1
|
Takiguchi S, Takeuchi N, Shenshin V, Gines G, Genot AJ, Nivala J, Rondelez Y, Kawano R. Harnessing DNA computing and nanopore decoding for practical applications: from informatics to microRNA-targeting diagnostics. Chem Soc Rev 2024. [PMID: 39471098 PMCID: PMC11521203 DOI: 10.1039/d3cs00396e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Indexed: 11/01/2024]
Abstract
DNA computing represents a subfield of molecular computing with the potential to become a significant area of next-generation computation due to the high programmability inherent in the sequence-dependent molecular behaviour of DNA. Recent studies in DNA computing have extended from mathematical informatics to biomedical applications, with a particular focus on diagnostics that exploit the biocompatibility of DNA molecules. The output of DNA computing devices is encoded in nucleic acid molecules, which must then be decoded into human-recognizable signals for practical applications. Nanopore technology, which utilizes an electrical and label-free decoding approach, provides a unique platform to bridge DNA and electronic computing for practical use. In this tutorial review, we summarise the fundamental knowledge, technologies, and methodologies of DNA computing (logic gates, circuits, neural networks, and non-DNA input circuity). We then focus on nanopore-based decoding, and highlight recent advances in medical diagnostics targeting microRNAs as biomarkers. Finally, we conclude with the potential and challenges for the practical implementation of these techniques. We hope that this tutorial will provide a comprehensive insight and enable the general reader to grasp the fundamental principles and diverse applications of DNA computing and nanopore decoding, and will inspire a wide range of scientists to explore and push the boundaries of these technologies.
Collapse
Affiliation(s)
- Sotaro Takiguchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo 184-8588, Japan.
| | - Nanami Takeuchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo 184-8588, Japan.
| | - Vasily Shenshin
- Laboratoire Gulliver, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, Paris, 75005, France.
| | - Guillaume Gines
- Laboratoire Gulliver, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, Paris, 75005, France.
| | - Anthony J Genot
- LIMMS, CNRS-Institute of Industrial Science, University of Tokyo, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Jeff Nivala
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA.
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, USA
| | - Yannick Rondelez
- Laboratoire Gulliver, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, Paris, 75005, France.
| | - Ryuji Kawano
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo 184-8588, Japan.
| |
Collapse
|
2
|
Liu Y, Zhou Z, Wu Y, Wang L, Cheng J, Zhu L, Dong Y, Zheng J, Xu W. Engineered transcription factor-binding diversed functional nucleic acid-based synthetic biosensor. Biotechnol Adv 2024; 77:108463. [PMID: 39374798 DOI: 10.1016/j.biotechadv.2024.108463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/30/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Engineered transcription factors (eTFs) binding diversed functional nucleic acids (dFNAs), as innovative biorecognition systems, have gradually become indispensable core elements for building synthetic biosensors. They not only circumvent the limitations of the original TF-based biosensing technologies, but also inject new vitality into the field of synthetic biosensing. This review aims to provide the first comprehensive and systematic dissection of the eTF-dFNA synthetic biosensor concept. Firstly, the core principles and interaction mechanisms of eTF-dFNA biosensors are clarified. Next, we elaborate on the construction strategies of eTF-dFNA synthetic biosensors, detailing methods for the personalized customization of eTFs (irrational design, rational design, and semi-rational design) and dFNAs (SELEX, modifying and predicting), along with the exploration of strategies for the flexible selection of signal amplification and output modes. Furthermore, we discuss the exceptional performance and substantial advantages of eTF-dFNA synthetic biosensors, analyzing them from four perspectives: recognition domain, detection speed, sensitivity, and construction methodology. Building upon this analysis, we present their outstanding applications in point-of-care diagnostics, food-safety detection, environmental monitoring, and production control. Finally, we address the current limitations of eTF-dFNA synthetic biosensors candidly and envision the future direction of this technology, aiming to provide valuable insights for further research and applications in this burgeoning field.
Collapse
Affiliation(s)
- Yanger Liu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100193, China; Key Laboratory of Veterinary Anatomy, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Ziying Zhou
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100193, China
| | - Yifan Wu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100193, China
| | - Lei Wang
- Key Laboratory of Veterinary Anatomy, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jiageng Cheng
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100193, China
| | - Longjiao Zhu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100193, China; Key Laboratory of Geriatrics (Hepatobiliary Diseases), China General Technology Group, Beijing 100073, China.
| | - Yulan Dong
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100193, China; Key Laboratory of Veterinary Anatomy, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jie Zheng
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China.
| | - Wentao Xu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100193, China; Key Laboratory of Geriatrics (Hepatobiliary Diseases), China General Technology Group, Beijing 100073, China.
| |
Collapse
|
3
|
Song R, Chen Z, Xiao H, Wang H. The CRISPR-Cas system in molecular diagnostics. Clin Chim Acta 2024; 561:119820. [PMID: 38901631 DOI: 10.1016/j.cca.2024.119820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Robust, sensitive, and rapid molecular detection tools are essential prerequisites for disease diagnosis and epidemiological control. However, the current mainstream tests necessitate expensive equipment and specialized operators, impeding the advancement of molecular diagnostics. The CRISPR-Cas system is an integral component of the bacterial adaptive immune system, wherein Cas proteins recognize PAM sequences by binding to CRISPR RNA, subsequently triggering DNA or RNA cleavage. The discovery of the CRISPR-Cas system has invigorated molecular diagnostics. With further in-depth research on this system, its application in molecular diagnosis is flourishing. In this review, we provide a comprehensive overview of recent research progress on the CRISPR-Cas system, specifically focusing on its application in molecular diagnosis.
Collapse
Affiliation(s)
- Rao Song
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Zhongyi Chen
- Department of Pathology, Suining Central Hospital, Suining 629000, China
| | - Hongtao Xiao
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Haojun Wang
- Department of Pathology, Suining Central Hospital, Suining 629000, China.
| |
Collapse
|
4
|
Zhang R, Wang Y, Deng H, Zhou S, Wu Y, Li Y. Fast and bioluminescent detection of antibiotic contaminants by on-demand transcription of RNA scaffold arrays. Anal Chim Acta 2023; 1273:341538. [PMID: 37423654 DOI: 10.1016/j.aca.2023.341538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/11/2023] [Accepted: 06/16/2023] [Indexed: 07/11/2023]
Abstract
Cell-free biosensors have inspired low-cost and field-applicable methods to detect antibiotic contaminants. However, the satisfactory sensitivity of current cell-free biosensors is mostly achieved by sacrificing the rapidity, which prolongs turnaround time by hours. Additionally, the software-based result interpretation provides an obstacle for delivering these biosensors to untrained individuals. Here, we present a bioluminescence-based cell-free biosensor, termed enhanced Bioluminescence sensing of Ligand-Unleashed RNA Expression (eBLUE). The eBLUE leveraged antibiotic-responsive transcription factors to regulate the transcription of RNA arrays that can serve as scaffolds for reassembling and activating multiple luciferase fragments. This process converted target recognition into an amplified bioluminescence response, enabling smartphone-based quantification of tetracycline and erythromycin directly in milk within 15 min. Moreover, the detection threshold of eBLUE can be easily tuned according to the maximum residue limits (MRLs) established by government agencies. Owing to this tunable nature, the eBLUE was further repurposed as an on-demand semi-quantification platform, allowing for fast (∼20 min) and software-free identification of safe and MRL-exceeding milk samples only by glancing over the smartphone photographs. Overall, the sensitivity, rapidity and user-friendliness of eBLUE demonstrate its potentials for practical applications, especially in resource-limited and household settings.
Collapse
Affiliation(s)
- Rui Zhang
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, PR China
| | - Yu Wang
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, PR China
| | - Haifeng Deng
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, PR China
| | - Shiwen Zhou
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, PR China
| | - Yunhua Wu
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, PR China
| | - Yong Li
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, PR China; Hubei Jiangxia Laboratory, Wuhan, 430200, PR China.
| |
Collapse
|
5
|
Li S, Li Z, Tan GY, Xin Z, Wang W. In vitro allosteric transcription factor-based biosensing. Trends Biotechnol 2023; 41:1080-1095. [PMID: 36967257 DOI: 10.1016/j.tibtech.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/15/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
A biosensor is an analytical device that converts a biological response into a measurable output signal. Bacterial allosteric transcription factors (aTFs) have been utilized as a novel class of recognition elements for in vitro biosensing, which circumvents the limitations of aTF-based whole-cell biosensors (WCBs) and helps to meet the increasing requirement of small-molecule biosensors for diverse applications. In this review, we summarize the recent advances related to the configuration of aTF-based biosensors in vitro. Particularly, we evaluate the advantages of aTFs for in vitro biosensing and highlight their great potential for the establishment of robust and easy-to-implement biosensing strategies. We argue that key technical innovations and generalizable workflows will enhance the pipeline for facile construction of diverse aTF-based small-molecule biosensors.
Collapse
Affiliation(s)
- Shanshan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Zilong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, CAS, Beijing 100101, PR China
| | - Gao-Yi Tan
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai 200237, PR China
| | - Zhenguo Xin
- State Key Laboratory of Microbial Resources, Institute of Microbiology, CAS, Beijing 100101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Weishan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, CAS, Beijing 100101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
6
|
Huang Z, Lyon CJ, Wang J, Lu S, Hu TY. CRISPR Assays for Disease Diagnosis: Progress to and Barriers Remaining for Clinical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301697. [PMID: 37162202 PMCID: PMC10369298 DOI: 10.1002/advs.202301697] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/24/2023] [Indexed: 05/11/2023]
Abstract
Numerous groups have employed the special properties of CRISPR/Cas systems to develop platforms that have broad potential applications for sensitive and specific detection of nucleic acid (NA) targets. However, few of these approaches have progressed to commercial or clinical applications. This review summarizes the properties of known CRISPR/Cas systems and their applications, challenges associated with the development of such assays, and opportunities to improve their performance or address unmet assay needs using nano-/micro-technology platforms. These include rapid and efficient sample preparation, integrated single-tube, amplification-free, quantifiable, multiplex, and non-NA assays. Finally, this review discusses the current outlook for such assays, including remaining barriers for clinical or point-of-care applications and their commercial development.
Collapse
Affiliation(s)
- Zhen Huang
- National Clinical Research Center for Infectious DiseasesShenzhen Third People's HospitalSouthern University of Science and Technology29 Bulan RoadShenzhenGuangdong518112China
- Center for Cellular and Molecular DiagnosticsTulane University School of Medicine1430 Tulane AveNew OrleansLA70112USA
- Department of Biochemistry and Molecular BiologyTulane University School of Medicine1430 Tulane AveNew OrleansLA70112USA
| | - Christopher J. Lyon
- Center for Cellular and Molecular DiagnosticsTulane University School of Medicine1430 Tulane AveNew OrleansLA70112USA
- Department of Biochemistry and Molecular BiologyTulane University School of Medicine1430 Tulane AveNew OrleansLA70112USA
| | - Jin Wang
- Tolo Biotechnology Company Limited333 Guiping RoadShanghai200233China
| | - Shuihua Lu
- National Clinical Research Center for Infectious DiseasesShenzhen Third People's HospitalSouthern University of Science and Technology29 Bulan RoadShenzhenGuangdong518112China
| | - Tony Y. Hu
- Center for Cellular and Molecular DiagnosticsTulane University School of Medicine1430 Tulane AveNew OrleansLA70112USA
- Department of Biochemistry and Molecular BiologyTulane University School of Medicine1430 Tulane AveNew OrleansLA70112USA
| |
Collapse
|
7
|
Lu B, Guo Z, Zhong K, Osire T, Sun Y, Jiang L. State of the art in CRISPR/Cas system-based signal conversion and amplification applied in the field of food analysis. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
8
|
Suliman Maashi M. CRISPR/Cas-based Aptasensor as an Innovative Sensing Approaches for Food Safety Analysis: Recent Progresses and New Horizons. Crit Rev Anal Chem 2023; 54:2599-2617. [PMID: 36940173 DOI: 10.1080/10408347.2023.2188955] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Food safety is one of the greatest public problems occurring around the world. Chemical, physical, and microbiological hazards could lead to food safety problems, which might occur at all stages of the supply chain. To tackle food safety problems and protect consumer health, specific, accurate, and rapid diagnosis techniques meeting various requirements are the imperative measures to ensure food safety. CRISPR-Cas system, a novel emerging technology, is effectively repurposed in (bio)sensing and has shown a tremendous capability to develop on-site and portable diagnostic methods with high specificity and sensitivity. Among numerous existing CRISPR/Cas systems, CRISPR/Cas13a and CRISPR/Cas12a are extensively employed in the design of biosensors, owing to their ability to cleave both non-target and target sequences. However, the specificity limitation in CRISPR/Cas has hindered its progress. Nowadays, nucleic acid aptamers recognized for their specificity and high-affinity characteristics for their analytes are incorporated into CRISPR/Cas systems. With the benefits of reproducibility, high durability, portability, facile operation, and cost-effectiveness, CRISPR/Cas-based aptasensing approaches are an ideal choice for fabricating highly specific point-of-need analytical tools with enhanced response signals. In the current study, we explore some of the most recent progress in the CRISPR/Cas-mediated aptasensors for detecting food risk factors including veterinary drugs, pesticide residues, pathogens, mycotoxins, heavy metals, illegal additives, food additives, and other contaminants. The nanomaterial engineering support with CRISPR/Cas aptasensors is also signified to achieve a hopeful perspective to provide new straightforward test kits toward trace amounts of different contaminants encountered in food samples.
Collapse
Affiliation(s)
- Marwah Suliman Maashi
- Medical Laboratory Science Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Regenerative Medicine Unit at King Fahad Medical Research Centre, Jeddah, Saudi Arabia
| |
Collapse
|
9
|
Jiang L, Du J, Xu H, Zhuo X, Ai J, Zeng J, Yang R, Xiong E. Ultrasensitive CRISPR/Cas13a-Mediated Photoelectrochemical Biosensors for Specific and Direct Assay of miRNA-21. Anal Chem 2023; 95:1193-1200. [PMID: 36602461 DOI: 10.1021/acs.analchem.2c03945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Sensitive and specific assay of microRNAs (miRNAs) is beneficial to early disease screening. Herein, we for the first time proposed clustered regularly interspaced short palindromic repeats (CRISPR)/Cas13a-mediated photoelectrochemical biosensors for the direct assay of miRNA-21. In this study, compared with traditional nucleic acid-based signal amplification strategies, the CRISPR/Cas13a system can greatly improve the specificity and sensitivity of target determination due to its accurate recognition and high-efficient trans-cleavage capability without complex nucleic acid sequence design. Moreover, compared with the CRISPR/Cas12a-based biosensing platform, the developed CRISPR/Cas13a-mediated biosensor can directly detect RNA targets without signal transduction from RNA to DNA, thereby avoiding signal leakage and distortion. Generally, the proposed biosensor reveals excellent analysis capability with a wider linear range from 1 fM to 5 nM and a lower detection limit of 1 fM. Additionally, it also shows satisfactory stability in the detection of human serum samples and cell lysates, manifesting that it has great application prospects in the areas of early disease diagnosis and biomedical research.
Collapse
Affiliation(s)
- Ling Jiang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.,State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jinlian Du
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Haili Xu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Xiaohua Zhuo
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Jinlong Ai
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Jiayu Zeng
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Ronghua Yang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Erhu Xiong
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
10
|
Bi H, Zhao C, Zhang Y, Zhang X, Xue B, Li C, Wang S, Yang X, Li C, Qiu Z, Wang J, Shen Z. IVT cell-free biosensors for tetracycline and macrolide detection based on allosteric transcription factors (aTFs). ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4545-4554. [PMID: 36314439 DOI: 10.1039/d2ay01316a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In recent years, the issue of food safety has received a lot of attention. The Food and Drug Administration (FDA) prescribes the antibiotic's maximum residue limit (MRL) in food production. The standard detection methods of antibiotics are liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) and high-performance liquid chromatography (HPLC), with complex operations and precision instruments. In this study, allosteric transcription factor (aTF)-based in vitro transcription (IVT) cell-free biosensors were developed for tetracyclines and macrolides with nucleic acid sequence-based amplification (NASBA). Characterization of binding and dissociation processes between aTF and DNA was carried out by BIAcore assay and electrophoretic mobility shift assay (EMSA). BIAcore was innovatively used to directly observe the real-time process of binding and dissociation of aTF with DNA. The biosensors produce more fluorescence RNA when target antibiotics are added to the three-way junction dimeric Broccoli (3WJdB). Four tetracyclines and two macrolides were quantified in the 0.5-15 μM range, while erythromycin and clarithromycin were detected over a range of 0.1-15 μM. NASBA, commonly used for viral detection, was used to amplify 3WJdB RNA generated by IVT, which greatly increased the LOD for tetracyclines and macrolides to 0.01 μM. The use of biosensors in milk samples demonstrated their on-site detection performance. Overall, our proposed biosensors are simple, rapid, selective, and sensitive, with the potential for field application.
Collapse
Affiliation(s)
- Huaixiu Bi
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Chen Zhao
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Yongkang Zhang
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Xi Zhang
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Bin Xue
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Chenyu Li
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Shang Wang
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Xiaobo Yang
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Chao Li
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Zhigang Qiu
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Jingfeng Wang
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Zhiqiang Shen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| |
Collapse
|
11
|
Mao Z, Chen R, Wang X, Zhou Z, Peng Y, Li S, Han D, Li S, Wang Y, Han T, Liang J, Ren S, Gao Z. CRISPR/Cas12a-based technology: A powerful tool for biosensing in food safety. Trends Food Sci Technol 2022; 122:211-222. [PMID: 35250172 PMCID: PMC8885088 DOI: 10.1016/j.tifs.2022.02.030] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND In the context of the current pandemic caused by the novel coronavirus, molecular detection is not limited to the clinical laboratory, but also faces the challenge of the complex and variable real-time detection fields. A series of novel coronavirus events were detected in the process of food cold chain packaging and transportation, making the application of molecular diagnosis in food processing, packaging, transportation, and other links urgent. There is an urgent need for a rapid detection technology that can adapt to the diversity and complexity of food safety. SCOPE AND APPROACH This review introduces a new molecular diagnostic technology-biosensor analysis technology based on CRISPR-Cas12a. Systematic clarification of its development process and detection principles. It summarizes and systematically organizes its applications in viruses, food-borne pathogenic bacteria, small molecule detection, etc. In the past four years, which provides a brand-new and comprehensive solution for food detection. Finally, this article puts forward the challenges and the prospects for food safety. KEY FINDINGS AND CONCLUSIONS The novel coronavirus hazards infiltrated every step of the food industry, from processing to packaging to transportation. The biosensor analytical technology based on CRISPR-Cas12a has great potential in the qualitative and quantitative analysis of infectious pathogens. CRISPR-Cas12a can effectively identify the presence of the specific nucleic acid targets and the small changes in sequences, which is particularly important for nucleic acid identification and pathogen detection. In addition, the CRISPR-Cas12a method can be adjusted and reconfigured within days to detect other viruses, providing equipment for nucleic acid diagnostics in the field of food safety. The future work will focus on the development of portable microfluidic devices for multiple detection. Shao et al. employed physical separation methods to separate Cas proteins in different microfluidic channels to achieve multiple detection, and each channel simultaneously detected different targets by adding crRNA with different spacer sequences. Although CRISPR-Cas12a technology has outstanding advantages in detection, there are several technical barriers in the transformation from emerging technologies to practical applications. The newly developed CRISPR-Cas12a-based applications and methods promote the development of numerous diagnostic and detection solutions, and have great potential in medical diagnosis, environmental monitoring, and especially food detection.
Collapse
Affiliation(s)
- Zefeng Mao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China,State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Ruipeng Chen
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China,State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Xiaojuan Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China,State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Zixuan Zhou
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Yuan Peng
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Shuang Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Dianpeng Han
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Sen Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Yu Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Tie Han
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Jun Liang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China,Corresponding author
| | - Shuyue Ren
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China,Corresponding author
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China,Corresponding author
| |
Collapse
|
12
|
Zamani M, Dupaty J, Baer RC, Kuzmanovic U, Fan A, Grinstaff MW, Galagan JE, Klapperich CM. Paper-Based Progesterone Sensor Using an Allosteric Transcription Factor. ACS OMEGA 2022; 7:5804-5808. [PMID: 35224340 PMCID: PMC8867790 DOI: 10.1021/acsomega.1c05737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Progesterone monitoring is an essential component of in vitro fertilization treatments and reproductive management of dairy cows. Gold-standard biosensors for progesterone monitoring rely on antibodies, which are expensive and difficult to procure. We have developed an alternative transcription factor-based sensor that is superior to conventional progesterone biosensors. Here, we incorporate this transcription factor-based progesterone sensor into an affordable, portable paperfluidic format to facilitate widespread implementation of progesterone monitoring at the point of care. Oligonucleotides labeled with a fluorescent dye are immobilized onto nitrocellulose via a biotin-streptavidin interaction. In the absence of progesterone, these oligonucleotides form a complex with a transcription factor that is fluorescently labeled with tdTomato. In the presence of progesterone, the fluorescent transcription factor unbinds from the immobilized DNA, resulting in a decrease in tdTomato fluorescence. The limit of detection of our system is 27 nm, which is a clinically relevant level of progesterone. We demonstrate that transcription factor-based sensors can be incorporated into paperfluidic devices, thereby making them accessible to a broader population due to the portability and affordability of paper-based devices.
Collapse
Affiliation(s)
| | - Josh Dupaty
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | | | - Uros Kuzmanovic
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Andy Fan
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Mark W. Grinstaff
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - James E. Galagan
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Catherine M. Klapperich
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
13
|
Yang Q, Wang Y, Liu X, Liu H, Bao H, Wang J, Zeng H. A Label-Free Immunosensor Based on Gold Nanoparticles/Thionine for Sensitive Detection of PAT Protein in Genetically Modified Crops. Front Chem 2021; 9:770584. [PMID: 34950635 PMCID: PMC8688707 DOI: 10.3389/fchem.2021.770584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
Genetically modified (GM) crops containing phosphinothricin acetyltransferase (PAT) protein has been widely planted worldwide. The development of a rapid method for detecting PAT protein is of great importance to food supervision. In this study, a simple label-free electrochemical immunosensor for the ultrasensitive detection of PAT protein was constructed using thionine (Thi)/gold nanoparticles (AuNPs) as signal amplification molecules and electrochemically active substances. Under optimum conditions, the limits of detection of the sensor for soybean A2704-12 and maize BT-176 were 0.02% and 0.03%, respectively. The sensor could detect crops containing PAT protein and had no cross-reaction with other proteins. After storage at 4°C for 33 days, the sensor still retained 82.5% of the original signal, with a relative standard deviation (RSD) of 0.92%. The recoveries of the sensor for soybean A2704-12 and maize BT-176 were 85%-108% and 98%-113%, respectively. The developed PAT-target immunosensor with high sensitivity, specificity, and satisfactory reproducibility and accuracy will be a useful tool in the trace screening of GM crops. Moreover, this design concept can be extended to other proteins by simply changing the antibody.
Collapse
Affiliation(s)
- Qianwen Yang
- Key Laboratory of Agricultural Genetics and Breeding, The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China.,School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Yu Wang
- Key Laboratory of Agricultural Genetics and Breeding, The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China.,School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Xiaofeng Liu
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Hua Liu
- Key Laboratory of Agricultural Genetics and Breeding, The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China.,Crops Ecological Environment Security Inspection and Supervision Center (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Huifang Bao
- Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences, Urumchi, China
| | - Jinbin Wang
- Key Laboratory of Agricultural Genetics and Breeding, The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China.,Crops Ecological Environment Security Inspection and Supervision Center (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Haijuan Zeng
- Key Laboratory of Agricultural Genetics and Breeding, The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China.,Crops Ecological Environment Security Inspection and Supervision Center (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, China
| |
Collapse
|
14
|
Dong H, Huang F, Guo X, Xu X, Liu Q, Li X, Feng Y. Characterization of Argonaute nucleases from mesophilic bacteria Paenibacillus borealis and Brevibacillus laterosporus. BIORESOUR BIOPROCESS 2021; 8:133. [PMID: 38650276 PMCID: PMC10992608 DOI: 10.1186/s40643-021-00478-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/06/2021] [Indexed: 12/26/2022] Open
Abstract
Thermophilic Argonaute proteins (Agos) have been shown to utilize small DNA guides for cleaving complementary DNA in vitro, which shows great potential for nucleic acid detection. In this study, we explored mesophilic Agos for the detection of small molecule by cooperating with allosteric transcription factors (aTFs). Two Agos from mesophilic bacteria, Paenibacillus borealis (PbAgo) and Brevibacillus laterosporus (BlAgo), showed nuclease activity for single-stranded DNA at moderate temperatures (37 °C) by using 5'-phosphorylated and 5'-hydroxylated DNA guides. Both Agos perform programmable cleavage of double-stranded DNA, especially in AT-rich regions of plasmid. Furthermore, we developed a simple and low-cost p-hydroxybenzoic acid detection method based on DNA-guided DNA cleavage of Agos and the allosteric effect of HosA, which expands the potential application of small molecule detection by Agos.
Collapse
Affiliation(s)
- Huarong Dong
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Fei Huang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Xiang Guo
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Xiaoyi Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Qian Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Xiao Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
15
|
A D-2-hydroxyglutarate biosensor based on specific transcriptional regulator DhdR. Nat Commun 2021; 12:7108. [PMID: 34876568 PMCID: PMC8651671 DOI: 10.1038/s41467-021-27357-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 11/16/2021] [Indexed: 12/02/2022] Open
Abstract
D-2-Hydroxyglutarate (D-2-HG) is a metabolite involved in many physiological metabolic processes. When D-2-HG is aberrantly accumulated due to mutations in isocitrate dehydrogenase or D-2-HG dehydrogenase, it functions in a pro-oncogenic manner and is thus considered a therapeutic target and biomarker in many cancers. In this study, DhdR from Achromobacter denitrificans NBRC 15125 is identified as an allosteric transcriptional factor that negatively regulates D-2-HG dehydrogenase expression and responds to the presence of D-2-HG. Based on the allosteric effect of DhdR, a D-2-HG biosensor is developed by combining DhdR with amplified luminescent proximity homogeneous assay (AlphaScreen) technology. The biosensor is able to detect D-2-HG in serum, urine, and cell culture medium with high specificity and sensitivity. Additionally, this biosensor is used to identify the role of D-2-HG metabolism in lipopolysaccharide biosynthesis of Pseudomonas aeruginosa, demonstrating its broad usages.
Collapse
|
16
|
Yao K, Peng D, Jiang C, Zhao W, Li G, Huang W, Kong L, Gao H, Zheng J, Peng H. Rapid and Visual Detection of Heterodera schachtii Using Recombinase Polymerase Amplification Combined with Cas12a-Mediated Technology. Int J Mol Sci 2021; 22:12577. [PMID: 34830457 PMCID: PMC8618885 DOI: 10.3390/ijms222212577] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 12/26/2022] Open
Abstract
Heterodera schachtii is a well-known cyst nematode that causes serious economic losses in sugar beet production every year. Rapid and visual detection of H. schachtii is essential for more effective prevention and control. In this study, a species-specific recombinase polymerase amplification (RPA) primer was designed from a specific H. schachtii sequence-characterized amplified region (SCAR) marker. A band was obtained in reactions with DNA from H. schachtii, but absent from nontarget cyst nematodes. The RPA results could be observed by the naked eye, using a lateral flow dipstick (LFD). Moreover, we combined CRISPR technology with RPA to identify positive samples by fluorescence detection. Sensitivity analysis indicated that 10-4 single cysts and single females, 4-3 single second-stage juveniles, and a 0.001 ng genomic DNA template could be detected. The sensitivity of the RPA method for H. schachtii detection is not only higher than that of PCR and qPCR, but can also provide results in <1 h. Consequently, the RPA assay is a practical and useful diagnostic tool for early diagnosis of plant tissues infested by H. schachtii. Sugar beet nematodes were successfully detected in seven of 15 field sugar beet root samples using the RPA assay. These results were consistent with those achieved by conventional PCR, indicating 100% accuracy of the RPA assay in field samples. The RPA assay developed in the present study has the potential for use in the direct detection of H. schachtii infestation in the field.
Collapse
Affiliation(s)
- Ke Yao
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100089, China; (D.P.); (C.J.); (W.Z.); (W.H.); (L.K.)
| | - Deliang Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100089, China; (D.P.); (C.J.); (W.Z.); (W.H.); (L.K.)
| | - Chen Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100089, China; (D.P.); (C.J.); (W.Z.); (W.H.); (L.K.)
| | - Wei Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100089, China; (D.P.); (C.J.); (W.Z.); (W.H.); (L.K.)
| | - Guangkuo Li
- Key Laboratory of Integrated Pest Management on Crop in Northwestern Oasis, Ministry of Agriculture, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Scientific Observing and Experimental Station of Korla, Urumqi 830091, China; (G.L.); (H.G.)
| | - Wenkun Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100089, China; (D.P.); (C.J.); (W.Z.); (W.H.); (L.K.)
| | - Lingan Kong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100089, China; (D.P.); (C.J.); (W.Z.); (W.H.); (L.K.)
| | - Haifeng Gao
- Key Laboratory of Integrated Pest Management on Crop in Northwestern Oasis, Ministry of Agriculture, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Scientific Observing and Experimental Station of Korla, Urumqi 830091, China; (G.L.); (H.G.)
| | - Jingwu Zheng
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Huan Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100089, China; (D.P.); (C.J.); (W.Z.); (W.H.); (L.K.)
- Key Laboratory of Integrated Pest Management on Crop in Northwestern Oasis, Ministry of Agriculture, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Scientific Observing and Experimental Station of Korla, Urumqi 830091, China; (G.L.); (H.G.)
| |
Collapse
|
17
|
Lin H, Rodríguez-Serrano AF, Hsing IM. Rational design of allosterically regulated toehold mediated strand displacement circuits for sensitive and on-site detection of small molecule metabolites. Analyst 2021; 146:7144-7151. [PMID: 34734587 DOI: 10.1039/d1an01488a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Development of small molecule biosensors enables rapid and de-centralized small molecule detection that meets the demands of routine health monitoring and rapid diagnosis. Among them, allosteric transcription factor (aTF)-based biosensors have shown potential in modular design of small molecule detection platforms due to their ligand-regulated DNA binding activity. Here, we expand the capabilities of a biosensor that leverages the aTF-based regulation of toehold-mediated strand displacement (TMSD) circuits for uric acid (UA) detection in non-invasive salivary samples by utilizing the UA-responsive aTF HucR. The impact of the low ligand affinity of the native HucR was addressed by engineering a two-pass TMSD circuit with in silico rational design. This combined strategy achieved enrichment of the output signal and overcame the negative impact of the matrix effect on the sensitivity and overall response of the biosensor when using real samples, which enabled semi-quantitative detection in the normal salivary UA levels. As well, enhancements provided by the two-pass design halved the turnaround time to less than 15 minutes. To sum up, the two-cycle DNA circuit design enabled aTF-based simple, rapid and one-step non-invasive salivary UA detection, showing its potential in metabolite detection for health monitoring.
Collapse
Affiliation(s)
- Haosi Lin
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Alan F Rodríguez-Serrano
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - I-Ming Hsing
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
18
|
Kang Z, Zhang M, Gao K, Zhang W, Meng W, Liu Y, Xiao D, Guo S, Ma C, Gao C, Xu P. An L-2-hydroxyglutarate biosensor based on specific transcriptional regulator LhgR. Nat Commun 2021; 12:3619. [PMID: 34131130 PMCID: PMC8206213 DOI: 10.1038/s41467-021-23723-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/13/2021] [Indexed: 11/09/2022] Open
Abstract
l-2-Hydroxyglutarate (l-2-HG) plays important roles in diverse physiological processes, such as carbon starvation response, tumorigenesis, and hypoxic adaptation. Despite its importance and intensively studied metabolism, regulation of l-2-HG metabolism remains poorly understood and none of regulator specifically responded to l-2-HG has been identified. Based on bacterial genomic neighborhood analysis of the gene encoding l-2-HG oxidase (LhgO), LhgR, which represses the transcription of lhgO in Pseudomonas putida W619, is identified in this study. LhgR is demonstrated to recognize l-2-HG as its specific effector molecule, and this allosteric transcription factor is then used as a biorecognition element to construct an l-2-HG-sensing FRET sensor. The l-2-HG sensor is able to conveniently monitor the concentrations of l-2-HG in various biological samples. In addition to bacterial l-2-HG generation during carbon starvation, biological function of the l-2-HG dehydrogenase and hypoxia induced l-2-HG accumulation are also revealed by using the l-2-HG sensor in human cells. L-2-hydroxyglutarate (L-2-HG) is an important metabolite but its regulation is poorly understood. Here the authors report an L-2-HG FRET biosensor based on the allosteric transcription factor, LhgR, to monitor L-2-HG in cells and biological samples.
Collapse
Affiliation(s)
- Zhaoqi Kang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Manman Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, People's Republic of China
| | - Kaiyu Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Wen Zhang
- Center for Gene and Immunotherapy, The Second Hospital of Shandong University, Jinan, People's Republic of China
| | - Wensi Meng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Yidong Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Dan Xiao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Shiting Guo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China.
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China.
| |
Collapse
|
19
|
Rodríguez-Serrano AF, Hsing IM. Allosteric Regulation of DNA Circuits Enables Minimal and Rapid Biosensors of Small Molecules. ACS Synth Biol 2021; 10:371-378. [PMID: 33481567 DOI: 10.1021/acssynbio.0c00545] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Detection of environmental pollutants is crucial to safeguard ecological and public health. Here, we report a modular biosensing approach for the detection of contaminants based on the regulation of a minimal DNA signal amplifier and transducer circuit by allosteric transcription factors and their cognate ligands. We leverage the competition between allosteric proteins and an endonuclease to modulate cascade toehold-mediated strand displacement reactions, which are triggered in the presence of specific effectors and sustained by the endonuclease. We built two optical biosensors for the detection of tetracyclines and macrolides in water using repressors TetR and MphR, respectively. We demonstrate that our minimal, fast, and single-step biosensors can successfully detect antibiotics in nanomolar levels and apply them to report the presence of spiked-in antibiotics in water samples in a matter of minutes, suggesting great potential for monitoring of water contaminants.
Collapse
Affiliation(s)
- Alan F. Rodríguez-Serrano
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - I-Ming Hsing
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
20
|
Liu F, Chen R, Song W, Li L, Lei C, Nie Z. Modular Combination of Proteolysis-Responsive Transcription and Spherical Nucleic Acids for Smartphone-Based Colorimetric Detection of Protease Biomarkers. Anal Chem 2021; 93:3517-3525. [DOI: 10.1021/acs.analchem.0c04894] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Fang Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Ru Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Wenlu Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Liangwen Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Chunyang Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
21
|
Zhao X, Li S, Liu G, Wang Z, Yang Z, Zhang Q, Liang M, Liu J, Li Z, Tong Y, Zhu G, Wang X, Jiang L, Wang W, Tan GY, Zhang L. A versatile biosensing platform coupling CRISPR-Cas12a and aptamers for detection of diverse analytes. Sci Bull (Beijing) 2021; 66:69-77. [PMID: 36654316 DOI: 10.1016/j.scib.2020.09.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/07/2020] [Accepted: 08/22/2020] [Indexed: 01/20/2023]
Abstract
Rapid and sensitive detection of various analytes is in high demand. Apart from its application in genome editing, CRISPR-Cas also shows promises in nucleic acid detection applications. To further exploit the potential of CRISPR-Cas for detection of diverse analytes, we present a versatile biosensing platform that couples the excellent affinity of aptamers for broad-range analytes with the collateral single-strand DNA cleavage activity of CRISPR-Cas12a. We demonstrated that the biosensors developed by this platform can be used to detect protein and small molecule in human serum with a complicated background, i.e., the tumor marker alpha fetoprotein and cocaine with the detection limits of 0.07 fmol/L and 0.34 μmol/L, respectively, highlighting the advantages of simplicity, sensitivity, short detection time, and low cost compared with the state-of-the-art biosensing approaches. Altogether, this biosensing platform with plug-and-play design show great potential in the detection of diverse analytes.
Collapse
Affiliation(s)
- Xiangxiang Zhao
- State Key Laboratory of Bioreactor Engineering, and School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai 200237, China
| | - Shanshan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guang Liu
- State Key Laboratory of Bioreactor Engineering, and School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai 200237, China
| | - Zhong Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Department of Urology, Sixth People's Hospital South Campus Affiliated to Shanghai Jiao Tong University, Shanghai 201499, China
| | - Zhiheng Yang
- State Key Laboratory of Bioreactor Engineering, and School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai 200237, China
| | - Quanwei Zhang
- State Key Laboratory of Bioreactor Engineering, and School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai 200237, China; State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Mindong Liang
- State Key Laboratory of Bioreactor Engineering, and School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai 200237, China
| | - Jiakun Liu
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zilong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yaojun Tong
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs Lyngby 2800, Denmark
| | - Guoliang Zhu
- State Key Laboratory of Bioreactor Engineering, and School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai 200237, China
| | - Xinye Wang
- State Key Laboratory of Bioreactor Engineering, and School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai 200237, China
| | - Lan Jiang
- State Key Laboratory of Bioreactor Engineering, and School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai 200237, China
| | - Weishan Wang
- State Key Laboratory of Bioreactor Engineering, and School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai 200237, China; State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Gao-Yi Tan
- State Key Laboratory of Bioreactor Engineering, and School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai 200237, China.
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, and School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai 200237, China.
| |
Collapse
|
22
|
Liu H, Wang J, Zeng H, Liu X, Jiang W, Wang Y, Ouyang W, Tang X. RPA-Cas12a-FS: A frontline nucleic acid rapid detection system for food safety based on CRISPR-Cas12a combined with recombinase polymerase amplification. Food Chem 2021; 334:127608. [PMID: 32711280 DOI: 10.1016/j.foodchem.2020.127608] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 07/12/2020] [Accepted: 07/16/2020] [Indexed: 12/26/2022]
Abstract
Food analysis to ensure food safety and quality are relevant to all countries. This study aimed to develop a detection technique by combining recombinase polymerase amplification with CRISPR-Cas12a for food safety (termed RPA-Cas12a-FS). Our data showed that this novel method could be detected via fluorescence intensity for the molecular identification of foodborne pathogenic bacteria, genetically modified crops, and meat adulteration. After optimization, the sensitivity and stability of RPA-Cas12a-FS was further enhanced. The RPA-Cas12a-FS system could specifically detect target gene levels as low as 10 copies in 45 min at 37 °C. The RPA-Cas12a-FS system was sensitive both using standard samples in the lab and using samples from the field, which indicated that this detection method was practical. In conclusion, a simple, rapid, and highly sensitive detection method based on CRISPR-Cas12a was developed for molecular identification in the food safety field without requiring technical expertise or ancillary equipment.
Collapse
Affiliation(s)
- Hua Liu
- Institute of Biotechnology Research, Shanghai Academy of Agricultural Sciences; Key Laboratory of Agricultural Genetics and Breeding, 2901 Beidi Road, Shanghai 201106, China; Crops Ecological Environment Security Inspection and Supervision Center (Shanghai), Ministry of Agriculture and Rural Affairs, P.R.C., 2901 Beidi Road, Shanghai 201106, China
| | - Jinbin Wang
- Institute of Biotechnology Research, Shanghai Academy of Agricultural Sciences; Key Laboratory of Agricultural Genetics and Breeding, 2901 Beidi Road, Shanghai 201106, China; Crops Ecological Environment Security Inspection and Supervision Center (Shanghai), Ministry of Agriculture and Rural Affairs, P.R.C., 2901 Beidi Road, Shanghai 201106, China.
| | - Haijuan Zeng
- Institute of Biotechnology Research, Shanghai Academy of Agricultural Sciences; Key Laboratory of Agricultural Genetics and Breeding, 2901 Beidi Road, Shanghai 201106, China; Crops Ecological Environment Security Inspection and Supervision Center (Shanghai), Ministry of Agriculture and Rural Affairs, P.R.C., 2901 Beidi Road, Shanghai 201106, China
| | - Xiaofeng Liu
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Wei Jiang
- Institute of Biotechnology Research, Shanghai Academy of Agricultural Sciences; Key Laboratory of Agricultural Genetics and Breeding, 2901 Beidi Road, Shanghai 201106, China; Crops Ecological Environment Security Inspection and Supervision Center (Shanghai), Ministry of Agriculture and Rural Affairs, P.R.C., 2901 Beidi Road, Shanghai 201106, China
| | - Yu Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Wanbao Ouyang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Xueming Tang
- Institute of Biotechnology Research, Shanghai Academy of Agricultural Sciences; Key Laboratory of Agricultural Genetics and Breeding, 2901 Beidi Road, Shanghai 201106, China; Crops Ecological Environment Security Inspection and Supervision Center (Shanghai), Ministry of Agriculture and Rural Affairs, P.R.C., 2901 Beidi Road, Shanghai 201106, China.
| |
Collapse
|
23
|
Chern M, Garden PM, Baer RC, Galagan JE, Dennis AM. Transcription Factor Based Small‐Molecule Sensing with a Rapid Cell Phone Enabled Fluorescent Bead Assay. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Margaret Chern
- Division of Materials Science and Engineering Boston University Boston MA USA
| | - Padric M. Garden
- Department of Biomedical Engineering Boston University Boston MA USA
| | - R C. Baer
- Department of Microbiology Boston University Boston MA USA
| | - James E. Galagan
- Department of Biomedical Engineering Boston University Boston MA USA
- Department of Microbiology Boston University Boston MA USA
- National Emerging Infectious Diseases Laboratories Boston University Boston MA USA
| | - Allison M. Dennis
- Division of Materials Science and Engineering Boston University Boston MA USA
- Department of Biomedical Engineering Boston University Boston MA USA
| |
Collapse
|
24
|
Chern M, Garden PM, Baer RC, Galagan JE, Dennis AM. Transcription Factor Based Small-Molecule Sensing with a Rapid Cell Phone Enabled Fluorescent Bead Assay. Angew Chem Int Ed Engl 2020; 59:21597-21602. [PMID: 32945589 DOI: 10.1002/anie.202007575] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Indexed: 12/26/2022]
Abstract
Recently, allosteric transcription factors (TFs) were identified as a novel class of biorecognition elements for in vitro sensing, whereby an indicator of the differential binding affinity between a TF and its cognate DNA exhibits dose-dependent responsivity to an analyte. Described is a modular bead-based biosensor design that can be applied to such TF-DNA-analyte systems. DNA-functionalized beads enable efficient mixing and spatial separation, while TF-labeled semiconductor quantum dots serve as bright fluorescent indicators of the TF-DNA bound (on bead) and unbound states. The prototype sensor for derivatives of the antibiotic tetracycline exhibits nanomolar sensitivity with visual detection of bead fluorescence. Facile changes to the sensor enable sensor response tuning without necessitating changes to the biomolecular affinities. Assay components self-assemble, and readout by eye or digital camera is possible within 5 minutes of analyte addition, making sensor use facile, rapid, and instrument-free.
Collapse
Affiliation(s)
- Margaret Chern
- Division of Materials Science and Engineering, Boston University, Boston, MA, USA
| | - Padric M Garden
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - R C Baer
- Department of Microbiology, Boston University, Boston, MA, USA
| | - James E Galagan
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.,Department of Microbiology, Boston University, Boston, MA, USA.,National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Allison M Dennis
- Division of Materials Science and Engineering, Boston University, Boston, MA, USA.,Department of Biomedical Engineering, Boston University, Boston, MA, USA
| |
Collapse
|
25
|
Kim DM, Yoo SM. DNA-modifying enzyme reaction-based biosensors for disease diagnostics: recent biotechnological advances and future perspectives. Crit Rev Biotechnol 2020; 40:787-803. [DOI: 10.1080/07388551.2020.1764485] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Dong Min Kim
- Center for Applied Life Science, Hanbat National University, Daejeon, Republic of Korea
| | - Seung Min Yoo
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
26
|
Nguyen TT, Chern M, Baer RC, Galagan J, Dennis AM. A Förster Resonance Energy Transfer-Based Ratiometric Sensor with the Allosteric Transcription Factor TetR. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907522. [PMID: 32249506 PMCID: PMC7359203 DOI: 10.1002/smll.201907522] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 03/03/2020] [Indexed: 05/02/2023]
Abstract
A recent description of an antibody-free assay is significantly extended for small molecule analytes using allosteric transcription factors (aTFs) and Förster resonance energy transfer (FRET). The FRET signal indicates the differential binding of an aTF-DNA pair with a dose-dependent response to its effector molecule, i.e., the analyte. The new sensors described here, based on the well-characterized aTF TetR, demonstrate several new features of the assay approach: 1) the generalizability of the sensors to additional aTF-DNA-analyte systems, 2) sensitivity modulation through the choice of donor fluorophore (quantum dots or fluorescent proteins, FPs), and 3) sensor tuning using aTF variants with differing aTF-DNA binding affinities. While all of these modular sensors self-assemble, the design reported here based on a recombinant aTF-FP chimera with commercially available dye-labeled DNA uses readily accessible sensor components to facilitate easy adoption of the sensing approach by the broader community.
Collapse
Affiliation(s)
- Thuy T Nguyen
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Margaret Chern
- Division of Materials Science and Engineering, Boston University, Boston, MA, 02215, USA
| | - R C Baer
- Department of Microbiology, Boston University, Boston, MA, 02218, USA
| | - James Galagan
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
- Department of Microbiology, Boston University, Boston, MA, 02218, USA
- National Emerging Infections Diseases Laboratories, Boston University, Boston, MA, 02218, USA
| | - Allison M Dennis
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
- Division of Materials Science and Engineering, Boston University, Boston, MA, 02215, USA
| |
Collapse
|
27
|
Yang Z, Sun Q, Tan G, Zhang Q, Wang Z, Li C, Qi F, Wang W, Zhang L, Li Z. Engineering thermophilic Geobacillus thermoglucosidasius for riboflavin production. Microb Biotechnol 2020; 14:363-373. [PMID: 32096925 PMCID: PMC7936320 DOI: 10.1111/1751-7915.13543] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/17/2020] [Accepted: 01/24/2020] [Indexed: 01/17/2023] Open
Abstract
The potential advantages for fermentation production of chemicals at high temperatures are attractive, such as promoting the rate of biochemical reactions, reducing the risk of contamination and the energy consumption for fermenter cooling. In this work, we de novo engineered the thermophile Geobacillus thermoglucosidasius to produce riboflavin, since this bacterium can ferment diverse carbohydrates at an optimal temperature of 60°C with a high growth rate. We first introduced a heterogeneous riboflavin biosynthetic gene cluster and enabled the strain to produce detectable riboflavin (28.7 mg l−1). Then, with the aid of an improved gene replacement method, we preformed metabolic engineering in this strain, including replacement of ribCGtg with a mutant allele to weaken the consumption of riboflavin, manipulation of purine pathway to enhance precursor supply, deletion of ccpNGtg to tune central carbon catabolism towards riboflavin production and elimination of the lactate dehydrogenase gene to block the dominating product lactic acid. Finally, the engineered strain could produce riboflavin with the titre of 1034.5 mg l−1 after 12‐h fermentation in a mineral salt medium, indicating G. thermoglucosidasius is a promising host to develop high‐temperature cell factory of riboflavin production. This is the first demonstration of riboflavin production in thermophilic bacteria at an elevated temperature.
Collapse
Affiliation(s)
- Zhiheng Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Xuhui District, Shanghai, 200237, China
| | - Qingqing Sun
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China
| | - Gaoyi Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Xuhui District, Shanghai, 200237, China
| | - Quanwei Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China
| | - Zhengduo Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Xuhui District, Shanghai, 200237, China
| | - Chuan Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Xuhui District, Shanghai, 200237, China
| | - Fengxian Qi
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China
| | - Weishan Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Xuhui District, Shanghai, 200237, China.,State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Xuhui District, Shanghai, 200237, China
| | - Zilong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China
| |
Collapse
|
28
|
Liu F, Yang M, Song W, Luo X, Tang R, Duan Z, Kang W, Xie S, Liu Q, Lei C, Huang Y, Nie Z, Yao S. Target-activated transcription for the amplified sensing of protease biomarkers. Chem Sci 2020; 11:2993-2998. [PMID: 34122801 PMCID: PMC8157538 DOI: 10.1039/c9sc04692e] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/09/2020] [Indexed: 12/21/2022] Open
Abstract
Signal amplification is an effective way to achieve sensitive analysis of biomarkers, exhibiting great promise in biomedical research and clinical diagnosis. Inspired by the transcription process, here we present a versatile strategy that enables effective amplification of proteolysis into nucleic acid signal outputs in a homogeneous system. In this strategy, a protease-activatable T7 RNA polymerase is engineered as the signal amplifier and achieves 3 orders of magnitude amplification in signal gain. The versatility of this strategy has been demonstrated by the development of sensitive and selective assays for protease biomarkers, such as matrix metalloproteinase-2 (MMP-2) and thrombin, with sub-picomole sensitivity, which is 4.3 × 103-fold lower than that of the standard peptide-based method. Moreover, the proposed assay has been further applied in the detection of MMP-2 secreted by cancer cells, as well as in the assessment of MMP-2 levels in osteosarcoma tissue samples, providing a general approach for the monitoring of protease biomarkers in clinical diagnosis.
Collapse
Affiliation(s)
- Fang Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University Changsha 410082 P. R. China
| | - Min Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University Changsha 410082 P. R. China
| | - Wenlu Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University Changsha 410082 P. R. China
| | - Xingyu Luo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University Changsha 410082 P. R. China
| | - Rui Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University Changsha 410082 P. R. China
| | - Zhixi Duan
- Department of Orthopedics, The Second Xiangya Hospital, Central South University Changsha 410011 Hunan P. R. China
| | - Wenyuan Kang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University Changsha 410082 P. R. China
| | - Shiyi Xie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University Changsha 410082 P. R. China
| | - Qingqing Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University Changsha 410082 P. R. China
| | - Chunyang Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University Changsha 410082 P. R. China
| | - Yan Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University Changsha 410082 P. R. China
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University Changsha 410082 P. R. China
| | - Shouzhuo Yao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University Changsha 410082 P. R. China
| |
Collapse
|
29
|
A CRISPR-Cas12a-derived biosensing platform for the highly sensitive detection of diverse small molecules. Nat Commun 2019; 10:3672. [PMID: 31413315 PMCID: PMC6694116 DOI: 10.1038/s41467-019-11648-1] [Citation(s) in RCA: 257] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/04/2019] [Indexed: 12/26/2022] Open
Abstract
Besides genome editing, CRISPR-Cas12a has recently been used for DNA detection applications with attomolar sensitivity but, to our knowledge, it has not been used for the detection of small molecules. Bacterial allosteric transcription factors (aTFs) have evolved to sense and respond sensitively to a variety of small molecules to benefit bacterial survival. By combining the single-stranded DNA cleavage ability of CRISPR-Cas12a and the competitive binding activities of aTFs for small molecules and double-stranded DNA, here we develop a simple, supersensitive, fast and high-throughput platform for the detection of small molecules, designated CaT-SMelor (CRISPR-Cas12a- and aTF-mediated small molecule detector). CaT-SMelor is successfully evaluated by detecting nanomolar levels of various small molecules, including uric acid and p-hydroxybenzoic acid among their structurally similar analogues. We also demonstrate that our CaT-SMelor directly measured the uric acid concentration in clinical human blood samples, indicating a great potential of CaT-SMelor in the detection of small molecules. Bacterial allosteric transcription factors can sense and respond to a variety of small molecules. Here the authors present CaT-SMelor which uses Cas12a and allosteric transcription factors to detect small molecules in the nanomolar range.
Collapse
|
30
|
Wan X, Marsafari M, Xu P. Engineering metabolite-responsive transcriptional factors to sense small molecules in eukaryotes: current state and perspectives. Microb Cell Fact 2019; 18:61. [PMID: 30914048 PMCID: PMC6434827 DOI: 10.1186/s12934-019-1111-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 03/20/2019] [Indexed: 11/18/2022] Open
Abstract
Nature has evolved exquisite sensing mechanisms to detect cellular and environmental signals surrounding living organisms. These biosensors have been widely used to sense small molecules, detect environmental cues and diagnose disease markers. Metabolic engineers and synthetic biologists have been able to exploit metabolites-responsive transcriptional factors (MRTFs) as basic tools to rewire cell metabolism, reprogram cellular activity as well as boost cell’s productivity. This is commonly achieved by integrating sensor-actuator systems with biocatalytic functions and dynamically allocating cellular resources to drive carbon flux toward the target pathway. Up to date, most of identified MRTFs are derived from bacteria. As an endeavor to advance intelligent biomanufacturing in yeast cell factory, we will summarize the opportunities and challenges to transfer the bacteria-derived MRTFs to expand the small-molecule sensing capability in eukaryotic cells. We will discuss the design principles underlying MRTF-based biosensors in eukaryotic cells, including the choice of reliable reporters and the characterization tools to minimize background noise, strategies to tune the sensor dynamic range, sensitivity and specificity, as well as the criteria to engineer activator and repressor-based biosensors. Due to the physical separation of transcription and protein expression in eukaryotes, we argue that nuclear import/export mechanism of MRTFs across the nuclear membrane plays a critical role in regulating the MRTF sensor dynamics. Precisely-controlled MRTF response will allow us to repurpose the vast majority of transcriptional factors as molecular switches to achieve temporal or spatial gene expression in eukaryotes. Uncovering this knowledge will inform us fundamental design principles to deliver robust cell factories and enable the design of reprogrammable and predictable biological systems for intelligent biomanufacturing, smart therapeutics or precision medicine in the foreseeable future.
Collapse
Affiliation(s)
- Xia Wan
- Department of Chemical Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, 21250, USA.,Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China.,Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, Hubei, China
| | - Monireh Marsafari
- Department of Chemical Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, 21250, USA.,Department of Agronomy and Plant Breeding, University of Guilan, Rasht, Islamic Republic of Iran
| | - Peng Xu
- Department of Chemical Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, 21250, USA.
| |
Collapse
|