1
|
Chen F, Wang L, Li K, Guo R, Qin Y, Shen C, Liu Y, Xu Z, Gao C. Self-limiting selective phase separation of graphene oxide and polymer composite solution. NANOSCALE 2025. [PMID: 39831718 DOI: 10.1039/d4nr04636f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Homogeneous mixtures undergo phase separation to generate rich heterogeneous structures as well as enable complex physiological activity and delicate design of artificial materials. Beyond free space, the strong coupling between migrating components and spatial confinement plays a crucial role in determining the essential spatial compartment of phase separation, warranting further continuous exploration. Herein, we report the selective phase separation (SPS) behavior of polymers under a mobile two-dimensional (2D) confinement by graphene oxide (GO) sheets. The selection of a poor solvent triggers the occurrence of SPS in a homogeneous solution of GO and polymers. We reveal that the self-limiting spatial confinement of GO sheets leads to the migration of polymers to form independent and continuous phase in 2D confinement. We examine the quantitative rule of size and continuity of polymer phases in correlation with solvent properties and solute constitutes. The observed SPS allows the facile generation of heterogenous nanostructures in GO/polymer composites. We initiate a SPS wet-spinning to fabricate radial heterogenous fibrous graphene composite fibers with ultrahigh elongation at break and superior flexibility. The observed SPS can inspire more exceptional phase separation behaviors under mobile 2D confinement and offers a facile method to delicately design 2D heterogeneous nanostructured materials.
Collapse
Affiliation(s)
- Feifan Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| | - Lidan Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| | - Kaiwen Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| | - Rui Guo
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| | - Yicong Qin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| | - Chenwei Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| | - Yingjun Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030000, China
| | - Zhen Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030000, China
| | - Chao Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030000, China
| |
Collapse
|
2
|
Li H, Fang L, Wang T, Bai R, Zhang J, Li T, Duan Z, Chen KJ, Pan F. In Situ Modulated Nickel Single Atoms on Bicontinuous Porous Carbon Fibers and Sheets Networks for Acidic CO 2 Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2416337. [PMID: 39726351 DOI: 10.1002/adma.202416337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/12/2024] [Indexed: 12/28/2024]
Abstract
Carbon-supported single-atom catalysts exhibit exceptional properties in acidic CO2 reduction. However, traditional carbon supports fall short in building high-site-utilization and CO2-rich interfacial environments, and the structural evolution of single-atom metals and catalytic mechanisms under realistic conditions remain ambiguous. Herein, an interconnected mesoporous carbon nanofiber and carbon nanosheet network (IPCF@CS) is reported, derived from microphase-separated block copolymer, to improve catalytic efficiency of isolated Ni. In IPCF@CS nanostructure, highly mesoporous IPCF hinders stacking of CS that provides additional fully exposed sites and abundant bicontinuous mesochannels of IPCF facilitate smooth CO2 transport. Such unique features enable enhanced Ni utilization and local CO2 enrichment, which cannot be achieved over conventional pore-deficient and discontinuous porous carbon fibers-based supports. In situ X-ray and Infrared spectroscopy coupling constant-potential calculations reveal the dynamic distortion of the planar Ni-N4 to an out-of-plane configuration with expanded Ni-N bond during operating CO2 electroreduction. The potential-driven low-valance-state Ni-N4 possesses enhanced intrinsic electrokinetics for CO2 activation and CO desorption yet inhibiting hydrogen evolution. The favorable electronic and interfacial reaction environments, resulted from the in situ tailored Ni site and IPCF@CS support, achieve an FE of near 100% at 540 mA cm-2, a TOF of 55.5 s-1, and a SPCE of 89.2% in acidic CO2-to-CO electrolysis.
Collapse
Affiliation(s)
- Haoyang Li
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Lingzhe Fang
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Ting Wang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Rui Bai
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Jian Zhang
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Tao Li
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Zhiyao Duan
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Kai-Jie Chen
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Fuping Pan
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
- Chongqing Innovation Center, Northwestern Polytechnical University, Chongqing, 401135, China
| |
Collapse
|
3
|
Lee S, Yu H, Han MG, Jung H, Jung HT, Kim SM, Jeong HS. Versatile and Fast Electrochemical Activation Method for Carbon Nanotube Fibers with Diverse Active Materials. SMALL METHODS 2024:e2401478. [PMID: 39690746 DOI: 10.1002/smtd.202401478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/08/2024] [Indexed: 12/19/2024]
Abstract
In this study, the challenge of non-electrochemical activity in carbon nanotube fibers (CNTFs) is addressed by developing a modified chlorosulfonic acid (CSA) densification process specifically developed for directly spun CNTFs. This post-treatment method, well-known for enhancing the physical properties of CNTFs, utilizes the double diffusion phenomenon to efficiently integrate a diverse range of active materials, from conductive polymers like polyaniline (PANI) to metal oxides like nickel oxide (NiO), into the fibers. This universal and cost-effective approach not only simplifies the integration process but also significantly boosts both the electrochemical and physical properties of the fibers. For instance, the PANI@CNTF composite exhibited a remarkable 17-fold increase in specific capacitance and a two-fold increase in load value compared to its pristine counterparts. This method proves straightforward, efficient, and versatile, making it suitable for developing fiber-shaped electrodes that advance the capabilities of wearable energy storage systems.
Collapse
Affiliation(s)
- Sungju Lee
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong ro, Bondong-eup, Wanju-gun, Jeonbuk, 55324, South Korea
- Department of Chemical and Biomolecular Engineering (BK-21 Plus), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Hayoung Yu
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong ro, Bondong-eup, Wanju-gun, Jeonbuk, 55324, South Korea
| | - Min Gook Han
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong ro, Bondong-eup, Wanju-gun, Jeonbuk, 55324, South Korea
- Department of Environmental Engineering, Chungbuk National University, Chungae-ro 1, Seowon-Gu, Cheongju, Chungbuk, 28644, South Korea
| | - Hyewon Jung
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong ro, Bondong-eup, Wanju-gun, Jeonbuk, 55324, South Korea
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeon-ro, Mapo-gu, Seoul, 04107, South Korea
| | - Hee-Tae Jung
- Department of Chemical and Biomolecular Engineering (BK-21 Plus), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Seung Min Kim
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong ro, Bondong-eup, Wanju-gun, Jeonbuk, 55324, South Korea
| | - Hyeon Su Jeong
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong ro, Bondong-eup, Wanju-gun, Jeonbuk, 55324, South Korea
| |
Collapse
|
4
|
Hou L, Li WC, Wang S, Lu AH. Multiscale Tunable Nanorings Based on Bi-Component Micellar-Configuration-Transformation Induced by Hydrophobicity. SMALL METHODS 2024; 8:e2400423. [PMID: 39129659 DOI: 10.1002/smtd.202400423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/02/2024] [Indexed: 08/13/2024]
Abstract
Ringy nanostructures are amazing materials, displaying unique optical, magnetic, and electronic properties highly related to their dimensions. A strategy capable of continuously tailoring the diameter of nanorings is the key to elucidating their structure-function relationship. Herein, a method of bi-component micellar-configuration-transformation induced by hydrophobicity for the synthesis of nanorings with diameters ranging from submicron (≈143 nm) to micron (≈4.8 µm) and their carbonaceous analogs is established. Remarkably, the nanorings fabricated with this liquid phase strategy achieve the record for the largest diameter span. Through varying the molecular lengths of fatty alcohols and copolymers, shortening the molecular length of fatty alcohol can swell the primary micelles, improve the exposure of hydrophobic component and boost the assembly kinetics for ultra-large nanorings is shown here. On the other hand, shortening the molecular length of the copolymer will give rise to ultra-small nanorings by reducing the size of primary micelles and shortening the assembly time. When assembling the nanorings into monolayer arrays and then depositing Au, such substrate displays enhanced surface-enhanced Raman scattering (SERS) performance. This research develops a facile method for the controllable synthesis of ringy materials with multiscale tunable diameters and may inspire more interesting applications in physics, optical, and sensors.
Collapse
Affiliation(s)
- Lu Hou
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Wen-Cui Li
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Sijia Wang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - An-Hui Lu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
5
|
Sharma S, Kaur G, Sharma B, Saiteja BN, Dalvi A. High-performance, high energy density symmetric supercapacitors based on δ-MnO 2 nanoflower electrodes incorporated with an ion-conducting polymer. RSC Adv 2024; 14:35657-35670. [PMID: 39524095 PMCID: PMC11544595 DOI: 10.1039/d4ra05670a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
The present work investigates liquid-based and liquid-free supercapacitors assembled using δ-MnO2-nanoflower-based electrodes. An optimized electrode composition was prepared using acetylene black (AB), a polymer (PEO), a salt (LiClO4), and δ-MnO2 and used for device fabrication. The composite electrode was tested against a liquid electrolyte and a 'liquid-free' composite solid polymer electrolyte (CSPE) membrane. In a three electrode geometry, with 1 M solution of LiClO4 as an electrolyte, the specific capacitance of the electrode was found to be ∼385 F g-1, with a specific energy of ∼23 W h kg-1 and specific power of ∼341 W kg-1 (at 1 mA, 1 V). Dunn's method confirmed that the charge storage process was predominantly pseudocapacitive. When the device was assembled in a two-electrode Swagelok cell, a stable specific capacitance of ∼216 F g-1 was observed with a specific energy of 30 W h kg-1 and a specific power of 417 W kg-1. The supercapacitors exhibited stable performance up to ∼7000 cycles with ∼90% capacitance retention and ∼97% coulombic efficiency. A combination of these cells could light two white light-emitting diodes (LEDs, 3 V) for at least ∼10 minutes. Further, all-solid-state supercapacitors (ASSCs) were fabricated using a Li+ ion (CSPE) membrane. The ASSCs exhibited a specific capacitance of ∼496 F g-1 after ∼500 cycles, with a specific energy and power of ∼19 W h kg-1 and ∼367 W kg-1, respectively. The investigation reveals that the electrodes are versatile and show compatibility with liquid and solid electrolytes. The polymer in the electrode matrix plays an important role in enhancing device performance.
Collapse
Affiliation(s)
- Shrishti Sharma
- Department of Physics BITS Pilani-Pilani Campus RJ-333031 India
| | - Gurpreet Kaur
- Department of Chemistry BITS Pilani-Pilani Campus RJ-333031 India
| | - Bhargab Sharma
- Department of Physics BITS Pilani-Pilani Campus RJ-333031 India
| | | | - Anshuman Dalvi
- Department of Physics BITS Pilani-Pilani Campus RJ-333031 India
| |
Collapse
|
6
|
Wang T, Duan X, Bai R, Li H, Qin C, Zhang J, Duan Z, Chen KJ, Pan F. Ni-Electrocatalytic CO 2 Reduction Toward Ethanol. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410125. [PMID: 39267437 DOI: 10.1002/adma.202410125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/27/2024] [Indexed: 09/17/2024]
Abstract
The electroreduction of CO2 offers a sustainable route to generate synthetic fuels. Cu-based catalysts have been developed to produce value-added C2+ alcohols; however, the limited understanding of complex C-C coupling and reaction pathway hinders the development of efficient CO2-to-C2+ alcohols catalysts. Herein, a Cu-free, highly mesoporous NiO catalyst, derived from the microphase separation of a block copolymer, is reported, which achieves selective CO2 reduction toward ethanol with a Faradaic efficiency of 75.2% at -0.6 V versus RHE. The dense mesopores create a favorable local reaction environment with CO2-rich and H2O-deficient interfaces, suppressing hydrogen evolution and maximizing catalytic activity of NiO for CO2 reduction. Importantly, the C1-feeding experiments, in situ spectroscopy, and theoretical calculations consistently show that the direct coupling of *CO2 and *COOH is responsible for C-C bond formation on NiO, and subsequent reduction of *CO2-COOH to ethanol is energetically facile through the *COCOH and *OC2H5 pathway. The unconventional C-C coupling mechanism on NiO, in contrast to the *CO dimerization on Cu, is triggered by strong CO2 adsorption on the polarized Ni2+-O2- sites. The work not only demonstrates a highly selective Cu-free Ni-based alternative for CO2-to-C2+ alcohols transformation but also provides a new perspective on C-C coupling toward C2+ synthesis.
Collapse
Affiliation(s)
- Ting Wang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Xinyi Duan
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Rui Bai
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Haoyang Li
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Chen Qin
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Jian Zhang
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Zhiyao Duan
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Kai-Jie Chen
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Fuping Pan
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
- Chongqing Innovation Center, Northwestern Polytechnical University, Chongqing, 401135, China
| |
Collapse
|
7
|
Pan Y, Zhang Y, Thompson C, Liu G, Zhang W. Electrospun Lithium Porous Nanosorbent Fibers for Enhanced Lithium Adsorption and Sustainable Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54259-54271. [PMID: 39344053 PMCID: PMC11472274 DOI: 10.1021/acsami.4c13253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
Electrospun nanosorbent fibers specifically designed for efficient lithium extraction were developed, exhibiting superior physicochemical properties. These fibers were fabricated using a polyacrylonitrile/dimethylformamide matrix, with viscosity and dynamic mechanical analysis showing that optimal interactions were achieved at lower contents of layered double hydroxide. This meticulous adjustment in formulation led to the creation of lithium porous nanosorbent fibers (Li-PNFs-1). Li-PNFs-1 exhibited outstanding mechanical attributes, including a yield stress of 0.09 MPa, a tensile strength of 2.48 MPa, and an elongation at a break of 19.7%. Additionally, they demonstrated pronounced hydrophilicity and hierarchical porous architecture, which greatly favor rapid wetting kinetics and lithium adsorption. Morphologically, they exhibited uniform smoothness with a diameter averaging 546 nm, indicative of orderly crystalline growth and a dense molecular arrangement. X-ray photoelectron spectroscopy and density functional theory using Cambridge Serial Total Energy Package revealed modifications in the spatial and electronic configurations of polyacrylonitrile due to hydrogen bonding, facilitating lithium adsorption capacity up to 13.45 mg/g under optimal conditions. Besides, kinetics and isotherm showed rapid equilibrium within 60 min and confirmed the chemical and selective nature of Li+ uptake. These fibers demonstrated consistent adsorption performance across multiple cycles, highlighting their potential for sustainable use in industrial applications.
Collapse
Affiliation(s)
- Yanan Pan
- Department
of Mining and Minerals Engineering, Virginia
Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Yue Zhang
- Department
of Chemistry, Virginia Polytechnic Institute
and State University, Blacksburg, Virginia 24061, United States
| | - Connor Thompson
- Department
of Chemistry, Virginia Polytechnic Institute
and State University, Blacksburg, Virginia 24061, United States
| | - Guoliang Liu
- Department
of Chemistry, Virginia Polytechnic Institute
and State University, Blacksburg, Virginia 24061, United States
- Department
of Chemical Engineering, Department of Materials Science and Engineering,
and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Wencai Zhang
- Department
of Mining and Minerals Engineering, Virginia
Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| |
Collapse
|
8
|
Li T, Liu Y, Huang Y, Zhang L, Chen Z, Yang W, Shi G, Zhou J, Zou R, Gan J, Zhong L, Peng X. Carbon Fiber Film with Multi-Hollow Channels to Expedite Oxygen Electrocatalytic Reaction Kinetics for Flexible Zn-Air Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311675. [PMID: 38441359 DOI: 10.1002/smll.202311675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/18/2024] [Indexed: 08/02/2024]
Abstract
The high oxygen electrocatalytic overpotential of flexible cathodes due to sluggish reaction kinetics result in low energy conversion efficiency of wearable zinc-air batteries (ZABs). Herein, lignin, as a 3D flexible carbon-rich macromolecule, is employed for partial replacement of polyacrylonitrile and constructing flexible freestanding air electrodes (FFAEs) with large amount of mesopores and multi-hollow channels via electrospinning combined with annealing strategy. The presence of lignin with disordered structure decreases the graphitization of carbon fibers, increases the structural defects, and optimizes the pore structure, facilitating the enhancement of electron-transfer kinetics. This unique structure effectively improves the accessibility of graphitic-N/pyridinic-N with oxygen reduction reaction (ORR) activity and pyridinic-N with oxygen evolution reaction (OER) activity for FFAEs, accelerating the mass transfer process of oxygen-active species. The resulting N-doped hollow carbon fiber films (NHCFs) exhibit superior bifunctional ORR/OER performance with a low potential difference of only 0.60 V. The rechargeable ZABs with NHCFs as metal-free cathodes possess a long-term cycling stability. Furthermore, the NHCFs can be used as FFAEs for flexible ZABs which have a high specific capacity and good cycling stability under different bending states. This work paves the way to design and produce highly active metal-free bifunctional FFAEs for electrochemical energy devices.
Collapse
Affiliation(s)
- Tingzhen Li
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Yijun Liu
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510641, China
- Hainan Key Laboratory of Storage & Processing of Fruits and Vegetables, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, 524001, China
| | - Yongfa Huang
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Lei Zhang
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Zehong Chen
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Wu Yang
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Ge Shi
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Jiawei Zhou
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Ren Zou
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Jianyun Gan
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Linxin Zhong
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Xinwen Peng
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
9
|
Wei D, Ouyang B, Cao Y, Yan L, Wu B, Chen P, Zhang T, Jiang Y, Wang H. Coordination Confined Silver-Organic Framework for High Performance Electrochemical Deionization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401174. [PMID: 38696650 PMCID: PMC11267271 DOI: 10.1002/advs.202401174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/14/2024] [Indexed: 05/04/2024]
Abstract
Silver (Ag) is deemed a promising anode material for capacitive deionization (CDI) due to its high theoretical capacity and efficient selectivity to Cl-. However, the strong volume change during the conversion reaction significantly undermines the cycling performance of the Ag electrode. Additionally, achieving well-dispersed Ag in the active matrix is challenging, as Ag electrodes prepared by conventional thermal reduction tend to agglomerate. Herein, the organic linker confinement strategy is proposed, applying metal-organic framework (MOF) chemistry between Ag nodes and organic ligands to construct Ag-based MOF. The uniform dispersion of Ag at the molecular level, confined in the organic matrix, efficiently enhances the utilization of active sites, and strengthens the interfacial stability of Ag. Consequently, the Ag-MOF for the CDI anode exhibits an excellent Cl- removal capacity of 121.52 mg g-1 at 20 mA g-1 in 500 mg L-1 NaCl solution, and a high Ag utilization rate of 60.54%. After 100 cycles, a capacity retention of 96.93% is achieved. Furthermore, the Cl- capture mechanism of Ag-MOF is elucidated through density functional theory (DFT) calculations, ex situ XRD, ex situ Raman and XPS. This ingenious electrode design can offer valuable insights for the development of high-performance conversion electrodes for CDI applications.
Collapse
Affiliation(s)
- Dun Wei
- School of Metallurgy and EnvironmentCentral South UniversityChangsha410083China
| | - Baixue Ouyang
- School of Metallurgy and EnvironmentCentral South UniversityChangsha410083China
| | - Yiyun Cao
- School of Metallurgy and EnvironmentCentral South UniversityChangsha410083China
| | - Lvji Yan
- School of Metallurgy and EnvironmentCentral South UniversityChangsha410083China
| | - Bichao Wu
- School of Metallurgy and EnvironmentCentral South UniversityChangsha410083China
| | - Peng Chen
- School of Metallurgy and EnvironmentCentral South UniversityChangsha410083China
| | - Tingzheng Zhang
- School of Metallurgy and EnvironmentCentral South UniversityChangsha410083China
| | - Yuxin Jiang
- College of Environmental Science and EngineeringCentral South University of Forestry and TechnologyChangsha410004China
- Faculty of Life Science and TechnologyCentral South University of Forestry and TechnologyChangsha410004China
| | - Haiying Wang
- School of Metallurgy and EnvironmentCentral South UniversityChangsha410083China
- Chinese National Engineering Research Center for Control and Treatment of Heavy Metal PollutionCentral South UniversityChangsha410083China
| |
Collapse
|
10
|
Jia P, Wang Z, Wang X, Qin K, Gao J, Sun J, Xia G, Dong T, Gong Y, Yu Z, Zhang J, Chen H, Wang S. Nanoporous Carbon Materials Derived from Zanthoxylum Bungeanum Peel and Seed for Electrochemical Supercapacitors. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:836. [PMID: 38786793 PMCID: PMC11124505 DOI: 10.3390/nano14100836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
In order to prepare biomass-derived carbon materials with high specific capacitance at a low activation temperature (≤700 °C), nanoporous carbon materials were prepared from zanthoxylum bungeanum peels and seeds via the pyrolysis and KOH-activation processes. The results show that the optimal activation temperatures are 700 °C and 600 °C for peels and seeds. Benefiting from the hierarchical pore structure (micropores, mesopores, and macropores), the abundant heteroatoms (N, S, and O) containing functional groups, and plentiful electrochemical active sites, the PAC-700 and SAC-600 derive the large capacities of ~211.0 and ~219.7 F g-1 at 1.0 A g-1 in 6 M KOH within the three-electrode configuration. Furthermore, the symmetrical supercapacitors display a high energy density of 22.9 and 22.4 Wh kg-1 at 7500 W kg-1 assembled with PAC-700 and SAC-600, along with exceptional capacitance retention of 99.1% and 93.4% over 10,000 cycles at 1.0 A g-1. More significantly, the contribution here will stimulate the extensive development of low-temperature activation processes and nanoporous carbon materials for electrochemical energy storage and beyond.
Collapse
Affiliation(s)
- Peng Jia
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (P.J.); (Z.W.); (X.W.); (K.Q.); (J.G.); (J.S.); (G.X.); (T.D.); (Y.G.); (Z.Y.); (S.W.)
| | - Ziming Wang
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (P.J.); (Z.W.); (X.W.); (K.Q.); (J.G.); (J.S.); (G.X.); (T.D.); (Y.G.); (Z.Y.); (S.W.)
| | - Xinru Wang
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (P.J.); (Z.W.); (X.W.); (K.Q.); (J.G.); (J.S.); (G.X.); (T.D.); (Y.G.); (Z.Y.); (S.W.)
| | - Ke Qin
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (P.J.); (Z.W.); (X.W.); (K.Q.); (J.G.); (J.S.); (G.X.); (T.D.); (Y.G.); (Z.Y.); (S.W.)
| | - Jiajing Gao
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (P.J.); (Z.W.); (X.W.); (K.Q.); (J.G.); (J.S.); (G.X.); (T.D.); (Y.G.); (Z.Y.); (S.W.)
| | - Jiazhen Sun
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (P.J.); (Z.W.); (X.W.); (K.Q.); (J.G.); (J.S.); (G.X.); (T.D.); (Y.G.); (Z.Y.); (S.W.)
| | - Guangmei Xia
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (P.J.); (Z.W.); (X.W.); (K.Q.); (J.G.); (J.S.); (G.X.); (T.D.); (Y.G.); (Z.Y.); (S.W.)
| | - Tao Dong
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (P.J.); (Z.W.); (X.W.); (K.Q.); (J.G.); (J.S.); (G.X.); (T.D.); (Y.G.); (Z.Y.); (S.W.)
| | - Yanyan Gong
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (P.J.); (Z.W.); (X.W.); (K.Q.); (J.G.); (J.S.); (G.X.); (T.D.); (Y.G.); (Z.Y.); (S.W.)
| | - Zhenjiang Yu
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (P.J.); (Z.W.); (X.W.); (K.Q.); (J.G.); (J.S.); (G.X.); (T.D.); (Y.G.); (Z.Y.); (S.W.)
| | - Jinyang Zhang
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (P.J.); (Z.W.); (X.W.); (K.Q.); (J.G.); (J.S.); (G.X.); (T.D.); (Y.G.); (Z.Y.); (S.W.)
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Honglei Chen
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (P.J.); (Z.W.); (X.W.); (K.Q.); (J.G.); (J.S.); (G.X.); (T.D.); (Y.G.); (Z.Y.); (S.W.)
| | - Shengdan Wang
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (P.J.); (Z.W.); (X.W.); (K.Q.); (J.G.); (J.S.); (G.X.); (T.D.); (Y.G.); (Z.Y.); (S.W.)
| |
Collapse
|
11
|
Kim KW, Seok H, Son S, Park SJ, Yang C, Lee D, Lee HC, Mun J, Yeom HJ, Yoon MY, Park B, Kim SH, Jo C, Moon HC, Kim T, Kim JK. Low-Temperature, Universal Synthetic Route for Mesoporous Metal Oxides by Exploiting Synergistic Effect of Thermal Activation and Plasma. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311809. [PMID: 38241612 DOI: 10.1002/adma.202311809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/03/2024] [Indexed: 01/21/2024]
Abstract
Mesoporous metal oxides exhibit excellent physicochemical properties and are widely used in various fields, including energy storage/conversion, catalysis, and sensors. Although several soft-template approaches are reported, high-temperature calcination for both metal oxide formation and template removal is necessary, which limits direct synthesis on a plastic substrate for flexible devices. Here, a universal synthetic approach that combines thermal activation and oxygen plasma to synthesize diverse mesoporous metal oxides (V2O5, V6O13, TiO2, Nb2O5, WO3, and MoO3) at low temperatures (150-200 °C), which can be applicable to a flexible polymeric substrate is introduced. As a demonstration, a flexible micro-supercapacitor is fabricated by directly synthesizing mesoporous V2O5 on an indium-tin oxide-coated colorless polyimide film. The energy storage performance is well maintained under severe bending conditions.
Collapse
Affiliation(s)
- Keon-Woo Kim
- National Creative Research Initiative Center for Hybrid Nano Materials by High-level Architectural Design of Block Copolymer, Pohang, Gyeongbuk, 790-784, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 790-784, Republic of Korea
| | - Hyunho Seok
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Sihoon Son
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Su-Jeong Park
- Advanced Nano-Surface & Wearable Electronics Research Laboratory, Heat and Surface Technology R&D Department, Korea Institute of Industrial Technology, Incheon, 21999, Republic of Korea
| | - Chanwoo Yang
- Advanced Nano-Surface & Wearable Electronics Research Laboratory, Heat and Surface Technology R&D Department, Korea Institute of Industrial Technology, Incheon, 21999, Republic of Korea
| | - Dongho Lee
- Department of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Hyo-Chang Lee
- Department of Semiconductor Science, Engineering and Technology, Korea Aerospace University, Goyang, 10540, Republic of Korea
| | - Jihun Mun
- Advanced Instrumentation Institute, Korea Research Institute of Standards and Science, Daejeon, 34113, Republic of Korea
| | - Hee-Jung Yeom
- Advanced Instrumentation Institute, Korea Research Institute of Standards and Science, Daejeon, 34113, Republic of Korea
| | - Min Young Yoon
- Advanced Instrumentation Institute, Korea Research Institute of Standards and Science, Daejeon, 34113, Republic of Korea
| | - Bomi Park
- National Creative Research Initiative Center for Hybrid Nano Materials by High-level Architectural Design of Block Copolymer, Pohang, Gyeongbuk, 790-784, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 790-784, Republic of Korea
| | - Se Hyun Kim
- Division of Chemical Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Changshin Jo
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 790-784, Republic of Korea
- Graduate Institute of Ferrous & Energy Materials Technology (GIFT), Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 790-784, Republic of Korea
| | - Hong Chul Moon
- Department of Chemical Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Taesung Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Jin Kon Kim
- National Creative Research Initiative Center for Hybrid Nano Materials by High-level Architectural Design of Block Copolymer, Pohang, Gyeongbuk, 790-784, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 790-784, Republic of Korea
| |
Collapse
|
12
|
Wang H, Zeng C, Wang C, Fu J, Li Y, Yang Y, Du Z, Tao G, Sun Q, Zhai T, Li H. Fibration of powdery materials. NATURE MATERIALS 2024; 23:596-603. [PMID: 38418925 DOI: 10.1038/s41563-024-01821-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 01/26/2024] [Indexed: 03/02/2024]
Abstract
Non-destructive processing of powders into macroscopic materials with a wealth of structural and functional possibilities has immeasurable scientific significance and application value, yet remains a challenge using conventional processing techniques. Here we developed a universal fibration method, using two-dimensional cellulose as a mediator, to process diverse powdered materials into micro-/nanofibres, which provides structural support to the particles and preserves their own specialties and architectures. It is found that the self-shrinking force drives the two-dimensional cellulose and supported particles to pucker and roll into fibres, a gentle process that prevents agglomeration and structural damage of the powder particles. We demonstrate over 120 fibre samples involving various powder guests, including elements, compounds, organics and hybrids in different morphologies, densities and particle sizes. Customized fibres with an adjustable diameter and guest content can be easily constructed into high-performance macromaterials with various geometries, creating a library of building blocks for different fields of applications. Our fibration strategy provides a universal, powerful and non-destructive pathway bridging primary particles and macroapplications.
Collapse
Affiliation(s)
- Hanwei Wang
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, China
| | - Cheng Zeng
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Chao Wang
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, China
| | - Jinzhou Fu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Yingying Li
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, China
| | - Yushan Yang
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, China
| | - Zhichen Du
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Guangming Tao
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Qingfeng Sun
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, China.
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, China.
| | - Huiqiao Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, China.
| |
Collapse
|
13
|
Ostertag BJ, Syeed AJ, Brooke AK, Lapsley KD, Porshinsky EJ, Ross AE. Waste Coffee Ground-Derived Porous Carbon for Neurochemical Detection. ACS Sens 2024; 9:1372-1381. [PMID: 38380643 PMCID: PMC11209848 DOI: 10.1021/acssensors.3c02383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
We present an optimized synthetic method for repurposing coffee waste to create controllable, uniform porous carbon frameworks for biosensor applications to enhance neurotransmitter detection with fast-scan cyclic voltammetry. Harnessing porous carbon structures from biowastes is a common practice for low-cost energy storage applications; however, repurposing biowastes for biosensing applications has not been explored. Waste coffee ground-derived porous carbon was synthesized by chemical activation to form multivoid, hierarchical porous carbon, and this synthesis was specifically optimized for porous uniformity and electrochemical detection. These materials, when modified on carbon-fiber microelectrodes, exhibited high surface roughness and pore distribution, which contributed to significant improvements in electrochemical reversibility and oxidative current for dopamine (3.5 ± 0.4-fold) and other neurochemicals. Capacitive current increases were small, showing evidence of small increases in electroactive surface area. Local trapping of dopamine within the pores led to improved electrochemical reversibility and frequency-independent behavior. Overall, we demonstrate an optimized biowaste-derived porous carbon synthesis for neurotransmitter detection for the first time and show material utility for viable neurotransmitter detection within a tissue matrix. This work supports the notion that controlled surface nanogeometries play a key role in electrochemical detection.
Collapse
Affiliation(s)
- Blaise J. Ostertag
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA
| | - Ayah J. Syeed
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA
| | - Alexandra K. Brooke
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA
| | - Kamya D. Lapsley
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA
| | - Evan J. Porshinsky
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA
| | - Ashley E. Ross
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA
| |
Collapse
|
14
|
Lim T, Seo BH, Kim SJ, Han S, Lee W, Suk JW. Nitrogen-Doped Activated Hollow Carbon Nanofibers with Controlled Hierarchical Pore Structures for High-Performance, Binder-Free, Flexible Supercapacitor Electrodes. ACS OMEGA 2024; 9:8247-8254. [PMID: 38405492 PMCID: PMC10882668 DOI: 10.1021/acsomega.3c08952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/27/2024]
Abstract
Carbon nanofibers (CNFs) are a fascinating electrode material for energy storage devices due to their one-dimensionality, interconnected networks, and chemical stability. However, a relatively low specific surface area of CNFs hinders their use as supercapacitor electrodes. Here, nitrogen-doped hollow CNFs with hierarchical pore structures are prepared via electrospinning of core-shell polymer nanofibers and subsequent carbonization and activation under an ammonia atmosphere. Hierarchical pore structures with micro-, meso-, and macropores are controlled by an ammonia etching effect during the carbonization of polymer nanofibers. In addition, a hollow structure in CNFs is obtained by thermal decomposition of the core polymer during the carbonization/activation. The nitrogen-doped activated hollow CNFs (ahCNFs) exhibited an exceptionally high specific surface area of 3618 m2/g with increased mesopores. Thus, a symmetric supercapacitor using ahCNFs electrodes with a 6 M KOH aqueous electrolyte provides a high specific capacitance of 208 F/g at a current density of 1 A/g, a high energy density of 7.22 W h/kg at a power density of 502 W/kg, a good rate capability, and cyclic stability. Moreover, the freestanding ahCNFs are used for flexible supercapacitor electrodes without any binder. This work demonstrates the great potential of highly porous ahCNFs for high-performance energy storage devices.
Collapse
Affiliation(s)
- TaeGyeong Lim
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Bong Hyun Seo
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Seo Ju Kim
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Seungwoo Han
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Wonyoung Lee
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
- SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Ji Won Suk
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
- Department of Smart Fab. Technology, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| |
Collapse
|
15
|
Pan F, Fang L, Li B, Yang X, O'Carroll T, Li H, Li T, Wang G, Chen KJ, Wu G. N and OH-Immobilized Cu 3 Clusters In Situ Reconstructed from Single-Metal Sites for Efficient CO 2 Electromethanation in Bicontinuous Mesochannels. J Am Chem Soc 2024; 146:1423-1434. [PMID: 38171910 DOI: 10.1021/jacs.3c10524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Cu-based catalysts hold promise for electrifying CO2 to produce methane, an extensively used fuel. However, the activity and selectivity remain insufficient due to the lack of catalyst design principles to steer complex CO2 reduction pathways. Herein, we develop a concept to design carbon-supported Cu catalysts by regulating Cu active sites' atomic-scale structures and engineering the carbon support's mesoscale architecture. This aims to provide a favorable local reaction microenvironment for a selective CO2 reduction pathway to methane. In situ X-ray absorption and Raman spectroscopy analyses reveal the dynamic reconstruction of nitrogen and hydroxyl-immobilized Cu3 (N,OH-Cu3) clusters derived from atomically dispersed Cu-N3 sites under realistic CO2 reduction conditions. The N,OH-Cu3 sites possess moderate *CO adsorption affinity and a low barrier for *CO hydrogenation, enabling intrinsically selective CO2-to-CH4 reduction compared to the C-C coupling with a high energy barrier. Importantly, a block copolymer-derived carbon fiber support with interconnected mesopores is constructed. The unique long-range mesochannels offer an H2O-deficient microenvironment and prolong the transport path for the CO intermediate, which could suppress the hydrogen evolution reaction and favor deep CO2 reduction toward methane formation. Thus, the newly developed catalyst consisting of in situ constructed N,OH-Cu3 active sites embedded into bicontinuous carbon mesochannels achieved an unprecedented Faradaic efficiency of 74.2% for the CO2 reduction to methane at an industry-level current density of 300 mA cm-2. This work explores effective concepts for steering desirable reaction pathways in complex interfacial catalytic systems via modulating active site structures at the atomic level and engineering pore architectures of supports on the mesoscale to create favorable microenvironments.
Collapse
Affiliation(s)
- Fuping Pan
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
- Chongqing Innovation Center, Northwestern Polytechnical University, Chongqing 401135, China
| | - Lingzhe Fang
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - Boyang Li
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Xiaoxuan Yang
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Thomas O'Carroll
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Haoyang Li
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Tao Li
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
- Chemistry and Material Science Group, X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Guofeng Wang
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Kai-Jie Chen
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Gang Wu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
16
|
Song G, Li C, Wang T, Lim KH, Hu F, Cheng S, Hondo E, Liu S, Kawi S. Hierarchical Hollow Carbon Particles with Encapsulation of Carbon Nanotubes for High Performance Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305517. [PMID: 37670220 DOI: 10.1002/smll.202305517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/26/2023] [Indexed: 09/07/2023]
Abstract
A novel and sustainable carbon-based material, referred to as hollow porous carbon particles encapsulating multi-wall carbon nanotubes (MWCNTs) (CNTs@HPC), is synthesized for use in supercapacitors. The synthesis process involves utilizing LTA zeolite as a rigid template and dopamine hydrochloride (DA) as the carbon source, along with catalytic decomposition of methane (CDM) to simultaneously produce MWCNTs and COx -free H2 . The findings reveal a distinctive hierarchical porous structure, comprising macropores, mesopores, and micropores, resulting in a total specific surface area (SSA) of 913 m2 g-1 . The optimal CNTs@HPC demonstrates a specific capacitance of 306 F g-1 at a current density of 1 A g-1 . Moreover, this material demonstrates an electric double-layer capacitor (EDLC) that surpasses conventional capabilities by exhibiting additional pseudocapacitance characteristics. These properties are attributed to redox reactions facilitated by the increased charge density resulting from the attraction of ions to nickel oxides, which is made possible by the material's enhanced hydrophilicity. The heightened hydrophilicity can be attributed to the presence of residual silicon-aluminum elements in CNTs@HPC, a direct outcome of the unique synthesis approach involving nickel phyllosilicate in CDM. As a result of this synthesis strategy, the material possesses excellent conductivity, enabling rapid transportation of electrolyte ions and delivering outstanding capacitive performance.
Collapse
Affiliation(s)
- Guoqiang Song
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 119260, Singapore
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang, Guizhou Province, 550003, China
| | - Claudia Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 119260, Singapore
| | - Tian Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 119260, Singapore
| | - Kang Hui Lim
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 119260, Singapore
| | - Feiyang Hu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 119260, Singapore
| | - Shuwen Cheng
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 119260, Singapore
| | - Emmerson Hondo
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 119260, Singapore
| | - Shaomin Liu
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China
| | - Sibudjing Kawi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 119260, Singapore
| |
Collapse
|
17
|
Kim KW, Park B, Kim J, Seok H, Kim T, Jo C, Kim JK. Block Copolymer-Directed Facile Synthesis of N-Doped Mesoporous Graphitic Carbon for Reliable, High-Performance Zn Ion Hybrid Supercapacitor. ACS APPLIED MATERIALS & INTERFACES 2023; 15:57905-57912. [PMID: 37040434 DOI: 10.1021/acsami.3c02791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Ordered mesoporous carbons (OMCs) are promising materials for cathode materials of a Zn ion hybrid capacitor (Zn HC) due to their high surface area and interconnected porous structure. Graphitization of the framework and nitrogen doping have been used to improve the energy storage performance of the OMCs by enhancing electrical conductivity, pseudocapacitive reaction sites, and surface affinity toward aqueous electrolytes. Thus, when both methods are simultaneously implemented to the OMCs, the Zn HC would have improved energy storage performance. Herein, we introduce a facile synthetic method for N-doped mesoporous graphitic carbon (N-mgc) by utilizing polystyrene-block-poly(2-vinlypyridine) copolymer (PS-b-P2VP) as both soft-template and carbon/nitrogen sources. Co-assembly of PS-b-P2VP with Ni precursors for graphitization formed a mesostructured composite, which was converted to N-doped graphitic carbon through catalytic pyrolysis. After selective removal of Ni, N-mgc was prepared. The obtained N-mgc exhibited interconnected mesoporous structure with high nitrogen content and high surface area. When N-mgc was employed as a cathode material in Zn ion HC, excellent energy storage performance was achieved: a high specific capacitance (43 F/g at 0.2 A/g), a high energy density of 19.4 Wh/kg at a power density of 180 W/kg, and reliable cycle stability (>3000 cycles).
Collapse
Affiliation(s)
- Keon-Woo Kim
- National Creative Research Initiative Center for Hybrid Nano Materials by High-level Architectural Design of Block Copolymer, Pohang University of Science and Technology (POSTECH), Pohang, Gyungbuk 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyungbuk 37673, Republic of Korea
| | - Bomi Park
- National Creative Research Initiative Center for Hybrid Nano Materials by High-level Architectural Design of Block Copolymer, Pohang University of Science and Technology (POSTECH), Pohang, Gyungbuk 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyungbuk 37673, Republic of Korea
| | - Jun Kim
- National Creative Research Initiative Center for Hybrid Nano Materials by High-level Architectural Design of Block Copolymer, Pohang University of Science and Technology (POSTECH), Pohang, Gyungbuk 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyungbuk 37673, Republic of Korea
| | - Hyunho Seok
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Taesung Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
- Department of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Changshin Jo
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyungbuk 37673, Republic of Korea
- Graduate Institute of Ferrous & Energy Materials Technology (GIFT), Pohang University of Science and Technology (POSTECH), Pohang, Gyungbuk 37673, Republic of Korea
| | - Jin Kon Kim
- National Creative Research Initiative Center for Hybrid Nano Materials by High-level Architectural Design of Block Copolymer, Pohang University of Science and Technology (POSTECH), Pohang, Gyungbuk 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyungbuk 37673, Republic of Korea
| |
Collapse
|
18
|
Bobrin VA, Hackbarth HG, Yao Y, Bedford NM, Zhang J, Corrigan N, Boyer C. Customized Nanostructured Ceramics via Microphase Separation 3D Printing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304734. [PMID: 37750431 PMCID: PMC10646229 DOI: 10.1002/advs.202304734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Indexed: 09/27/2023]
Abstract
To date, the restricted capability to fabricate ceramics with independently tailored nano- and macroscopic features has hindered their implementation in a wide range of crucial technological areas, including aeronautics, defense, and microelectronics. In this study, a novel approach that combines self- and digital assembly to create polymer-derived ceramics with highly controlled structures spanning from the nano- to macroscale is introduced. Polymerization-induced microphase separation of a resin during digital light processing generates materials with nanoscale morphologies, with the distinct phases consisting of either a preceramic precursor or a sacrificial polymer. By precisely controlling the molecular weight of the sacrificial polymer, the domain size of the resulting material phases can be finely tuned. Pyrolysis of the printed objects yields ceramics with complex macroscale geometries and nanoscale porosity, which display excellent thermal and oxidation resistance, and morphology-dependent thermal conduction properties. This method offers a valuable technological platform for the simplified fabrication of nanostructured ceramics with complex shapes.
Collapse
Affiliation(s)
- Valentin A. Bobrin
- Cluster for Advanced Macromolecular DesignSchool of Chemical EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Haira G. Hackbarth
- School of Chemical EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Yin Yao
- Electron Microscope UnitMark Wainwright Analytical CentreUniversity of New South WalesSydneyNSW2052Australia
| | - Nicholas M. Bedford
- School of Chemical EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Jin Zhang
- School of Mechanical and Manufacturing EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Nathaniel Corrigan
- Cluster for Advanced Macromolecular DesignSchool of Chemical EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular DesignSchool of Chemical EngineeringUniversity of New South WalesSydneyNSW2052Australia
- Australian Centre for NanomedicineSchool of Chemical EngineeringUniversity of New South WalesSydneyNSW2052Australia
| |
Collapse
|
19
|
Nguyen TD, Roh S, Nguyen MTN, Lee JS. Structural Control of Nanofibers According to Electrospinning Process Conditions and Their Applications. MICROMACHINES 2023; 14:2022. [PMID: 38004879 PMCID: PMC10673317 DOI: 10.3390/mi14112022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/20/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023]
Abstract
Nanofibers have gained much attention because of the large surface area they can provide. Thus, many fabrication methods that produce nanofiber materials have been proposed. Electrospinning is a spinning technique that can use an electric field to continuously and uniformly generate polymer and composite nanofibers. The structure of the electrospinning system can be modified, thus making changes to the structure, and also the alignment of nanofibers. Moreover, the nanofibers can also be treated, modifying the nanofiber structure. This paper thoroughly reviews the efforts to change the configuration of the electrospinning system and the effects of these configurations on the nanofibers. Excellent works in different fields of application that use electrospun nanofibers are also introduced. The studied materials functioned effectively in their application, thereby proving the potential for the future development of electrospinning nanofiber materials.
Collapse
Affiliation(s)
| | | | | | - Jun Seop Lee
- Department of Materials Science and Engineering, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-Si 13120, Gyeonggi-Do, Republic of Korea; (T.D.N.); (S.R.); (M.T.N.N.)
| |
Collapse
|
20
|
Gong H, Patino DU, Ilavsky J, Kuzmenko I, Peña-Alcántara AE, Zhu C, Coffey AH, Michalek L, Elabd A, Gao X, Chen S, Xu C, Yan H, Jiang Y, Wang W, Peng Y, Zeng Y, Lyu H, Moon H, Bao Z. Tunable 1D and 2D Polyacrylonitrile Nanosheet Superstructures. ACS NANO 2023; 17:18392-18401. [PMID: 37668312 DOI: 10.1021/acsnano.3c05792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Carbon superstructures are widely applied in energy and environment-related areas. Among them, the flower-like polyacrylonitrile (PAN)-derived carbon materials have shown great promise due to their high surface area, large pore volume, and improved mass transport. In this work, we report a versatile and straightforward method for synthesizing one-dimensional (1D) nanostructured fibers and two-dimensional (2D) nanostructured thin films based on flower-like PAN chemistry by taking advantage of the nucleation and growth behavior of PAN. The resulting nanofibers and thin films exhibited distinct morphologies with intersecting PAN nanosheets, which formed through rapid nucleation on existing PAN. We further constructed a variety of hierarchical PAN superstructures based on different templates, solvents, and concentrations. These PAN nanosheet superstructures can be readily converted to carbon superstructures. As a demonstration, the nanostructured thin film exhibited a contact angle of ∼180° after surface modification with fluoroalkyl monolayers, which is attributed to high surface roughness enabled by the nanosheet assemblies. This study offers a strategy for the synthesis of nanostructured carbon materials for various applications.
Collapse
Affiliation(s)
- Huaxin Gong
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Diego Uruchurtu Patino
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Jan Ilavsky
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Ivan Kuzmenko
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | | | - Chenhui Zhu
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Aidan H Coffey
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Lukas Michalek
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Ahmed Elabd
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Xin Gao
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Shucheng Chen
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Chengyi Xu
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Hongping Yan
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Yuanwen Jiang
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Weichen Wang
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Yucan Peng
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Yitian Zeng
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Hao Lyu
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Hanul Moon
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
21
|
Ting JH, Lin PC, Gupta S, Liu CH, Yang T, Lee CY, Lai YT, Tai NH. Dipole moment as the underlying mechanism for enhancing the immobilization of glucose oxidase by ferrocene-chitosan for superior specificity non-invasive glucose sensing. NANOSCALE ADVANCES 2023; 5:4881-4891. [PMID: 37705806 PMCID: PMC10496892 DOI: 10.1039/d3na00340j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/05/2023] [Indexed: 09/15/2023]
Abstract
Non-invasive methods for sensing glucose levels are highly desirable due to the comfortableness, simplicity, and lack of infection risk. However, the insufficient accuracy and ease of interference limit their practical medical applications. Here, we develop a non-invasive salivary glucose biosensor based on a ferrocene-chitosan (Fc-Chit) modified carbon nanotube (CNT) electrode through a simple drop-casting method. Compared with previous studies that relied mainly on trial and error for evaluation, this is the first time that dipole moment was proposed to optimize the electron-mediated Fc-Chit, demonstrating sturdy immobilization of glucose oxidase (GOx) on the electrode and improving the electron transfer process. Thus, the superior sensing sensitivity of the biosensor can achieve 119.97 μA mM-1 cm-2 in phosphate buffered saline (PBS) solution over a wide sensing range of 20-800 μM. Additionally, the biosensor exhibited high stability (retaining 95.0% after three weeks) and high specificity toward glucose in the presence of various interferents, attributed to the specific sites enabling GOx to be sturdily immobilized on the electrode. The results not only provide a facile solution for accurate and regular screening of blood glucose levels via saliva tests but also pave the way for designing enzymatic biosensors with specific enzyme immobilization through fundamental quantum calculations.
Collapse
Affiliation(s)
- Jo-Han Ting
- Department of Materials Science and Engineering, National Tsing Hua University Hsinchu 300 Taiwan ROC
| | - Po-Chuan Lin
- Department of Chemistry, National Tsing Hua University Hsinchu 300 Taiwan ROC
| | - Shivam Gupta
- Department of Materials Science and Engineering, National Tsing Hua University Hsinchu 300 Taiwan ROC
| | - Ching-Hao Liu
- Department of Materials Science and Engineering, National Tsing Hua University Hsinchu 300 Taiwan ROC
| | - Tzuhsiung Yang
- Department of Chemistry, National Tsing Hua University Hsinchu 300 Taiwan ROC
| | - Chi-Young Lee
- Department of Materials Science and Engineering, National Tsing Hua University Hsinchu 300 Taiwan ROC
| | - Yi-Ting Lai
- Department of Materials Engineering, Ming Chi University of Technology New Taipei City 24301 Taiwan ROC
- Center for Plasma and Thin Film Technologies, Ming Chi University of Technology New Taipei City 24301 Taiwan ROC
- Biochemical Technology R&D Center, Ming Chi University of Technology New Taipei City 24301 Taiwan ROC
| | - Nyan-Hwa Tai
- Department of Materials Science and Engineering, National Tsing Hua University Hsinchu 300 Taiwan ROC
| |
Collapse
|
22
|
Kim J, Lee D, Kim C, Lee H, Baek S, Moon JH. Electrochemically active porous carbon nanospheres prepared by inhibition of pyrolytic condensation of polymers. Proc Natl Acad Sci U S A 2023; 120:e2222050120. [PMID: 37126692 PMCID: PMC10175823 DOI: 10.1073/pnas.2222050120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/24/2023] [Indexed: 05/03/2023] Open
Abstract
Porous carbon is a pivotal material for electrochemical applications. The manufacture of porous carbon has relied on chemical treatments (etching or template) that require processing in all areas of the carbon/carbon precursor. We present a unique approach to preparing porous carbon nanospheres by inhibiting the pyrolytic condensation of polymers. Specifically, the porous carbon nanospheres are obtained by coating a thin film of ZnO on polystyrene spheres. The porosity of the porous carbon nanospheres is controlled by the thickness of the ZnO shell, achieving a BET-specific area of 1,124 m2/g with a specific volume of 1.09 cm3/g. We confirm that under the support force by the ZnO shell, a hierarchical pore structure in which small mesopores are connected by large mesopores is formed and that the pore-associated sp3 defects are enriched. These features allow full utilization of the surface area of the carbon pores. The electrochemical capacitive performance of porous carbon nanospheres was evaluated, achieving a high capacitance of 389 F/g at 1 A/g, capacitance retention of 71% at a 20-fold increase in current density, and stability up to 30,000 cycles. In particular, we achieve a specific area-normalized capacitance of 34.6 μF/cm2, which overcomes the limitations of conventional carbon materials.
Collapse
Affiliation(s)
- Jaehyun Kim
- Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University, 04107Seoul, Republic of Korea
| | - Dayoung Lee
- Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University, 04107Seoul, Republic of Korea
| | - Cheolho Kim
- Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University, 04107Seoul, Republic of Korea
| | - Haeli Lee
- Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University, 04107Seoul, Republic of Korea
| | - Seungjun Baek
- Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University, 04107Seoul, Republic of Korea
| | - Jun Hyuk Moon
- Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University, 04107Seoul, Republic of Korea
| |
Collapse
|
23
|
Xiao YX, Ying J, Liu HW, Yang XY. Pt-C interactions in carbon-supported Pt-based electrocatalysts. Front Chem Sci Eng 2023:1-21. [PMID: 37359291 PMCID: PMC10126579 DOI: 10.1007/s11705-023-2300-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/04/2023] [Indexed: 06/28/2023]
Abstract
Carbon-supported Pt-based materials are highly promising electrocatalysts. The carbon support plays an important role in the Pt-based catalysts by remarkably influencing the growth, particle size, morphology, dispersion, electronic structure, physiochemical property and function of Pt. This review summarizes recent progress made in the development of carbon-supported Pt-based catalysts, with special emphasis being given to how activity and stability enhancements are related to Pt-C interactions in various carbon supports, including porous carbon, heteroatom doped carbon, carbon-based binary support, and their corresponding electrocatalytic applications. Finally, the current challenges and future prospects in the development of carbon-supported Pt-based catalysts are discussed.
Collapse
Affiliation(s)
- Yu-Xuan Xiao
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082 China
| | - Jie Ying
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082 China
| | - Hong-Wei Liu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082 China
| | - Xiao-Yu Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & Shenzhen Research Institute & Joint Laboratory for Marine Advanced Materials in Pilot National Laboratory for Marine Science and Technology (Qingdao), Wuhan University of Technology, Wuhan, 430070 China
| |
Collapse
|
24
|
Ostertag B, Ross AE. Wet-Spun Porous Carbon Microfibers for Enhanced Electrochemical Detection. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17601-17611. [PMID: 36989172 PMCID: PMC10316334 DOI: 10.1021/acsami.3c00423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We present a novel copolymer-based, uniform porous carbon microfiber (PCMF) formed via wet-spinning for significantly improved electrochemical detection. Carbon fiber (CF), fabricated from a polyacrylonitrile (PAN) precursor, is commonly used in batteries or for electrochemical detection of neurochemicals due to its biplanar geometry and desirable edge plane sites with high surface free energy and defects for enhanced analyte interactions. Recently, the presence of pores within carbon materials has presented interesting electrochemistry leading to detection improvements; however, there is currently no method to uniformly create pores on a carbon microfiber surface impacting a broad range of electrochemical applications. Here, we synthesized controllable porous carbon fibers from a spinning dope of the copolymers PAN and poly(methyl methacrylate) (PMMA) in dimethylformamide via wet spinning for the first time. PMMA serves as a sacrificial block introducing macropores of increased edge-plane character on the fiber. Methods were optimized to produce porous CFs at similar dimensions to traditional CF. We prove that an increase in porosity enhances the degree of disorder on the surface, resulting in significantly improved detection capabilities with fast-scan cyclic voltammetry. Local trapping of analytes at porous geometries enables electrochemical reversibility with improved sensitivity, linear range of detection, and measurement temporal resolution. Overall, we demonstrate the utility of a copolymer synthetic method for PCMF fabrication, providing a stable, controlled macroporous fiber framework with enhanced edge plane character. This work will significantly advance fundamental investigations of how pores and edge plane sites influence electrochemical detection.
Collapse
Affiliation(s)
- Blaise Ostertag
- University of Cincinnati Department of Chemistry 312 College Dr. 404 Crosley Tower, Cincinnati, OH 45221-0172, USA
| | - Ashley E. Ross
- University of Cincinnati Department of Chemistry 312 College Dr. 404 Crosley Tower, Cincinnati, OH 45221-0172, USA
| |
Collapse
|
25
|
Smith P, Obando AG, Griffin A, Robertson M, Bounds E, Qiang Z. Additive Manufacturing of Carbon Using Commodity Polypropylene. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208029. [PMID: 36763617 DOI: 10.1002/adma.202208029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/02/2023] [Indexed: 05/17/2023]
Abstract
Carbon materials are essential to the development of modern society with indispensable use in various applications, such as energy storage and high-performance composites. Despite great progress, on-demand carbon manufacturing with control over 3D macroscopic configuration is still an intractable challenge, hindering their direct use in many areas requiring structured materials and products. This work introduces a simple and scalable method to generate complex, large-scale carbon structures using easily accessible materials and technologies. 3D-printed, commercial polypropylene (PP) parts can be thermally stabilized through cracking-facilitated diffusion and crosslinking. The newly elucidated mechanism from this work allows thick PP parts to yield carbonaceous products with complex structures through a subsequent pyrolysis step. The approach for enabling PP-to-carbon conversion has consistent product yield and controlled dimensional shrinkage. Under optimized processing conditions, these PP-derived carbons exhibit robust mechanical properties and excellent joule heating performance, demonstrated by their versatile use as heating elements. Furthermore, this process can be extended to recycled PP, enabling the conversion of waste plastic materials to value-added products. This work provides an innovative approach to create structured carbon materials with direct access to complex geometry, which can be transformative to, and broadly benefit, many important technological applications.
Collapse
Affiliation(s)
- Paul Smith
- School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Drive, Hattiesburg, MS, 39406, USA
| | - Alejandro Guillen Obando
- School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Drive, Hattiesburg, MS, 39406, USA
| | - Anthony Griffin
- School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Drive, Hattiesburg, MS, 39406, USA
| | - Mark Robertson
- School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Drive, Hattiesburg, MS, 39406, USA
| | - Ethan Bounds
- School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Drive, Hattiesburg, MS, 39406, USA
| | - Zhe Qiang
- School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Drive, Hattiesburg, MS, 39406, USA
| |
Collapse
|
26
|
Zhang X, Kitao T, Nishijima A, Uemura T. Thermal Transformation of Polyacrylonitrile Accelerated by the Formation of Ultrathin Nanosheets in a Metal-Organic Framework. ACS Macro Lett 2023; 12:415-420. [PMID: 36916794 DOI: 10.1021/acsmacrolett.3c00072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
In this study, polyacrylonitrile (PAN) nanosheets with unimolecular thickness were successfully synthesized by cross-linking polymerization in the 2D nanospaces of a metal-organic framework. In contrast to 1D and 3D analogues, crystallization could be inhibited by the topological constraint of the ultrathin 2D network structure, allowing for an efficient thermal transformation reaction of PAN. The amorphous nature of the PAN nanosheets led to an increase in the access of oxygen molecules to the polymer chains, facilitating the thermal dehydroaromatization reactions to yield a ladder polymer structure with a highly extended conjugated system. Notably, further carbonization of this ladder polymer afforded graphitic carbon with a highly ordered structure because of the well-defined precursor structure.
Collapse
Affiliation(s)
- Xiyuan Zhang
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Takashi Kitao
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Ami Nishijima
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takashi Uemura
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
27
|
Robertson M, Guillen-Obando A, Barbour A, Smith P, Griffin A, Qiang Z. Direct synthesis of ordered mesoporous materials from thermoplastic elastomers. Nat Commun 2023; 14:639. [PMID: 36746971 PMCID: PMC9902477 DOI: 10.1038/s41467-023-36362-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/27/2023] [Indexed: 02/08/2023] Open
Abstract
The ability to manufacture ordered mesoporous materials using low-cost precursors and scalable processes is essential for unlocking their enormous potential to enable advancement in nanotechnology. While templating-based methods play a central role in the development of mesoporous materials, several limitations exist in conventional system design, including cost, volatile solvent consumption, and attainable pore sizes from commercial templating agents. This work pioneers a new manufacturing platform for producing ordered mesoporous materials through direct pyrolysis of crosslinked thermoplastic elastomer-based block copolymers. Specifically, olefinic majority phases are selectively crosslinked through sulfonation reactions and subsequently converted to carbon, while the minority block can be decomposed to form ordered mesopores. We demonstrate that this process can be extended to different polymer precursors for synthesizing mesoporous polymer, carbon, and silica. Furthermore, the obtained carbons possess large mesopores, sulfur-doped carbon framework, with tailorable pore textures upon varying the precursor identities.
Collapse
Affiliation(s)
- Mark Robertson
- grid.267193.80000 0001 2295 628XSchool of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, 39406 MS USA
| | - Alejandro Guillen-Obando
- grid.267193.80000 0001 2295 628XSchool of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, 39406 MS USA
| | - Andrew Barbour
- grid.267193.80000 0001 2295 628XSchool of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, 39406 MS USA
| | - Paul Smith
- grid.267193.80000 0001 2295 628XSchool of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, 39406 MS USA
| | - Anthony Griffin
- grid.267193.80000 0001 2295 628XSchool of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, 39406 MS USA
| | - Zhe Qiang
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, 39406, MS, USA.
| |
Collapse
|
28
|
Zhao Y, Huang B, Ji Y, Yu Y, Gao X, Zhang Z, Fei HF. Porous Carbon Nanofiber Flexible Membranes via a Bottlebrush Copolymer Template for Enhanced High-Performance Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5644-5656. [PMID: 36689682 DOI: 10.1021/acsami.2c19696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We report a method to construct ordered hierarchical porous structures in carbon nanofiber membranes using poly(ethylene oxide)-block-polydimethylsiloxane bottlebrush block copolymers (BBCPs) as templates. The BBCPs self-assemble into a spherical morphology driven by small-molecule hydrogen bond donors which act as bridges between carbon precursors and templates to promote uniform dispersion of the templates. We successfully obtained flexible, self-supporting, and porous carbon nanofiber membranes (PCNFs) with high porosity. Then, a supercapacitor electrode was independently prepared using PCNFs as an active substance without infiltrating any conductive agents or binders. The PCNFs exhibit excellent performance with a capacitance of 234.1 F g-1 at a current density of 1 A g-1 owing to the abundant hierarchical porous structures and high content of nitrogen and oxygen elements internally. The aqueous symmetric supercapacitor prepared using PCNFs electrodes maintains more than 95% capacitance retention after 55,000 charge-discharge cycles. Furthermore, the capacitance retention reaches up to 67.72% at a current density of 50 A g-1 (compared to 1 A g-1), exhibiting excellent cycling stability and rate capability. Based on the excellent electrochemical performance and flexible self-supporting ability of PCNFs, this work is expected to facilitate the development of flexible displays, flexible sensors, wearable devices, and electrocatalysis.
Collapse
Affiliation(s)
- Yan Zhao
- Key Laboratory of Science and Technology on High-tech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing100190, P. R. China
| | - Bin Huang
- Key Laboratory of Science and Technology on High-tech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, P. R. China
| | - Yanwei Ji
- Key Laboratory of Science and Technology on High-tech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing100190, P. R. China
| | - Yan Yu
- Key Laboratory of Science and Technology on High-tech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing100190, P. R. China
| | - Xiyin Gao
- Key Laboratory of Science and Technology on High-tech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, P. R. China
| | - Zhijie Zhang
- Key Laboratory of Science and Technology on High-tech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, P. R. China
| | - Hua-Feng Fei
- Key Laboratory of Science and Technology on High-tech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing100190, P. R. China
| |
Collapse
|
29
|
Sun X, Liu Y, Xu Z, Gao X, Yin X, Ma X. Tailoring activation of CoNiO nanoparticles/porous carbon nanofibers by atomic doping for high performance supercapacitors. Phys Chem Chem Phys 2022; 24:29817-29826. [PMID: 36468376 DOI: 10.1039/d2cp04180d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Metal-organic framework (MOF) materials are rich in active sites and have a high specific surface area, which make them potential electrode materials. In this work, a simple immersion method combined with a carbonization treatment process is applied to prepare MOF derived composite materials (CoNiO/PCNFs). Among them, cobalt-based MOFs (Co-MOFs) are selected as the precursor and doped with Ni atoms, and the ratio of Co and Ni is tailored to acquire a high-performance electrode. The electrochemical results show that when the ratio of Co to Ni is 2 : 2, the prepared CoNiO/PCNFs-2 electrode has high capacitance (912.4 F g-1 at 1 A g-1) and superior rate capability (retention is above 50% at 100 A g-1). Additionally, it is highly stable at 20 A g-1 (nearly no degradation after 6000 cycles). Density Functional Theory (DFT) calculations indicate that the Ni doping models present lower formation energy and better -OH group adsorption properties. Moreover, the density of electronic state (DOS) and differential charge density distribution demonstrate that Ni doping effectively enhances the charge transport during the charging and discharging processes, which is beneficial to enhance the energy storage of the electrode materials. In conclusion, this work presents a strategy to design MOF-derived composite electrodes. The experimental tests and theoretical calculations explore the energy storage process and prove that the CoNiO/PCNF electrode materials have great potential for applications.
Collapse
Affiliation(s)
- Xiao Sun
- Laboratory of Plasma and Energy Conversion, School of Physics and Optoelectronic Engineering, Ludong University, Yantai, China.
| | - Ying Liu
- Laboratory of Plasma and Energy Conversion, School of Physics and Optoelectronic Engineering, Ludong University, Yantai, China.
| | - Zheng Xu
- Laboratory of Plasma and Energy Conversion, School of Physics and Optoelectronic Engineering, Ludong University, Yantai, China.
| | - Xiaochun Gao
- Laboratory of Plasma and Energy Conversion, School of Physics and Optoelectronic Engineering, Ludong University, Yantai, China.
| | - Xitao Yin
- Laboratory of Plasma and Energy Conversion, School of Physics and Optoelectronic Engineering, Ludong University, Yantai, China.
| | - Xiaoguang Ma
- Laboratory of Plasma and Energy Conversion, School of Physics and Optoelectronic Engineering, Ludong University, Yantai, China.
| |
Collapse
|
30
|
Versatile Electrospinning for Structural Designs and Ionic Conductor Orientation in All-Solid-State Lithium Batteries. ELECTROCHEM ENERGY R 2022. [DOI: 10.1007/s41918-022-00170-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
|
31
|
Polyacrylonitrile- b-Polystyrene Block Copolymer-Derived Hierarchical Porous Carbon Materials for Supercapacitor. Polymers (Basel) 2022; 14:polym14235109. [PMID: 36501504 PMCID: PMC9739205 DOI: 10.3390/polym14235109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022] Open
Abstract
The use of block copolymers as a sacrificial template has been demonstrated to be a powerful method for obtaining porous carbons as electrode materials in energy storage devices. In this work, a block copolymer of polystyrene and polyacrylonitrile (PS-b-PAN) has been used as a precursor to produce fibers by electrospinning and powdered carbons, showing high carbon yield (~50%) due to a low sacrificial block content (fPS ≈ 0.16). Both materials have been compared structurally (in addition to comparing their electrochemical behavior). The porous carbon fibers showed superior pore formation capability and exhibited a hierarchical porous structure, with small and large mesopores and a relatively high surface area (~492 m2/g) with a considerable quantity of O/N surface content, which translates into outstanding electrochemical performance with excellent cycle stability (close to 100% capacitance retention after 10,000 cycles) and high capacitance value (254 F/g measured at 1 A/g).
Collapse
|
32
|
Bulut U, Öykü Sayın V, Altin Y, Can Cevher Ş, Cirpan A, Celik Bedeloglu A, Soylemez S. A Flexible Carbon Nanofiber and Conjugated Polymer-Based Electrode for Glucose Sensing. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
33
|
Bose S, Padilla V, Salinas A, Ahmad F, Lodge TP, Ellison CJ, Lozano K. Hierarchical Design Strategies to Produce Internally Structured Nanofibers. POLYM REV 2022. [DOI: 10.1080/15583724.2022.2132509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Saptasree Bose
- Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Victoria Padilla
- Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Alexandra Salinas
- Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Fariha Ahmad
- Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Timothy P. Lodge
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Christopher J. Ellison
- Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Karen Lozano
- Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg, Texas, USA
| |
Collapse
|
34
|
Tang Y, McLaughlan JE, Grest GS, Cheng S. Modeling Solution Drying by Moving a Liquid-Vapor Interface: Method and Applications. Polymers (Basel) 2022; 14:polym14193996. [PMID: 36235944 PMCID: PMC9573352 DOI: 10.3390/polym14193996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/22/2022] Open
Abstract
A method of simulating the drying process of a soft matter solution with an implicit solvent model by moving the liquid-vapor interface is applied to various solution films and droplets. For a solution of a polymer and nanoparticles, we observe “polymer-on-top” stratification, similar to that found previously with an explicit solvent model. Furthermore, “polymer-on-top” is found even when the nanoparticle size is smaller than the radius of gyration of the polymer chains. For a suspension droplet of a bidisperse mixture of nanoparticles, we show that core-shell clusters of nanoparticles can be obtained via the “small-on-outside” stratification mechanism at fast evaporation rates. “Large-on-outside” stratification and uniform particle distribution are also observed when the evaporation rate is reduced. Polymeric particles with various morphologies, including Janus spheres, core-shell particles, and patchy particles, are produced from drying droplets of polymer solutions by combining fast evaporation with a controlled interaction between the polymers and the liquid-vapor interface. Our results validate the applicability of the moving interface method to a wide range of drying systems. The limitations of the method are pointed out and cautions are provided to potential practitioners on cases where the method might fail.
Collapse
Affiliation(s)
- Yanfei Tang
- Department of Physics, Center for Soft Matter and Biological Physics, Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - John E. McLaughlan
- Department of Physics, Center for Soft Matter and Biological Physics, Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Gary S. Grest
- Sandia National Laboratories, Albuquerque, NM 87185, USA
| | - Shengfeng Cheng
- Department of Physics, Center for Soft Matter and Biological Physics, Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA
- Correspondence: ; Tel.: +1-540-231-5767
| |
Collapse
|
35
|
Three-dimensional micro/nano-interconnected scaffold graphene-based micro-supercapacitors with high electrochemical performance. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Elliott JP, Osti NC, Tyagi M, Mamontov E, Liu L, Serrano JM, Cao K, Liu G. Exceptionally Fast Ion Diffusion in Block Copolymer-Based Porous Carbon Fibers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36980-36986. [PMID: 35916606 DOI: 10.1021/acsami.2c12755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Confined ionic liquids in hydrophilic porous media have disrupted lattices and can be divided into two layers: An immobile ion layer adheres to the pore surfaces, and an inner layer exhibits faster mobility than the bulk. In this work, we report the first study of ionic liquids confined in block copolymer-based porous carbon fibers (PCFs) synthesized from polyacrylonitrile-block-polymethyl methacrylate (PAN-b-PMMA). The PCFs contain a network of unimodal mesopores of 13.6 nm in diameter and contain more hydrophilic surface functional groups than previously studied porous carbon. Elastic neutron scattering shows no freezing point for 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]BF4) confined in PCFs down to 20 K. Quasi-elastic neutron scattering (QENS) is used to measure the diffusion of [BMIM]BF4 confined in PCFs, which, surprisingly, is 7-fold faster than in the bulk. The unprecedentedly high ion diffusion remarks that PCFs hold exceptional potential for use in electrochemical catalysis, energy conversion, and storage.
Collapse
Affiliation(s)
- John P Elliott
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Naresh C Osti
- Neutron Scattering Division, Oak Ridge National Laboratory, P.O. Box 2008 MS6455, Oak Ridge, Tennessee 37831, United States
| | - Madhusudan Tyagi
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Department of Materials Science, University of Maryland, College Park, Maryland 20742, United States
| | - Eugene Mamontov
- Neutron Scattering Division, Oak Ridge National Laboratory, P.O. Box 2008 MS6455, Oak Ridge, Tennessee 37831, United States
| | - Lifeng Liu
- International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga, 4715-330 Braga, Portugal
| | - Joel M Serrano
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Ke Cao
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Guoliang Liu
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
37
|
Li Y, Xu J, Liu H, Hu X, Zhang Q, Peng W, Li Y, Zhang F, Han Y, Fan X. Suppressing Vanadium Dissolution in "Water-in-Salt" Electrolytes for 3.2 V Aqueous Sodium-Ion Pseudocapacitors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:35485-35494. [PMID: 35894212 DOI: 10.1021/acsami.2c05174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Low-cost sodium-ion-based electrochemical energy storage devices, especially vanadium-based sodium-ion pseudocapacitors, are receiving increasing attention. However, the inevitable dissolution of vanadium in aqueous electrolytes usually leads to poor cycling stability and a narrow electrochemical stability window (ESW). In this study, we prepared layered (NH4)2V10O25·8H2O with a hierarchical flower-like structure and an ultralarge layer spacing and evaluated its potential as a sodium-ion pseudocapacitive material. Ex situ X-ray diffraction (XRD) measurement and kinetic analysis demonstrate the reversible intercalation and deintercalation of Na+ in (NH4)2V10O25·8H2O in NaClO4 electrolytes. Significantly improved durability and a large voltage window of 3.2 V are achieved in the high-concentration NaClO4 electrolyte. Inductively coupled plasma-optical emission spectroscopy (ICP-OES) analysis and molecular dynamics (MD) simulations reveal that the dissolution of vanadium in the high-concentration NaClO4 electrolyte can be effectively suppressed. An asymmetric sodium-ion capacitor with a wide voltage window of 3.2 V was successfully assembled, and it delivered a high energy density of 53.1 Wh kg-1 at a power density of 3.2 kW kg-1.
Collapse
Affiliation(s)
- Yan Li
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Jipeng Xu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Huibin Liu
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Xuewen Hu
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Qicheng Zhang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Wenchao Peng
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Yang Li
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Fengbao Zhang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - You Han
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Xiaobin Fan
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, People's Republic of China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, People's Republic of China
- Institute of Shaoxing, Tianjin University, Zhejiang 312300, People's Republic of China
| |
Collapse
|
38
|
Cecone C, Hoti G, Caldera F, Zanetti M, Trotta F, Bracco P. NADES-derived beta cyclodextrin-based polymers as sustainable precursors to produce sub-micrometric cross-linked mats and fibrous carbons. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
39
|
Electrospinning-Based Carbon Nanofibers for Energy and Sensor Applications. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12126048] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Carbon nanofibers (CNFs) are the most basic structure of one-dimensional nanometer-scale sp2 carbon. The CNF’s structure provides fast current transfer and a large surface area and it is widely used as an energy storage material and as a sensor electrode material. Electrospinning is a well-known technology that enables the production of a large number of uniform nanofibers and it is the easiest way to mass-produce CNFs of a specific diameter. In this review article, we introduce an electrospinning method capable of manufacturing CNFs using a polymer precursor, thereafter, we present the technologies for manufacturing CNFs that have a porous and hollow structure by modifying existing electrospinning technology. This paper also discusses research on the applications of CNFs with various structures that have recently been developed for sensor electrode materials and energy storage materials.
Collapse
|
40
|
Review of recent progress in electrospinning-derived freestanding and binder-free electrodes for supercapacitors. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214466] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Siemiaszko G, Hryniewicka A, Breczko J, Brzezinski K, Plonska-Brzezinska ME. Carbon nano-onion induced organization of polyacrylonitrile-derived block star polymers to obtain mesoporous carbon materials. Chem Commun (Camb) 2022; 58:6829-6832. [PMID: 35616146 DOI: 10.1039/d2cc01452a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report the synthesis of mesoporous carbon materials from diblock star copolymers derived from polyacrylonitrile. The size of the pores was controlled by manipulating the length of the polymer blocks. Furthermore, the organization of polymers on the carbon nano-onion's surface resulted in materials of higher surface area and superficial electrochemical performance.
Collapse
Affiliation(s)
- Gabriela Siemiaszko
- Department of Organic Chemistry, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2A, 15-222 Bialystok, Poland.
| | - Agnieszka Hryniewicka
- Department of Organic Chemistry, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2A, 15-222 Bialystok, Poland.
| | - Joanna Breczko
- Department of Organic Chemistry, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2A, 15-222 Bialystok, Poland. .,Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland
| | - Krzysztof Brzezinski
- Department of Structural Biology of Prokaryotic Organisms, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-074, Poznan, Poland
| | - Marta E Plonska-Brzezinska
- Department of Organic Chemistry, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2A, 15-222 Bialystok, Poland.
| |
Collapse
|
42
|
Serrano JM, Liu T, Guo D, Croft ZL, Cao K, Khan AU, Xu Z, Nouh E, Cheng S, Liu G. Utilization of Block Copolymers to Understand Water Vaporization Enthalpy Reduction in Uniform Pores. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Joel M. Serrano
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Tianyu Liu
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Dong Guo
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Zacary L. Croft
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Ke Cao
- Macromolecules Innovations Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Assad U. Khan
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Zhen Xu
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Elsaid Nouh
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Shengfeng Cheng
- Macromolecules Innovations Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Physics, Virginia Tech, Blacksburg, Virginia 24061, United States
- Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Guoliang Liu
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules Innovations Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
- Division of Nanoscience, Academy of Integrated Science, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
43
|
Jin X, Al-Qatatsheh A, Subhani K, Salim NV. An ultralight, elastic carbon nanofiber aerogel with efficient energy storage and sorption properties. NANOSCALE 2022; 14:6854-6865. [PMID: 35441643 DOI: 10.1039/d2nr00083k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The fabrication of ultralight strong carbon nanofiber aerogels with excellent elasticity is still a challenge. Herein, 3D mesoporous graphene/carbon nanofibers (G/CNF) were prepared for the first time from polyacrylonitrile/poly(4-vinyl phenol) (PAN/PVPh) electrospun fibers. Through hydrogen bonding interactions between PAN and PVPh polymer chains, traditional soft carbon nanofibers can be converted to form hard nanofiber aerogels with excellent mechanical, electrical, and sorption properties. The specific interactions among PAN/PVPh led to the formation of porous features on carbonized nanofiber foams. The 3D carbon foams are extremely elastic, strong, and light in weight, and they exhibited super oleophilic and fire-resistance properties. Electrochemical studies indicate that the G/CNF foam achieves a capacitance of up to 267 F g-1 (at a scan rate of 1 mV s-1), with an energy density of 37.04 W h kg-1, exhibiting better electrochemical performance than other reported porous carbon devices. In addition, the G/CNF foam also exhibits sorption capacity towards various organic solvents and oils. This study paves the way toward a new class of lightweight and robust porous carbon nanocomposites for application in electrochemical energy storage systems and oil sorption devices.
Collapse
Affiliation(s)
- Xing Jin
- School of Engineering, Swinburne University of Technology, Hawthorn 3122, Victoria, Australia.
| | - Ahmed Al-Qatatsheh
- School of Engineering, Swinburne University of Technology, Hawthorn 3122, Victoria, Australia.
| | - Karamat Subhani
- School of Engineering, Swinburne University of Technology, Hawthorn 3122, Victoria, Australia.
| | - Nisa V Salim
- School of Engineering, Swinburne University of Technology, Hawthorn 3122, Victoria, Australia.
| |
Collapse
|
44
|
Electrospun carbon nanofibres: Preparation, characterization and application for adsorption of pollutants from water and air. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
45
|
Robertson M, Zagho MM, Nazarenko S, Qiang Z. Mesoporous carbons from self‐assembled polymers. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mark Robertson
- School of Polymer Science and Engineering University of Southern Mississippi Hattiesburg Mississippi USA
| | - Moustafa M. Zagho
- School of Polymer Science and Engineering University of Southern Mississippi Hattiesburg Mississippi USA
| | - Sergei Nazarenko
- School of Polymer Science and Engineering University of Southern Mississippi Hattiesburg Mississippi USA
| | - Zhe Qiang
- School of Polymer Science and Engineering University of Southern Mississippi Hattiesburg Mississippi USA
| |
Collapse
|
46
|
Siemiaszko G, Hryniewicka A, Breczko J, Delgado OF, Markiewicz KH, Echegoyen L, Plonska-Brzezinska ME. Polymeric Network Hierarchically Organized on Carbon Nano-onions: Block Polymerization as a Tool for the Controlled Formation of Specific Pore Diameters. ACS APPLIED POLYMER MATERIALS 2022; 4:2442-2458. [PMID: 35434638 PMCID: PMC9004317 DOI: 10.1021/acsapm.1c01788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/28/2022] [Indexed: 05/10/2023]
Abstract
The organization of specific pores in carbonaceous three-dimensional networks is crucial for efficient electrocatalytic processes and electrochemical performance. Therefore, the synthesis of porous materials with ordered and well-defined pores is required in this field. The incorporation of carbon nanostructures into polymers can create material structures that are more ordered in comparison to those of the pristine polymers. In this study we applied polymer-templated methods of carbon material preparation, in which outer blocks of the star copolymers form the carbon skeleton, while the core part is pore-forming. Well-defined 6-star-(poly(methyl acrylate)-b-poly(4-acetoxystyrene)) dendrimers were synthesized by reversible addition-fragmentation chain-transfer polymerization. They were then transformed into poly(4-vinylphenol) derivatives (namely 6-star-(poly(methyl acrylate)-b-poly(4-vinylphenol)), subjected to polycondensation with formaldehyde, and pyrolyzed at 800 °C. Cross-linking of phenolic groups provides a polymer network that does not depolymerize by pyrolysis, unlike poly(methyl acrylate) chains. The selected star polymers were attached to carbon nano-onions (CNOs) to improve the organization of the polymer chains. Herein, the physicochemical properties of CNO-polymer hybrids, including the textural and the electrochemical properties, were compared with those of the pristine pyrolyzed polymers obtained under analogous experimental conditions. For these purposes, we used several experimental and theoretical methods, such as infrared, Raman, and X-ray photoelectron spectroscopy, nitrogen adsorption/desorption measurements, scanning and transmission electron microscopy, and electrochemical studies, including cyclic voltammetry. All of the porous materials were evaluated for use as supercapacitors.
Collapse
Affiliation(s)
- Gabriela Siemiaszko
- Department
of Organic Chemistry, Faculty of Pharmacy with the Division of Laboratory
Medicine, Medical University of Bialystok, Mickiewicza 2A, 15-222 Bialystok, Poland
| | - Agnieszka Hryniewicka
- Department
of Organic Chemistry, Faculty of Pharmacy with the Division of Laboratory
Medicine, Medical University of Bialystok, Mickiewicza 2A, 15-222 Bialystok, Poland
| | - Joanna Breczko
- Department
of Organic Chemistry, Faculty of Pharmacy with the Division of Laboratory
Medicine, Medical University of Bialystok, Mickiewicza 2A, 15-222 Bialystok, Poland
- Faculty
of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland
| | - Olivia Fernandez Delgado
- Department
of Chemistry, University of Texas at El
Paso, 500 West University Avenu, El Paso, Texas 79968 United
States
| | - Karolina H. Markiewicz
- Faculty
of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland
| | - Luis Echegoyen
- Department
of Chemistry, University of Texas at El
Paso, 500 West University Avenu, El Paso, Texas 79968 United
States
| | - Marta E. Plonska-Brzezinska
- Department
of Organic Chemistry, Faculty of Pharmacy with the Division of Laboratory
Medicine, Medical University of Bialystok, Mickiewicza 2A, 15-222 Bialystok, Poland
| |
Collapse
|
47
|
Syeed AJ, Li Y, Ostertag BJ, Brown JW, Ross AE. Nanostructured carbon-fiber surfaces for improved neurochemical detection. Faraday Discuss 2022; 233:336-353. [PMID: 34935021 PMCID: PMC9125946 DOI: 10.1039/d1fd00049g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fundamental insight into the extent to which the nanostructured surface and geometry impacts neurochemical interactions at electrode surfaces could provide significant advances in our ability to design and fabricate ultrasensitive neurochemical detection probes. Here, we investigate the extent to which the nanostructure of the carbon-fiber surface impacts detection of catecholamines and purines with fast-scan cyclic voltammetry (FSCV). Carbon-fibers were treated with argon (Ar) plasma to induce variations in the nano- and micro-structure without changing the functionalization of the surface. We tested variations in topology by measuring the extent to which the flow rate, RF power, and treatment time affect the surface roughness. Flow rates from 50-100 sccm, plasma power from 20-100 W, and treatment times from 30 s to 5 min were compared. Two Ar-treatments were chosen from the optimization studies for comparison, and the surface roughness was evaluated using atomic force microscopy (AFM). To ensure no changes in chemical composition, fibers were analyzed with X-ray photoelectron spectroscopy (XPS). On average, at the optimized Ar-plasma treatment procedure, oxidative current for adenosine and ATP increased by 3.5 ± 1.4-fold and 3.2 ± 0.6-fold, and guanosine and GTP by 1.7 ± 0.3-fold and 1.8 ± 0.3-fold, respectively (n = 9). Dopamine increased by 1.7 ± 0.3-fold. The extent to which changes in the electrode structure impact adsorption, sensitivity, and electron transfer rates were measured. A COMSOL Multiphysics simulation was developed to enable the modeling of mass transport of electroactive species at varying electrode geometries. Overall, this study provides critical insight into the extent to which the nanostructure of the surface impacts the electrochemical detection of neurochemicals.
Collapse
Affiliation(s)
- Ayah J Syeed
- University of Cincinnati, Department of Chemistry, 312 College Dr 404 Crosley Tower, Cincinnati, OH 45221-0172, USA.
| | - Yuxin Li
- University of Cincinnati, Department of Chemistry, 312 College Dr 404 Crosley Tower, Cincinnati, OH 45221-0172, USA.
| | - Blaise J Ostertag
- University of Cincinnati, Department of Chemistry, 312 College Dr 404 Crosley Tower, Cincinnati, OH 45221-0172, USA.
| | - Jared W Brown
- University of Cincinnati, Department of Chemistry, 312 College Dr 404 Crosley Tower, Cincinnati, OH 45221-0172, USA.
| | - Ashley E Ross
- University of Cincinnati, Department of Chemistry, 312 College Dr 404 Crosley Tower, Cincinnati, OH 45221-0172, USA.
| |
Collapse
|
48
|
Yang GG, Choi HJ, Han KH, Kim JH, Lee CW, Jung EI, Jin HM, Kim SO. Block Copolymer Nanopatterning for Nonsemiconductor Device Applications. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12011-12037. [PMID: 35230079 DOI: 10.1021/acsami.1c22836] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Block copolymer (BCP) nanopatterning has emerged as a versatile nanoscale fabrication tool for semiconductor devices and other applications, because of its ability to organize well-defined, periodic nanostructures with a critical dimension of 5-100 nm. While the most promising application field of BCP nanopatterning has been semiconductor devices, the versatility of BCPs has also led to enormous interest from a broad spectrum of other application areas. In particular, the intrinsically low cost and straightforward processing of BCP nanopatterning have been widely recognized for their large-area parallel formation of dense nanoscale features, which clearly contrasts that of sophisticated processing steps of the typical photolithographic process, including EUV lithography. In this Review, we highlight the recent progress in the field of BCP nanopatterning for various nonsemiconductor applications. Notable examples relying on BCP nanopatterning, including nanocatalysts, sensors, optics, energy devices, membranes, surface modifications and other emerging applications, are summarized. We further discuss the current limitations of BCP nanopatterning and suggest future research directions to open up new potential application fields.
Collapse
Affiliation(s)
- Geon Gug Yang
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Hee Jae Choi
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Kyu Hyo Han
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Jang Hwan Kim
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Chan Woo Lee
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Edwin Ino Jung
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Hyeong Min Jin
- Department of Organic Materials Engineering, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Sang Ouk Kim
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|
49
|
Zhang M, Dong K, Saeedi Garakani S, Khorsand Kheirabad A, Manke I, Wu M, Wang H, Qu L, Yuan J. Bridged Carbon Fabric Membrane with Boosted Performance in AC Line-Filtering Capacitors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105072. [PMID: 35060354 PMCID: PMC8895147 DOI: 10.1002/advs.202105072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/27/2021] [Indexed: 06/14/2023]
Abstract
High-frequency responsive capacitors with lightweight, flexibility, and miniaturization are among the most vital circuit components because they can be readily incorporated into various portable devices to smooth out the ripples for circuits. Electrode materials no doubt are at the heart of such devices. Despite tremendous efforts and recent advances, the development of flexible and scalable high-frequency responsive capacitor electrodes with superior performance remains a great challenge. Herein, a straightforward and technologically relevant method is reported to manufacture a carbon fabric membrane "glued" by nitrogen-doped nanoporous carbons produced through a polyelectrolyte complexation-induced phase separation strategy. The as-obtained flexible carbon fabric bearing a unique hierarchical porous structure, and high conductivity as well as robust mechanical properties, serves as the free-standing electrode materials of electrochemical capacitors. It delivers an ultrahigh specific areal capacitance of 2632 µF cm-2 at 120 Hz with an excellent alternating current line filtering performance, fairly higher than the state-of-the-art commercial ones. Together, this system offers the potential electrode material to be scaled up for AC line-filtering capacitors at industrial levels.
Collapse
Affiliation(s)
- Miao Zhang
- Department of Materials and Environmental ChemistryStockholm UniversityStockholm10691Sweden
| | - Kang Dong
- Institute of Applied MaterialsHelmholtz‐Zentrum Berlin für Materialien and EnergieBerlin14109Germany
| | - Sadaf Saeedi Garakani
- Department of Materials and Environmental ChemistryStockholm UniversityStockholm10691Sweden
| | | | - Ingo Manke
- Institute of Applied MaterialsHelmholtz‐Zentrum Berlin für Materialien and EnergieBerlin14109Germany
| | - Mingmao Wu
- Department of Chemistry& Department of Mechanical EngineeringTsinghua UniversityBeijing100084China
| | - Hong Wang
- Institute of Polymer ChemistryCollege of ChemistryNankai UniversityTianjin300071P. R. China
| | - Liangti Qu
- Department of Chemistry& Department of Mechanical EngineeringTsinghua UniversityBeijing100084China
| | - Jiayin Yuan
- Department of Materials and Environmental ChemistryStockholm UniversityStockholm10691Sweden
| |
Collapse
|
50
|
Ostertag BJ, Cryan MT, Serrano JM, Liu G, Ross AE. Porous Carbon Nanofiber-Modified Carbon Fiber Microelectrodes for Dopamine Detection. ACS APPLIED NANO MATERIALS 2022; 5:2241-2249. [PMID: 36203493 PMCID: PMC9531868 DOI: 10.1021/acsanm.1c03933] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We present a method to modify carbon-fiber microelectrodes (CFME) with porous carbon nanofibers (PCFs) to improve detection and to investigate the impact of porous geometry for dopamine detection with fast-scan cyclic voltammetry (FSCV). PCFs were fabricated by electrospinning, carbonizing, and pyrolyzing poly(acrylonitrile)-b-poly(methyl methacrylate) (PAN-b-PMMA) block copolymer nanofiber frameworks. Commonly, porous nanofibers are used for energy storage applications, but we present an application of these materials for biosensing which has not been previously studied. This modification impacted the topology and enhanced redox cycling at the surface. PCF modifications increased the oxidative current for dopamine 2.0 ± 0.1-fold (n = 33) with significant increases in detection sensitivity. PCF are known to have more edge plane sites which we speculate lead to the two-fold increase in electroactive surface area. Capacitive current changes were negligible providing evidence that improvements in detection are due to faradaic processes at the electrode. The ΔEp for dopamine decreased significantly at modified CFMEs. Only a 2.2 ± 2.2 % change in dopamine current was observed after repeated measurements and only 10.5 ± 2.8% after 4 hours demonstrating the stability of the modification over time. We show significant improvements in norepinephrine, ascorbic acid, adenosine, serotonin, and hydrogen peroxide detection. Lastly, we demonstrate that the modified electrodes can detect endogenous, unstimulated release of dopamine in living slices of rat striatum. Overall, we provide evidence that porous nanostructures significantly improve neurochemical detection with FSCV and echo the necessity for investigating the extent to which geometry impacts electrochemical detection.
Collapse
Affiliation(s)
- Blaise J. Ostertag
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA
| | - Michael T. Cryan
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA
| | - Joel M. Serrano
- Virginia Polytechnic Institute and State University, Department of Chemistry, Macromolecules Innovation Institute, Division of Nanoscience, Academy of Integrated Science, 800 West Campus Dr., Blacksburg, VA, 2406, USA
| | - Guoliang Liu
- Virginia Polytechnic Institute and State University, Department of Chemistry, Macromolecules Innovation Institute, Division of Nanoscience, Academy of Integrated Science, 800 West Campus Dr., Blacksburg, VA, 2406, USA
| | - Ashley E. Ross
- University of Cincinnati, Department of Chemistry, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA
- Corresponding author: Office Phone#: 513-556-9314,
| |
Collapse
|