomous motion of the SCMs which enhanced the ion-aptamer interactions. We anticipate that the SCMs can significantly promote the development of multiplex assay and biomedical fields.
Collapse
Affiliation(s)
- Huan Wang
- Department of Clinical Laboratory, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210002, China
- The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518033, China
| | - Lijun Cai
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Dagan Zhang
- Department of Clinical Laboratory, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210002, China
| | - Luoran Shang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and The Shanghai Key Laboratory of Medical Epigenetics, The International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yuanjin Zhao
- Department of Clinical Laboratory, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210002, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| |
Collapse
|
21
|
Sadati M, Martinez-Gonzalez JA, Cohen A, Norouzi S, Guzmán O, de Pablo JJ. Control of Monodomain Polymer-Stabilized Cuboidal Nanocrystals of Chiral Nematics by Confinement. ACS NANO 2021; 15:15972-15981. [PMID: 34597503 DOI: 10.1021/acsnano.1c04231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Liquid crystals are important components of optical technologies. Cuboidal crystals consisting of chiral liquid crystals-the so-called blue phases (BPs), are of particular interest due to their crystalline structures and fast response times, but it is critical that control be gained over their phase behavior as well as the underlying dislocations and grain boundaries that arise in such systems. Blue phases exhibit cubic crystalline symmetries with lattice parameters in the 100 nm range and a network of disclination lines that can be polymerized to widen the range of temperatures over which they occur. Here, we introduce the concept of strain-controlled polymerization of BPs under confinement, which enables formation of strain-correlated stabilized morphologies that, under some circumstances, can adopt perfect single-crystal monodomain structures and undergo reversible crystal-to-crystal transformations, even if their disclination lines are polymerized. We have used super-resolution laser confocal microscopy to reveal the periodic structure and the lattice planes of the strain and polymerization stabilized BPs in 3D real space. Our experimental observations are supported and interpreted by relying on theory and computational simulations in terms of a free energy functional for a tensorial order parameter. Simulations are used to determine the orientation of the lattice planes unambiguously. The findings presented here offer opportunities for engineering optical devices based on single-crystal, polymer-stabilized BPs whose inherent liquid nature, fast dynamics, and long-range crystalline order can be fully exploited.
Collapse
Affiliation(s)
- Monirosadat Sadati
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Department of Chemical Engineering, Swearingen Engineering Center, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Jose A Martinez-Gonzalez
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Av. Parque Chapultepec 1570, San Luis Potosí 78295, SLP, Mexico
| | - Alexander Cohen
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Sepideh Norouzi
- Department of Chemical Engineering, Swearingen Engineering Center, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Orlando Guzmán
- Departamento de Física, Universidad Autonóma Metropolitana, Av. San Rafael Atlixco 186, Ciudad de México 09340, Mexico
| | - Juan J de Pablo
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Argonne National Laboratory, 9700 Cass Avenue Lemont, Illinois 60439, United States
| |
Collapse
|
22
|
Lu H, Shi J, Wang Q, Xue Y, Yang L, Xu M, Zhu J, Qiu L, Ding Y, Zhang J. Tunable multi-mode laser based on robust cholesteric liquid crystal microdroplet. OPTICS LETTERS 2021; 46:5067-5070. [PMID: 34598270 DOI: 10.1364/ol.436064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
To date, various studies have been dedicated to the development of cholesteric liquid crystal (CLC) microdroplet omnidirectional lasers. In this work, a stable and tunable multi-mode laser emission is achieved by designing a dye-doping CLC microdroplet. In such a structure, the polymer network only exists on the surface, maintaining stability while providing tunability, and due to the uneven distribution of the pitch, it leads to multi-mode laser emission. A large number of microdroplets are produced quickly via a new method based on ultrasonic separation. During the reaction, we introduce interfacial polymerization where monomers and photoinitiator are respectively distributed inside and outside the microdroplets through mutual diffusion, which enables one to make the polymer network exist on the surface instead of the interior. The obtained microdroplet-based multi-mode laser is shown to possess stability and tunability, demonstrating a great potential for flexible devices and 3D displays.
Collapse
|
23
|
Jiang SA, Wang CH, Zhang YS, Mo TS, Huang SY, Hsieh XL, Wong YJ, Lin JD, Lee CR. Control of Large-Area Orderliness of a 2D Supramolecular Chiral Microstructure by a 1D Interference Field. ACS APPLIED MATERIALS & INTERFACES 2021; 13:44916-44924. [PMID: 34514781 DOI: 10.1021/acsami.1c12575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Self-organized periodic micro/nanostructures caused by stimulus-responsive structural deformation often occur in anisotropic self-assembled supramolecular systems (e.g., liquid crystal systems). However, the long-range orderliness of these structures is often beyond control. In this article, we first demonstrate that a large-area disordered two-dimensional (2D) microgrid chiral structure appears in the cholesteric liquid crystal (CLC) reactive mixture because of the photopolymerization-induced Helfrich deformation effect under exposure to the single UV-laser beam. The result is attributed to the impact of an internal longitudinal strain, which is caused by the pitch contraction of the CLC-monomer region through the continuing compression of the thickening CLC polymer layer adhered on the illuminated substrate of the sample during photopolymerization. The experimental results further show that a one-dimensional (1D) UV-laser interference field can be used to effectively control the postformed 2D microgrid structure to arrange in an orderly manner throughout the large exposed area (an order of centimeter). The optimum ability for controlling the orderliness of the microgrid structure can be achieved if the spacing width of the interference field approximates the periodicity of the postformed 2D microgrids. Several factors, such as the pitch of the CLC mixture and the included angle and intensity of the two interfering laser beams, which influence the orderliness and properties of the 2D microgrid structure, are explored in this study. The result of this research opens a new page to improve the applicability of the Helfrich deformation phenomenon and further provides a reference platform for manipulating, modifying, and even tailoring periodic micro/nanostructures in self-organized supramolecular soft-matter systems for application in advanced optics/photonics.
Collapse
Affiliation(s)
- Shun-An Jiang
- Department of Photonics, National Cheng Kung University, Tainan 701401, Taiwan
| | - Chien-Hsiang Wang
- Department of Photonics, National Cheng Kung University, Tainan 701401, Taiwan
| | - Yan-Song Zhang
- Department of Photonics, National Cheng Kung University, Tainan 701401, Taiwan
| | - Ting-Shan Mo
- Department of Materials Engineering, Kun Shan University of Technology, Tainan 710303, Taiwan
| | - Shuan-Yu Huang
- Department of Optometry, Chung Shan Medical University, Taichung 402367, Taiwan
- Department of Ophthalmology, Chung Shan Medical University Hospital, Taichung 402367, Taiwan
| | - Xiang-Lin Hsieh
- Department of Photonics, National Cheng Kung University, Tainan 701401, Taiwan
| | - Yu-Jun Wong
- Department of Photonics, National Cheng Kung University, Tainan 701401, Taiwan
| | - Jia-De Lin
- Department of Opto-Electronic Engineering, National Dong Hwa University, Hualien 974301, Taiwan
| | - Chia-Rong Lee
- Department of Photonics, National Cheng Kung University, Tainan 701401, Taiwan
| |
Collapse
|
24
|
Zhan X, Xu FF, Zhou Z, Yan Y, Yao J, Zhao YS. 3D Laser Displays Based on Circularly Polarized Lasing from Cholesteric Liquid Crystal Arrays. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104418. [PMID: 34337797 DOI: 10.1002/adma.202104418] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/12/2021] [Indexed: 05/27/2023]
Abstract
3D laser displays play an important role in next-generation display technologies owing to the ultimate visual experience they provide. Circularly polarized (CP) laser emissions, featuring optical rotatory power and invariability under rotations, are attractive for 3D displays due to potential in enhancing contrast ratio and comfortability. However, the lack of pixelated self-emissive CP microlaser arrays as display panels hinders the implementation of 3D laser displays. Here, full-color 3D laser displays are demonstrated based on CP lasing with inkjet-printed cholesteric liquid crystal (CLC) arrays as display panels. Individual CP lasers are realized by embedding fluorescent dyes into CLCs with their left-/right-handed helical superstructures serving as distributed feedback microcavities, bringing in ultrahigh circular polarization degree values (gem = 1.6). These CP microlaser pixels exhibit excellent far-field color-rendering features and a relatively large color gamut for high-fidelity displays. With these printed CLC red-green-blue (RGB) microlaser arrays serving as display panels, proof-of-concept full-color 3D laser displays are demonstrated via delivering images with orthogonal CP laser emissions into one's left and right eyes. These results provide valuable enlightenment for the development of 3D laser displays.
Collapse
Affiliation(s)
- Xiuqin Zhan
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fa-Feng Xu
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhonghao Zhou
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yongli Yan
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiannian Yao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Sheng Zhao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
25
|
Ma LL, Liu C, Wu SB, Chen P, Chen QM, Qian JX, Ge SJ, Wu YH, Hu W, Lu YQ. Programmable self-propelling actuators enabled by a dynamic helical medium. SCIENCE ADVANCES 2021; 7:7/32/eabh3505. [PMID: 34362740 PMCID: PMC8346214 DOI: 10.1126/sciadv.abh3505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/17/2021] [Indexed: 05/05/2023]
Abstract
Rotation-translation conversion is a popular way to achieve power transmission in machinery, but it is rarely selected by nature. One unique case is that of bacteria swimming, which is based on the collective reorganization and rotation of flagella. Here, we mimic such motion using the light-driven evolution of a self-organized periodic arch pattern. The range and direction of translation are altered by separately varying the alignment period and the stimulating photon energy. Programmable self-propelling actuators are realized via a specific molecular assembly within a photoresponsive cholesteric medium. Through rationally presetting alignments, parallel transports of microspheres in customized trajectories are demonstrated, including convergence, divergence, gathering, and orbital revolution. This work extends the understanding of the rotation-translation conversion performed in an exquisitely self-organized system and may inspire future designs for functional materials and intelligent robotics.
Collapse
Affiliation(s)
- Ling-Ling Ma
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Chao Liu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Sai-Bo Wu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Peng Chen
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Quan-Ming Chen
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Jia-Xin Qian
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Shi-Jun Ge
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Yuan-Hang Wu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Wei Hu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China.
| | - Yan-Qing Lu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
26
|
Wang C, Gong C, Zhang Y, Qiao Z, Yuan Z, Gong Y, Chang GE, Tu WC, Chen YC. Programmable Rainbow-Colored Optofluidic Fiber Laser Encoded with Topologically Structured Chiral Droplets. ACS NANO 2021; 15:11126-11136. [PMID: 34137585 DOI: 10.1021/acsnano.1c02650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Optofluidic lasers are emerging building blocks with immense potential in the development of miniaturized light sources, integrated photonics, and sensors. The capability of on-demand lasing output with programmable and continuous wavelength tunability over a broad spectral range enables key functionalities in wavelength-division multiplexing and manipulation of light-matter interactions. However, the ability to control multicolor lasing characteristics within a small mode volume with high reconfigurability remains challenging. The color gamut is also restricted by the number of dyes and emission wavelength of existing materials. In this study, we introduce a fully programmable multicolor laser by encapsulating organic-dye-doped cholesteric liquid crystal microdroplet lasers in an optofluidic fiber. A mechanism for tuning laser emission wavelengths was proposed by manipulating the topologically induced nanoshell structures in microdroplets with different chiral dopant concentrations. Precision control of distinctive lasing wavelengths and colors covering the entire visible spectra was achieved, including monochromatic lasing, dual-color lasing, tri-color lasing, and white colored lasing with tunable color temperatures. Our findings revealed a CIE color map with 145% more perceptible colors than the standard RGB space, shedding light on the development of programmable lasers, multiplexed encoding, and biomedical detection.
Collapse
Affiliation(s)
- Chenlu Wang
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Chaoyang Gong
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Yifan Zhang
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Zhen Qiao
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Zhiyi Yuan
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Yuan Gong
- Key Laboratory of Optical Fiber Sensing and Communications, University of Electronic Science and Technology of China, 611731, Chengdu, Sichuan, China
| | - Guo-En Chang
- Department of Mechanical Engineering, and Advanced Institute of Manufacturing with High-Tech Innovations, National Chung Cheng University, Chiayi 62102, Taiwan
| | - Wei-Chen Tu
- Department of Electrical Engineering, National Cheng Kung University, Tainan City, 70101, Taiwan
| | - Yu-Cheng Chen
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| |
Collapse
|
27
|
Zhang C, Dong H, Zhang C, Fan Y, Yao J, Zhao YS. Photonic skins based on flexible organic microlaser arrays. SCIENCE ADVANCES 2021; 7:7/31/eabh3530. [PMID: 34330710 PMCID: PMC8324057 DOI: 10.1126/sciadv.abh3530] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/15/2021] [Indexed: 05/18/2023]
Abstract
Flexible photonics is rapidly emerging as a promising platform for artificial smart skins to imitate or extend the capabilities of human skins. Organic material systems provide a promising avenue to directly fabricate large-scale flexible device units; however, the versatile fabrication of all-organic integrated devices with desired photonic functionalities remains a great challenge. Here, we develop an effective technique for the mass processing of organic microlaser arrays, which act as sensing units, on the chip of photonic skins. With a bilayer electron-beam direct writing method, we fabricated flexible mechanical sensor networks composed of coupled-cavity single-mode laser sources on pliable polymer substrates. These microlaser-based mechanical sensor chips were subsequently used to recognize hand gestures, showing great potential for artificial skin applications. This work represents a substantial advance toward scalable construction of high-performance and low-cost flexible photonic chips, thus paving the way for the implementation of smart photonic skins into practical applications.
Collapse
Affiliation(s)
- Chunhuan Zhang
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Haiyun Dong
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chuang Zhang
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuqing Fan
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiannian Yao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yong Sheng Zhao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
28
|
Chen HQ, Wang XY, Bisoyi HK, Chen LJ, Li Q. Liquid Crystals in Curved Confined Geometries: Microfluidics Bring New Capabilities for Photonic Applications and Beyond. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:3789-3807. [PMID: 33775094 DOI: 10.1021/acs.langmuir.1c00256] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The quest for interesting properties and phenomena in liquid crystals toward their employment in nondisplay application is an intense and vibrant endeavor. Remarkable progress has recently been achieved with regard to liquid crystals in curved confined geometries, typically represented as enclosed spherical geometries and cylindrical geometries with an infinitely extended axial-symmetrical space. Liquid-crystal emulsion droplets and fibers are intriguing examples from these fields and have attracted considerable attention. It is especially noteworthy that the rapid development of microfluidics brings about new capabilities to generate complex soft microstructures composed of both thermotropic and lyotropic liquid crystals. This review attempts to outline the recent developments related to the liquid crystals in curved confined geometries by focusing on microfluidics-mediated approaches. We highlight a wealth of novel photonic applications and beyond and also offer perspectives on the challenges, opportunities, and new directions for future development in this emerging research area.
Collapse
Affiliation(s)
- Han-Qing Chen
- Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen, Fujian Province 361005, China
| | - Xi-Yuan Wang
- Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen, Fujian Province 361005, China
| | - Hari Krishna Bisoyi
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, Ohio 44242, United States
| | - Lu-Jian Chen
- Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen, Fujian Province 361005, China
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu Province 211189, China
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, Ohio 44242, United States
| |
Collapse
|
29
|
Franklin D, Ueltschi T, Carlini A, Yao S, Reeder J, Richards B, Van Duyne RP, Rogers JA. Bioresorbable Microdroplet Lasers as Injectable Systems for Transient Thermal Sensing and Modulation. ACS NANO 2021; 15:2327-2339. [PMID: 33439017 DOI: 10.1021/acsnano.0c10234] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Minimally invasive methods for temperature sensing and thermal modulation in living tissues have extensive applications in biological research and clinical care. As alternatives to bioelectronic devices for this purpose, functional nanomaterials that self-assemble into optically active microstructures offer important features in remote sensing, injectability, and compact size. This paper introduces a transient, or bioresorbable, system based on injectable slurries of well-defined microparticles that serve as photopumped lasers with temperature-sensitive emission wavelengths (>4-300 nm °C-1). The resulting platforms can act as tissue-embedded thermal sensors and, simultaneously, as distributed vehicles for thermal modulation. Each particle consists of a spherical resonator formed by self-organized cholesteric liquid crystal molecules doped with fluorophores as gain media, encapsulated in thin shells of soft hydrogels that offer adjustable rates of bioresorption through chemical modification. Detailed studies highlight fundamental aspects of these systems including particle sensitivity, lasing threshold, and size. Additional experiments explore functionality as photothermal agents with active temperature feedback (ΔT = 1 °C) and potential routes in remote evaluation of thermal transport properties. Cytotoxicity evaluations support their biocompatibility, and ex vivo demonstrations in Casper fish illustrate their ability to measure temperature within biological tissues with resolution of 0.01 °C. This collective set of results demonstrates a range of multifunctional capabilities in thermal sensing and modulation.
Collapse
Affiliation(s)
- Daniel Franklin
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Querrey-Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
| | - Tyler Ueltschi
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Andrea Carlini
- Querrey-Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
| | - Shenglian Yao
- Querrey-Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
| | - Jonathan Reeder
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Querrey-Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
| | - Benjamin Richards
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Richard P Van Duyne
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - John A Rogers
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Querrey-Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Neurological Surgery, Northwestern University, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
30
|
Qin L, Liu X, He K, Yu G, Yuan H, Xu M, Li F, Yu Y. Geminate labels programmed by two-tone microdroplets combining structural and fluorescent color. Nat Commun 2021; 12:699. [PMID: 33514695 PMCID: PMC7846849 DOI: 10.1038/s41467-021-20908-y] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/23/2020] [Indexed: 12/15/2022] Open
Abstract
Creating a security label that carries entirely distinct information in reflective and fluorescent states would enhance anti-counterfeiting levels to deter counterfeits ranging from currencies to pharmaceuticals, but has proven extremely challenging. Efforts to tune the reflection color of luminescent materials by modifying inherent chemical structures remain outweighed by substantial trade-offs in fluorescence properties, and vice versa, which destroys the information integrity of labels in either reflection or fluorescent color. Here, a strategy is reported to design geminate labels by programming fluorescent cholesteric liquid crystal microdroplets (two-tone inks), where the luminescent material is 'coated' with the structural color from helical superstructures. These structurally defined microdroplets fabricated by a capillary microfluidic technique contribute to different but intact messages of both reflective and fluorescent patterns in the geminate labels. Such two-tone inks have enormous potential to provide a platform for encryption and protection of valuable authentic information in anti-counterfeiting technology.
Collapse
Affiliation(s)
- Lang Qin
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Xiaojun Liu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Kunyun He
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Guodong Yu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Hang Yuan
- Department of Chemistry and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Ming Xu
- Department of Chemistry and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Fuyou Li
- Department of Chemistry and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Yanlei Yu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China.
| |
Collapse
|
31
|
Yuan Z, Tan X, Gong X, Gong C, Cheng X, Feng S, Fan X, Chen YC. Bioresponsive microlasers with tunable lasing wavelength. NANOSCALE 2021; 13:1608-1615. [PMID: 33439198 DOI: 10.1039/d0nr07921a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Lasing particles are emerging tools for amplifying light-matter interactions at the biointerface by exploiting its strong intensity and miniaturized size. Recent advances in implementing laser particles into living cells and tissues have opened a new frontier in biological imaging, monitoring, and tracking. Despite remarkable progress in micro- and nanolasers, lasing particles with surface functionality remain challenging due to the low mode-volume while maintaining a high Q-factor. Herein, we report the novel concept of bioresponsive microlasers by exploiting interfacial energy transfer based on whispering-gallery-mode (WGM) microdroplet cavities. Lasing wavelengths were manipulated by energy transfer-induced changes of a gain spectrum resulting from the binding molecular concentrations at the cavity surface. Both protein-based and enzymatic-based interactions were demonstrated, shedding light on the development of functional microlasers. Finally, tunable lasing wavelengths over a broad spectral range were achieved by selecting different donor/acceptor pairs. This study not only opens new avenues for biodetection, but also provides deep insights into how molecules modulate laser light at the biointerface, laying the foundation for the development of smart bio-photonic devices at the molecular level.
Collapse
Affiliation(s)
- Zhiyi Yuan
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Patel M, Radhakrishnan ANP, Bescher L, Hunter-Sellars E, Schmidt-Hansberg B, Amstad E, Ibsen S, Guldin S. Temperature-induced liquid crystal microdroplet formation in a partially miscible liquid mixture. SOFT MATTER 2021; 17:947-954. [PMID: 33284300 DOI: 10.1039/d0sm01742f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Liquid-in-liquid droplets are typically generated by the partitioning of immiscible fluids, e.g. by mechanical shearing with macroscopic homogenisers or microfluidic flow focussing. In contrast, partially miscible liquids with a critical solution temperature display a temperature-dependent mixing behaviour. In this work, we demonstrate how, for a blend of methanol (MeOH) and the thermotropic liquid crystal (LC) 4-Cyano-4'-pentylbiphenyl (5CB), cooling from a miscible to an immiscible state allows the controlled formation of microdroplets. A near-room-temperature-induced phase separation leads to nucleation, growth and coalescence of mesogen-rich droplets. The size and number of the droplets is tunable on the microscopic scale by variation of temperature quench depth and cooling rate. Further cooling induces a phase transition to nematic droplets with radial configuration, well-defined sizes and stability over the course of an hour. This temperature-induced approach offers a scalable and reversible alternative to droplet formation with relevance in diagnostics, optoelectronics, materials templating and extraction processes.
Collapse
Affiliation(s)
- Mehzabin Patel
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Liu Y, Wu P. Chirally Reversed Graphene Oxide Liquid Crystals. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001269. [PMID: 32832370 PMCID: PMC7435251 DOI: 10.1002/advs.202001269] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/26/2020] [Indexed: 05/23/2023]
Abstract
Colloidal liquid crystals (LCs) formed by nanoparticles hold great promise for creating new structures and topologies. However, achieving highly ordered hierarchical architectures and stable topological configurations is extremely challenging, mainly due to the liquid-like fluidity of colloidal LCs in nature. Herein, an innovative synchronous nanofluidic rectification (SNR) technique for generating ultralong graphene oxide (GO) liquid crystal (GOLC) fibers with hierarchical core-skin architectures is presented, in which the GO sheet assemblies and hydrogel skin formation are synchronous. The SNR technique conceptually follows two design principles: horizontal polymer-flow promotes the rapid planar alignment of GO sheets and drives the chiral-reversing of cholesteric GOLCs, and in situ formed hydrogel skin affords some protection against environmental impact to maintain stable topological configurations. Importantly, the dried fibers retain the smooth surface and ordered internal structures, achieving high mechanical strength and flexibility. The linear and circular polarization potential of GOLC fibers are demonstrated for optical sensing and recognition. This work may open an avenue toward the scalable manufacture of uniform and robust, yet highly anisotropic, fiber-shaped functional materials with complex internal architectures.
Collapse
Affiliation(s)
- Yanjun Liu
- State Key Laboratory of Macromolecular Engineering of PolymersDepartment of Macromolecular ScienceFudan UniversityShanghai200433China
| | - Peiyi Wu
- State Key Laboratory of Macromolecular Engineering of PolymersDepartment of Macromolecular ScienceFudan UniversityShanghai200433China
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Chemistry, Chemical Engineering and Biotechnology & Center for Advanced Low‐dimension MaterialsDonghua University2999 North Renmin RoadShanghai201620China
| |
Collapse
|
34
|
Sheng M, Zhang L, West JL, Fu S. Multicolor Electrochromic Dye-Doped Liquid Crystal Yolk-Shell Microcapsules. ACS APPLIED MATERIALS & INTERFACES 2020; 12:29728-29736. [PMID: 32508082 DOI: 10.1021/acsami.0c09354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A new system of yolk-shell microcapsules containing two types of dye-doped liquid crystals was prepared via seed emulsion polymerization in which the synthetic process was mimicking plant respiration. The resulting system demonstrated reversible low voltage-driven switching between multispectral colored and transparent states. Moreover, wearable multicolor electrochromic fibers based on calcium alginate were produced via wet spinning to expand the application of yolk-shell dye-doped liquid crystal microcapsules. In addition to its long-term optical stability, the proposed cells and fibers also have satisfactory driving voltage values of color change (4.8 and 9.0 V), which are far lower than the human body safety voltage (12 V). We believe that the prepared microcapsules and fibers are potentially widely applicable in smart windows, electronic paper, and military camouflage clothing.
Collapse
Affiliation(s)
- Mingfei Sheng
- Key Laboratory of Science & Technology of Eco-Textile, Jiangnan University, Ministry of Education, Wuxi, Jiangsu 214122, P.R. China
| | - Liping Zhang
- Key Laboratory of Science & Technology of Eco-Textile, Jiangnan University, Ministry of Education, Wuxi, Jiangsu 214122, P.R. China
| | - John Lawton West
- Liquid Crystal Institute, Kent State University, Kent, Ohio 44242, United States
| | - Shaohai Fu
- Key Laboratory of Science & Technology of Eco-Textile, Jiangnan University, Ministry of Education, Wuxi, Jiangsu 214122, P.R. China
| |
Collapse
|
35
|
Guo J, Haehnle B, Hoenders D, Creusen G, Jiao D, Kuehne AJC, Walther A. Biodegradable Laser Arrays Self-Assembled from Plant Resources. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002332. [PMID: 32537782 DOI: 10.1002/adma.202002332] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/15/2020] [Indexed: 05/10/2023]
Abstract
The transition toward future sustainable societies largely depends on disruptive innovations in biobased materials to substitute nonsustainable advanced functional materials. In the field of optics, advanced devices (e.g., lasers or metamaterial devices) are typically manufactured using top-down engineering and synthetic materials. This work breaks with such concepts and switchable lasers self-assembled from plant-based cellulose nanocrystals and fluorescent polymers at room temperature and from water are shown. Controlled structure formation allows laser-grade cholesteric photonic bandgap materials, in which the photonic bandgap is matched to the fluorescence emission to function as an efficient resonator for low threshold multimode lasing. The lasers can be switched on and off using humidity, and can be printed into pixelated arrays. Additionally, the materials exhibit stiffness above typical thermoplastic polymers and biodegradability in soil. The concept showcases that highly advanced functions can be encoded into biobased materials, and opens the design space for future sustainable optical devices of unprecedented function.
Collapse
Affiliation(s)
- Jiaqi Guo
- A3BMS Lab, Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, Freiburg, 79104, Germany
- Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Str. 21, Freiburg, 79104, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, Freiburg, 79110, Germany
| | - Bastian Haehnle
- Institute of Organic and Macromolecular Chemistry, Ulm University, Albert-Einstein-Allee 11, Ulm, 89081, Germany
| | - Daniel Hoenders
- A3BMS Lab, Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, Freiburg, 79104, Germany
- Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Str. 21, Freiburg, 79104, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, Freiburg, 79110, Germany
| | - Guido Creusen
- A3BMS Lab, Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, Freiburg, 79104, Germany
- Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Str. 21, Freiburg, 79104, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, Freiburg, 79110, Germany
| | - Dejin Jiao
- A3BMS Lab, Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, Freiburg, 79104, Germany
- Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Str. 21, Freiburg, 79104, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, Freiburg, 79110, Germany
| | - Alexander J C Kuehne
- Institute of Organic and Macromolecular Chemistry, Ulm University, Albert-Einstein-Allee 11, Ulm, 89081, Germany
| | - Andreas Walther
- A3BMS Lab, Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, Freiburg, 79104, Germany
- Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Str. 21, Freiburg, 79104, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, Freiburg, 79110, Germany
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, Freiburg, 79110, Germany
| |
Collapse
|
36
|
Park S, Lee SS, Kim SH. Photonic Multishells Composed of Cholesteric Liquid Crystals Designed by Controlled Phase Separation in Emulsion Drops. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002166. [PMID: 32519408 DOI: 10.1002/adma.202002166] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/23/2020] [Indexed: 06/11/2023]
Abstract
Cholesteric liquid crystals (CLCs), also known as chiral nematic LCs, show a photonic stopband, which is promising for various optical applications. In particular, CLCs confined in microcompartments are useful for sensing, lasing, and optical barcoding at the microscale. The integration of distinct CLCs into single microstructures can provide advanced functionality. In this work, CLC multishells with multiple stopbands are created by liquid-liquid phase separation (LLPS) in a simple yet highly controlled manner. A homogeneous ternary mixture of LC, hydrophilic liquid, and co-solvent is microfluidically emulsified to form uniform oil-in-water drops, which undergo LLPS to form onion-like drops composed of alternating CLC-rich and CLC-depleted layers. The multiplicity is controlled from one to five by adjusting the initial composition of the ternary mixture, which dictates the number of consecutive steps of LLPS. Interestingly, the concentration of the chiral dopant becomes reduced from the outermost to the innermost CLC drop due to uneven partitioning during LLPS, which results in multiple stopbands. Therefore, the photonic multishells show multiple structural colors. In addition, dye-doped multishells provide band-edge lasing at two different wavelengths. This new class of photonic multishells will provide new opportunities for advanced optical applications.
Collapse
Affiliation(s)
- Sihun Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Sang Seok Lee
- Functional Composite Materials Research Center, Institute of Advanced Composite Materials, KIST, Wanju-gun, Jeollabuk-do, 55324, South Korea
| | - Shin-Hyun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| |
Collapse
|
37
|
Wei X, Bian F, Cai X, Wang Y, Cai L, Yang J, Zhu Y, Zhao Y. Multiplexed Detection Strategy for Bladder Cancer MicroRNAs Based on Photonic Crystal Barcodes. Anal Chem 2020; 92:6121-6127. [PMID: 32227890 DOI: 10.1021/acs.analchem.0c00630] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xiaowei Wei
- Laboratory Medicine Center, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Feika Bian
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xiaoxiao Cai
- Laboratory Medicine Center, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Yu Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Lijun Cai
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jian Yang
- Department of Urology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Yefei Zhu
- Laboratory Medicine Center, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
38
|
Qi L, Liu S, Jiang Y, Lin JM, Yu L, Hu Q. Simultaneous Detection of Multiple Tumor Markers in Blood by Functional Liquid Crystal Sensors Assisted with Target-Induced Dissociation of Aptamer. Anal Chem 2020; 92:3867-3873. [PMID: 32069024 DOI: 10.1021/acs.analchem.9b05317] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Multiplex detection of tumor markers in blood with high specificity and high sensitivity is critical to cancer diagnosis, treatment, and prognosis. Herein, we demonstrate a strategy for simultaneous detection of multiple tumor markers in blood by functional liquid crystal (LC) sensors assisted with target-induced dissociation (TID) of an aptamer for the first time. Magnetic beads (MBs) coated with an aptamer (apt1) are employed to specifically capture target proteins in blood. After incubation of the obtained protein-coated MBs with duplexes of another aptamer (apt2) and signal DNA, sandwich complexes of apt1/protein/apt2 are formed on the MBs due to specific recognition of target proteins by apt2, which induces release of signal DNA into the aqueous solution. Subsequently, signal DNA is specifically recognized by highly sensitive DNA-laden LC sensors. Using this strategy, a 3D printed optical cell was employed to enable simultaneous detection of multiple tumor markers such as carcinoembryonic antigen (CEA), alpha-fetoprotein (AFP), and prostate specific antigen (PSA) with high specificity and high sensitivity. Overall, this effective and low-cost multiplex approach takes advantage of the easy separation of MBs, high specificity of aptamer-based recognition, and high sensitivity of functional LC sensors. Plus, it offers a performance that is competitive to that of commercial ELISA kits without potential interference from hemolysis, which makes it very promising in multiplex detection of tumor markers in clinical applications.
Collapse
Affiliation(s)
- Lubin Qi
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100, China
| | - Shuya Liu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan 250014, China
| | - Yifei Jiang
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Jin-Ming Lin
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Li Yu
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100, China
| | - Qiongzheng Hu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan 250014, China
| |
Collapse
|
39
|
Kim HU, Lim YJ, Lee HJ, Lee NJ, Bong KW. Degassed micromolding lithography for rapid fabrication of anisotropic hydrogel microparticles with high-resolution and high uniformity. LAB ON A CHIP 2020; 20:74-83. [PMID: 31746885 DOI: 10.1039/c9lc00828d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Replica molding techniques, which are used to synthesize microparticles inside anisotropic micromolds, have been developed to enable the mass production of hydrogel particles. However, these techniques are limited in their ability to synthesize only a narrow range of particle compositions and shapes because of the difficulty in loading precursors into the micromolds as well as the low particle homogeneity due to the uneven evaporation of the precursors. Herein, we describe a simple yet powerful technique, called degassed micromolding lithography, which can load precursors within 1 min regardless of the wettability. This technique is based on the gas-solubility of a degassed micromold that acts as a suction pump to completely fill the mold by drawing precursor liquids in. The semi-closed system within the micromold prevents the uneven evaporation of the precursor, which is essential for the production of homogeneous particles. Furthermore, controlled uniformity of the hydrogel microparticles (C.V. < 2%) can be achieved by engineering the design of the micromold array.
Collapse
Affiliation(s)
- Hyeon Ung Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Yong Jun Lim
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Hyun Jee Lee
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Nak Jun Lee
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Ki Wan Bong
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
40
|
Xu FF, Gong ZL, Zhong YW, Yao J, Zhao YS. Wavelength-Tunable Single-Mode Microlasers Based on Photoresponsive Pitch Modulation of Liquid Crystals for Information Encryption. RESEARCH (WASHINGTON, D.C.) 2020; 2020:6539431. [PMID: 33623907 PMCID: PMC7877376 DOI: 10.34133/2020/6539431] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/03/2020] [Indexed: 01/23/2023]
Abstract
Information encryption and decryption have attracted particular attention; however, the applications are frequently restricted by limited coding capacity due to the indistinguishable broad photoluminescence band of conventional stimuli-responsive fluorescent materials. Here, we present a concept of confidential information encryption with photoresponsive liquid crystal (LC) lasing materials, which were used to fabricate ordered microlaser arrays through a microtemplate-assisted inkjet printing method. LC microlasers exhibit narrow-bandwidth single-mode emissions, and the wavelength of LC microlasers was reversibly modulated based on the optical isomerization of the chiral dopant in LCs. On this basis, we demonstrate phototunable information authentication on LC microlaser arrays using the wavelength of LC microlasers as primary codes. These results provide enlightenment for the implementation of microlaser-based cryptographic primitives for information encryption and anticounterfeiting applications.
Collapse
Affiliation(s)
- Fa-Feng Xu
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhong-Liang Gong
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Wu Zhong
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiannian Yao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Sheng Zhao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
41
|
Che KJ, Yang YJ, Lin YL, Shan YW, Ge YH, Li SS, Chen LJ, Yang CJ. Microfluidic generation of cholesteric liquid crystal droplets with an integrative cavity for dual-gain and controllable lasing. LAB ON A CHIP 2019; 19:3116-3122. [PMID: 31429847 DOI: 10.1039/c9lc00655a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The integration of one more gain media in droplet microlasers with morphology-dependent modes, which can be employed in optofluidic systems as multi-wavelength lasing sources, is highly attractive and demands new cavity design and fabrication approaches. Here, cholesteric liquid crystal (CLC) droplets with an integrative triple-emulsion cavity are fabricated via glass-capillary-based microfluidic technologies and dual-gain lasing with variable modes, flexibly configured by the combination and incorporation of gain dyes and CLCs into both the core and shell. The distributed feedback (DFB) mode, formed by the feedback from the self-assembled helix periodic structure of CLCs, the whispering gallery (WG) mode, and the hybrid, is selectively excited by controlling the spatial coupling between the pump beam and the droplet with gain. With the merits of dual-gain and controllable lasing, a prototype dual-wavelength-ratiometric thermometer with self-calibration capability is expected to be developed. Furthermore, the anisotropic CLC core is substituted with an isotropic fluid and the gain from the CLC shell is additionally removed, DFB lasings in both shell and core are absent, and only Bragg-shell reflection-based hybrid modes are excited for lasing. The CLC droplet microlasers with an integrative cavity are expected to provide a new route to future lab-on-chip (LOC) applications.
Collapse
Affiliation(s)
- Kai-Jun Che
- Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Lin P, Wei Z, Yan Q, Xie J, Fan Y, Wu M, Chen Y, Cheng Z. Capillary-Based Microfluidic Fabrication of Liquid Metal Microspheres toward Functional Microelectrodes and Photothermal Medium. ACS APPLIED MATERIALS & INTERFACES 2019; 11:25295-25305. [PMID: 31260237 DOI: 10.1021/acsami.9b03007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Liquid metals (LMs) possess tremendous potential applications in flexible electronic devices, heat flow management, and smart actuators. Splitting the bulk LMs into microspheres is of great significance to fabricate free-standing and microscale LM-based functional materials and devices. However, it is difficult to disperse the bulk LMs into microspheres because of their large surface tension and high density. In this work, the capillary-based microfluidic chip is employed to continuously and automatically generate LM microspheres in a large scale. The capillary-based microfluidic fabrication is universally applicable in ionic aqueous solution, hydrophobic solution, and the polymeric aqueous solution. The precise size control of LM microspheres can be easily realized by the co-flowing configuration in the microchannels. The coefficient of size variation of monodispersed LM microspheres can be controlled to as low as 0.47%. The free-standing LM microspheres can be used as functional microelectrodes within a wide temperature range from -19.8 to 20 °C and to fabricate tunable integrated circuits with different output powers. Most importantly, the LM microspheres exhibit photothermal property, which is used to make the optical sensor with linear response and to conduct the solar energy harvesting. The capillary-based microfluidic fabrication of LM microspheres provides a facile and templated methodology for processing bulk LMs into microscale units. The LM microspheres with excellent electrical conductivity and photothermal property hold great promise for the development of miniature soft electronics, light-driven actuators, and energy conversion medium.
Collapse
Affiliation(s)
- Pengcheng Lin
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy , Guangdong University of Technology , Guangzhou 510006 , China
| | - Zhan Wei
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy , Guangdong University of Technology , Guangzhou 510006 , China
| | - Qi Yan
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy , Guangdong University of Technology , Guangzhou 510006 , China
| | - Jiajin Xie
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy , Guangdong University of Technology , Guangzhou 510006 , China
| | - Yufeng Fan
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy , Guangdong University of Technology , Guangzhou 510006 , China
| | - Minghui Wu
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy , Guangdong University of Technology , Guangzhou 510006 , China
| | - Ying Chen
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy , Guangdong University of Technology , Guangzhou 510006 , China
| | - Zhengdong Cheng
- Artie McFerrin Department of Chemical Engineering , Texas A&M University , College Station , Texas 77843-3122 , United States
| |
Collapse
|
43
|
Bian F, Sun L, Cai L, Wang Y, Zhao Y, Wang S, Zhou M. Molybdenum disulfide-integrated photonic barcodes for tumor markers screening. Biosens Bioelectron 2019; 133:199-204. [PMID: 30933711 DOI: 10.1016/j.bios.2019.02.066] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 01/11/2023]
Abstract
As a new class of two-dimensional (2D) materials, molybdenum disulfide (MoS2) has huge potential in biomedical area; while its applications in multiplex bioassays are still a challenge. Here, we present novel MoS2-integrated silica colloidal crystal barcode (SCCB) for multiplex microRNA (miRNA) screening. MoS2 was adsorbed on SCCBs by electrostatic interaction, and quantum dots (QDs) decorated hairpin probes were coupled on MoS2 by covalent linkage. As the MoS2 could quench the QDs of the hairpin probes, they together formed a molecular beacon (MB) structure before the detection. When used in assays, target miRNA could form a double strand with the probe and made QDs keep away from MoS2 sheets to recovery their fluorescence. Because the released QDs were positively correlated with the concentration of the hybridized nucleic acid, the target miRNAs could be quantified by measuring the fluorescence signal of the QDs on the SCCBs. In addition, by utilizing different MoS2-integrated structural color encoded SCCBs, multiplexed miRNA quantification could also be realized. Based on this strategy, we have demonstrated that several pancreatic cancer-related miRNAs could be selectivity and sensitivity detected with a detection limit of 4.2 ± 0.3 nM. These features make the MoS2-integrated SCCB ideal for many potential applications.
Collapse
Affiliation(s)
- Feika Bian
- Pancreatitis Center, Precision Medicine Center, and Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Lingyu Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Lijun Cai
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Yu Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Yuanjin Zhao
- Pancreatitis Center, Precision Medicine Center, and Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Shuqi Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China.
| | - Mengtao Zhou
- Pancreatitis Center, Precision Medicine Center, and Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
44
|
Bian F, Wu J, Wang H, Sun L, Shao C, Wang Y, Li Z, Wang X, Zhao Y. Bioinspired Photonic Barcodes with Graphene Oxide Encapsulation for Multiplexed MicroRNA Quantification. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1803551. [PMID: 30461199 DOI: 10.1002/smll.201803551] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/31/2018] [Indexed: 05/25/2023]
Abstract
Multiplexed microRNA (miRNA) quantification has a demonstrated value in clinical diagnosis. In this paper, novel mussel-inspired photonic crystal (PhC) barcodes with graphene oxide (GO) encapsulation for multiplexed miRNA detection are presented. Using the excellent adhesion capability of polydopamine, the dispersed GO particles can be immobilized on the surfaces of the PhC barcodes to form an additional functional layer. The GO-decorated PhC barcodes have constant characteristic reflection peaks because the GO immobilization process not only maintains their periodic microstructure but also enhances their stability and anti-incoherent light-scattering capability. The immobilized GO particles are shown to enable high-sensitivity miRNA screening on the surface of the PhC barcodes by integration with a hybridization chain reaction amplification strategy. Because the PhC barcodes have stable encoding reflection peaks, multiplexed low-abundance miRNA quantification can also be achieved rapidly, accurately, and reproducibly by employing different GO-decorated PhC barcodes. These features should make GO-encapsulated PhC barcodes ideal for many practical applications.
Collapse
Affiliation(s)
- Feika Bian
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jindao Wu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University) Nanjing, Jiangsu Province, 210096, China
| | - Huan Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Lingyu Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Changmin Shao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yu Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Zhiyang Li
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Xuehao Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University) Nanjing, Jiangsu Province, 210096, China
| | - Yuanjin Zhao
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
45
|
Lee SS, Kim SH. Controlled Encapsulation of Cholesteric Liquid Crystals Using Emulsion Templates. Macromol Res 2018. [DOI: 10.1007/s13233-018-6148-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|