1
|
Walia A, Shew MA, Durakovic N, Herzog JA, Cirrito JR, Yuede CM, Wick CC, Manis M, Holtzman DM, Buchman CA, Rutherford MA. Alzheimer's Disease-Related Analytes Amyloid-β and Tau in Perilymph: Correlation With Patient Age and Cognitive Score. Otolaryngol Head Neck Surg 2024. [PMID: 39189154 DOI: 10.1002/ohn.942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/16/2024] [Accepted: 07/27/2024] [Indexed: 08/28/2024]
Abstract
OBJECTIVE To describe the collection methods for perilymph fluid biopsy during cochlear implantation, detect levels of amyloid β 42 and 40 (Aβ42 and Aβ40), and total tau (tTau) analytes with a high-precision assay, to compare these levels with patient age and Montreal Cognitive Assessment (MoCA) scores, and explore potential mechanisms and relationships with otic pathology. STUDY DESIGN Prospective study. SETTING Tertiary referral center. METHODS Perilymph was collected from 25 patients using polyimide tubing to avoid amyloid adherence to glass, and analyzed with a single-molecule array advanced digital enzyme-linked immunosorbent assay platform for Aβ40, Aβ42, and tTau. Cognition was assessed by MoCA. RESULTS Perilymph volumes ranged from ∼1 to 13 µL, with analyte concentrations spanning 2.67 to 1088.26 pg/mL. All samples had detectable levels of tTau, Aβ40, and Aβ42, with a significant positive correlation between Aβ42 and Aβ40 levels. Levels of Aβ42, Aβ40, and tTau were positively correlated with age, while MoCA scores were inversely correlated with age. tTau and Aβ42/Aβ40-ratios were significantly correlated with MoCA scores. CONCLUSION Alzheimer's disease-associated peptides Aβ42, Aβ40, and tau analytes are detectable in human perilymph at levels approximately 10-fold lower than those found in cerebrospinal fluid (CSF). These species increase with age and correlate with cognitive impairment indicators, suggesting their potential utility as biomarkers for cognitive impairment in patients undergoing cochlear implantation. Future research should investigate the origin of these analytes in the perilymph and their potential links to inner ear pathologies and hearing loss, as well as their relationships to CSF and plasma levels in individuals.
Collapse
Affiliation(s)
- Amit Walia
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Matthew A Shew
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Nedim Durakovic
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Jacques A Herzog
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - John R Cirrito
- Department of Neurology, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Carla M Yuede
- Department of Neurology, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Cameron C Wick
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Melissa Manis
- Department of Neurology, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - David M Holtzman
- Department of Neurology, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
- Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Craig A Buchman
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Mark A Rutherford
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| |
Collapse
|
2
|
Zeng X, Chen Y, Sehrawat A, Lee J, Lafferty TK, Kofler J, Berman SB, Sweet RA, Tudorascu DL, Klunk WE, Ikonomovic MD, Pfister A, Zetterberg H, Snitz BE, Cohen AD, Villemagne VL, Pascoal TA, Kamboh ML, Lopez OI, Blennow K, Karikari TK. Alzheimer blood biomarkers: practical guidelines for study design, sample collection, processing, biobanking, measurement and result reporting. Mol Neurodegener 2024; 19:40. [PMID: 38750570 PMCID: PMC11095038 DOI: 10.1186/s13024-024-00711-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/13/2024] [Indexed: 05/19/2024] Open
Abstract
Alzheimer's disease (AD), the most common form of dementia, remains challenging to understand and treat despite decades of research and clinical investigation. This might be partly due to a lack of widely available and cost-effective modalities for diagnosis and prognosis. Recently, the blood-based AD biomarker field has seen significant progress driven by technological advances, mainly improved analytical sensitivity and precision of the assays and measurement platforms. Several blood-based biomarkers have shown high potential for accurately detecting AD pathophysiology. As a result, there has been considerable interest in applying these biomarkers for diagnosis and prognosis, as surrogate metrics to investigate the impact of various covariates on AD pathophysiology and to accelerate AD therapeutic trials and monitor treatment effects. However, the lack of standardization of how blood samples and collected, processed, stored analyzed and reported can affect the reproducibility of these biomarker measurements, potentially hindering progress toward their widespread use in clinical and research settings. To help address these issues, we provide fundamental guidelines developed according to recent research findings on the impact of sample handling on blood biomarker measurements. These guidelines cover important considerations including study design, blood collection, blood processing, biobanking, biomarker measurement, and result reporting. Furthermore, the proposed guidelines include best practices for appropriate blood handling procedures for genetic and ribonucleic acid analyses. While we focus on the key blood-based AD biomarkers for the AT(N) criteria (e.g., amyloid-beta [Aβ]40, Aβ42, Aβ42/40 ratio, total-tau, phosphorylated-tau, neurofilament light chain, brain-derived tau and glial fibrillary acidic protein), we anticipate that these guidelines will generally be applicable to other types of blood biomarkers. We also anticipate that these guidelines will assist investigators in planning and executing biomarker research, enabling harmonization of sample handling to improve comparability across studies.
Collapse
Affiliation(s)
- Xuemei Zeng
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Yijun Chen
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Anuradha Sehrawat
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Jihui Lee
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Tara K Lafferty
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Julia Kofler
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Sarah B Berman
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Robert A Sweet
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Dana L Tudorascu
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - William E Klunk
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Milos D Ikonomovic
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Geriatric Research Education and Clinical Center, VA Pittsburgh HS, Pittsburgh, PA, USA
| | - Anna Pfister
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Beth E Snitz
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Anne D Cohen
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Victor L Villemagne
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Tharick A Pascoal
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - M. llyas Kamboh
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Oscar I Lopez
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Thomas K Karikari
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA.
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden.
| |
Collapse
|
3
|
Wen Q, Wittens MMJ, Engelborghs S, van Herwijnen MHM, Tsamou M, Roggen E, Smeets B, Krauskopf J, Briedé JJ. Beyond CSF and Neuroimaging Assessment: Evaluating Plasma miR-145-5p as a Potential Biomarker for Mild Cognitive Impairment and Alzheimer's Disease. ACS Chem Neurosci 2024; 15:1042-1054. [PMID: 38407050 PMCID: PMC10921410 DOI: 10.1021/acschemneuro.3c00740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/27/2024] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. New strategies for the early detection of MCI and sporadic AD are crucial for developing effective treatment options. Current techniques used for diagnosis of AD are invasive and/or expensive, so they are not suitable for population screening. Cerebrospinal fluid (CSF) biomarkers such as amyloid β1-42 (Aβ1-42), total tau (T-tau), and phosphorylated tau181 (P-tau181) levels are core biomarkers for early diagnosis of AD. Several studies have proposed the use of blood-circulating microRNAs (miRNAs) as potential novel early biomarkers for AD. We therefore applied a novel approach to identify blood-circulating miRNAs associated with CSF biomarkers and explored the potential of these miRNAs as biomarkers of AD. In total, 112 subjects consisting of 28 dementia due to AD cases, 63 MCI due to AD cases, and 21 cognitively healthy controls were included. We identified seven Aβ1-42-associated plasma miRNAs, six P-tau181-associated plasma miRNAs, and nine Aβ1-42-associated serum miRNAs. These miRNAs were involved in AD-relevant biological processes, such as PI3K/AKT signaling. Based on this signaling pathway, we constructed an miRNA-gene target network, wherein miR-145-5p has been identified as a hub. Furthermore, we showed that miR-145-5p performs best in the prediction of both AD and MCI. Moreover, miR-145-5p also improved the prediction performance of the mini-mental state examination (MMSE) score. The performance of this miRNA was validated using different datasets including an RT-qPCR dataset from plasma samples of 23 MCI cases and 30 age-matched controls. These findings indicate that blood-circulating miRNAs that are associated with CSF biomarkers levels and specifically plasma miR-145-5p alone or combined with the MMSE score can potentially be used as noninvasive biomarkers for AD or MCI screening in the general population, although studies in other AD cohorts are necessary for further validation.
Collapse
Affiliation(s)
- Qingfeng Wen
- Department
of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
- MHeNS,
School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Mandy Melissa Jane Wittens
- Department
of Biomedical Sciences, Institute Born-Bunge, University of Antwerp, Universiteitsplein 1, BE-2610 Antwerpen, Belgium
- Neuroprotection
and Neuromodulation (NEUR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussel, Belgium
- Department
of Neurology, Universitair Ziekenhuis Brussel
(UZ Brussel), Laarbeeklaan
101, 1090 Brussel, Belgium
| | - Sebastiaan Engelborghs
- Department
of Biomedical Sciences, Institute Born-Bunge, University of Antwerp, Universiteitsplein 1, BE-2610 Antwerpen, Belgium
- Neuroprotection
and Neuromodulation (NEUR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussel, Belgium
- Department
of Neurology, Universitair Ziekenhuis Brussel
(UZ Brussel), Laarbeeklaan
101, 1090 Brussel, Belgium
| | - Marcel H. M. van Herwijnen
- Department
of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Maria Tsamou
- ToxGenSolutions
(TGS), 6229EV Maastricht, The Netherlands
| | - Erwin Roggen
- ToxGenSolutions
(TGS), 6229EV Maastricht, The Netherlands
| | - Bert Smeets
- Department
of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
- MHeNS,
School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Julian Krauskopf
- Department
of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Jacco Jan Briedé
- Department
of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
- MHeNS,
School for Mental Health and Neuroscience, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
4
|
Chang YJ, Chien YH, Chang CC, Wang PN, Chen YR, Chang YC. Detection of Femtomolar Amyloid-β Peptides for Early-Stage Identification of Alzheimer's Amyloid-β Aggregation with Functionalized Gold Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3819-3828. [PMID: 38214471 DOI: 10.1021/acsami.3c12750] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Progressive amyloid-β (Aβ) fibrillar aggregates have long been considered as the pathogenesis of Alzheimer's disease (AD). Biocompatible and stable cysteine-Aβ peptide-conjugated gold nanoparticles (Cys-Aβ@AuNP) are demonstrated as suitable materials for detecting subfemtomolar Aβ peptides in human plasma. Incubation with Aβ peptides causes the Cys-Aβ@AuNP to aggregate and changes its absorption spectra. The spectral change is especially apparent and noticeable when detecting subfemtomolar Aβ peptides, and the aggregates contain only two or three AuNPs. Cys-Aβ@AuNP can also be used to identify early-stage Aβ oligomerization, which is not possible using the conventional method, in which the fluorescence of thioflavin-T is measured. The ability to detect Aβ oligomerization can facilitate therapeutics for AD. In addition, the binding of Aβ peptides by Cys-Aβ@AuNP in combination with centrifugation redirects the conventional Aβ aggregation pathway and can effectively inhibit the formation of toxic Aβ oligomers or fibrils. Therefore, the proposed Cys-Aβ@AuNP can also be used to develop effective therapeutic agents to inhibit Aβ aggregation. The results obtained in this study are expected to open revolutionary ways to both detect and inhibit Aβ aggregation at an early stage.
Collapse
Affiliation(s)
- Yu-Jen Chang
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Taiwan University and Academia Sinica, Taipei 115, Taiwan
| | - Yi-Hsin Chien
- Research Center for Applied Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Chieh-Chun Chang
- Research Center for Applied Sciences, Academia Sinica, Taipei 115, Taiwan
- Department of Physics, National Taiwan University, Taipei 106, Taiwan
- Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, and National Taiwan University, Taipei 115, Taiwan
| | - Pei-Ning Wang
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Division of General Neurology, Department of Neurological Institute, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Yun-Ru Chen
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Taiwan University and Academia Sinica, Taipei 115, Taiwan
| | - Yun-Chorng Chang
- Research Center for Applied Sciences, Academia Sinica, Taipei 115, Taiwan
- Department of Physics, National Taiwan University, Taipei 106, Taiwan
- Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, and National Taiwan University, Taipei 115, Taiwan
| |
Collapse
|
5
|
D'Andrea C, Cazzaniga FA, Bistaffa E, Barucci A, de Angelis M, Banchelli M, Farnesi E, Polykretis P, Marzi C, Indaco A, Tiraboschi P, Giaccone G, Matteini P, Moda F. Impact of seed amplification assay and surface-enhanced Raman spectroscopy combined approach on the clinical diagnosis of Alzheimer's disease. Transl Neurodegener 2023; 12:35. [PMID: 37438825 DOI: 10.1186/s40035-023-00367-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/12/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND The current diagnosis of Alzheimer's disease (AD) is based on a series of analyses which involve clinical, instrumental and laboratory findings. However, signs, symptoms and biomarker alterations observed in AD might overlap with other dementias, resulting in misdiagnosis. METHODS Here we describe a new diagnostic approach for AD which takes advantage of the boosted sensitivity in biomolecular detection, as allowed by seed amplification assay (SAA), combined with the unique specificity in biomolecular recognition, as provided by surface-enhanced Raman spectroscopy (SERS). RESULTS The SAA-SERS approach supported by machine learning data analysis allowed efficient identification of pathological Aβ oligomers in the cerebrospinal fluid of patients with a clinical diagnosis of AD or mild cognitive impairment due to AD. CONCLUSIONS Such analytical approach can be used to recognize disease features, thus allowing early stratification and selection of patients, which is fundamental in clinical treatments and pharmacological trials.
Collapse
Affiliation(s)
- Cristiano D'Andrea
- Institute of Applied Physics "Nello Carrara", National Research Council, 50019, Sesto Fiorentino, Italy
| | - Federico Angelo Cazzaniga
- Division of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Edoardo Bistaffa
- Division of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Andrea Barucci
- Institute of Applied Physics "Nello Carrara", National Research Council, 50019, Sesto Fiorentino, Italy
| | - Marella de Angelis
- Institute of Applied Physics "Nello Carrara", National Research Council, 50019, Sesto Fiorentino, Italy
| | - Martina Banchelli
- Institute of Applied Physics "Nello Carrara", National Research Council, 50019, Sesto Fiorentino, Italy
| | - Edoardo Farnesi
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, 07743, Jena, Germany
- Leibniz Institute of Photonic Technology, 07745, Jena, Germany
| | - Panagis Polykretis
- Institute of Applied Physics "Nello Carrara", National Research Council, 50019, Sesto Fiorentino, Italy
| | - Chiara Marzi
- Institute of Applied Physics "Nello Carrara", National Research Council, 50019, Sesto Fiorentino, Italy
| | - Antonio Indaco
- Division of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Pietro Tiraboschi
- Division of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Giorgio Giaccone
- Division of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Paolo Matteini
- Institute of Applied Physics "Nello Carrara", National Research Council, 50019, Sesto Fiorentino, Italy.
| | - Fabio Moda
- Division of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy.
| |
Collapse
|
6
|
Murillo AMM, Laguna MF, Valle LG, Tramarin L, Ramirez Y, Lavín Á, Santamaría B, Holgado M. A New Optical Interferometric Biosensing System Enhanced with Nanoparticles for Alzheimer's Disease in Serum. BIOSENSORS 2023; 13:707. [PMID: 37504106 PMCID: PMC10377685 DOI: 10.3390/bios13070707] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/26/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023]
Abstract
In this scientific work, we demonstrate, for the first time, a new biosensing system and procedure to measure specifically the total Tau (T-Tau) protein in serum, one of the most relevant biomarkers of Alzheimer's disease (AD). AD is a progressive brain disorder that produces neuronal and cognitive dysfunction and affects a high percentage of people worldwide. For this reason, diagnosing AD at the earliest possible stage involves improving diagnostic systems. We report on the use of interferometric bio-transducers integrated with 65 microwells forming diagnostic KITs read-out by using the Interferometric Optical Detection Method (IODM). Moreover, biofunctionalized silicon dioxide (SiO2) nanoparticles (NPs) acting as interferometric enhancers of the bio-transducers signal allow for the improvement of both the optical read-out signal and its ability to work with less-invasive biological samples such as serum instead of cerebrospinal fluid (CSF). As a result, in this paper, we describe for the first time a relevant diagnostic alternative to detect Tau protein at demanding concentrations of 10 pg/mL or even better, opening the opportunity to be used for detecting other relevant AD-related biomarkers in serum, such as β-amyloid and phosphorylated Tau (P-Tau), neurofilaments, among others that can be considered relevant for AD.
Collapse
Affiliation(s)
- Ana María M Murillo
- Group of Optics, Photonics, and Biophotonics, Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid, Parque Científico y Tecnológico de la UPM, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos, IdISSC, C/Profesor Martín Lagos s/n, 4ª Planta Sur, 28040 Madrid, Spain
| | - María Fe Laguna
- Group of Optics, Photonics, and Biophotonics, Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid, Parque Científico y Tecnológico de la UPM, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos, IdISSC, C/Profesor Martín Lagos s/n, 4ª Planta Sur, 28040 Madrid, Spain
- Department of Applied Physics and Materials Engineering, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, C/José Gutiérrez Abascal, 2, 28006 Madrid, Spain
| | - Luis G Valle
- Group of Optics, Photonics, and Biophotonics, Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid, Parque Científico y Tecnológico de la UPM, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos, IdISSC, C/Profesor Martín Lagos s/n, 4ª Planta Sur, 28040 Madrid, Spain
| | - Luca Tramarin
- Group of Optics, Photonics, and Biophotonics, Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid, Parque Científico y Tecnológico de la UPM, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos, IdISSC, C/Profesor Martín Lagos s/n, 4ª Planta Sur, 28040 Madrid, Spain
| | - Yolanda Ramirez
- Group of Optics, Photonics, and Biophotonics, Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid, Parque Científico y Tecnológico de la UPM, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Álvaro Lavín
- Group of Optics, Photonics, and Biophotonics, Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid, Parque Científico y Tecnológico de la UPM, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos, IdISSC, C/Profesor Martín Lagos s/n, 4ª Planta Sur, 28040 Madrid, Spain
- Department of Applied Physics and Materials Engineering, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, C/José Gutiérrez Abascal, 2, 28006 Madrid, Spain
| | - Beatriz Santamaría
- Group of Optics, Photonics, and Biophotonics, Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid, Parque Científico y Tecnológico de la UPM, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos, IdISSC, C/Profesor Martín Lagos s/n, 4ª Planta Sur, 28040 Madrid, Spain
- Department of Mechanics, Chemistry and Industrial Design Engineering, Escuela Superior de Ingeniería y Diseño Industrial, Universidad Politécnica de Madrid, Ronda de Valencia 3, 28012 Madrid, Spain
| | - Miguel Holgado
- Group of Optics, Photonics, and Biophotonics, Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid, Parque Científico y Tecnológico de la UPM, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos, IdISSC, C/Profesor Martín Lagos s/n, 4ª Planta Sur, 28040 Madrid, Spain
- Department of Applied Physics and Materials Engineering, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, C/José Gutiérrez Abascal, 2, 28006 Madrid, Spain
| |
Collapse
|
7
|
Biosensor integrated brain-on-a-chip platforms: Progress and prospects in clinical translation. Biosens Bioelectron 2023; 225:115100. [PMID: 36709589 DOI: 10.1016/j.bios.2023.115100] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/07/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023]
Abstract
Because of the brain's complexity, developing effective treatments for neurological disorders is a formidable challenge. Research efforts to this end are advancing as in vitro systems have reached the point that they can imitate critical components of the brain's structure and function. Brain-on-a-chip (BoC) was first used for microfluidics-based systems with small synthetic tissues but has expanded recently to include in vitro simulation of the central nervous system (CNS). Defining the system's qualifying parameters may improve the BoC for the next generation of in vitro platforms. These parameters show how well a given platform solves the problems unique to in vitro CNS modeling (like recreating the brain's microenvironment and including essential parts like the blood-brain barrier (BBB)) and how much more value it offers than traditional cell culture systems. This review provides an overview of the practical concerns of creating and deploying BoC systems and elaborates on how these technologies might be used. Not only how advanced biosensing technologies could be integrated with BoC system but also how novel approaches will automate assays and improve point-of-care (PoC) diagnostics and accurate quantitative analyses are discussed. Key challenges providing opportunities for clinical translation of BoC in neurodegenerative disorders are also addressed.
Collapse
|
8
|
Kim HJ, Kim H, Park D, Yoon DS, San Lee J, Hwang KS. Plasma-based diagnostic and screening platform using a combination of biosensing signals in Alzheimer's disease. Biosens Bioelectron 2023; 230:115246. [PMID: 37003061 DOI: 10.1016/j.bios.2023.115246] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/24/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023]
Abstract
Using biosensor to screen for Alzheimer's disease (AD) facilitates early detection of AD with high sensitivity and accuracy. This approach overcomes the limitations of conventional AD diagnostic methods, such as neuropsychological assessment and neuroimaging analysis. Here, we propose a simultaneous analysis of signal combinations generated by four crucial AD biomarkers (Amyloid beta 1-40 (Aβ40), Aβ42, total tau 441 (tTau441), and phosphorylated tau 181 (pTau181)) by inducing a dielectrophoretic (DEP) force on fabricated interdigitated microelectrode (IME) sensor. By applying an optimal DEP force, our biosensor selectively concentrates and filters the plasma-based AD biomarkers, exhibiting high sensitivity (limit of detection <100 fM) and selectivity in the plasma-based AD biomarkers detection (p < 0.0001). Consequently, it is demonstrated that a complex combined signal comprising four AD-specific biomarker signals (Aβ40- Aβ42+ tTau441- pTau181) can differentiate between patients with AD and healthy subjects with high accuracy (78.85%) and precision (80.95%) (p < 0.0001).
Collapse
|
9
|
Qu W, Zhang L, Liang X, Yu Z, Huang H, Zhao J, Guo Y, Zhou X, Xu S, Luo H, Luo X. Elevated Plasma Oligomeric Amyloid β-42 Is Associated with Cognitive Impairments in Cerebral Small Vessel Disease. BIOSENSORS 2023; 13:bios13010110. [PMID: 36671945 PMCID: PMC9855662 DOI: 10.3390/bios13010110] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 05/31/2023]
Abstract
Due to the heterogeneity of amyloid β-42 (Aβ42) species, the potential correlation between plasma oligomeric Aβ42 (oAβ42) and cognitive impairments in cerebral small vessel disease (CSVD) remains unclear. Herein, a sandwich ELISA for the specific detection of Aβ42 oligomers (oAβ42) and total Aβ42 (tAβ42) was developed based on sequence- and conformation-specific antibody pairs for the evaluation of plasma samples from a Chinese CSVD community cohort. After age and gender matching, 3-Tesla magnetic resonance imaging and multidimensional cognitive assessment were conducted in 134 CSVD patients and equal controls. The results showed that plasma tAβ42 and oAβ42 levels were significantly elevated in CSVD patients. By regression analysis, these elevations were correlated with the presence of CSVD and its imaging markers (i.e., white matter hyperintensities). Plasma Aβ42 tests further strengthened the predictive power of vascular risk factors for the presence of CSVD. Relative to tAβ42, oAβ42 showed a closer correlation with memory domains evaluated by neuropsychological tests. In conclusion, this sensitive ELISA protocol facilitated the detection of plasma Aβ42; Aβ42, especially its oligomeric form, can serve as a biosensor for the presence of CSVD and associated cognitive impairments represented by memory domains.
Collapse
Affiliation(s)
- Wensheng Qu
- Neurological Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Liding Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430070, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan 430070, China
| | - Xiaohan Liang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430070, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan 430070, China
| | - Zhiyuan Yu
- Neurological Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hao Huang
- Neurological Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing Zhao
- Neurological Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yinping Guo
- Neurological Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xirui Zhou
- Neurological Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shabei Xu
- Neurological Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Haiming Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430070, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan 430070, China
| | - Xiang Luo
- Neurological Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
10
|
Micro- and nano-devices for electrochemical sensing. Mikrochim Acta 2022; 189:459. [DOI: 10.1007/s00604-022-05548-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/02/2022] [Indexed: 11/24/2022]
Abstract
AbstractElectrode miniaturization has profoundly revolutionized the field of electrochemical sensing, opening up unprecedented opportunities for probing biological events with a high spatial and temporal resolution, integrating electrochemical systems with microfluidics, and designing arrays for multiplexed sensing. Several technological issues posed by the desire for downsizing have been addressed so far, leading to micrometric and nanometric sensing systems with different degrees of maturity. However, there is still an endless margin for researchers to improve current strategies and cope with demanding sensing fields, such as lab-on-a-chip devices and multi-array sensors, brain chemistry, and cell monitoring. In this review, we present current trends in the design of micro-/nano-electrochemical sensors and cutting-edge applications reported in the last 10 years. Micro- and nanosensors are divided into four categories depending on the transduction mechanism, e.g., amperometric, impedimetric, potentiometric, and transistor-based, to best guide the reader through the different detection strategies and highlight major advancements as well as still unaddressed demands in electrochemical sensing.
Graphical Abstract
Collapse
|
11
|
Halbgebauer S, Steinacker P, Riedel D, Oeckl P, Anderl-Straub S, Lombardi J, von Arnim CAF, Nagl M, Giese A, Ludolph AC, Otto M. Visinin-like protein 1 levels in blood and CSF as emerging markers for Alzheimer's and other neurodegenerative diseases. Alzheimers Res Ther 2022; 14:175. [PMID: 36419075 PMCID: PMC9682835 DOI: 10.1186/s13195-022-01122-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/08/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Visinin-like protein 1 (VILIP-1) belongs to the group of emerging biomarkers with the potential to support the early diagnosis of Alzheimer's disease (AD). However, studies investigating the differential diagnostic potential in cerebrospinal fluid (CSF) are rare and are not available for blood. METHODS We set up a novel, sensitive single molecule array (Simoa) assay for the detection of VILIP-1 in CSF and serum. In total, paired CSF and serum samples from 234 patients were investigated: 73 AD, 18 behavioral variant frontotemporal dementia (bvFTD), 26 parkinsonian syndromes, 20 amyotrophic lateral sclerosis (ALS), 22 Creutzfeldt-Jakob disease (CJD), and 75 non-neurodegenerative control (Con) patients. The differential diagnostic potential of CSF and serum VILIP-1 was assessed using the receiver operating characteristic curve analysis and findings were compared to core AD biomarkers. RESULTS CSF and serum VILIP-1 levels correlated weakly (r=0.32 (CI: 0.20-0.43), p<0.0001). VILIP-1 concentrations in CSF and serum were elevated in AD compared to Con (p<0.0001 and p<0.01) and CJD (p<0.0001 for CSF and serum), and an increase in CSF was observed already in early AD stages (p<0.0001). In the discrimination of AD versus Con, we could demonstrate a strong diagnostic potential for CSF VILIP-1 alone (area under the curve (AUC): 0.87), CSF VILIP-1/CSF Abeta 1-42 (AUC: 0.98), and serum VILIP-1/CSF Abeta 1-42 ratio (AUC: 0.89). CONCLUSIONS We here report on the successful establishment of a novel Simoa assay for VILIP-1 and illustrate the potential of CSF and serum VILIP-1 in the differential diagnosis of AD with highest levels in CJD.
Collapse
Affiliation(s)
- Steffen Halbgebauer
- grid.410712.10000 0004 0473 882XDepartment of Neurology, Ulm University Hospital, University of Ulm, Oberer Eselsberg 45, 89081 Ulm, Germany ,grid.424247.30000 0004 0438 0426Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE e.V.), Ulm, Germany
| | - Petra Steinacker
- grid.410712.10000 0004 0473 882XDepartment of Neurology, Ulm University Hospital, University of Ulm, Oberer Eselsberg 45, 89081 Ulm, Germany ,grid.461820.90000 0004 0390 1701Department of Neurology, University Clinic, Halle University Hospital, Martin Luther University Halle/Wittenberg, Ernst-Grube Strasse 49, 06120 Halle (Saale), Germany
| | - Daniel Riedel
- grid.410712.10000 0004 0473 882XDepartment of Neurology, Ulm University Hospital, University of Ulm, Oberer Eselsberg 45, 89081 Ulm, Germany
| | - Patrick Oeckl
- grid.410712.10000 0004 0473 882XDepartment of Neurology, Ulm University Hospital, University of Ulm, Oberer Eselsberg 45, 89081 Ulm, Germany ,grid.424247.30000 0004 0438 0426Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE e.V.), Ulm, Germany
| | - Sarah Anderl-Straub
- grid.410712.10000 0004 0473 882XDepartment of Neurology, Ulm University Hospital, University of Ulm, Oberer Eselsberg 45, 89081 Ulm, Germany
| | - Jolina Lombardi
- grid.410712.10000 0004 0473 882XDepartment of Neurology, Ulm University Hospital, University of Ulm, Oberer Eselsberg 45, 89081 Ulm, Germany
| | - Christine A. F. von Arnim
- grid.410712.10000 0004 0473 882XDepartment of Neurology, Ulm University Hospital, University of Ulm, Oberer Eselsberg 45, 89081 Ulm, Germany ,grid.411984.10000 0001 0482 5331Division of Geriatrics, University Medical Center Göttingen, Göttingen, Germany
| | - Magdalena Nagl
- grid.410712.10000 0004 0473 882XDepartment of Neurology, Ulm University Hospital, University of Ulm, Oberer Eselsberg 45, 89081 Ulm, Germany
| | - Armin Giese
- grid.5252.00000 0004 1936 973XDepartment of Neuropathology, Ludwig-Maximilians-University, Munich, Germany
| | - Albert C. Ludolph
- grid.410712.10000 0004 0473 882XDepartment of Neurology, Ulm University Hospital, University of Ulm, Oberer Eselsberg 45, 89081 Ulm, Germany ,grid.424247.30000 0004 0438 0426Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE e.V.), Ulm, Germany
| | - Markus Otto
- grid.410712.10000 0004 0473 882XDepartment of Neurology, Ulm University Hospital, University of Ulm, Oberer Eselsberg 45, 89081 Ulm, Germany ,grid.461820.90000 0004 0390 1701Department of Neurology, University Clinic, Halle University Hospital, Martin Luther University Halle/Wittenberg, Ernst-Grube Strasse 49, 06120 Halle (Saale), Germany
| |
Collapse
|
12
|
Lee D, Kim HV, Kim HY, Kim Y. Chemical-Driven Outflow of Dissociated Amyloid Burden from Brain to Blood. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104542. [PMID: 35106958 PMCID: PMC9036038 DOI: 10.1002/advs.202104542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Amyloid-β (Aβ) deposition in the brain is a primary biomarker of Alzheimer's disease (AD) and Aβ measurement for AD diagnosis mostly depends on brain imaging and cerebrospinal fluid analyses. Blood Aβ can become a reliable surrogate biomarker if issues of low concentration for conventional laboratory instruments and uncertain correlation with brain Aβ are solved. Here, brain-to-blood efflux of Aβ is stimulated in AD transgenic mice by orally administrating a chemical that dissociates amyloid plaques and observing the subsequent increase of blood Aβ concentration. 5XFAD transgenic and wild-type mice of varying ages and genders are prepared, and blood samples of each mouse are collected six times for 12 weeks; three weeks of no treatment and additional nine weeks of daily oral administration, ad libitum, of Aβ plaque-dissociating chemical agent. By the dissociation of Aβ aggregates, the altered levels of plasma Aβ distinguish between transgenic and wild-type mice, displaying potential as an amyloid burden marker of AD brains.
Collapse
Affiliation(s)
- Donghee Lee
- Department of PharmacyCollege of PharmacyYonsei University85 Songdogwahak‐roYeonsu‐guIncheon21983South Korea
- Yonsei Institute of Pharmaceutical SciencesCollege of PharmacyYonsei University85 Songdogwahak‐roYeonsu‐guIncheon21983South Korea
| | - Hyunjin Vincent Kim
- Korea Institute of Science and Technology (KIST)University of Science and Technology (UST)5 Hwarang‐ro 14‐gilSeongbuk‐guSeoul02792South Korea
| | - Hye Yun Kim
- Department of PharmacyCollege of PharmacyYonsei University85 Songdogwahak‐roYeonsu‐guIncheon21983South Korea
- Yonsei Institute of Pharmaceutical SciencesCollege of PharmacyYonsei University85 Songdogwahak‐roYeonsu‐guIncheon21983South Korea
| | - YoungSoo Kim
- Department of PharmacyCollege of PharmacyYonsei University85 Songdogwahak‐roYeonsu‐guIncheon21983South Korea
- Yonsei Institute of Pharmaceutical SciencesCollege of PharmacyYonsei University85 Songdogwahak‐roYeonsu‐guIncheon21983South Korea
- Department of Integrative Biotechnology and Translational MedicineYonsei University85 Songdogwahak‐roYeonsu‐guIncheon21983South Korea
| |
Collapse
|
13
|
Guévremont D, Tsui H, Knight R, Fowler CJ, Masters CL, Martins RN, Abraham WC, Tate WP, Cutfield NJ, Williams JM. Plasma microRNA vary in association with the progression of Alzheimer's disease. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2022; 14:e12251. [PMID: 35141392 PMCID: PMC8817674 DOI: 10.1002/dad2.12251] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/09/2021] [Indexed: 12/11/2022]
Abstract
Introduction Early intervention in Alzheimer's disease (AD) requires the development of an easily administered test that is able to identify those at risk. Focusing on microRNA robustly detected in plasma and standardizing the analysis strategy, we sought to identify disease‐stage specific biomarkers. Methods Using TaqMan microfluidics arrays and a statistical consensus approach, we assessed plasma levels of 185 neurodegeneration‐related microRNA, in cohorts of cognitively normal amyloid β‐positive (CN‐Aβ+), mild cognitive impairment (MCI), and Alzheimer's disease (AD) participants, relative to their respective controls. Results Distinct disease stage microRNA biomarkers were identified, shown to predict membership of the groups (area under the curve [AUC] >0.8) and were altered dynamically with AD progression in a longitudinal study. Bioinformatics demonstrated that these microRNA target known AD‐related pathways, such as the Phosphoinositide 3‐kinase (PI3K‐Akt) signalling pathway. Furthermore, a significant correlation was found between miR‐27a‐3p, miR‐27b‐3p, and miR‐324‐5p and amyloid beta load. Discussion Our results show that microRNA signatures alter throughout the progression of AD, reflect the underlying disease pathology, and may prove to be useful diagnostic markers.
Collapse
Affiliation(s)
- Diane Guévremont
- Department of Anatomy University of Otago Dunedin New Zealand.,Brain Health Research Centre University of Otago Dunedin New Zealand.,Brain Research New Zealand, Rangahau Roro Aotearoa University of Otago Dunedin New Zealand
| | - Helen Tsui
- Brain Health Research Centre University of Otago Dunedin New Zealand.,Brain Research New Zealand, Rangahau Roro Aotearoa University of Otago Dunedin New Zealand.,Department of Psychology University of Otago Dunedin New Zealand
| | - Robert Knight
- Brain Health Research Centre University of Otago Dunedin New Zealand.,Brain Research New Zealand, Rangahau Roro Aotearoa University of Otago Dunedin New Zealand.,Department of Psychology University of Otago Dunedin New Zealand
| | - Chris J Fowler
- The Florey Institute, The University of Melbourne, Parkville, Victoria, Australia. MD The Florey Institute The University of Melbourne Parkville Victoria Australia.,Australian Imaging Biomarkers and Lifestyle (AIBL) Research Group Australia
| | - Colin L Masters
- The Florey Institute, The University of Melbourne, Parkville, Victoria, Australia. MD The Florey Institute The University of Melbourne Parkville Victoria Australia.,Australian Imaging Biomarkers and Lifestyle (AIBL) Research Group Australia
| | - Ralph N Martins
- Australian Imaging Biomarkers and Lifestyle (AIBL) Research Group Australia.,Department of Biomedical Sciences Macquarie University New South Wales Australia
| | - Wickliffe C Abraham
- Brain Health Research Centre University of Otago Dunedin New Zealand.,Brain Research New Zealand, Rangahau Roro Aotearoa University of Otago Dunedin New Zealand.,Department of Psychology University of Otago Dunedin New Zealand
| | - Warren P Tate
- Brain Health Research Centre University of Otago Dunedin New Zealand.,Brain Research New Zealand, Rangahau Roro Aotearoa University of Otago Dunedin New Zealand.,Department of Biochemistry University of Otago Dunedin New Zealand
| | - Nicholas J Cutfield
- Brain Health Research Centre University of Otago Dunedin New Zealand.,Brain Research New Zealand, Rangahau Roro Aotearoa University of Otago Dunedin New Zealand.,Department of Medicine University of Otago Dunedin New Zealand
| | - Joanna M Williams
- Department of Anatomy University of Otago Dunedin New Zealand.,Brain Health Research Centre University of Otago Dunedin New Zealand.,Brain Research New Zealand, Rangahau Roro Aotearoa University of Otago Dunedin New Zealand
| |
Collapse
|
14
|
Zhang L, Du X, Su Y, Niu S, Li Y, Liang X, Luo H. Quantitative assessment of AD markers using naked eyes: point-of-care testing with paper-based lateral flow immunoassay. J Nanobiotechnology 2021; 19:366. [PMID: 34789291 PMCID: PMC8597216 DOI: 10.1186/s12951-021-01111-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/02/2021] [Indexed: 01/01/2023] Open
Abstract
Aβ42 is one of the most extensively studied blood and Cerebrospinal fluid (CSF) biomarkers for the diagnosis of symptomatic and prodromal Alzheimer's disease (AD). Because of the heterogeneity and transient nature of Aβ42 oligomers (Aβ42Os), the development of technologies for dynamically detecting changes in the blood or CSF levels of Aβ42 monomers (Aβ42Ms) and Aβ42Os is essential for the accurate diagnosis of AD. The currently commonly used Aβ42 ELISA test kits usually mis-detected the elevated Aβ42Os, leading to incomplete analysis and underestimation of soluble Aβ42, resulting in a comprised performance in AD diagnosis. Herein, we developed a dual-target lateral flow immunoassay (dLFI) using anti-Aβ42 monoclonal antibodies 1F12 and 2C6 for the rapid and point-of-care detection of Aβ42Ms and Aβ42Os in blood samples within 30 min for AD diagnosis. By naked eye observation, the visual detection limit of Aβ42Ms or/and Aβ42Os in dLFI was 154 pg/mL. The test results for dLFI were similar to those observed in the enzyme-linked immunosorbent assay (ELISA). Therefore, this paper-based dLFI provides a practical and rapid method for the on-site detection of two biomarkers in blood or CSF samples without the need for additional expertise or equipment.
Collapse
Affiliation(s)
- Liding Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Xuewei Du
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, China
| | - Ying Su
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shiqi Niu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Yanqing Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohan Liang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Haiming Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China.
- , Wuhan, China.
| |
Collapse
|
15
|
Chong JR, Ashton NJ, Karikari TK, Tanaka T, Schöll M, Zetterberg H, Blennow K, Chen CP, Lai MKP. Blood-based high sensitivity measurements of beta-amyloid and phosphorylated tau as biomarkers of Alzheimer's disease: a focused review on recent advances. J Neurol Neurosurg Psychiatry 2021; 92:1231-1241. [PMID: 34510001 DOI: 10.1136/jnnp-2021-327370] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 08/30/2021] [Indexed: 01/11/2023]
Abstract
Discovery and development of clinically useful biomarkers for Alzheimer's disease (AD) and related dementias have been the focus of recent research efforts. While cerebrospinal fluid and positron emission tomography or MRI-based neuroimaging markers have made the in vivo detection of AD pathology and its consequences possible, the high cost and invasiveness have limited their widespread use in the clinical setting. On the other hand, advances in potentially more accessible blood-based biomarkers had been impeded by lack of sensitivity in detecting changes in markers of the hallmarks of AD, including amyloid-β (Aβ) peptides and phosphorylated tau (P-tau). More recently, however, emerging technologies with superior sensitivity and specificity for measuring Aβ and P-tau have reported high concordances with AD severity. In this focused review, we describe several emerging technologies, including immunoprecipitation-mass spectrometry (IP-MS), single molecule array and Meso Scale Discovery immunoassay platforms, and appraise the current literature arising from their use to identify plaques, tangles and other AD-associated pathology. While there is potential clinical utility in adopting these technologies, we also highlight the further studies needed to establish Aβ and P-tau as blood-based biomarkers for AD, including validation with existing large sample sets, new independent cohorts from diverse backgrounds as well as population-based longitudinal studies. In conclusion, the availability of sensitive and reliable measurements of Aβ peptides and P-tau species in blood holds promise for the diagnosis, prognosis and outcome assessments in clinical trials for AD.
Collapse
Affiliation(s)
- Joyce R Chong
- Memory, Aging and Cognition Centre, National University Health Systems, Singapore.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Nicholas J Ashton
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.,Psychology and Neuroscience, King's College London, Institute of Psychiatry, Maurice Wohl Institute Clinical Neuroscience Institute, London, UK.,NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia, South London and Maudsley NHS Foundation, London, UK.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tomotaka Tanaka
- Memory, Aging and Cognition Centre, National University Health Systems, Singapore.,Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan.,Clinical Imaging Research Centre, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Michael Schöll
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden.,UK Dementia Research Institute at UCL, University College London, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,UK Dementia Research Institute at UCL, University College London, London, UK
| | - Christopher P Chen
- Memory, Aging and Cognition Centre, National University Health Systems, Singapore.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Mitchell K P Lai
- Memory, Aging and Cognition Centre, National University Health Systems, Singapore .,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
16
|
Park S, Kim Y. Bias-generating factors in biofluid amyloid-β measurements for Alzheimer's disease diagnosis. Biomed Eng Lett 2021; 11:287-295. [PMID: 34616582 DOI: 10.1007/s13534-021-00201-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/05/2021] [Accepted: 08/08/2021] [Indexed: 01/03/2023] Open
Abstract
Alzheimer's disease (AD) is the most prevalent cause of dementia worldwide, yet the dearth of readily accessible diagnostic biomarkers is a substantial hindrance towards progressing to effective preventive and therapeutic approaches. Due to a long delay between cerebral amyloid-β (Aβ) accumulation and the onset of cognitive impairments, biomarkers that reflect Aβ pathology and enable routine screening for disease progression are of urgent need for application in the clinical diagnosis of AD. According to accumulating evidences, cerebrospinal fluid (CSF) and plasma offer windows to the brain as they allow monitoring of biochemical changes in the brain. Considering the high availability and accuracy in depicting Aβ deposition in the brain, Aβ levels in CSF and plasma are regarded as promising fluid biomarkers for the diagnosis of AD patients at an early stage. However, clinical data with intra- and interindividual variations in the concentrations of CSF and plasma Aβ implicate the need to reevaluate current Aβ detection methods and establish a standardized operating procedure. Therefore, this review introduces three bias-generating factors in biofluid Aβ measurement that may hamper the accurate Aβ quantification and how such complications can be overcome for the widespread implementation of fluid Aβ detection in clinical practice.
Collapse
Affiliation(s)
- Sohui Park
- Department of Pharmacy, Department of Integrative Biotechnology and Translational Medicine, and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983 Republic of Korea
| | - YoungSoo Kim
- Department of Pharmacy, Department of Integrative Biotechnology and Translational Medicine, and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983 Republic of Korea
| |
Collapse
|
17
|
Yun Y, Lee SY, Choi WH, Park JC, Lee DH, Kim YK, Lee JH, Lee JY, Lee MJ, Kim YH. Proteasome Activity in the Plasma as a Novel Biomarker in Mild Cognitive Impairment with Chronic Tinnitus. J Alzheimers Dis 2021; 78:195-205. [PMID: 32955464 PMCID: PMC7683073 DOI: 10.3233/jad-200728] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Although the existence of proteasomes in human blood, termed circulating proteasomes (c-proteasomes), has been reported previously, their origin and pathophysiological functions remain largely unknown. OBJECTIVE Given that c-proteasome activity was significantly reduced in Alzheimer's disease model mice and relatively high frequency of mild cognitive impairment (MCI) is accompanied by chronic tinnitus in aged patients, we examined whether c-proteasome activity in human plasma was associated with cognitive function in patients with chronic tinnitus. METHODS c-Proteasome activity in the plasma of tinnitus patients (N = 55) was measured with fluorogenic reporter substrate, suc-LLVY-AMC. To assess MCI, the Montreal Cognitive Assessment was conducted with a cut-off score of 22/23. All patients underwent audiological and psychoacoustic analyses. Levels of c-proteasomes, Aβ42, and Aβ40 were measured using ELISA, and their association with c-proteasome activity was evaluated. RESULTS The activity of circulating proteasomes was significantly lower in patients with chronic tinnitus and MCI (p = 0.042), whereas activities of other plasma enzymes showed little correlation. In addition, c-proteasome activity was negatively associated with the level of plasma Aβ and was directly dependent on its own concentration in the plasma of patients with chronic tinnitus. CONCLUSION Our current work provides a new perspective for understanding the potential relationship between circulating proteasomes in the plasma and cognitive dysfunction, suggesting a novel, non-invasive biomarker in the context of MCI diagnosis.
Collapse
Affiliation(s)
- Yejin Yun
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Sang-Yeon Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul, Korea
| | - Won Hoon Choi
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Jong-Chan Park
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Dong Han Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Konkuk University Medical Center, Seoul, Korea
| | - Yun Kyung Kim
- Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Korea
| | - Jung Hoon Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Jun-Young Lee
- Department of Psychiatry and Neuroscience Research Institute, Seoul National University College of Medicine, Boramae Medical Center, Seoul, Korea
| | - Min Jae Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Young Ho Kim
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Boramae Medical Center, Seoul, Korea
| |
Collapse
|
18
|
Murti BT, Putri AD, Huang YJ, Wei SM, Peng CW, Yang PK. Clinically oriented Alzheimer's biosensors: expanding the horizons towards point-of-care diagnostics and beyond. RSC Adv 2021; 11:20403-20422. [PMID: 35479927 PMCID: PMC9033966 DOI: 10.1039/d1ra01553b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/28/2021] [Indexed: 12/30/2022] Open
Abstract
The development of minimally invasive and easy-to-use sensor devices is of current interest for ultrasensitive detection and signal recognition of Alzheimer's disease (AD) biomarkers. Over the years, tremendous effort has been made on diagnostic platforms specifically targeting neurological markers for AD in order to replace the conventional, laborious, and invasive sampling-based approaches. However, the sophistication of analytical outcomes, marker inaccessibility, and material validity strongly limit the current strategies towards effectively predicting AD. Recently, with the promising progress in biosensor technology, the realization of a clinically applicable sensing platform has become a potential option to enable early diagnosis of AD and other neurodegenerative diseases. In this review, various types of biosensors, which include electrochemical, fluorescent, plasmonic, photoelectrochemical, and field-effect transistor (FET)-based sensor configurations, with better clinical applicability and analytical performance towards AD are highlighted. Moreover, the feasibility of these sensors to achieve point-of-care (POC) diagnosis is also discussed. Furthermore, by grafting nanoscale materials into biosensor architecture, the remarkable enhancement in durability, functionality, and analytical outcome of sensor devices is presented. Finally, future perspectives on further translational and commercialization pathways of clinically driven biosensor devices for AD are discussed and summarized.
Collapse
Affiliation(s)
- Bayu Tri Murti
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
- Semarang College of Pharmaceutical Sciences (STIFAR) Semarang City Indonesia
| | - Athika Darumas Putri
- Semarang College of Pharmaceutical Sciences (STIFAR) Semarang City Indonesia
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Pharmacy, Taipei Medical University Taipei Taiwan
| | - Yi-June Huang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
| | - Shih-Min Wei
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
| | - Chih-Wei Peng
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
| | - Po-Kang Yang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
- Department of Biomedical Sciences and Engineering, National Central University Chung-li Taiwan
| |
Collapse
|
19
|
Koklu A, Wustoni S, Musteata VE, Ohayon D, Moser M, McCulloch I, Nunes SP, Inal S. Microfluidic Integrated Organic Electrochemical Transistor with a Nanoporous Membrane for Amyloid-β Detection. ACS NANO 2021; 15:8130-8141. [PMID: 33784064 PMCID: PMC8158856 DOI: 10.1021/acsnano.0c09893] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/22/2021] [Indexed: 05/26/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder associated with a severe loss in thinking, learning, and memory functions of the brain. To date, no specific treatment has been proven to cure AD, with the early diagnosis being vital for mitigating symptoms. A common pathological change found in AD-affected brains is the accumulation of a protein named amyloid-β (Aβ) into plaques. In this work, we developed a micron-scale organic electrochemical transistor (OECT) integrated with a microfluidic platform for the label-free detection of Aβ aggregates in human serum. The OECT channel-electrolyte interface was covered with a nanoporous membrane functionalized with Congo red (CR) molecules showing a strong affinity for Aβ aggregates. Each aggregate binding to the CR-membrane modulated the vertical ion flow toward the channel, changing the transistor characteristics. Thus, the device performance was not limited by the solution ionic strength nor did it rely on Faradaic reactions or conformational changes of bioreceptors. The high transconductance of the OECT, the precise porosity of the membrane, and the compactness endowed by the microfluidic enabled the Aβ aggregate detection over eight orders of magnitude wide concentration range (femtomolar-nanomolar) in 1 μL of human serum samples. We expanded the operation modes of our transistors using different channel materials and found that the accumulation-mode OECTs displayed the lowest power consumption and highest sensitivities. Ultimately, these robust, low-power, sensitive, and miniaturized microfluidic sensors helped to develop point-of-care tools for the early diagnosis of AD.
Collapse
Affiliation(s)
- Anil Koklu
- Biological
and Environmental Science and Engineering (BESE), Organic Bioelectronics
Laboratory, King Abdullah University of
Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Shofarul Wustoni
- Biological
and Environmental Science and Engineering (BESE), Organic Bioelectronics
Laboratory, King Abdullah University of
Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | | | - David Ohayon
- Biological
and Environmental Science and Engineering (BESE), Organic Bioelectronics
Laboratory, King Abdullah University of
Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Maximilian Moser
- Department
of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Iain McCulloch
- Department
of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
- Physical
Science and Engineering Division, KAUST Solar Center (KSC), KAUST, Thuwal 23955-6900, Saudi Arabia
| | - Suzana P. Nunes
- Advanced
Membranes and Porous Materials Center, KAUST,
BESE, Thuwal 23955-6900, Saudi Arabia
| | - Sahika Inal
- Biological
and Environmental Science and Engineering (BESE), Organic Bioelectronics
Laboratory, King Abdullah University of
Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
20
|
Sakono M, Arisawa T, Ohya T, Sakono N, Manaka A. Preparation of Luciferase-fused Peptides for Immunoassay of Amyloid Beta. ANAL SCI 2021; 37:759-763. [PMID: 33583860 DOI: 10.2116/analsci.20scp19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An immunoassay, such as the enzyme-linked immunosorbent assay (ELISA), is an analytical method that utilizes the interaction of antigens and antibodies. Enzyme-labeled antigens require both molecular recognition by the antibody and enzymatic activity as a reporter. We designed and constructed an immunodetection system for amyloid beta peptides (Aβ) using an enzyme-labeled antigen expressed from Escherichia coli. Aβ(1-16) fused with renilla luciferase was prepared as the enzyme-labeled antigen. In the presence of this luciferase-fused peptide, the luminescence of coelenterazine-h was observed. The influence of the fusion with Aβ on the luminescence reaction was insignificant. Surface plasmon resonance analysis indicated that the interaction between the luciferase-fused Aβ and anti-Aβ antibody was sufficiently strong. In the competitive ELISA assay for Aβ detection using the luciferase-fused Aβ, the luminescence intensity decreased as the Aβ concentration increased.
Collapse
Affiliation(s)
- Masafumi Sakono
- Department of Applied Chemistry, Faculty of Engineering, University of Toyama
| | - Taiki Arisawa
- Department of Applied Chemistry, Faculty of Engineering, University of Toyama
| | - Takuma Ohya
- Department of Applied Chemistry, Faculty of Engineering, University of Toyama
| | - Naomi Sakono
- Department of Applied Chemistry and Chemical Engineering, National Institute of Technology, Toyama College
| | - Atsushi Manaka
- Department of Applied Chemistry and Chemical Engineering, National Institute of Technology, Toyama College
| |
Collapse
|
21
|
Yoo SJ, Son G, Bae J, Kim SY, Yoo YK, Park D, Baek SY, Chang KA, Suh YH, Lee YB, Hwang KS, Kim Y, Moon C. Longitudinal profiling of oligomeric Aβ in human nasal discharge reflecting cognitive decline in probable Alzheimer's disease. Sci Rep 2020; 10:11234. [PMID: 32641719 PMCID: PMC7343787 DOI: 10.1038/s41598-020-68148-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 06/16/2020] [Indexed: 12/11/2022] Open
Abstract
Despite clinical evidence indicating a close relationship between olfactory dysfunction and Alzheimer’s disease (AD), further investigations are warranted to determine the diagnostic potential of nasal surrogate biomarkers for AD. In this study, we first identified soluble amyloid-β (Aβ), the key biomarker of AD, in patient nasal discharge using proteomic analysis. Then, we profiled the significant differences in Aβ oligomers level between patient groups with mild or moderate cognitive decline (n = 39) and an age-matched normal control group (n = 21) by immunoblot analysis and comparing the levels of Aβ by a self-standard method with interdigitated microelectrode sensor systems. All subjects received the Mini-Mental State Examination (MMSE), Clinical Dementia Rating (CDR), and the Global Deterioration Scale (GDS) for grouping. We observed higher levels of Aβ oligomers in probable AD subjects with lower MMSE, higher CDR, and higher GDS compared to the normal control group. Moreover, mild and moderate subject groups could be distinguished based on the increased composition of two oligomers, 12-mer Aβ*56 and 15-mer AβO, respectively. The longitudinal cohort study confirmed that the cognitive decline of mild AD patients with high nasal discharge Aβ*56 levels advanced to the moderate stage within three years. Our clinical evidence strongly supports the view that the presence of oligomeric Aβ proteins in nasal discharge is a potential surrogate biomarker of AD and an indicator of cognitive decline progression.
Collapse
Affiliation(s)
- Seung-Jun Yoo
- Department of Brain and Cognitive Sciences, Graduate School, Daegu Gyeungbuk Institute of Science and Technology, Daegu, Republic of Korea.,Convergence Research Advanced Centre for Olfaction, Daegu Gyeungbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Gowoon Son
- Department of Brain and Cognitive Sciences, Graduate School, Daegu Gyeungbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Jisub Bae
- Department of Brain and Cognitive Sciences, Graduate School, Daegu Gyeungbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - So Yeun Kim
- Department of Brain and Cognitive Sciences, Graduate School, Daegu Gyeungbuk Institute of Science and Technology, Daegu, Republic of Korea.,Convergence Research Advanced Centre for Olfaction, Daegu Gyeungbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Yong Kyoung Yoo
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Dongsung Park
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Seung Yeop Baek
- Integrated Science and Engineering Division, Department of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Keun-A Chang
- Department of Pharmacology, School of Medicine, Gachon Medical School, Incheon, Republic of Korea
| | - Yoo-Hun Suh
- Department of Pharmacology, School of Medicine, Gachon Medical School, Incheon, Republic of Korea
| | - Yeong-Bae Lee
- Department of Neurology, Gil Medical Center, Gachon University, Incheon, Republic of Korea
| | - Kyo Seon Hwang
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - YoungSoo Kim
- Integrated Science and Engineering Division, Department of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Cheil Moon
- Department of Brain and Cognitive Sciences, Graduate School, Daegu Gyeungbuk Institute of Science and Technology, Daegu, Republic of Korea. .,Convergence Research Advanced Centre for Olfaction, Daegu Gyeungbuk Institute of Science and Technology, Daegu, Republic of Korea.
| |
Collapse
|
22
|
Alzheimer's Disease Diagnosis Using Misfolding Proteins in Blood. Dement Neurocogn Disord 2020; 19:1-18. [PMID: 32174051 PMCID: PMC7105719 DOI: 10.12779/dnd.2020.19.1.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/02/2019] [Accepted: 12/09/2019] [Indexed: 01/06/2023] Open
Abstract
Alzheimer's disease (AD) is pathologically characterized by a long progressive phase of neuronal changes, including accumulation of extracellular amyloid-β (Aβ) and intracellular neurofibrillary tangles, before the onset of observable symptoms. Many efforts have been made to develop a blood-based diagnostic method for AD by incorporating Aβ and tau as plasma biomarkers. As blood tests have the advantages of being highly accessible and low cost, clinical implementation of AD blood tests would provide preventative screening to presymptomatic individuals, facilitating early identification of AD patients and, thus, treatment development in clinical research. However, the low concentration of AD biomarkers in the plasma has posed difficulties for accurate detection, hindering the development of a reliable blood test. In this review, we introduce three AD blood test technologies emerging in South Korea, which have distinctive methods of heightening detection sensitivity of specific plasma biomarkers. We discuss in detail the multimer detection system, the self-standard analysis of Aβ biomarkers quantified by interdigitated microelectrodes, and a biomarker ratio analysis comprising Aβ and tau.
Collapse
|
23
|
Wang X, Sun Y, Li T, Cai Y, Han Y. Amyloid-β as a Blood Biomarker for Alzheimer’s Disease: A Review of Recent Literature. J Alzheimers Dis 2020; 73:819-832. [PMID: 31868667 DOI: 10.3233/jad-190714] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Xiaoni Wang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yu Sun
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Taoran Li
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yanning Cai
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing, China
| | - Ying Han
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
- Center of Alzheimer’s Disease, Beijing Institute for Brain Disorders, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Beijing, China
| |
Collapse
|
24
|
Kim K, Lee CH, Park CB. Chemical sensing platforms for detecting trace-level Alzheimer's core biomarkers. Chem Soc Rev 2020; 49:5446-5472. [DOI: 10.1039/d0cs00107d] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This review provides an overview of recent advances in optical and electrical detection of Alzheimer's disease biomarkers in clinically relevant fluids.
Collapse
Affiliation(s)
- Kayoung Kim
- Department of Materials Science and Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 305-701
- Republic of Korea
| | - Chang Heon Lee
- Department of Materials Science and Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 305-701
- Republic of Korea
| | - Chan Beum Park
- Department of Materials Science and Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 305-701
- Republic of Korea
| |
Collapse
|
25
|
Simrén J, Ashton NJ, Blennow K, Zetterberg H. An update on fluid biomarkers for neurodegenerative diseases: recent success and challenges ahead. Curr Opin Neurobiol 2019; 61:29-39. [PMID: 31838254 DOI: 10.1016/j.conb.2019.11.019] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/23/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022]
Abstract
Over the last twenty years, the characterization of Alzheimer's disease (AD) patients has progressed from a description of clinical symptomatology followed by neuropathological findings at autopsy to in vivo pathophysiological signatures using cerebrospinal fluid (CSF) and positron emission tomography (PET). Additionally, CSF biomarkers now reflect synaptic pathology, axonal injury and neuroinflammation. Novel techniques are capable of measuring proteins of pathophysiological importance at femtomolar concentrations in blood (e.g. amyloid, tau species and neurofilaments), which enable screening of large populations in the near future. This will be essential for secondary prevention trials and clinical management. However, common diseases such as dementia with Lewy bodies, Parkinson's disease and frontotemporal dementias, are still without reliable diagnostic biomarkers, although emerging techniques show promising pilot results for some of these diseases. This is likely to change in the next few years, which will be crucial to stratify populations enrolling in clinical trials, since pathologies often coexist.
Collapse
Affiliation(s)
- Joel Simrén
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden; King's College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Institute Clinical Neuroscience Institute, London, UK; NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL, London, UK.
| |
Collapse
|
26
|
Abstract
The development of blood-based biomarkers of Alzheimer's disease (AD) pathology as tools for screening the general population, and as the first step in a multistep process to determine which non-demented individuals are at greatest risk of developing AD dementia, is essential. Proteins that are reflective of AD pathology, such as amyloid beta 42 (Aβ42), tau proteins [total tau (T-tau) and phosphorylated tau (P-tau)], and neurofilament light chain (NfL), are detectable in the blood. However, a major challenge in measuring these blood-based proteins is that their concentrations are much lower in plasma or serum than in the cerebrospinal fluid. Single molecule array (SiMoA) is an ultrasensitive technology that can detect proteins in blood at sub-femtomolar concentrations (i.e., 10-16 M). In this review, we focus on the utility of SiMoA assays for the measurement of plasma or serum Aβ42, P-tau, T-tau, and NfL levels and discuss future directions.
Collapse
Affiliation(s)
- Danni Li
- Department of Lab Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Michelle M Mielke
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN, USA.
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN, USA.
| |
Collapse
|
27
|
Vogelgsang J, Wiltfang J. [New biomarkers for Alzheimer's disease in cerebrospinal fluid and blood]. DER NERVENARZT 2019; 90:907-913. [PMID: 31407045 DOI: 10.1007/s00115-019-0772-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In accordance with the current German dementia guidelines, the dementia biomarkers amyloid beta 42, the tau peptides total tau and phosphorylated tau 181 are recommended for cerebrospinal fluid (CSF)-based diagnostics of dementia. Several studies have clearly shown that determination of the amyloid beta 42 to amyloid beta 40 peptide ratio is superior to the interpretation of amyloid beta 42 alone and should be implemented in the clinical work-up; however, in recent years different studies have presented many other innovative CSF and blood-based biomarkers. Besides CSF-based neurochemical diagnostics of dementia promising novel protocols for the detection of amyloid beta peptides in blood have meanwhile been published, which can currently be used in clinical studies for blood-based early diagnostics of Alzheimer's dementia. Following further validation and assay optimization these blood assays should be available for routine diagnostics in the near future.
Collapse
Affiliation(s)
- Jonathan Vogelgsang
- Universitätsmedizin Göttingen (UMG), Klinik für Psychiatrie und Psychotherapie, Georg-August-Universität, Von-Siebold-Str. 5, 37075, Göttingen, Deutschland
| | - Jens Wiltfang
- Universitätsmedizin Göttingen (UMG), Klinik für Psychiatrie und Psychotherapie, Georg-August-Universität, Von-Siebold-Str. 5, 37075, Göttingen, Deutschland. .,Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Von-Siebold-Str. 3a, 37075, Göttingen, Deutschland. .,iBiMED, Medical Science Department, Universität Aveiro, Aveiro, Portugal.
| |
Collapse
|