1
|
Wang H, Fan P, Chen J, Jiang L, Gao HJ, Lado JL, Yang K. Construction of topological quantum magnets from atomic spins on surfaces. NATURE NANOTECHNOLOGY 2024; 19:1782-1788. [PMID: 39209998 DOI: 10.1038/s41565-024-01775-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
Artificial quantum systems have emerged as platforms to realize topological matter in a well-controlled manner. So far, experiments have mostly explored non-interacting topological states, and the realization of many-body topological phases in solid-state platforms with atomic resolution has remained challenging. Here we construct topological quantum Heisenberg spin lattices by assembling spin chains and two-dimensional spin arrays from spin-1/2 Ti atoms on an insulating MgO film in a scanning tunnelling microscope. We engineer both topological and trivial phases of the quantum spin model and thereby realize first- and second-order topological quantum magnets. We probe the many-body excitations of the quantum magnets by single-atom electron spin resonance with an energy resolution better than 100 neV. Making use of the atomically localized magnetic field of the scanning tunnelling microscope tip, we visualize various many-body topological bound modes including topological edge states, topological defects and higher-order corner modes. Our results provide a bottom-up approach for the simulation of exotic quantum many-body phases of interacting spins.
Collapse
Affiliation(s)
- Hao Wang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Peng Fan
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Chen
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lili Jiang
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hong-Jun Gao
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jose L Lado
- Department of Applied Physics, Aalto University, Espoo, Finland.
| | - Kai Yang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Ye L, Zheng X, Xu X. Theory of Electron Spin Resonance Spectroscopy in Scanning Tunneling Microscopy. PHYSICAL REVIEW LETTERS 2024; 133:176201. [PMID: 39530799 DOI: 10.1103/physrevlett.133.176201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 09/16/2024] [Indexed: 11/16/2024]
Abstract
The integration of scanning tunneling microscopy (STM) and electron spin resonance (ESR) spectroscopy has emerged as a powerful and innovative tool for discerning spin excitations and spin-spin interactions within atoms and molecules adsorbed on surfaces. However, the origin of the STM-ESR signal and the underlying mechanisms that govern the essential features of the measured spectra have remained elusive, thereby significantly impeding the future development of the STM-ESR approach. Here, we construct a model to carry out precise numerical simulations of STM-ESR spectra for a single hydrogenated Ti adatom and a hydrogenated Ti dimer, achieving excellent agreement with experimental observations. We further develop an analytic theory that elucidates the fundamental origin of the signal as well as the essential features in the measured spectra. These new theoretical developments establish a solid foundation for the on-demand detection and manipulation of atomic-scale spin states, with promising implications for cutting-edge applications in spin sensing, quantum information, and quantum computing.
Collapse
Affiliation(s)
| | | | - Xin Xu
- Department of Chemistry, Fudan University, Shanghai 200438, People's Republic of China
- Hefei National Laboratory, Hefei, Anhui 230088, People's Republic of China
| |
Collapse
|
3
|
Elbertse RJG, Borodin D, Oh J, Ahn T, Hwang J, Rietveld JC, Heinrich AJ, Delgado F, Otte S, Bae Y. Long-Lived Magnetization in an Atomic Spin Chain Tuned to a Diabolic Point. PHYSICAL REVIEW LETTERS 2024; 133:166703. [PMID: 39485983 DOI: 10.1103/physrevlett.133.166703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/02/2024] [Accepted: 08/14/2024] [Indexed: 11/03/2024]
Abstract
Scaling magnets down to where quantum size effects become prominent triggers quantum tunneling of magnetization (QTM), profoundly influencing magnetization dynamics. Measuring magnetization switching in an Fe atomic chain under a carefully tuned transverse magnetic field, we observe a nonmonotonic variation of magnetization lifetimes around a level crossing, known as the diabolic point (DP). Near DPs, local environment effects causing QTM are efficiently suppressed, enhancing lifetimes by three orders of magnitude. Adjusting interatomic interactions further facilitates multiple DPs. Our Letter provides a deeper understanding of quantum dynamics near DPs and enhances our ability to engineer a quantum magnet.
Collapse
Affiliation(s)
- R J G Elbertse
- Delft University of Technology, Department of Quantum Nanoscience, Kavli Institute of Nanoscience, Delft, The Netherlands
| | - D Borodin
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul, South Korea
| | - J Oh
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul, South Korea
- EWHA Womans University, Department of Physics, Seoul, South Korea
| | - T Ahn
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul, South Korea
- EWHA Womans University, Department of Physics, Seoul, South Korea
| | - J Hwang
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul, South Korea
- EWHA Womans University, Department of Physics, Seoul, South Korea
| | - J C Rietveld
- Delft University of Technology, Department of Quantum Nanoscience, Kavli Institute of Nanoscience, Delft, The Netherlands
| | - A J Heinrich
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul, South Korea
- EWHA Womans University, Department of Physics, Seoul, South Korea
| | - F Delgado
- Universidad de La Laguna, La Laguna, Instituto Universitario de Estudios Avanzados IUDEA, Departamento de Física, Tenerife, Spain
| | - S Otte
- Delft University of Technology, Department of Quantum Nanoscience, Kavli Institute of Nanoscience, Delft, The Netherlands
| | - Y Bae
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul, South Korea
- EWHA Womans University, Department of Physics, Seoul, South Korea
| |
Collapse
|
4
|
Esat T, Borodin D, Oh J, Heinrich AJ, Tautz FS, Bae Y, Temirov R. A quantum sensor for atomic-scale electric and magnetic fields. NATURE NANOTECHNOLOGY 2024; 19:1466-1471. [PMID: 39054385 PMCID: PMC11486657 DOI: 10.1038/s41565-024-01724-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024]
Abstract
The detection of faint magnetic fields from single-electron and nuclear spins at the atomic scale is a long-standing challenge in physics. While current mobile quantum sensors achieve single-electron spin sensitivity, atomic spatial resolution remains elusive for existing techniques. Here we fabricate a single-molecule quantum sensor at the apex of the metallic tip of a scanning tunnelling microscope by attaching Fe atoms and a PTCDA (3,4,9,10-perylenetetracarboxylic-dianhydride) molecule to the tip apex. We address the molecular spin by electron spin resonance and achieve ~100 neV resolution in energy. In a proof-of-principle experiment, we measure the magnetic and electric dipole fields emanating from a single Fe atom and an Ag dimer on an Ag(111) surface with sub-angstrom spatial resolution. Our method enables atomic-scale quantum sensing experiments of electric and magnetic fields on conducting surfaces and may find applications in the sensing of spin-labelled biomolecules and of spin textures in quantum materials.
Collapse
Affiliation(s)
- Taner Esat
- Peter Grünberg Institute (PGI-3), Forschungszentrum Jülich, Jülich, Germany.
- Jülich Aachen Research Alliance (JARA), Fundamentals of Future Information Technology, Jülich, Germany.
| | - Dmitriy Borodin
- Center for Quantum Nanoscience (QNS), Institute for Basic Science (IBS), Seoul, South Korea
- Department of Physics, Ewha Womans University, Seoul, South Korea
| | - Jeongmin Oh
- Center for Quantum Nanoscience (QNS), Institute for Basic Science (IBS), Seoul, South Korea
- Department of Physics, Ewha Womans University, Seoul, South Korea
| | - Andreas J Heinrich
- Center for Quantum Nanoscience (QNS), Institute for Basic Science (IBS), Seoul, South Korea.
- Department of Physics, Ewha Womans University, Seoul, South Korea.
| | - F Stefan Tautz
- Peter Grünberg Institute (PGI-3), Forschungszentrum Jülich, Jülich, Germany
- Jülich Aachen Research Alliance (JARA), Fundamentals of Future Information Technology, Jülich, Germany
- Experimentalphysik IV A, RWTH Aachen University, Aachen, Germany
| | - Yujeong Bae
- Center for Quantum Nanoscience (QNS), Institute for Basic Science (IBS), Seoul, South Korea.
- Department of Physics, Ewha Womans University, Seoul, South Korea.
- Empa, Swiss Federal Laboratories for Materials Science and Technology, nanotech@surfaces Laboratory, Dübendorf, Switzerland.
| | - Ruslan Temirov
- Peter Grünberg Institute (PGI-3), Forschungszentrum Jülich, Jülich, Germany
- Jülich Aachen Research Alliance (JARA), Fundamentals of Future Information Technology, Jülich, Germany
- Faculty of Mathematics and Natural Sciences, Institute of Physics II, University of Cologne, Cologne, Germany
| |
Collapse
|
5
|
Veldman LM, Stolte EW, Canavan MP, Broekhoven R, Willke P, Farinacci L, Otte S. Coherent spin dynamics between electron and nucleus within a single atom. Nat Commun 2024; 15:7951. [PMID: 39261483 PMCID: PMC11390743 DOI: 10.1038/s41467-024-52270-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024] Open
Abstract
The nuclear spin, being much more isolated from the environment than its electronic counterpart, presents opportunities for quantum experiments with prolonged coherence times. Electron spin resonance (ESR) combined with scanning tunnelling microscopy (STM) provides a bottom-up platform to study the fundamental properties of nuclear spins of single atoms on a surface. However, access to the time evolution of nuclear spins remained a challenge. Here, we present an experiment resolving the nanosecond coherent dynamics of a hyperfine-driven flip-flop interaction between the spin of an individual nucleus and that of an orbiting electron. We use the unique local controllability of the magnetic field emanating from the STM probe tip to bring the electron and nuclear spins in tune, as evidenced by a set of avoided level crossings in ESR-STM. Subsequently, we polarize both spins through scattering of tunnelling electrons and measure the resulting free evolution of the coupled spin system using a DC pump-probe scheme. The latter reveals a complex pattern of multiple interfering coherent oscillations, providing unique insight into hyperfine physics on a single atom level.
Collapse
Affiliation(s)
- Lukas M Veldman
- Department of Quantum Nanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Evert W Stolte
- Department of Quantum Nanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Mark P Canavan
- Department of Quantum Nanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Rik Broekhoven
- Department of Quantum Nanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Philip Willke
- Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Laëtitia Farinacci
- Department of Quantum Nanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Sander Otte
- Department of Quantum Nanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands.
| |
Collapse
|
6
|
Budakian R, Finkler A, Eichler A, Poggio M, Degen CL, Tabatabaei S, Lee I, Hammel PC, Eugene SP, Taminiau TH, Walsworth RL, London P, Bleszynski Jayich A, Ajoy A, Pillai A, Wrachtrup J, Jelezko F, Bae Y, Heinrich AJ, Ast CR, Bertet P, Cappellaro P, Bonato C, Altmann Y, Gauger E. Roadmap on nanoscale magnetic resonance imaging. NANOTECHNOLOGY 2024; 35:412001. [PMID: 38744268 DOI: 10.1088/1361-6528/ad4b23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
The field of nanoscale magnetic resonance imaging (NanoMRI) was started 30 years ago. It was motivated by the desire to image single molecules and molecular assemblies, such as proteins and virus particles, with near-atomic spatial resolution and on a length scale of 100 nm. Over the years, the NanoMRI field has also expanded to include the goal of useful high-resolution nuclear magnetic resonance (NMR) spectroscopy of molecules under ambient conditions, including samples up to the micron-scale. The realization of these goals requires the development of spin detection techniques that are many orders of magnitude more sensitive than conventional NMR and MRI, capable of detecting and controlling nanoscale ensembles of spins. Over the years, a number of different technical approaches to NanoMRI have emerged, each possessing a distinct set of capabilities for basic and applied areas of science. The goal of this roadmap article is to report the current state of the art in NanoMRI technologies, outline the areas where they are poised to have impact, identify the challenges that lie ahead, and propose methods to meet these challenges. This roadmap also shows how developments in NanoMRI techniques can lead to breakthroughs in emerging quantum science and technology applications.
Collapse
Affiliation(s)
- Raffi Budakian
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Canada
- Institute for Quantum Computing, University of Waterloo, Waterloo, Canada
| | - Amit Finkler
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Alexander Eichler
- Institute for Solid State Physics, ETH Zurich, Otto-Stern-Weg 1, 8093 Zurich, Switzerland
| | - Martino Poggio
- Department of Physics and Swiss Nanoscience Institute, University of Basel, 4056 Basel, Switzerland
| | - Christian L Degen
- Institute for Solid State Physics, ETH Zurich, Otto-Stern-Weg 1, 8093 Zurich, Switzerland
| | - Sahand Tabatabaei
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Canada
- Institute for Quantum Computing, University of Waterloo, Waterloo, Canada
| | - Inhee Lee
- Department of Physics, The Ohio State University, Columbus, OH 43210, United States of America
| | - P Chris Hammel
- Department of Physics, The Ohio State University, Columbus, OH 43210, United States of America
| | - S Polzik Eugene
- Niels Bohr Institute, University of Copenhagen, 17, Copenhagen, 2100, Denmark
| | - Tim H Taminiau
- QuTech and Kavli Institute of Nanoscience, Delft University of Technology, Netherlands
| | - Ronald L Walsworth
- University of Maryland 2218 Kim Engineering Building, College Park, MD 20742, United States of America
| | - Paz London
- Department of Physics, University of California, Santa Barbara, CA 93106, United States of America
| | - Ania Bleszynski Jayich
- Department of Physics, University of California, Santa Barbara, CA 93106, United States of America
| | - Ashok Ajoy
- Department of Chemistry, University of California, Berkeley, CA 97420, United States of America
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States of America
- Quantum Information Science Program, CIFAR, 661 University Ave., Toronto, ON M5G 1M1, Canada
| | - Arjun Pillai
- Department of Chemistry, University of California, Berkeley, CA 97420, United States of America
| | - Jörg Wrachtrup
- 3. Physikalisches Institut, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Fedor Jelezko
- Institute of Quantum Optics, Ulm University, Ulm, 89081, Germany
| | - Yujeong Bae
- Center for Quantum Nanoscience, Institute for Basic Science, Seoul 03760, Republic of Korea
- Department of Physics, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Andreas J Heinrich
- Center for Quantum Nanoscience, Institute for Basic Science, Seoul 03760, Republic of Korea
- Department of Physics, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Christian R Ast
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Patrice Bertet
- Université Paris-Saclay, CEA, CNRS, SPEC, 91191 Gif-sur-Yvette, France
| | - Paola Cappellaro
- Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, United States of America
| | - Cristian Bonato
- SUPA, Institute of Photonics and Quantum Sciences, School of Engineering and Physical Sciences, HeriotWatt University, Edinburgh EH14 4AS, United Kingdom
| | - Yoann Altmann
- Institute of Signals, Sensors and Systems, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Erik Gauger
- SUPA, Institute of Photonics and Quantum Sciences, School of Engineering and Physical Sciences, HeriotWatt University, Edinburgh EH14 4AS, United Kingdom
| |
Collapse
|
7
|
Kovarik S, Schlitz R, Vishwakarma A, Ruckert D, Gambardella P, Stepanow S. Spin torque-driven electron paramagnetic resonance of a single spin in a pentacene molecule. Science 2024; 384:1368-1373. [PMID: 38900895 DOI: 10.1126/science.adh4753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/10/2024] [Indexed: 06/22/2024]
Abstract
Control over quantum systems is typically achieved by time-dependent electric or magnetic fields. Alternatively, electronic spins can be controlled by spin-polarized currents. Here, we demonstrate coherent driving of a single spin by a radiofrequency spin-polarized current injected from the tip of a scanning tunneling microscope into an organic molecule. With the excitation of electron paramagnetic resonance, we established dynamic control of single spins by spin torque using a local electric current. In addition, our work highlights the dissipative action of the spin-transfer torque, in contrast to the nondissipative action of the magnetic field, which allows for the manipulation of individual spins based on controlled decoherence.
Collapse
Affiliation(s)
- Stepan Kovarik
- Department of Materials, ETH Zurich, CH-8093 Zürich, Switzerland
| | - Richard Schlitz
- Department of Materials, ETH Zurich, CH-8093 Zürich, Switzerland
| | | | - Dominic Ruckert
- Department of Materials, ETH Zurich, CH-8093 Zürich, Switzerland
| | | | | |
Collapse
|
8
|
Reale S, Hwang J, Oh J, Brune H, Heinrich AJ, Donati F, Bae Y. Electrically driven spin resonance of 4f electrons in a single atom on a surface. Nat Commun 2024; 15:5289. [PMID: 38902242 PMCID: PMC11190280 DOI: 10.1038/s41467-024-49447-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 06/05/2024] [Indexed: 06/22/2024] Open
Abstract
A pivotal challenge in quantum technologies lies in reconciling long coherence times with efficient manipulation of the quantum states of a system. Lanthanide atoms, with their well-localized 4f electrons, emerge as a promising solution to this dilemma if provided with a rational design for manipulation and detection. Here we construct tailored spin structures to perform electron spin resonance on a single lanthanide atom using a scanning tunneling microscope. A magnetically coupled structure made of an erbium and a titanium atom enables us to both drive the erbium's 4f electron spins and indirectly probe them through the titanium's 3d electrons. The erbium spin states exhibit an extended spin relaxation time and a higher driving efficiency compared to 3d atoms with spin ½ in similarly coupled structures. Our work provides a new approach to accessing highly protected spin states, enabling their coherent control in an all-electric fashion.
Collapse
Affiliation(s)
- Stefano Reale
- Center for Quantum Nanoscience (QNS), Institute for Basic Science (IBS), Seoul, Republic of Korea
- Ewha Womans University, Seoul, Republic of Korea
- Department of Energy, Politecnico di Milano, Milano, Italy
| | - Jiyoon Hwang
- Center for Quantum Nanoscience (QNS), Institute for Basic Science (IBS), Seoul, Republic of Korea
- Department of Physics, Ewha Womans University, Seoul, Republic of Korea
| | - Jeongmin Oh
- Center for Quantum Nanoscience (QNS), Institute for Basic Science (IBS), Seoul, Republic of Korea
- Department of Physics, Ewha Womans University, Seoul, Republic of Korea
| | - Harald Brune
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Andreas J Heinrich
- Center for Quantum Nanoscience (QNS), Institute for Basic Science (IBS), Seoul, Republic of Korea
- Department of Physics, Ewha Womans University, Seoul, Republic of Korea
| | - Fabio Donati
- Center for Quantum Nanoscience (QNS), Institute for Basic Science (IBS), Seoul, Republic of Korea.
- Department of Physics, Ewha Womans University, Seoul, Republic of Korea.
| | - Yujeong Bae
- Center for Quantum Nanoscience (QNS), Institute for Basic Science (IBS), Seoul, Republic of Korea.
- Department of Physics, Ewha Womans University, Seoul, Republic of Korea.
- Empa, Swiss Federal Laboratories for Materials Science and Technology, nanotech@surfaces Laboratory, Dübendorf, Switzerland.
| |
Collapse
|
9
|
Cho FH, Park J, Oh S, Yu J, Jeong Y, Colazzo L, Spree L, Hommel C, Ardavan A, Boero G, Donati F. A continuous-wave and pulsed X-band electron spin resonance spectrometer operating in ultra-high vacuum for the study of low dimensional spin ensembles. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:063904. [PMID: 38864723 DOI: 10.1063/5.0189974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 05/09/2024] [Indexed: 06/13/2024]
Abstract
We report the development of a continuous-wave and pulsed X-band electron spin resonance (ESR) spectrometer for the study of spins on ordered surfaces down to cryogenic temperatures. The spectrometer operates in ultra-high vacuum and utilizes a half-wavelength microstrip line resonator realized using epitaxially grown copper films on single crystal Al2O3 substrates. The one-dimensional microstrip line resonator exhibits a quality factor of more than 200 at room temperature, close to the upper limit determined by radiation losses. The surface characterizations of the copper strip of the resonator by atomic force microscopy, low-energy electron diffraction, and scanning tunneling microscopy show that the surface is atomically clean, flat, and single crystalline. Measuring the ESR spectrum at 15 K from a few nm thick molecular film of YPc2, we find a continuous-wave ESR sensitivity of 2.6 × 1011 spins/G · Hz1/2, indicating that a signal-to-noise ratio of 3.9 G · Hz1/2 is expected from a monolayer of YPc2 molecules. Advanced pulsed ESR experimental capabilities, including dynamical decoupling and electron-nuclear double resonance, are demonstrated using free radicals diluted in a glassy matrix.
Collapse
Affiliation(s)
- Franklin H Cho
- Center for Quantum Nanoscience, Institute for Basic Science, Seoul 03760, South Korea
- Ewha Womans University, Seoul 03760, South Korea
| | - Juyoung Park
- Center for Quantum Nanoscience, Institute for Basic Science, Seoul 03760, South Korea
- Department of Physics, Ewha Womans University, Seoul 03760, South Korea
| | - Soyoung Oh
- Center for Quantum Nanoscience, Institute for Basic Science, Seoul 03760, South Korea
- Department of Physics, Ewha Womans University, Seoul 03760, South Korea
| | - Jisoo Yu
- Center for Quantum Nanoscience, Institute for Basic Science, Seoul 03760, South Korea
- Department of Physics, Ewha Womans University, Seoul 03760, South Korea
| | - Yejin Jeong
- Center for Quantum Nanoscience, Institute for Basic Science, Seoul 03760, South Korea
- Department of Physics, Ewha Womans University, Seoul 03760, South Korea
| | - Luciano Colazzo
- Center for Quantum Nanoscience, Institute for Basic Science, Seoul 03760, South Korea
- Ewha Womans University, Seoul 03760, South Korea
| | - Lukas Spree
- Center for Quantum Nanoscience, Institute for Basic Science, Seoul 03760, South Korea
- Ewha Womans University, Seoul 03760, South Korea
| | - Caroline Hommel
- Center for Quantum Nanoscience, Institute for Basic Science, Seoul 03760, South Korea
- Ewha Womans University, Seoul 03760, South Korea
| | - Arzhang Ardavan
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - Giovanni Boero
- Microsystems Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Fabio Donati
- Center for Quantum Nanoscience, Institute for Basic Science, Seoul 03760, South Korea
- Department of Physics, Ewha Womans University, Seoul 03760, South Korea
| |
Collapse
|
10
|
Bui HT, Wolf C, Wang Y, Haze M, Ardavan A, Heinrich AJ, Phark SH. All-Electrical Driving and Probing of Dressed States in a Single Spin. ACS NANO 2024; 18:12187-12193. [PMID: 38698541 DOI: 10.1021/acsnano.4c00196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
The subnanometer distance between tip and sample in a scanning tunneling microscope (STM) enables the application of very large electric fields with a strength as high as ∼1 GV/m. This has allowed for efficient electrical driving of Rabi oscillations of a single spin on a surface at a moderate radiofrequency (RF) voltage on the order of tens of millivolts. Here, we demonstrate the creation of dressed states of a single electron spin localized in the STM tunnel junction by using resonant RF driving voltages. The read-out of these dressed states was achieved all electrically by a weakly coupled probe spin. Our work highlights the strength of the atomic-scale geometry inherent to the STM that facilitates the creation and control of dressed states, which are promising for the design of atomic scale quantum devices using individual spins on surfaces.
Collapse
Affiliation(s)
- Hong T Bui
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Korea
- Department of Physics, Ewha Womans University, Seoul 03760, Korea
| | - Christoph Wolf
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Korea
- Ewha Womans University, Seoul 03760, Korea
| | - Yu Wang
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Korea
- Ewha Womans University, Seoul 03760, Korea
| | - Masahiro Haze
- The Institute for Solid State Physics, University of Tokyo, Kashiwa 277-8581, Japan
| | - Arzhang Ardavan
- CAESR, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - Andreas J Heinrich
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Korea
- Department of Physics, Ewha Womans University, Seoul 03760, Korea
| | - Soo-Hyon Phark
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Korea
- Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
11
|
Kot P, Ismail M, Drost R, Siebrecht J, Huang H, Ast CR. Electric control of spin transitions at the atomic scale. Nat Commun 2023; 14:6612. [PMID: 37857623 PMCID: PMC10587172 DOI: 10.1038/s41467-023-42287-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023] Open
Abstract
Electric control of spins has been a longstanding goal in the field of solid state physics due to the potential for increased efficiency in information processing. This efficiency can be optimized by transferring spintronics to the atomic scale. We present electric control of spin resonance transitions in single TiH molecules by employing electron spin resonance scanning tunneling microscopy (ESR-STM). We find strong bias voltage dependent shifts in the ESR signal of about ten times its line width. We attribute this to the electric field in the tunnel junction, which induces a displacement of the spin system changing the g-factor and the effective magnetic field of the tip. We demonstrate direct electric control of the spin transitions in coupled TiH dimers. Our findings open up new avenues for fast coherent control of coupled spin systems and expands on the understanding of spin electric coupling.
Collapse
Affiliation(s)
- Piotr Kot
- Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, 70569, Stuttgart, Germany
| | - Maneesha Ismail
- Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, 70569, Stuttgart, Germany
| | - Robert Drost
- Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, 70569, Stuttgart, Germany
| | - Janis Siebrecht
- Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, 70569, Stuttgart, Germany
| | - Haonan Huang
- Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, 70569, Stuttgart, Germany
| | - Christian R Ast
- Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, 70569, Stuttgart, Germany.
| |
Collapse
|
12
|
Wang Y, Chen Y, Bui HT, Wolf C, Haze M, Mier C, Kim J, Choi DJ, Lutz CP, Bae Y, Phark SH, Heinrich AJ. An atomic-scale multi-qubit platform. Science 2023; 382:87-92. [PMID: 37797000 DOI: 10.1126/science.ade5050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 08/30/2023] [Indexed: 10/07/2023]
Abstract
Individual electron spins in solids are promising candidates for quantum science and technology, where bottom-up assembly of a quantum device with atomically precise couplings has long been envisioned. Here, we realized atom-by-atom construction, coherent operations, and readout of coupled electron-spin qubits using a scanning tunneling microscope. To enable the coherent control of "remote" qubits that are outside of the tunnel junction, we complemented each electron spin with a local magnetic field gradient from a nearby single-atom magnet. Readout was achieved by using a sensor qubit in the tunnel junction and implementing pulsed double electron spin resonance. Fast single-, two-, and three-qubit operations were thereby demonstrated in an all-electrical fashion. Our angstrom-scale qubit platform may enable quantum functionalities using electron spin arrays built atom by atom on a surface.
Collapse
Affiliation(s)
- Yu Wang
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Korea
- Ewha Womans University, Seoul 03760, Korea
| | - Yi Chen
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Korea
- Ewha Womans University, Seoul 03760, Korea
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| | - Hong T Bui
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Korea
- Department of Physics, Ewha Womans University, Seoul 03760, Korea
| | - Christoph Wolf
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Korea
- Ewha Womans University, Seoul 03760, Korea
| | - Masahiro Haze
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Korea
- The Institute for Solid State Physics, University of Tokyo, Kashiwa 277-8581, Japan
| | - Cristina Mier
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Korea
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), 20018 Donostia-San Sebastián, Spain
| | - Jinkyung Kim
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Korea
- Department of Physics, Ewha Womans University, Seoul 03760, Korea
| | - Deung-Jang Choi
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Korea
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), 20018 Donostia-San Sebastián, Spain
- Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | | | - Yujeong Bae
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Korea
- Department of Physics, Ewha Womans University, Seoul 03760, Korea
| | - Soo-Hyon Phark
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Korea
- Ewha Womans University, Seoul 03760, Korea
| | - Andreas J Heinrich
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Korea
- Department of Physics, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
13
|
Phark S, Bui HT, Ferrón A, Fernández‐Rossier J, Reina‐Gálvez J, Wolf C, Wang Y, Yang K, Heinrich AJ, Lutz CP. Electric-Field-Driven Spin Resonance by On-Surface Exchange Coupling to a Single-Atom Magnet. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302033. [PMID: 37466177 PMCID: PMC10520627 DOI: 10.1002/advs.202302033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/11/2023] [Indexed: 07/20/2023]
Abstract
Coherent control of individual atomic and molecular spins on surfaces has recently been demonstrated by using electron spin resonance (ESR) in a scanning tunneling microscope (STM). Here, a combined experimental and modeling study of the ESR of a single hydrogenated Ti atom that is exchange-coupled to a Fe adatom positioned 0.6-0.8 nm away by means of atom manipulation is presented. Continuous wave and pulsed ESR of the Ti spin show a Rabi rate with two contributions, one from the tip and the other from the Fe, whose spin interactions with Ti are modulated by the radio-frequency electric field. The Fe contribution is comparable to the tip, as revealed by its dominance when the tip is retracted, and tunable using a vector magnetic field. The new ESR scheme allows on-surface individual spins to be addressed and coherently controlled without the need for magnetic interaction with a tip. This study establishes a feasible implementation of spin-based multi-qubit systems on surfaces.
Collapse
Affiliation(s)
- Soo‐hyon Phark
- Center for Quantum NanoscienceInstitute for Basic Science (IBS)Seoul03760Republic of Korea
- Department of PhysicsEwha Womans UniversitySeoul03760Republic of Korea
- IBM Research DivisionAlmaden Research CenterSan JoseCA95120USA
| | - Hong Thi Bui
- Center for Quantum NanoscienceInstitute for Basic Science (IBS)Seoul03760Republic of Korea
- Department of PhysicsEwha Womans UniversitySeoul03760Republic of Korea
| | - Alejandro Ferrón
- Instituto de Modelado e Innovación Tecnológica (CONICET‐UNNE) and Facultad de Ciencias ExactasNaturales y AgrimensuraUniversidad Nacional del NordesteAvenida Libertad 5400CorrientesW3404AASArgentina
| | | | - Jose Reina‐Gálvez
- Center for Quantum NanoscienceInstitute for Basic Science (IBS)Seoul03760Republic of Korea
- Department of PhysicsEwha Womans UniversitySeoul03760Republic of Korea
| | - Christoph Wolf
- Center for Quantum NanoscienceInstitute for Basic Science (IBS)Seoul03760Republic of Korea
- Department of PhysicsEwha Womans UniversitySeoul03760Republic of Korea
| | - Yu Wang
- Center for Quantum NanoscienceInstitute for Basic Science (IBS)Seoul03760Republic of Korea
- Department of PhysicsEwha Womans UniversitySeoul03760Republic of Korea
| | - Kai Yang
- IBM Research DivisionAlmaden Research CenterSan JoseCA95120USA
- Beijing National Laboratory for Condensed Matter Physics and Institute of PhysicsChinese Academy of SciencesBeijing100864China
| | - Andreas J. Heinrich
- Center for Quantum NanoscienceInstitute for Basic Science (IBS)Seoul03760Republic of Korea
- Department of PhysicsEwha Womans UniversitySeoul03760Republic of Korea
| | | |
Collapse
|
14
|
Phark SH, Chen Y, Bui HT, Wang Y, Haze M, Kim J, Bae Y, Heinrich AJ, Wolf C. Double-Resonance Spectroscopy of Coupled Electron Spins on a Surface. ACS NANO 2023. [PMID: 37406167 DOI: 10.1021/acsnano.3c04754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Scanning-tunneling microscopy (STM) combined with electron spin resonance (ESR) has enabled single-spin spectroscopy with nanoelectronvolt energy resolution and angstrom-scale spatial resolution, which allows quantum sensing and magnetic resonance imaging at the atomic scale. Extending this spectroscopic tool to a study of multiple spins, however, is nontrivial due to the extreme locality of the STM tunnel junction. Here we demonstrate double electron-electron spin resonance spectroscopy in an STM for two coupled atomic spins by simultaneously and independently driving them using two continuous-wave radio frequency voltages. We show the ability to drive and detect the resonance of a spin that is remote from the tunnel junction while read-out is achieved via the spin in the tunnel junction. Open quantum system simulations for two coupled spins reproduce all double-resonance spectra and further reveal a relaxation time of the remote spin that is longer by an order of magnitude than that of the local spin in the tunnel junction. Our technique can be applied to quantum-coherent multi-spin sensing, simulation, and manipulation in engineered spin structures on surfaces.
Collapse
Affiliation(s)
- Soo-Hyon Phark
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Korea
- Ewha Womans University, Seoul 03760, Korea
| | - Yi Chen
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Korea
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Hong T Bui
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Korea
- Department of Physics, Ewha Womans University, Seoul 03760, Korea
| | - Yu Wang
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Korea
- Ewha Womans University, Seoul 03760, Korea
| | - Masahiro Haze
- The Institute for Solid State Physics, University of Tokyo, Kashiwa 277-8581, Japan
| | - Jinkyung Kim
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Korea
- Department of Physics, Ewha Womans University, Seoul 03760, Korea
| | - Yujeong Bae
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Korea
- Department of Physics, Ewha Womans University, Seoul 03760, Korea
| | - Andreas J Heinrich
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Korea
- Department of Physics, Ewha Womans University, Seoul 03760, Korea
| | - Christoph Wolf
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Korea
- Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
15
|
Taran G, Moreno-Pineda E, Schulze M, Bonet E, Ruben M, Wernsdorfer W. Direct determination of high-order transverse ligand field parameters via µSQUID-EPR in a Et 4N[ 160GdPc 2] SMM. Nat Commun 2023; 14:3361. [PMID: 37291099 DOI: 10.1038/s41467-023-39003-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 05/25/2023] [Indexed: 06/10/2023] Open
Abstract
The development of quantum technologies requires a thorough understanding of systems possessing quantum effects that can ultimately be manipulated. In the field of molecular magnetism, one of the main challenges is to measure high-order ligand field parameters, which play an essential role in the relaxation properties of SMMs. The development of highly advanced theoretical calculations has allowed the ab-initio determination of such parameters; however, currently, there is a lack of quantitative assessment of how good the ab-initio parameters are. In our quest for technologies that can allow the extraction of such elusive parameters, we develop an experimental technique that combines the EPR spectroscopy and µSQUID magnetometry. We demonstrate the power of the technique by performing EPR-µSQUID measurement of a magnetically diluted single crystal of Et4N[GdPc2], by sweeping the magnetic field and applying a range of multifrequency microwave pulses. As a result, we were able to directly determine the high-order ligand field parameters of the system, enabling us to test theoretical predictions made by state-of-the-art ab-initio methods.
Collapse
Affiliation(s)
- Gheorghe Taran
- Physikalisches Institut, Karlsruhe Institute of Technology, D-76131, Karlsruhe, Germany
| | - Eufemio Moreno-Pineda
- Depto. de Química-Física, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Panamá, Panamá.
- Grupo de Investigación de Materiales, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Panamá, Panamá.
| | - Michael Schulze
- Physikalisches Institut, Karlsruhe Institute of Technology, D-76131, Karlsruhe, Germany
| | - Edgar Bonet
- Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, Grenoble, 38000, France
| | - Mario Ruben
- Centre Européen de Sciences Quantiques (CESQ) within the Institut de Science et d'Ingénierie Supramoléculaires (ISIS), 8 allée Gaspard Monge, BP 70028, 67083, Strasbourg Cedex, France.
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Plats 1, D-76344, Eggenstein-Leopoldshafen, Germany.
- Institute for Quantum Materials and Technology (IQMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany.
| | - Wolfgang Wernsdorfer
- Physikalisches Institut, Karlsruhe Institute of Technology, D-76131, Karlsruhe, Germany.
- Institute for Quantum Materials and Technology (IQMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
16
|
Liang K, Bi L, Zhu Q, Zhou H, Li S. Ultrafast Dynamics Revealed with Time-Resolved Scanning Tunneling Microscopy: A Review. ACS APPLIED OPTICAL MATERIALS 2023; 1:924-938. [PMID: 37260467 PMCID: PMC10227725 DOI: 10.1021/acsaom.2c00169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/23/2023] [Indexed: 06/02/2023]
Abstract
A scanning tunneling microscope (STM) capable of performing pump-probe spectroscopy integrates unmatched atomic-scale resolution with high temporal resolution. In recent years, the union of electronic, terahertz, or visible/near-infrared pulses with STM has contributed to our understanding of the atomic-scale processes that happen between milliseconds and attoseconds. This time-resolved STM (TR-STM) technique is evolving into an unparalleled approach for exploring the ultrafast nuclear, electronic, or spin dynamics of molecules, low-dimensional structures, and material surfaces. Here, we review the recent advancements in TR-STM; survey its application in measuring the dynamics of three distinct systems, nucleus, electron, and spin; and report the studies on these transient processes in a series of materials. Besides the discussion on state-of-the-art techniques, we also highlight several emerging research topics about the ultrafast processes in nanoscale objects where we anticipate that the TR-STM can help broaden our knowledge.
Collapse
Affiliation(s)
- Kangkai Liang
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093-0309, United States
- Materials
Science and Engineering Program, University
of California, San Diego, La Jolla, California 92093-0418, United States
| | - Liya Bi
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093-0309, United States
- Materials
Science and Engineering Program, University
of California, San Diego, La Jolla, California 92093-0418, United States
| | - Qingyi Zhu
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093-0309, United States
| | - Hao Zhou
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093-0309, United States
- Materials
Science and Engineering Program, University
of California, San Diego, La Jolla, California 92093-0418, United States
| | - Shaowei Li
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093-0309, United States
- Materials
Science and Engineering Program, University
of California, San Diego, La Jolla, California 92093-0418, United States
| |
Collapse
|
17
|
Hao D, Wang Y, Tang X, Zhao X, An Y, Wang W, Li J, Shan X, Lu X. Geometrical and magnetic properties of small titanium and chromium clusters on monolayer hexagonal boron nitride. Phys Chem Chem Phys 2023; 25:6079-6088. [PMID: 36752046 DOI: 10.1039/d2cp05638k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Magnetic clusters on an insulating substrate are potential candidates for spin-based quantum devices. Here we investigate the geometric, electronic, and magnetic structures of small Ti and Cr clusters, from dimers to pentamers, adsorbed on a single-layer hexagonal boron nitride (h-BN) sheet within the framework of density functional theory. The stable adsorption configurations of the Ti clusters and Cr clusters composed of the same number of atoms are found to be totally different from each other. The difference in their bonding mechanisms has been revealed by the density of states and the charge density difference of the corresponding adsorption systems. While chemical bonds are formed between the Ti atoms and the supporting sheet, the Cr clusters are found in the physisorption state on the substrate. In addition, it is shown that the h-BN sheet is energetically favorable for building three-dimensional Ti clusters. These findings support the use of h-BN as a suitable decoupling substrate for manipulation of quantum spin states in small transition metal (TM) clusters and fabrication of devices based on them.
Collapse
Affiliation(s)
- Dong Hao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. .,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Yueyi Wang
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Xiangqian Tang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. .,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Xinjia Zhao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
| | - Yang An
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. .,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Wenyu Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. .,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Jianmei Li
- Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao, Heibei 066004, China
| | - Xinyan Shan
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. .,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China.,Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Xinghua Lu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. .,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China.,Collaborative Innovation Center of Quantum Matter, Beijing 100190, China.,Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
18
|
Kawaguchi R, Hashimoto K, Kakudate T, Katoh K, Yamashita M, Komeda T. Spatially Resolving Electron Spin Resonance of π-Radical in Single-molecule Magnet. NANO LETTERS 2023; 23:213-219. [PMID: 36585948 PMCID: PMC9838557 DOI: 10.1021/acs.nanolett.2c04049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/27/2022] [Indexed: 06/17/2023]
Abstract
The spintronic properties of magnetic molecules have attracted significant scientific attention. Special emphasis has been placed on the qubit for quantum information processing. The single-molecule magnet bis(phthalocyaninato (Pc)) Tb(III) (TbPc2) is one of the best examined cases in which the delocalized π-radical electron spin of the Pc ligand plays the key role in reading and intermediating the localized Tb spin qubits. We utilized the electron spin resonance (ESR) technique implemented on a scanning tunneling microscope (STM) and use it to measure local the ESR of a single TbPc2 molecule decoupled from the Cu(100) substrate by a two-monolayer NaCl film to identify the π-radical spin. We detected the ESR signal at the ligand positions under the resonance condition expected for an S = 1/2 spin. The results reveal that the π-radical electron is delocalized within the ligands and exhibits intramolecular coupling susceptible to the chemical environment.
Collapse
Affiliation(s)
- Ryo Kawaguchi
- Institute
of Multidisciplinary Research for Advanced Materials (IMRAM, Tagen), Tohoku University, Sendai980-0877, Japan
| | - Katsushi Hashimoto
- Department
of Physics, Graduate School of Sciences, Tohoku University, Sendai980-8578, Japan
- Center
for Science and Innovation in Spintronics (Core Research Cluster), Tohoku University, Sendai980-8577, Japan
| | - Toshiyuki Kakudate
- Department
of Industrial Systems Engineering, National
Institute of Technology (KOSEN), Hachinohe
College, 16-1 Uwanotai, Tamonoki, Hachinohe039-1192, Japan
| | - Keiichi Katoh
- Department
of Chemistry, Graduate School of Science, Josai University, Sakado, Saitama350-0295, Japan
| | - Masahiro Yamashita
- Department
of Chemistry, Graduate School of Science, Tohoku University, Sendai980-8578, Japan
- School
of Materials Science and Engineering, Nankai
University, Tianjin300350, People’s Republic of China
| | - Tadahiro Komeda
- Institute
of Multidisciplinary Research for Advanced Materials (IMRAM, Tagen), Tohoku University, Sendai980-0877, Japan
- Center
for Science and Innovation in Spintronics (Core Research Cluster), Tohoku University, Sendai980-8577, Japan
| |
Collapse
|
19
|
Kim J, Noh K, Chen Y, Donati F, Heinrich AJ, Wolf C, Bae Y. Anisotropic Hyperfine Interaction of Surface-Adsorbed Single Atoms. NANO LETTERS 2022; 22:9766-9772. [PMID: 36317830 PMCID: PMC9756343 DOI: 10.1021/acs.nanolett.2c02782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Hyperfine interactions have been widely used in material science, organic chemistry, and structural biology as a sensitive probe to local chemical environments. However, traditional ensemble measurements of hyperfine interactions average over a macroscopic number of spins with different geometrical locations and nuclear isotopes. Here, we use a scanning tunneling microscope (STM) combined with electron spin resonance (ESR) to measure hyperfine spectra of hydrogenated-Ti on MgO/Ag(100) at low-symmetry binding sites and thereby determine the isotropic and anisotropic hyperfine interactions at the single-atom level. Combining vector-field ESR spectroscopy with STM-based atom manipulation, we characterize the full hyperfine tensors of 47Ti and 49Ti and identify significant spatial anisotropy of the hyperfine interactions for both isotopes. Density functional theory calculations reveal that the large hyperfine anisotropy arises from highly anisotropic distributions of the ground-state electron spin density. Our work highlights the power of ESR-STM-enabled single-atom hyperfine spectroscopy in revealing electronic ground states and atomic-scale chemical environments.
Collapse
Affiliation(s)
- Jinkyung Kim
- Center
for Quantum Nanoscience (QNS), Institute
for Basic Science (IBS), Seoul 03760, South Korea
- Department
of Physics, Ewha Womans University, Seoul 03760, South Korea
| | - Kyungju Noh
- Center
for Quantum Nanoscience (QNS), Institute
for Basic Science (IBS), Seoul 03760, South Korea
- Department
of Physics, Ewha Womans University, Seoul 03760, South Korea
| | - Yi Chen
- Center
for Quantum Nanoscience (QNS), Institute
for Basic Science (IBS), Seoul 03760, South Korea
- Ewha
Womans University, Seoul 03760, Republic of Korea
| | - Fabio Donati
- Center
for Quantum Nanoscience (QNS), Institute
for Basic Science (IBS), Seoul 03760, South Korea
- Department
of Physics, Ewha Womans University, Seoul 03760, South Korea
| | - Andreas J. Heinrich
- Center
for Quantum Nanoscience (QNS), Institute
for Basic Science (IBS), Seoul 03760, South Korea
- Department
of Physics, Ewha Womans University, Seoul 03760, South Korea
| | - Christoph Wolf
- Center
for Quantum Nanoscience (QNS), Institute
for Basic Science (IBS), Seoul 03760, South Korea
- Ewha
Womans University, Seoul 03760, Republic of Korea
| | - Yujeong Bae
- Center
for Quantum Nanoscience (QNS), Institute
for Basic Science (IBS), Seoul 03760, South Korea
- Department
of Physics, Ewha Womans University, Seoul 03760, South Korea
| |
Collapse
|
20
|
Hwang J, Krylov D, Elbertse R, Yoon S, Ahn T, Oh J, Fang L, Jang WJ, Cho FH, Heinrich AJ, Bae Y. Development of a scanning tunneling microscope for variable temperature electron spin resonance. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:093703. [PMID: 36182474 DOI: 10.1063/5.0096081] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/12/2022] [Indexed: 06/16/2023]
Abstract
Recent advances in improving the spectroscopic energy resolution in scanning tunneling microscopy (STM) have been achieved by integrating electron spin resonance (ESR) with STM. Here, we demonstrate the design and performance of a homebuilt STM capable of ESR at temperatures ranging from 1 to 10 K. The STM is incorporated with a homebuilt Joule-Thomson refrigerator and a two-axis vector magnet. Our STM design allows for the deposition of atoms and molecules directly into the cold STM, eliminating the need to extract the sample for deposition. In addition, we adopt two methods to apply radio-frequency (RF) voltages to the tunnel junction: the early design of wiring to the STM tip directly and a more recent idea to use an RF antenna. Direct comparisons of ESR results measured using the two methods and simulations of electric field distribution around the tunnel junction show that, despite their different designs and capacitive coupling to the tunnel junction, there is no discernible difference in the driving and detection of ESR. Furthermore, at a magnetic field of ∼1.6 T, we observe ESR signals (near 40 GHz) sustained up to 10 K, which is the highest temperature for ESR-STM measurement reported to date, to the best of our knowledge. Although the ESR intensity exponentially decreases with increasing temperature, our ESR-STM system with low noise at the tunnel junction allows us to measure weak ESR signals with intensities of a few fA. Our new design of an ESR-STM system, which is operational in a large frequency and temperature range, can broaden the use of ESR spectroscopy in STM and enable the simple modification of existing STM systems, which will hopefully accelerate a generalized use of ESR-STM.
Collapse
Affiliation(s)
- Jiyoon Hwang
- Center for Quantum Nanoscience, Institute for Basic Science, Seoul 03760, South Korea
| | - Denis Krylov
- Center for Quantum Nanoscience, Institute for Basic Science, Seoul 03760, South Korea
| | - Robbie Elbertse
- Department of Quantum Nanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, Delft 2628 CJ, The Netherlands
| | - Sangwon Yoon
- Center for Quantum Nanoscience, Institute for Basic Science, Seoul 03760, South Korea
| | - Taehong Ahn
- Center for Quantum Nanoscience, Institute for Basic Science, Seoul 03760, South Korea
| | - Jeongmin Oh
- Center for Quantum Nanoscience, Institute for Basic Science, Seoul 03760, South Korea
| | - Lei Fang
- Center for Quantum Nanoscience, Institute for Basic Science, Seoul 03760, South Korea
| | - Won-Jun Jang
- Samsung Advanced Institute of Technology, Suwon 13595, South Korea
| | - Franklin H Cho
- Center for Quantum Nanoscience, Institute for Basic Science, Seoul 03760, South Korea
| | - Andreas J Heinrich
- Center for Quantum Nanoscience, Institute for Basic Science, Seoul 03760, South Korea
| | - Yujeong Bae
- Center for Quantum Nanoscience, Institute for Basic Science, Seoul 03760, South Korea
| |
Collapse
|
21
|
Shehada S, Dos Santos Dias M, Abusaa M, Lounis S. Interplay of magnetic states and hyperfine fields of iron dimers on MgO(001). JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:385802. [PMID: 35835084 DOI: 10.1088/1361-648x/ac8135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Individual nuclear spin states can have very long lifetimes and could be useful as qubits. Progress in this direction was achieved on MgO/Ag(001) via detection of the hyperfine interaction (HFI) of Fe, Ti and Cu adatoms using scanning tunneling microscopy. Previously, we systematically quantified from first-principles the HFI for the whole series of 3d transition adatoms (Sc-Cu) deposited on various ultra-thin insulators, establishing the trends of the computed HFI with respect to the filling of the magnetic s- and d-orbitals of the adatoms and on the bonding with the substrate. Here we explore the case of dimers by investigating the correlation between the HFI and the magnetic state of free standing Fe dimers, single Fe adatoms and dimers deposited on a bilayer of MgO(001). We find that the magnitude of the HFI can be controlled by switching the magnetic state of the dimers. For short Fe-Fe distances, the antiferromagnetic state enhances the HFI with respect to that of the ferromagnetic state. By increasing the distance between the magnetic atoms, a transition toward the opposite behavior is observed. Furthermore, we demonstrate the ability to substantially modify the HFI by atomic control of the location of the adatoms on the substrate. Our results establish the limits of applicability of the usual hyperfine hamiltonian and we propose an extension based on multiple scattering processes.
Collapse
Affiliation(s)
- Sufyan Shehada
- Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich & JARA, 52425 Jülich, Germany
- Department of Physics, RWTH Aachen University, 52056 Aachen, Germany
- Department of Physics, Arab American University, Jenin, Palestine
| | - Manuel Dos Santos Dias
- Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich & JARA, 52425 Jülich, Germany
- Faculty of Physics, University of Duisburg-Essen & CENIDE, 47053 Duisburg, Germany
| | - Muayad Abusaa
- Department of Physics, Arab American University, Jenin, Palestine
| | - Samir Lounis
- Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich & JARA, 52425 Jülich, Germany
- Faculty of Physics, University of Duisburg-Essen & CENIDE, 47053 Duisburg, Germany
| |
Collapse
|
22
|
Kovarik S, Robles R, Schlitz R, Seifert TS, Lorente N, Gambardella P, Stepanow S. Electron Paramagnetic Resonance of Alkali Metal Atoms and Dimers on Ultrathin MgO. NANO LETTERS 2022; 22:4176-4181. [PMID: 35512394 DOI: 10.1021/acs.nanolett.2c00980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electron paramagnetic resonance (EPR) can provide unique insight into the chemical structure and magnetic properties of dopants in oxide and semiconducting materials that are of interest for applications in electronics, catalysis, and quantum sensing. Here, we demonstrate that EPR in combination with scanning tunneling microscopy (STM) allows for probing the bonding and charge state of alkali metal atoms on an ultrathin magnesium oxide layer on a Ag substrate. We observe a magnetic moment of 1 μB for Li2, LiNa, and Na2 dimers corresponding to spin radicals with a charge state of +1e. Single alkali atoms have the same charge state and no magnetic moment. The ionization of the adsorbates is attributed to charge transfer through the oxide to the metal substrate. Our work highlights the potential of EPR-STM to provide insight into dopant atoms that are relevant for the control of the electrical properties of surfaces and nanodevices.
Collapse
Affiliation(s)
- Stepan Kovarik
- Department of Materials, ETH Zurich, Hönggerbergring 64, Zürich CH-8093, Switzerland
| | - Roberto Robles
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, San Sebastián 20018, Spain
| | - Richard Schlitz
- Department of Materials, ETH Zurich, Hönggerbergring 64, Zürich CH-8093, Switzerland
| | - Tom Sebastian Seifert
- Department of Materials, ETH Zurich, Hönggerbergring 64, Zürich CH-8093, Switzerland
- Department of Physics, Freie Universität Berlin, Berlin 14195, Germany
| | - Nicolas Lorente
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, San Sebastián 20018, Spain
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, San Sebastián 20018, Spain
| | - Pietro Gambardella
- Department of Materials, ETH Zurich, Hönggerbergring 64, Zürich CH-8093, Switzerland
| | - Sebastian Stepanow
- Department of Materials, ETH Zurich, Hönggerbergring 64, Zürich CH-8093, Switzerland
| |
Collapse
|
23
|
Drost R, Uhl M, Kot P, Siebrecht J, Schmid A, Merkt J, Wünsch S, Siegel M, Kieler O, Kleiner R, Ast CR. Combining electron spin resonance spectroscopy with scanning tunneling microscopy at high magnetic fields. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:043705. [PMID: 35489929 DOI: 10.1063/5.0078137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
The continuous increase in storage densities and the desire for quantum memories and computers push the limits of magnetic characterization techniques. Ultimately, a tool that is capable of coherently manipulating and detecting individual quantum spins is needed. Scanning tunneling microscopy (STM) is the only technique that unites the prerequisites of high spatial and energy resolution, low temperature, and high magnetic fields to achieve this goal. Limitations in the available frequency range for electron spin resonance STM (ESR-STM) mean that many instruments operate in the thermal noise regime. We resolve challenges in signal delivery to extend the operational frequency range of ESR-STM by more than a factor of two and up to 100 GHz, making the Zeeman energy the dominant energy scale at achievable cryogenic temperatures of a few hundred millikelvin. We present a general method for augmenting existing instruments into ESR-STM to investigate spin dynamics in the high-field limit. We demonstrate the performance of the instrument by analyzing inelastic tunneling in a junction driven by a microwave signal and provide proof of principle measurements for ESR-STM.
Collapse
Affiliation(s)
- Robert Drost
- Max-Planck-Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Maximilian Uhl
- Max-Planck-Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Piotr Kot
- Max-Planck-Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Janis Siebrecht
- Max-Planck-Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Alexander Schmid
- Institut für Mikro- und Nanoelektronische Systeme, Karlsruhe Institute of Technology, Hertzstr. 16, 76187 Karlsruhe, Germany
| | - Jonas Merkt
- Institut für Mikro- und Nanoelektronische Systeme, Karlsruhe Institute of Technology, Hertzstr. 16, 76187 Karlsruhe, Germany
| | - Stefan Wünsch
- Institut für Mikro- und Nanoelektronische Systeme, Karlsruhe Institute of Technology, Hertzstr. 16, 76187 Karlsruhe, Germany
| | - Michael Siegel
- Institut für Mikro- und Nanoelektronische Systeme, Karlsruhe Institute of Technology, Hertzstr. 16, 76187 Karlsruhe, Germany
| | - Oliver Kieler
- Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany
| | - Reinhold Kleiner
- Physikalisches Institut, Center for Quantum Science (CQ) and LISA, Universität Tübingen, 72076 Tübingen, Germany
| | - Christian R Ast
- Max-Planck-Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| |
Collapse
|
24
|
Zhang X, Wolf C, Wang Y, Aubin H, Bilgeri T, Willke P, Heinrich AJ, Choi T. Electron spin resonance of single iron phthalocyanine molecules and role of their non-localized spins in magnetic interactions. Nat Chem 2021; 14:59-65. [PMID: 34764471 DOI: 10.1038/s41557-021-00827-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 09/27/2021] [Indexed: 11/09/2022]
Abstract
Electron spin resonance (ESR) spectroscopy is a crucial tool, through spin labelling, in investigations of the chemical structure of materials and of the electronic structure of materials associated with unpaired spins. ESR spectra measured in molecular systems, however, are established on large ensembles of spins and usually require a complicated structural analysis. Recently, the combination of scanning tunnelling microscopy with ESR has proved to be a powerful tool to image and coherently control individual atomic spins on surfaces. Here we extend this technique to single coordination complexes-iron phthalocyanines (FePc)-and investigate the magnetic interactions between their molecular spin with either another molecular spin (in FePc-FePc dimers) or an atomic spin (in FePc-Ti pairs). We show that the molecular spin density of FePc is both localized at the central Fe atom and also distributed to the ligands (Pc), which yields a strongly molecular-geometry-dependent exchange coupling.
Collapse
Affiliation(s)
- Xue Zhang
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul, Republic of Korea.,Ewha Womans University, Seoul, Republic of Korea
| | - Christoph Wolf
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul, Republic of Korea.,Ewha Womans University, Seoul, Republic of Korea
| | - Yu Wang
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul, Republic of Korea.,Ewha Womans University, Seoul, Republic of Korea
| | - Hervé Aubin
- Universités Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, Palaiseau, France
| | - Tobias Bilgeri
- Institute of Physics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Philip Willke
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul, Republic of Korea.,Ewha Womans University, Seoul, Republic of Korea.,Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Andreas J Heinrich
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul, Republic of Korea. .,Department of Physics, Ewha Womans University, Seoul, Republic of Korea.
| | - Taeyoung Choi
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul, Republic of Korea. .,Department of Physics, Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|
25
|
Lohmann SH, Cai T, Morrow DJ, Chen O, Ma X. Brightening of Dark States in CsPbBr 3 Quantum Dots Caused by Light-Induced Magnetism. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101527. [PMID: 34369068 DOI: 10.1002/smll.202101527] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/18/2021] [Indexed: 06/13/2023]
Abstract
Lead halide perovskite quantum dots (QDs) have shown great potential for optoelectronic and quantum photonic applications. Although controversy remains about the electronic fine structures of bulk perovskites due to the strong spin-orbit coupling affecting the conduction bands, compelling evidence indicates that the ground states of perovskite QDs remain dark, limiting their applications in optoelectronic devices. Here, it is demonstrated that photoexcitation can induce large intrinsic magnetic fields in Mn-doped CsPbBr3 perovskite QDs. Equivalent to applying an external magnetic field, the light-induced field causes giant Zeeman splitting to the bright triplet states and brightens the dark singlet ground state, thus effectively rendering a partially bright ground state in the doped QDs. These findings here may contribute to the understanding of the electronic fine structures in perovskite QDs and demonstrate a potential approach for creating semiconductor nanostructures that can serve as bright light sources.
Collapse
Affiliation(s)
- Sven-Hendrik Lohmann
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Tong Cai
- Department of Chemistry, Brown University, Providence, RI, 02912, USA
| | - Darien J Morrow
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Ou Chen
- Department of Chemistry, Brown University, Providence, RI, 02912, USA
| | - Xuedan Ma
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, 60439, USA
- Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
26
|
Veldman LM, Farinacci L, Rejali R, Broekhoven R, Gobeil J, Coffey D, Ternes M, Otte AF. Free coherent evolution of a coupled atomic spin system initialized by electron scattering. Science 2021; 372:964-968. [PMID: 34045351 DOI: 10.1126/science.abg8223] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/19/2021] [Accepted: 04/23/2021] [Indexed: 11/02/2022]
Abstract
Full insight into the dynamics of a coupled quantum system depends on the ability to follow the effect of a local excitation in real-time. Here, we trace the free coherent evolution of a pair of coupled atomic spins by means of scanning tunneling microscopy. Rather than using microwave pulses, we use a direct-current pump-probe scheme to detect the local magnetization after a current-induced excitation performed on one of the spins. By making use of magnetic interaction with the probe tip, we are able to tune the relative precession of the spins. We show that only if their Larmor frequencies match, the two spins can entangle, causing angular momentum to be swapped back and forth. These results provide insight into the locality of electron spin scattering and set the stage for controlled migration of a quantum state through an extended spin lattice.
Collapse
Affiliation(s)
- Lukas M Veldman
- Department of Quantum Nanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, the Netherlands
| | - Laëtitia Farinacci
- Department of Quantum Nanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, the Netherlands
| | - Rasa Rejali
- Department of Quantum Nanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, the Netherlands
| | - Rik Broekhoven
- Department of Quantum Nanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, the Netherlands
| | - Jérémie Gobeil
- Department of Quantum Nanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, the Netherlands
| | - David Coffey
- Department of Quantum Nanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, the Netherlands
| | - Markus Ternes
- RWTH Aachen University, Institute of Physics, D-52074 Aachen, Germany.,Peter-Grünberg-Institute, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Alexander F Otte
- Department of Quantum Nanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, the Netherlands.
| |
Collapse
|
27
|
van Weerdenburg WMJ, Steinbrecher M, van Mullekom NPE, Gerritsen JW, von Allwörden H, Natterer FD, Khajetoorians AA. A scanning tunneling microscope capable of electron spin resonance and pump-probe spectroscopy at mK temperature and in vector magnetic field. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:033906. [PMID: 33820009 DOI: 10.1063/5.0040011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
In the last decade, detecting spin dynamics at the atomic scale has been enabled by combining techniques such as electron spin resonance (ESR) or pump-probe spectroscopy with scanning tunneling microscopy (STM). Here, we demonstrate an ultra-high vacuum STM operational at milliKelvin (mK) temperatures and in a vector magnetic field capable of both ESR and pump-probe spectroscopy. By implementing GHz compatible cabling, we achieve appreciable RF amplitudes at the junction while maintaining the mK base temperature and high energy resolution. We demonstrate the successful operation of our setup by utilizing two experimental ESR modes (frequency sweep and magnetic field sweep) on an individual TiH molecule on MgO/Ag(100) and extract the effective g-factor. We trace the ESR transitions down to MHz into an unprecedented low frequency band enabled by the mK base temperature. We also implement an all-electrical pump-probe scheme based on waveform sequencing suited for studying dynamics down to the nanoseconds range. We benchmark our system by detecting the spin relaxation time T1 of individual Fe atoms on MgO/Ag(100) and note a field strength and orientation dependent relaxation time.
Collapse
Affiliation(s)
| | - Manuel Steinbrecher
- Institute for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - Niels P E van Mullekom
- Institute for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - Jan W Gerritsen
- Institute for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - Henning von Allwörden
- Institute for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - Fabian D Natterer
- Department of Physics, University of Zurich, CH-8057 Zurich, Switzerland
| | | |
Collapse
|
28
|
Probing resonating valence bond states in artificial quantum magnets. Nat Commun 2021; 12:993. [PMID: 33579921 PMCID: PMC7881118 DOI: 10.1038/s41467-021-21274-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/15/2021] [Indexed: 11/08/2022] Open
Abstract
Designing and characterizing the many-body behaviors of quantum materials represents a prominent challenge for understanding strongly correlated physics and quantum information processing. We constructed artificial quantum magnets on a surface by using spin-1/2 atoms in a scanning tunneling microscope (STM). These coupled spins feature strong quantum fluctuations due to antiferromagnetic exchange interactions between neighboring atoms. To characterize the resulting collective magnetic states and their energy levels, we performed electron spin resonance on individual atoms within each quantum magnet. This gives atomic-scale access to properties of the exotic quantum many-body states, such as a finite-size realization of a resonating valence bond state. The tunable atomic-scale magnetic field from the STM tip allows us to further characterize and engineer the quantum states. These results open a new avenue to designing and exploring quantum magnets at the atomic scale for applications in spintronics and quantum simulations. The resonating valence bond state is a spin-liquid state where spins continuously alter their singlet partners. Here Yang et al. use spin-1/2 atoms precision-placed by a scanning tunnelling microscope to create artificial quantum magnets exhibiting the resonating valence bond state.
Collapse
|
29
|
McMillan SR, Harmon NJ, Flatté ME. Image of Dynamic Local Exchange Interactions in the dc Magnetoresistance of Spin-Polarized Current through a Dopant. PHYSICAL REVIEW LETTERS 2020; 125:257203. [PMID: 33416385 DOI: 10.1103/physrevlett.125.257203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/15/2020] [Accepted: 11/10/2020] [Indexed: 06/12/2023]
Abstract
We predict strong, dynamical effects in the dc magnetoresistance of current flowing from a spin-polarized electrical contact through a magnetic dopant in a nonmagnetic host. Using the stochastic Liouville formalism we calculate clearly defined resonances in the dc magnetoresistance when the applied magnetic field matches the exchange interaction with a nearby spin. At these resonances spin precession in the applied magnetic field is canceled by spin evolution in the exchange field, preserving a dynamic bottleneck for spin transport through the dopant. Similar features emerge when the dopant spin is coupled to nearby nuclei through the hyperfine interaction. These features provide a precise means of measuring exchange or hyperfine couplings between localized spins near a surface using spin-polarized scanning tunneling microscopy, without any ac electric or magnetic fields, even when the exchange or hyperfine energy is orders of magnitude smaller than the thermal energy.
Collapse
Affiliation(s)
- Stephen R McMillan
- Optical Science and Technology Center, and Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Nicholas J Harmon
- Optical Science and Technology Center, and Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242, USA
| | - Michael E Flatté
- Optical Science and Technology Center, and Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
- Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands
| |
Collapse
|
30
|
Seifert TS, Kovarik S, Juraschek DM, Spaldin NA, Gambardella P, Stepanow S. Longitudinal and transverse electron paramagnetic resonance in a scanning tunneling microscope. SCIENCE ADVANCES 2020; 6:eabc5511. [PMID: 32998882 PMCID: PMC7527223 DOI: 10.1126/sciadv.abc5511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy is widely used to characterize paramagnetic complexes. Recently, EPR combined with scanning tunneling microscopy (STM) achieved single-spin sensitivity with sub-angstrom spatial resolution. The excitation mechanism of EPR in STM, however, is broadly debated, raising concerns about widespread application of this technique. We present an extensive experimental study and modeling of EPR-STM of Fe and hydrogenated Ti atoms on a MgO surface. Our results support a piezoelectric coupling mechanism, in which the EPR species oscillate adiabatically in the inhomogeneous magnetic field of the STM tip. An analysis based on Bloch equations combined with atomic-multiplet calculations identifies different EPR driving forces. Specifically, transverse magnetic field gradients drive the spin-1/2 hydrogenated Ti, whereas longitudinal magnetic field gradients drive the spin-2 Fe. Also, our results highlight the potential of piezoelectric coupling to induce electric dipole moments, thereby broadening the scope of EPR-STM to nonpolar species and nonlinear excitation schemes.
Collapse
Affiliation(s)
- Tom S Seifert
- Department of Materials, ETH Zürich, 8093 Zürich, Switzerland.
| | - Stepan Kovarik
- Department of Materials, ETH Zürich, 8093 Zürich, Switzerland
| | - Dominik M Juraschek
- Department of Materials, ETH Zürich, 8093 Zürich, Switzerland
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | | | | | | |
Collapse
|
31
|
Jackson CE, Lin CY, van Tol J, Zadrozny JM. Orientation dependence of phase memory relaxation in the V(IV) ion at high frequencies. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2019.137034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Jiang Y, Wei Y, Wang Y, Ngeywo KT, Hu Y, Wang S, Pang K, Zhang G, Li W, Jiang Y. Perfect Spin Filtering in Homobimetallic Ni Complex with High Tolerance to Structural Changes. J Phys Chem Lett 2019; 10:7842-7849. [PMID: 31779311 DOI: 10.1021/acs.jpclett.9b02954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In the theory of ligand fields, depending on the nature and field strength of the surrounding ligands, the central metal ion may exhibit different electronic configurations, low spin (LS) or high spin (HS). Realizing stable spin polarization is one of the main challenges in the field of molecular spintronic devices because of spin switching triggered by an external stimulus. Here, an asymmetric homobimetallic complex has been investigated using the nonequilibrium Green's function and spin density functional theory. Our calculations indicate that the homobimetallic complex can achieve negative differential resistance, rectification effect, and perfect spin filtering transport on the level of an individual molecule. Strikingly, when the molecule is stretched by 0.45 Å, the HS state is still the most stable because of the weak magnetic Ni-Ni interaction. Although its conductivity decreases by 30%, the efficiency of spin filtering remains 100%. These obtained theoretical findings suggest that the homobimetallic complexes hold great potential in molecular spintronics.
Collapse
Affiliation(s)
- Yingjie Jiang
- School of Materials Science and Engineering , Harbin University of Science and Technology , Harbin 150080 , China
- School of Physics , Harbin Institute of Technology , Harbin 150001 , China
| | - Yadong Wei
- School of Physics , Harbin Institute of Technology , Harbin 150001 , China
| | - Yuxiu Wang
- School of Materials Science and Engineering , Harbin University of Science and Technology , Harbin 150080 , China
| | | | - Yangyang Hu
- Key Laboratory of Green Chemical Technology of College of Heilongjiang Province, College of Chemical and Environmental Engineering , Harbin University of Science and Technology , Harbin 150080 , China
| | - Songsong Wang
- School of Physics , Harbin Institute of Technology , Harbin 150001 , China
| | - Kaijuan Pang
- School of Physics , Harbin Institute of Technology , Harbin 150001 , China
| | - Guiling Zhang
- School of Materials Science and Engineering , Harbin University of Science and Technology , Harbin 150080 , China
- Key Laboratory of Green Chemical Technology of College of Heilongjiang Province, College of Chemical and Environmental Engineering , Harbin University of Science and Technology , Harbin 150080 , China
| | - Weiqi Li
- School of Physics , Harbin Institute of Technology , Harbin 150001 , China
| | - Yongyuan Jiang
- School of Physics , Harbin Institute of Technology , Harbin 150001 , China
| |
Collapse
|
33
|
Willke P, Singha A, Zhang X, Esat T, Lutz CP, Heinrich AJ, Choi T. Tuning Single-Atom Electron Spin Resonance in a Vector Magnetic Field. NANO LETTERS 2019; 19:8201-8206. [PMID: 31661282 DOI: 10.1021/acs.nanolett.9b03559] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Spin resonance of single spin centers bears great potential for chemical structure analysis, quantum sensing, and quantum coherent manipulation. Essential for these experiments is the presence of a two-level spin system whose energy splitting can be chosen by applying a magnetic field. In recent years, a combination of electron spin resonance (ESR) and scanning tunneling microscopy (STM) has been demonstrated as a technique to detect magnetic properties of single atoms on surfaces and to achieve sub-microelectronvolts energy resolution. Nevertheless, up to now the role of the required magnetic fields has not been elucidated. Here, we perform single-atom ESR on individual Fe atoms adsorbed on magnesium oxide (MgO) using a two-dimensional vector magnetic field as well as the local field of the magnetic STM tip in a commercially available STM. We show how the ESR amplitude can be greatly improved by optimizing the magnetic fields, revealing in particular an enhanced signal at large in-plane magnetic fields. Moreover, we demonstrate that the stray field from the magnetic STM tip is a versatile tool. We use it here to drive the electron spin more efficiently and to perform ESR measurements at constant frequency by employing tip-field sweeps. Lastly, we show that it is possible to perform ESR using only the tip field, under zero external magnetic field, which promises to make this technique available in many existing STM systems.
Collapse
Affiliation(s)
- Philip Willke
- Center for Quantum Nanoscience , Institute for Basic Science (IBS) , Seoul 03760 , Republic of Korea
- Ewha Womans University , Seoul 03760 , Republic of Korea
| | - Aparajita Singha
- Center for Quantum Nanoscience , Institute for Basic Science (IBS) , Seoul 03760 , Republic of Korea
- Ewha Womans University , Seoul 03760 , Republic of Korea
| | - Xue Zhang
- Center for Quantum Nanoscience , Institute for Basic Science (IBS) , Seoul 03760 , Republic of Korea
- Ewha Womans University , Seoul 03760 , Republic of Korea
| | - Taner Esat
- Center for Quantum Nanoscience , Institute for Basic Science (IBS) , Seoul 03760 , Republic of Korea
- Ewha Womans University , Seoul 03760 , Republic of Korea
| | | | - Andreas J Heinrich
- Center for Quantum Nanoscience , Institute for Basic Science (IBS) , Seoul 03760 , Republic of Korea
- Department of Physics , Ewha Womans University , Seoul 03760 , Republic of Korea
| | - Taeyoung Choi
- Center for Quantum Nanoscience , Institute for Basic Science (IBS) , Seoul 03760 , Republic of Korea
- Department of Physics , Ewha Womans University , Seoul 03760 , Republic of Korea
| |
Collapse
|
34
|
Yang K, Paul W, Phark SH, Willke P, Bae Y, Choi T, Esat T, Ardavan A, Heinrich AJ, Lutz CP. Coherent spin manipulation of individual atoms on a surface. Science 2019; 366:509-512. [DOI: 10.1126/science.aay6779] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/01/2019] [Indexed: 11/03/2022]
Affiliation(s)
- Kai Yang
- IBM Almaden Research Center, San Jose, CA 95120, USA
| | - William Paul
- IBM Almaden Research Center, San Jose, CA 95120, USA
| | - Soo-Hyon Phark
- IBM Almaden Research Center, San Jose, CA 95120, USA
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Republic of Korea
- Department of Physics, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Philip Willke
- IBM Almaden Research Center, San Jose, CA 95120, USA
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Republic of Korea
- Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yujeong Bae
- IBM Almaden Research Center, San Jose, CA 95120, USA
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Republic of Korea
- Ewha Womans University, Seoul 03760, Republic of Korea
| | - Taeyoung Choi
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Republic of Korea
- Department of Physics, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Taner Esat
- IBM Almaden Research Center, San Jose, CA 95120, USA
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Republic of Korea
- Ewha Womans University, Seoul 03760, Republic of Korea
| | - Arzhang Ardavan
- CAESR, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Andreas J. Heinrich
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Republic of Korea
- Department of Physics, Ewha Womans University, Seoul 03760, Republic of Korea
| | | |
Collapse
|
35
|
Yang K, Paul W, Natterer FD, Lado JL, Bae Y, Willke P, Choi T, Ferrón A, Fernández-Rossier J, Heinrich AJ, Lutz CP. Tuning the Exchange Bias on a Single Atom from 1 mT to 10 T. PHYSICAL REVIEW LETTERS 2019; 122:227203. [PMID: 31283288 DOI: 10.1103/physrevlett.122.227203] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Indexed: 06/09/2023]
Abstract
Shrinking spintronic devices to the nanoscale ultimately requires localized control of individual atomic magnetic moments. At these length scales, the exchange interaction plays important roles, such as in the stabilization of spin-quantization axes, the production of spin frustration, and creation of magnetic ordering. Here, we demonstrate the precise control of the exchange bias experienced by a single atom on a surface, covering an energy range of 4 orders of magnitude. The exchange interaction is continuously tunable from milli-eV to micro-eV by adjusting the separation between a spin-1/2 atom on a surface and the magnetic tip of a scanning tunneling microscope. We seamlessly combine inelastic electron tunneling spectroscopy and electron spin resonance to map out the different energy scales. This control of exchange bias over a wide span of energies provides versatile control of spin states, with applications ranging from precise tuning of quantum state properties, to strong exchange bias for local spin doping. In addition, we show that a time-varying exchange interaction generates a localized ac magnetic field that resonantly drives the surface spin. The static and dynamic control of the exchange interaction at the atomic scale provides a new tool to tune the quantum states of coupled-spin systems.
Collapse
Affiliation(s)
- Kai Yang
- IBM Almaden Research Center, San Jose, California 95120, USA
| | - William Paul
- IBM Almaden Research Center, San Jose, California 95120, USA
| | - Fabian D Natterer
- IBM Almaden Research Center, San Jose, California 95120, USA
- Physik-Institut, University of Zurich, CH-8057 Zurich, Switzerland
| | - Jose L Lado
- Institute for Theoretical Physics, ETH Zurich, 8093 Zurich, Switzerland
| | - Yujeong Bae
- IBM Almaden Research Center, San Jose, California 95120, USA
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Republic of Korea
- Department of Physics, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Philip Willke
- IBM Almaden Research Center, San Jose, California 95120, USA
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Republic of Korea
- Department of Physics, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Taeyoung Choi
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Republic of Korea
- Department of Physics, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Alejandro Ferrón
- Instituto de Modelado e Innovación Tecnológica (CONICET-UNNE), and Facultad de Ciencias Exactas, Naturales y Agrimensura, Universidad Nacional del Nordeste, Avenida Libertad 5400, W3404AAS Corrientes, Argentina
| | - Joaquín Fernández-Rossier
- QuantaLab, International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga, 4715-310 Braga, Portugal
- Departamento de Física Aplicada, Universidad de Alicante, San Vicente del Raspeig 03690, Spain
| | - Andreas J Heinrich
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Republic of Korea
- Department of Physics, Ewha Womans University, Seoul 03760, Republic of Korea
| | | |
Collapse
|
36
|
Natterer FD, Patthey F, Bilgeri T, Forrester PR, Weiss N, Brune H. Upgrade of a low-temperature scanning tunneling microscope for electron-spin resonance. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:013706. [PMID: 30709206 DOI: 10.1063/1.5065384] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/07/2019] [Indexed: 06/09/2023]
Abstract
Electron spin resonance with a scanning tunneling microscope (ESR-STM) combines the high energy resolution of spin resonance spectroscopy with the atomic scale control and spatial resolution of STM. Here we describe the upgrade of a helium-3 STM with a 2D vector-field magnet (Bz = 8.0 T, Bx = 0.8 T) to an ESR-STM. The system is capable of delivering radio frequency (RF) power to the tunnel junction at frequencies up to 30 GHz. We demonstrate magnetic field-sweep ESR for the model system TiH/MgO/Ag(100) and find a magnetic moment of (1.004 ± 0.001) μB. Our upgrade enables to toggle between a DC mode, where the STM is operated with the regular control electronics, and an ultrafast-pulsed mode that uses an arbitrary waveform generator for pump-probe spectroscopy or reading of spin-states. Both modes allow for simultaneous radiofrequency excitation, which we add via a resistive pick-off tee to the bias voltage path. The RF cabling from room temperature to the 350 mK stage has an average attenuation of 18 dB between 5 and 25 GHz. The cable segment between the 350 mK stage and the STM tip presently attenuates an additional 34-3 +5 dB from 10 to 26 GHz and 38-2 +3 dB between 20 and 30 GHz. We discuss our transmission losses and indicate ways to reduce this attenuation. We finally demonstrate how to synchronize the arrival times of RF and DC pulses coming from different paths to the STM junction, a prerequisite for future pulsed ESR experiments.
Collapse
Affiliation(s)
- Fabian D Natterer
- Institute of Physics, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - François Patthey
- Institute of Physics, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Tobias Bilgeri
- Institute of Physics, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Patrick R Forrester
- Institute of Physics, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Nicolas Weiss
- Institute of Physics, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Harald Brune
- Institute of Physics, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
37
|
Willke P, Bae Y, Yang K, Lado JL, Ferrón A, Choi T, Ardavan A, Fernández-Rossier J, Heinrich AJ, Lutz CP. Hyperfine interaction of individual atoms on a surface. Science 2018; 362:336-339. [DOI: 10.1126/science.aat7047] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 08/15/2018] [Indexed: 11/02/2022]
Affiliation(s)
- Philip Willke
- IBM Almaden Research Center, San Jose, CA 95120, USA
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Republic of Korea
- Department of Physics, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yujeong Bae
- IBM Almaden Research Center, San Jose, CA 95120, USA
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Republic of Korea
- Department of Physics, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Kai Yang
- IBM Almaden Research Center, San Jose, CA 95120, USA
| | - Jose L. Lado
- QuantaLab, International Iberian Nanotechnology Laboratory (INL), 4715-310 Braga, Portugal
- Institute for Theoretical Physics, ETH Zurich, 8093 Zurich, Switzerland
| | - Alejandro Ferrón
- Instituto de Modelado e Innovación Tecnológica (CONICET-UNNE), Facultad de Ciencias Exactas, Naturales y Agrimensura, Universidad Nacional del Nordeste, W3404AAS Corrientes, Argentina
| | - Taeyoung Choi
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Republic of Korea
- Department of Physics, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Arzhang Ardavan
- Centre for Advanced Electron Spin Resonance, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | | | - Andreas J. Heinrich
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Republic of Korea
- Department of Physics, Ewha Womans University, Seoul 03760, Republic of Korea
| | | |
Collapse
|