1
|
Kim M, Powers CA, Fisher DT, Ku AW, Neznanov N, Safina AF, Wang J, Gautam A, Balachandran S, Krishnamurthy A, Gurova KV, Evans SS, Gudkov AV, Skitzki JJ. Enhancing Anti-PD-1 Immunotherapy by Targeting MDSCs via Hepatic Arterial Infusion in Breast Cancer Liver Metastases. Cancers (Basel) 2024; 16:3711. [PMID: 39518148 PMCID: PMC11545300 DOI: 10.3390/cancers16213711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/23/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Surgery, chemotherapy, and radiation often have limited utility for advanced metastatic disease in the liver, and despite its promising activity in select cancers, PD-1 blockade therapy similarly has minimal benefit in this setting. Curaxin, CBL0137, is an experimental anti-cancer drug that disrupts the binding of DNA to histones, destabilizes chromatin, and induces Z-DNA formation which may stimulate anti-tumor immune responses. METHODS Murine cell lines of colon (CT26) and breast (4T1) cancer were interrogated for survival and CBL0137-associated DNA changes in vitro. Immunocompetent models of liver metastases followed by CBL0137 hepatic arterial infusion (HAI) were used to examine in vivo tumor cell DNA alterations, treatment responses, and the immune contexture associated with CBL0137, both alone and in combination with anti-PD-1 therapy. RESULTS CBL0137 induced immediate changes to favor tumor cell death in vitro and in vivo with an efficient tumor uptake via the HAI route. Toxicity to CBL0137 was minimal and anti-tumor treatment effects were more efficient with HAI compared to intravenous delivery. Immune effects were pronounced with CBL0137 HAI with concurrent depletion of a specific population of myeloid-derived suppressor cells and maintenance of effector T cell populations. CONCLUSIONS Combination of CBL0137 HAI with PD-1 blockade improved survival in 4T1 tumors but not in CT26 tumors, and therapeutic efficacy relies on the finding of simultaneous and targeted depletion of myeloid-derived suppressor cells and skewing of T cell populations to produce synergy with PD-1 blockade therapy.
Collapse
Affiliation(s)
- Minhyung Kim
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (C.A.P.); (D.T.F.); (A.W.K.)
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Colin A. Powers
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (C.A.P.); (D.T.F.); (A.W.K.)
| | - Daniel T. Fisher
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (C.A.P.); (D.T.F.); (A.W.K.)
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Amy W. Ku
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (C.A.P.); (D.T.F.); (A.W.K.)
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Nickolay Neznanov
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (N.N.); (A.F.S.); (K.V.G.); (A.V.G.)
| | - Alfiya F. Safina
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (N.N.); (A.F.S.); (K.V.G.); (A.V.G.)
| | - Jianmin Wang
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Avishekh Gautam
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (A.G.); (S.B.)
| | - Siddharth Balachandran
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (A.G.); (S.B.)
| | - Anuradha Krishnamurthy
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Katerina V. Gurova
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (N.N.); (A.F.S.); (K.V.G.); (A.V.G.)
| | - Sharon S. Evans
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Andrei V. Gudkov
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (N.N.); (A.F.S.); (K.V.G.); (A.V.G.)
| | - Joseph J. Skitzki
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (C.A.P.); (D.T.F.); (A.W.K.)
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| |
Collapse
|
2
|
Shi X, Fedulova AS, Kotova EY, Maluchenko NV, Armeev GA, Chen Q, Prasanna C, Sivkina AL, Feofanov AV, Kirpichnikov MP, Nordensköld L, Shaytan AK, Studitsky VM. Histone Tetrasome Dynamics Affects Chromatin Transcription. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.18.604164. [PMID: 39071396 PMCID: PMC11275759 DOI: 10.1101/2024.07.18.604164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
During various DNA-centered processes in the cell nucleus, the minimal structural units of chromatin organization, nucleosomes, are often transiently converted to hexasomes and tetrasomes missing one or both H2A/H2B histone dimers, respectively. However, the structural and functional properties of the subnucleosomes and their impact on biological processes in the nuclei are poorly understood. Here, using biochemical approaches, molecular dynamics simulations, single-particle Förster resonance energy transfer (spFRET) microscopy and NMR spectroscopy, we have shown that, surprisingly, removal of both dimers from a nucleosome results in much higher mobility of both histones and DNA in the tetrasome. Accordingly, DNase I footprinting shows that DNA-histone interactions in tetrasomes are greatly compromised, resulting in formation of a much lower barrier to transcribing RNA polymerase II than nucleosomes. The data suggest that tetrasomes are remarkably dynamic structures and their formation can strongly affect various biological processes.
Collapse
|
3
|
Prescott NA, Mansisidor A, Bram Y, Biaco T, Rendleman J, Faulkner SC, Lemmon AA, Lim C, Hamard PJ, Koche RP, Risca VI, Schwartz RE, David Y. A nucleosome switch primes Hepatitis B Virus infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.03.531011. [PMID: 38915612 PMCID: PMC11195122 DOI: 10.1101/2023.03.03.531011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Chronic hepatitis B virus (HBV) infection is an incurable global health threat responsible for causing liver disease and hepatocellular carcinoma. During the genesis of infection, HBV establishes an independent minichromosome consisting of the viral covalently closed circular DNA (cccDNA) genome and host histones. The viral X gene must be expressed immediately upon infection to induce degradation of the host silencing factor, Smc5/6. However, the relationship between cccDNA chromatinization and X gene transcription remains poorly understood. Establishing a reconstituted viral minichromosome platform, we found that nucleosome occupancy in cccDNA drives X transcription. We corroborated these findings in cells and further showed that the chromatin destabilizing molecule CBL137 inhibits X transcription and HBV infection in hepatocytes. Our results shed light on a long-standing paradox and represent a potential new therapeutic avenue for the treatment of chronic HBV infection.
Collapse
Affiliation(s)
- Nicholas A. Prescott
- Tri-Institutional PhD Program in Chemical Biology; New York, NY 10065, USA
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Andrés Mansisidor
- Laboratory of Genome Architecture and Dynamics, The Rockefeller University; New York, NY 10065, USA
- These authors contributed equally
| | - Yaron Bram
- Division of Gastroenterology & Hepatology, Department of Medicine, Weill Cornell Medicine; New York, NY 10065, USA
- These authors contributed equally
| | - Tracy Biaco
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Department of Pharmacology, Weill Cornell Medicine; New York, NY 10065, USA
- These authors contributed equally
| | - Justin Rendleman
- Laboratory of Genome Architecture and Dynamics, The Rockefeller University; New York, NY 10065, USA
| | - Sarah C. Faulkner
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Abigail A. Lemmon
- Tri-Institutional PhD Program in Chemical Biology; New York, NY 10065, USA
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Christine Lim
- Division of Gastroenterology & Hepatology, Department of Medicine, Weill Cornell Medicine; New York, NY 10065, USA
| | - Pierre-Jacques Hamard
- Epigenetics Research Innovation Lab, Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Richard P. Koche
- Epigenetics Research Innovation Lab, Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Viviana I. Risca
- Laboratory of Genome Architecture and Dynamics, The Rockefeller University; New York, NY 10065, USA
| | - Robert E. Schwartz
- Division of Gastroenterology & Hepatology, Department of Medicine, Weill Cornell Medicine; New York, NY 10065, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine; New York, NY 10065, USA
| | - Yael David
- Tri-Institutional PhD Program in Chemical Biology; New York, NY 10065, USA
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Department of Pharmacology, Weill Cornell Medicine; New York, NY 10065, USA
- Lead Contact
| |
Collapse
|
4
|
Mitchell DC, Kuljanin M, Li J, Van Vranken JG, Bulloch N, Schweppe DK, Huttlin EL, Gygi SP. A proteome-wide atlas of drug mechanism of action. Nat Biotechnol 2023; 41:845-857. [PMID: 36593396 PMCID: PMC11069389 DOI: 10.1038/s41587-022-01539-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 09/30/2022] [Indexed: 01/03/2023]
Abstract
Defining the cellular response to pharmacological agents is critical for understanding the mechanism of action of small molecule perturbagens. Here, we developed a 96-well-plate-based high-throughput screening infrastructure for quantitative proteomics and profiled 875 compounds in a human cancer cell line with near-comprehensive proteome coverage. Examining the 24-h proteome changes revealed ligand-induced changes in protein expression and uncovered rules by which compounds regulate their protein targets while identifying putative dihydrofolate reductase and tankyrase inhibitors. We used protein-protein and compound-compound correlation networks to uncover mechanisms of action for several compounds, including the adrenergic receptor antagonist JP1302, which we show disrupts the FACT complex and degrades histone H1. By profiling many compounds with overlapping targets covering a broad chemical space, we linked compound structure to mechanisms of action and highlighted off-target polypharmacology for molecules within the library.
Collapse
Affiliation(s)
- Dylan C Mitchell
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Miljan Kuljanin
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Jiaming Li
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Nathan Bulloch
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Devin K Schweppe
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Edward L Huttlin
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Huang H, Wu L, Lu L, Zhang Z, Qiu B, Mo J, Luo Y, Xi Z, Feng M, Wan P, Zhu J, Yu D, Wu W, Tan K, Liu J, Sheng Q, Xu T, Huang J, Lv Z, Tang Y, Xia Q. Single-cell transcriptomics uncovers cellular architecture and developmental trajectories in hepatoblastoma. Hepatology 2023; 77:1911-1928. [PMID: 36059151 DOI: 10.1002/hep.32775] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 08/19/2022] [Accepted: 08/30/2022] [Indexed: 12/08/2022]
Abstract
BACKGROUND AND AIMS Hepatoblastoma (HB) is the predominant type of childhood liver cancer. Treatment options for the clinically advanced HB remain limited. We aimed to dissect the cellular and molecular basis underlying HB oncogenesis and heterogeneity at the single-cell level, which could facilitate a better understanding of HB at both the biological and clinical levels. APPROACH AND RESULTS Single-cell transcriptome profiling of tumor and paired distal liver tissue samples from five patients with HB was performed. Deconvolution analysis was used for integrating the single-cell transcriptomic profiles with the bulk transcriptomes of our HB cohort of post-neoadjuvant chemotherapy tumor samples. A single-cell transcriptomic landscape of early human liver parenchymal development was established for exploring the cellular root and hierarchy of HB oncogenesis. As a result, seven distinct tumor cell subpopulations were annotated, and an effective HB subtyping method was established based on their compositions. A HB tumor cell hierarchy was further revealed to not only fit with the classical cancer stem cell (CSC) model but also mirror the early human liver parenchymal development. Moreover, FACT inhibition, which could disrupt the oncogenic positive feedback loop between MYC and SSRP1 in HB, was identified as a promising epigenetic-targeted therapeutic strategy against the CSC-like HB1-Pro-like1 subpopulation and its related high-risk "Pro-like1" subtype of HB. CONCLUSIONS Our findings illustrate the cellular architecture and developmental trajectories of HB via integrative bulk and single-cell transcriptome analyses, thus establishing a resourceful framework for the development of targeted diagnostics and therapeutics in the future.
Collapse
Affiliation(s)
- Hongting Huang
- Department of Liver Surgery, Renji Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , China
| | - Liang Wu
- Research Center of Translational Medicine, Shanghai Children's Hospital, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology , Shanghai Jiaotong University School of Medicine , Shanghai , China
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Shanghai Rui Jin Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , China
| | - Li Lu
- Research Center of Translational Medicine, Shanghai Children's Hospital, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology , Shanghai Jiaotong University School of Medicine , Shanghai , China
- Department of General Surgery, Shanghai Children's Hospital , Shanghai Jiaotong University , Shanghai , China
| | - Zijie Zhang
- Department of Liver Surgery, Renji Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , China
| | - Bijun Qiu
- Department of Liver Surgery, Renji Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , China
| | - Jialin Mo
- Research Center of Translational Medicine, Shanghai Children's Hospital, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology , Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Yi Luo
- Department of Liver Surgery, Renji Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , China
| | - Zhifeng Xi
- Department of Liver Surgery, Renji Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , China
| | - Mingxuan Feng
- Department of Liver Surgery, Renji Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , China
| | - Ping Wan
- Department of Liver Surgery, Renji Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , China
| | - Jianjun Zhu
- Department of Liver Surgery, Renji Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , China
| | - Dingye Yu
- Department of Gastrointestinal Surgery , Renji Hospital, Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Wei Wu
- Department of General Surgery, Shanghai Children's Hospital , Shanghai Jiaotong University , Shanghai , China
| | - Kezhe Tan
- Department of General Surgery, Shanghai Children's Hospital , Shanghai Jiaotong University , Shanghai , China
| | - Jiangbin Liu
- Department of General Surgery, Shanghai Children's Hospital , Shanghai Jiaotong University , Shanghai , China
| | - Qingfeng Sheng
- Department of General Surgery, Shanghai Children's Hospital , Shanghai Jiaotong University , Shanghai , China
| | - Ting Xu
- Department of General Surgery, Shanghai Children's Hospital , Shanghai Jiaotong University , Shanghai , China
| | - Jinyan Huang
- Biomedical Big Data Center , The First Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou , China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease , Zhejiang University School of Medicine First Affiliated Hospital , Hangzhou , China
- Zhejiang University Cancer Center , Zhejiang University , Hangzhou , China
| | - Zhibao Lv
- Department of General Surgery, Shanghai Children's Hospital , Shanghai Jiaotong University , Shanghai , China
| | - Yujie Tang
- Research Center of Translational Medicine, Shanghai Children's Hospital, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology , Shanghai Jiaotong University School of Medicine , Shanghai , China
- Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology , Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , China
- Shanghai Engineering Research Centre of Transplantation and Immunology , Shanghai , China
- Shanghai Institute of Transplantation , Shanghai , China
| |
Collapse
|
6
|
Khatpe AS, Dirks R, Bhat-Nakshatri P, Mang H, Batic K, Swiezy S, Olson J, Rao X, Wang Y, Tanaka H, Liu S, Wan J, Chen D, Liu Y, Fang F, Althouse S, Hulsey E, Granatir MM, Addison R, Temm CJ, Sandusky G, Lee-Gosselin A, Nephew K, Miller KD, Nakshatri H. TONSL Is an Immortalizing Oncogene and a Therapeutic Target in Breast Cancer. Cancer Res 2023; 83:1345-1360. [PMID: 37057595 PMCID: PMC10107402 DOI: 10.1158/0008-5472.can-22-3667] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/13/2023] [Accepted: 02/03/2023] [Indexed: 04/15/2023]
Abstract
Study of genomic aberrations leading to immortalization of epithelial cells has been technically challenging due to the lack of isogenic models. To address this, we used healthy primary breast luminal epithelial cells of different genetic ancestry and their hTERT-immortalized counterparts to identify transcriptomic changes associated with immortalization. Elevated expression of TONSL (Tonsoku-like, DNA repair protein) was identified as one of the earliest events during immortalization. TONSL, which is located on chromosome 8q24.3, was found to be amplified in approximately 20% of breast cancers. TONSL alone immortalized primary breast epithelial cells and increased telomerase activity, but overexpression was insufficient for neoplastic transformation. However, TONSL-immortalized primary cells overexpressing defined oncogenes generated estrogen receptor-positive adenocarcinomas in mice. Analysis of a breast tumor microarray with approximately 600 tumors revealed poor overall and progression-free survival of patients with TONSL-overexpressing tumors. TONSL increased chromatin accessibility to pro-oncogenic transcription factors, including NF-κB and limited access to the tumor-suppressor p53. TONSL overexpression resulted in significant changes in the expression of genes associated with DNA repair hubs, including upregulation of several genes in the homologous recombination (HR) and Fanconi anemia pathways. Consistent with these results, TONSL-overexpressing primary cells exhibited upregulated DNA repair via HR. Moreover, TONSL was essential for growth of TONSL-amplified breast cancer cell lines in vivo, and these cells were sensitive to TONSL-FACT complex inhibitor CBL0137. Together, these findings identify TONSL as a regulator of epithelial cell immortalization to facilitate cancer initiation and as a target for breast cancer therapy. SIGNIFICANCE The chr.8q24.3 amplicon-resident gene TONSL is upregulated during the initial steps of tumorigenesis to support neoplastic transformation by increasing DNA repair and represents a potential therapeutic target for treating breast cancer.
Collapse
Affiliation(s)
- Aditi S Khatpe
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Rebecca Dirks
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | - Henry Mang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Katie Batic
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sarah Swiezy
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jacob Olson
- Decatur Central High School, Indianapolis, IN 46221, USA
| | - Xi Rao
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, IN 46202, USA
| | - Yue Wang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, IN 46202, USA
| | - Hiromi Tanaka
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, IN 46202, USA
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, IN 46202, USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, IN 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, IN 46202, USA
| | - Duojiao Chen
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, IN 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, IN 46202, USA
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, IN 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, IN 46202, USA
| | - Fang Fang
- Medical Science Program, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | - Sandra Althouse
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, IN 46202, USA
| | - Emily Hulsey
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, IN 46202, USA
| | - Maggie M Granatir
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, IN 46202, USA
| | - Rebekah Addison
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, IN 46202, USA
| | - Constance J. Temm
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, IN 46202, USA
| | - George Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, IN 46202, USA
| | - Audrey Lee-Gosselin
- Stark Neurosciences Research Institute, Indiana University School of Medicine, IN 46202, USA
| | - Kenneth Nephew
- Medical Science Program, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | - Kathy D. Miller
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, IN 46202, USA
- VA Roudebush Medical Center, Indianapolis, IN 46202, USA
| |
Collapse
|
7
|
Wang J, Zhu X, Dai L, Wang Z, Guan X, Tan X, Li J, Zhang M, Bai Y, Guo H. Supt16 haploinsufficiency causes neurodevelopment disorder by disrupting MAPK pathway in neural stem cells. Hum Mol Genet 2023; 32:860-872. [PMID: 36226587 DOI: 10.1093/hmg/ddac240] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/12/2022] Open
Abstract
Chromatin regulators constitute a fundamental means of transcription regulation, which have been implicated in neurodevelopment and neurodevelopment disorders (NDDs). Supt16, one of candidate genes for NDDs, encodes the large subunit of facilitates chromatin transcription. However, the underlying mechanisms remain poorly understood. Here, Supt16+/- mice was generated, modeling the neurodevelopment disorder. Abnormal cognitive and social behavior was observed in the Supt16 +/- mice. Simultaneously, the number of neurocytes in the cerebral cortex and hippocampus is decreased, which might be resulted from the impairment of mouse neural stem cells (mNSCs) in the SVZ. Supt16 haploinsufficiency affects the proliferation and apoptosis of mNSCs. As the RNA-seq and chromatic immunoprecipitation sequencing assays showed, Supt16 haploinsufficiency disrupts the stemness of mNSCs by inhibiting MAPK signal pathway. Thus, this study demonstrates a critical role of Supt16 gene in the proliferation and apoptosis of mNSCs and provides a novel insight in the pathogenesis of NDDs.
Collapse
Affiliation(s)
- Junwen Wang
- Department of Medical Genetics, College of Basic Medical Science, Army Medical University (Third Military Medical University), Chongqing 400038, PR China
| | - Xintong Zhu
- Department of Medical Genetics, College of Basic Medical Science, Army Medical University (Third Military Medical University), Chongqing 400038, PR China
| | - Limeng Dai
- Department of Medical Genetics, College of Basic Medical Science, Army Medical University (Third Military Medical University), Chongqing 400038, PR China
| | - Ziyi Wang
- Department of Medical Genetics, College of Basic Medical Science, Army Medical University (Third Military Medical University), Chongqing 400038, PR China
| | - Xingying Guan
- Department of Medical Genetics, College of Basic Medical Science, Army Medical University (Third Military Medical University), Chongqing 400038, PR China
| | - Xiaoyin Tan
- Department of Medical Genetics, College of Basic Medical Science, Army Medical University (Third Military Medical University), Chongqing 400038, PR China
| | - Jia Li
- Department of Medical Genetics, College of Basic Medical Science, Army Medical University (Third Military Medical University), Chongqing 400038, PR China
| | - Mao Zhang
- Department of Medical Genetics, College of Basic Medical Science, Army Medical University (Third Military Medical University), Chongqing 400038, PR China
| | - Yun Bai
- Department of Medical Genetics, College of Basic Medical Science, Army Medical University (Third Military Medical University), Chongqing 400038, PR China
| | - Hong Guo
- Department of Medical Genetics, College of Basic Medical Science, Army Medical University (Third Military Medical University), Chongqing 400038, PR China
| |
Collapse
|
8
|
Mo J, Tan K, Dong Y, Lu W, Liu F, Mei Y, Huang H, Zhao K, Lv Z, Ye Y, Tang Y. Therapeutic targeting the oncogenic driver EWSR1::FLI1 in Ewing sarcoma through inhibition of the FACT complex. Oncogene 2023; 42:11-25. [PMID: 36357572 DOI: 10.1038/s41388-022-02533-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/12/2022]
Abstract
EWS/ETS fusion transcription factors, most commonly EWSR1::FLI1, drives initiation and progression of Ewing sarcoma (EwS). Even though direct targeting EWSR1::FLI1 is a formidable challenge, epigenetic/transcriptional modulators have been proved to be promising therapeutic targets for indirectly disrupting its expression and/or function. Here, we identified structure-specific recognition protein 1 (SSRP1), a subunit of the Facilitates Chromatin Transcription (FACT) complex, to be an essential tumor-dependent gene directly induced by EWSR1::FLI1 in EwS. The FACT-targeted drug CBL0137 exhibits potent therapeutic efficacy against multiple EwS preclinical models both in vitro and in vivo. Mechanistically, SSRP1 and EWSR1::FLI1 form oncogenic positive feedback loop via mutual transcriptional regulation and activation, and cooperatively promote cell cycle/DNA replication process and IGF1R-PI3K-AKT-mTOR pathway to drive EwS oncogenesis. The FACT inhibitor drug CBL0137 effectively targets the EWSR1::FLI1-FACT circuit, resulting in transcriptional disruption of EWSR1::FLI1, SSRP1 and their downstream effector oncogenic signatures. Our study illustrates a crucial role of the FACT complex in facilitating the expression and function of EWSR1::FLI1 and demonstrates FACT inhibition as a novel and effective epigenetic/transcriptional-targeted therapeutic strategy against EwS, providing preclinical support for adding EwS to CBL0137's future clinical trials.
Collapse
Affiliation(s)
- Jialin Mo
- Research Center of Translational medicine, Shanghai children's hospital, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
- Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Kezhe Tan
- Department of General Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, 200062, Shanghai, China
| | - Yu Dong
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wenjie Lu
- Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Fang Liu
- Research Center of Translational medicine, Shanghai children's hospital, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Yanqing Mei
- Research Center of Translational medicine, Shanghai children's hospital, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Hongting Huang
- Department of Hepatic Surgery and Liver Transplantation Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 200127, Shanghai, China
| | - Kewen Zhao
- Research Center of Translational medicine, Shanghai children's hospital, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Zhibao Lv
- Department of General Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, 200062, Shanghai, China.
| | - Youqiong Ye
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Yujie Tang
- Research Center of Translational medicine, Shanghai children's hospital, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
- Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| |
Collapse
|
9
|
Lu X, He Y, Johnston RL, Nanayakarra D, Sankarasubramanian S, Lopez JA, Friedlander M, Kalimutho M, Hooper JD, Raninga PV, Khanna KK. CBL0137 impairs homologous recombination repair and sensitizes high-grade serous ovarian carcinoma to PARP inhibitors. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:355. [PMID: 36539830 PMCID: PMC9769062 DOI: 10.1186/s13046-022-02570-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND High-grade serous ovarian carcinomas (HGSCs) are a heterogeneous subtype of epithelial ovarian cancers and include serous cancers arising in the fallopian tube and peritoneum. These cancers are now subdivided into homologous recombination repair (HR)-deficient and proficient subgroups as this classification impacts on management and prognosis. PARP inhibitors (PARPi) have shown significant clinical efficacy, particularly as maintenance therapy following response to platinum-based chemotherapy in BRCA-mutant or homologous recombination (HR)-deficient HGSCs in both the 1st and 2nd line settings. However, PARPi have limited clinical benefit in HR-proficient HGSCs which make up almost 50% of HGSC and improving outcomes in these patients is now a high priority due to the poor prognosis with ineffectiveness of the current standard of care. There are a number of potential lines of investigation including efforts in sensitizing HR-proficient tumors to PARPi. Herein, we aimed to develop a novel combination therapy by targeting SSRP1 using a small molecule inhibitor CBL0137 with PARPi in HR-proficient HGSCs. EXPERIMENTAL DESIGN We tested anti-cancer activity of CBL0137 monotherapy using a panel of HGSC cell lines and patient-derived tumor cells in vitro. RNA sequencing was used to map global transcriptomic changes in CBL0137-treated patient-derived HR-proficient HGSC cells. We tested efficacy of CBL0137 in combination with PARPi using HGSC cell lines and patient-derived tumor cells in vitro and in vivo. RESULTS We show that SSRP1 inhibition using a small molecule, CBL0137, that traps SSRP1 onto chromatin, exerts a significant anti-growth activity in vitro against HGSC cell lines and patient-derived tumor cells, and also reduces tumor burden in vivo. CBL0137 induced DNA repair deficiency via inhibition of the HR repair pathway and sensitized SSRP1-high HR-proficient HGSC cell lines and patient-derived tumor cells/xenografts to the PARPi, Olaparib in vitro and in vivo. CBL0137 also enhanced the efficacy of DNA damaging platinum-based chemotherapy in HGSC patient-derived xenografts. CONCLUSION Our findings strongly suggest that combination of CBL0137 and PARP inhibition represents a novel therapeutic strategy for HR-proficient HGSCs that express high levels of SSRP1 and should be investigated in the clinic.
Collapse
Affiliation(s)
- Xue Lu
- grid.1049.c0000 0001 2294 1395QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD 4006 Australia ,grid.1022.10000 0004 0437 5432School of Environment and Sciences, Griffith University, Nathan, QLD 4111 Australia
| | - Yaowu He
- grid.489335.00000000406180938Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102 Australia
| | - Rebecca L. Johnston
- grid.1049.c0000 0001 2294 1395QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD 4006 Australia
| | - Devathri Nanayakarra
- grid.1049.c0000 0001 2294 1395QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD 4006 Australia
| | - Sivanandhini Sankarasubramanian
- grid.1049.c0000 0001 2294 1395QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD 4006 Australia
| | - J. Alejandro Lopez
- grid.1049.c0000 0001 2294 1395QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD 4006 Australia ,grid.1022.10000 0004 0437 5432School of Environment and Sciences, Griffith University, Nathan, QLD 4111 Australia
| | - Michael Friedlander
- grid.415193.bUniversity of New South Wales Clinical School, Prince of Wales Hospital, Randwick, NSW 2031 Australia
| | - Murugan Kalimutho
- grid.1049.c0000 0001 2294 1395QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD 4006 Australia
| | - John D. Hooper
- grid.489335.00000000406180938Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102 Australia
| | - Prahlad V. Raninga
- grid.1049.c0000 0001 2294 1395QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD 4006 Australia
| | - Kum Kum Khanna
- grid.1049.c0000 0001 2294 1395QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD 4006 Australia
| |
Collapse
|
10
|
Volokh OI, Sivkina AL, Moiseenko AV, Popinako AV, Karlova MG, Valieva ME, Kotova EY, Kirpichnikov MP, Formosa T, Studitsky VM, Sokolova OS. Mechanism of curaxin-dependent nucleosome unfolding by FACT. Front Mol Biosci 2022; 9:1048117. [PMID: 36483541 PMCID: PMC9723464 DOI: 10.3389/fmolb.2022.1048117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/07/2022] [Indexed: 08/27/2023] Open
Abstract
Human FACT (FACT) is a multifunctional histone chaperone involved in transcription, replication and DNA repair. Curaxins are anticancer compounds that induce FACT-dependent nucleosome unfolding and trapping of FACT in the chromatin of cancer cells (c-trapping) through an unknown molecular mechanism. Here, we analyzed the effects of curaxin CBL0137 on nucleosome unfolding by FACT using spFRET and electron microscopy. By itself, FACT adopted multiple conformations, including a novel, compact, four-domain state in which the previously unresolved NTD of the SPT16 subunit of FACT was localized, apparently stabilizing a compact configuration. Multiple, primarily open conformations of FACT-nucleosome complexes were observed during curaxin-supported nucleosome unfolding. The obtained models of intermediates suggest "decision points" in the unfolding/folding pathway where FACT can either promote disassembly or assembly of nucleosomes, with the outcome possibly being influenced by additional factors. The data suggest novel mechanisms of nucleosome unfolding by FACT and c-trapping by curaxins.
Collapse
Affiliation(s)
- Olesya I. Volokh
- Biology Faculty Lomonosov Moscow State University, Moscow, Russia
| | | | - Andrey V. Moiseenko
- Biology Faculty Lomonosov Moscow State University, Moscow, Russia
- Semenov Federal Research Center of Chemical Physics RAS, Moscow, Russia
| | - Anna V. Popinako
- Bach Institute of Biochemistry Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Maria G. Karlova
- Biology Faculty Lomonosov Moscow State University, Moscow, Russia
| | - Maria E. Valieva
- Biology Faculty Lomonosov Moscow State University, Moscow, Russia
- RG Development & Disease Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute for Medical and Human Genetics Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | - Timothy Formosa
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Vasily M. Studitsky
- Biology Faculty Lomonosov Moscow State University, Moscow, Russia
- Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Olga S. Sokolova
- Biology Faculty Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
11
|
N-Terminal Tails of Histones H2A and H2B Differentially Affect Transcription by RNA Polymerase II In Vitro. Cells 2022; 11:cells11162475. [PMID: 36010552 PMCID: PMC9406932 DOI: 10.3390/cells11162475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
Histone N-terminal tails and their post-translational modifications affect various biological processes, often in a context-specific manner; the underlying mechanisms are poorly studied. Here, the role of individual N-terminal tails of histones H2A/H2B during transcription through chromatin was analyzed in vitro. spFRET data suggest that the tail of histone H2B (but not of histone H2A) affects nucleosome stability. Accordingly, deletion of the H2B tail (amino acids 1–31, but not 1–26) causes a partial relief of the nucleosomal barrier to transcribing RNA polymerase II (Pol II), likely facilitating uncoiling of DNA from the histone octamer during transcription. Taken together, the data suggest that residues 27–31 of histone H2B stabilize DNA–histone interactions at the DNA region localized ~25 bp in the nucleosome and thus interfere with Pol II progression through the region localized 11–15 bp in the nucleosome. This function of histone H2B requires the presence of the histone H2A N-tail that mediates formation of nucleosome–nucleosome dimers; however, nucleosome dimerization per se plays only a minimal role during transcription. Histone chaperone FACT facilitates transcription through all analyzed nucleosome variants, suggesting that H2A/H2B tails minimally interact with FACT during transcription; therefore, an alternative FACT-interacting domain(s) is likely involved in this process.
Collapse
|
12
|
Human PARP1 Facilitates Transcription through a Nucleosome and Histone Displacement by Pol II In Vitro. Int J Mol Sci 2022; 23:ijms23137107. [PMID: 35806109 PMCID: PMC9266421 DOI: 10.3390/ijms23137107] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 02/04/2023] Open
Abstract
Human poly(ADP)-ribose polymerase-1 (PARP1) is a global regulator of various cellular processes, from DNA repair to gene expression. The underlying mechanism of PARP1 action during transcription remains unclear. Herein, we have studied the role of human PARP1 during transcription through nucleosomes by RNA polymerase II (Pol II) in vitro. PARP1 strongly facilitates transcription through mononucleosomes by Pol II and displacement of core histones in the presence of NAD+ during transcription, and its NAD+-dependent catalytic activity is essential for this process. Kinetic analysis suggests that PARP1 facilitates formation of “open” complexes containing nucleosomal DNA partially uncoiled from the octamer and allowing Pol II progression along nucleosomal DNA. Anti-cancer drug and PARP1 catalytic inhibitor olaparib strongly represses PARP1-dependent transcription. The data suggest that the negative charge on protein(s) poly(ADP)-ribosylated by PARP1 interact with positively charged DNA-binding surfaces of histones transiently exposed during transcription, facilitating transcription through chromatin and transcription-dependent histone displacement/exchange.
Collapse
|
13
|
Jeronimo C, Robert F. The histone chaperone FACT: a guardian of chromatin structure integrity. Transcription 2022; 13:16-38. [PMID: 35485711 PMCID: PMC9467567 DOI: 10.1080/21541264.2022.2069995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The identification of FACT as a histone chaperone enabling transcription through chromatin in vitro has strongly shaped how its roles are envisioned. However, FACT has been implicated in essentially all aspects of chromatin biology, from transcription to DNA replication, DNA repair, and chromosome segregation. In this review, we focus on recent literature describing the role and mechanisms of FACT during transcription. We highlight the prime importance of FACT in preserving chromatin integrity during transcription and challenge its role as an elongation factor. We also review evidence for FACT's role as a cell-type/gene-specificregulator of gene expression and briefly summarize current efforts at using FACT inhibition as an anti-cancerstrategy.
Collapse
Affiliation(s)
- Célia Jeronimo
- Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - François Robert
- Institut de recherches cliniques de Montréal, Montréal, Québec, Canada.,Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada.,Faculty of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
| |
Collapse
|
14
|
Electron microscopy analysis of ATP-independent nucleosome unfolding by FACT. Commun Biol 2022; 5:2. [PMID: 35013515 PMCID: PMC8748794 DOI: 10.1038/s42003-021-02948-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/02/2021] [Indexed: 12/20/2022] Open
Abstract
FACT is a histone chaperone that participates in nucleosome removal and reassembly during transcription and replication. We used electron microscopy to study FACT, FACT:Nhp6 and FACT:Nhp6:nucleosome complexes, and found that all complexes adopt broad ranges of configurations, indicating high flexibility. We found unexpectedly that the DNA binding protein Nhp6 also binds to the C-terminal tails of FACT subunits, inducing more open geometries of FACT even in the absence of nucleosomes. Nhp6 therefore supports nucleosome unfolding by altering both the structure of FACT and the properties of nucleosomes. Complexes formed with FACT, Nhp6, and nucleosomes also produced a broad range of structures, revealing a large number of potential intermediates along a proposed unfolding pathway. The data suggest that Nhp6 has multiple roles before and during nucleosome unfolding by FACT, and that the process proceeds through a series of energetically similar intermediate structures, ultimately leading to an extensively unfolded form. Sivkina et al. present a biochemical and biophysical characterization of the interaction of S. cerevisiae histone chaperone FACT with the nucleosome core particle. They show that FACT adopts a more open geometry in the presence of Nhp6, and together they unfold nucleosomes to an almost extended conformation, suggesting a mechanism for FACT-facilitated disassembly of nucleosomes.
Collapse
|
15
|
Lau CY, Adan MA, Maldarelli F. Why the HIV Reservoir Never Runs Dry: Clonal Expansion and the Characteristics of HIV-Infected Cells Challenge Strategies to Cure and Control HIV Infection. Viruses 2021; 13:2512. [PMID: 34960781 PMCID: PMC8708047 DOI: 10.3390/v13122512] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/22/2021] [Accepted: 11/27/2021] [Indexed: 12/13/2022] Open
Abstract
Antiretroviral therapy (ART) effectively reduces cycles of viral replication but does not target proviral populations in cells that persist for prolonged periods and that can undergo clonal expansion. Consequently, chronic human immunodeficiency virus (HIV) infection is sustained during ART by a reservoir of long-lived latently infected cells and their progeny. This proviral landscape undergoes change over time on ART. One of the forces driving change in the landscape is the clonal expansion of infected CD4 T cells, which presents a key obstacle to HIV eradication. Potential mechanisms of clonal expansion include general immune activation, antigenic stimulation, homeostatic proliferation, and provirus-driven clonal expansion, each of which likely contributes in varying, and largely unmeasured, amounts to maintaining the reservoir. The role of clinical events, such as infections or neoplasms, in driving these mechanisms remains uncertain, but characterizing these forces may shed light on approaches to effectively eradicate HIV. A limited number of individuals have been cured of HIV infection in the setting of bone marrow transplant; information from these and other studies may identify the means to eradicate or control the virus without ART. In this review, we describe the mechanisms of HIV-1 persistence and clonal expansion, along with the attempts to modify these factors as part of reservoir reduction and cure strategies.
Collapse
Affiliation(s)
- Chuen-Yen Lau
- HIV Dynamics and Replication Program, NCI, NIH, Bethesda, MD 20892, USA; (C.-Y.L.); (M.A.A.)
| | - Matthew A. Adan
- HIV Dynamics and Replication Program, NCI, NIH, Bethesda, MD 20892, USA; (C.-Y.L.); (M.A.A.)
- Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Frank Maldarelli
- HIV Dynamics and Replication Program, NCI, NIH, Bethesda, MD 20892, USA; (C.-Y.L.); (M.A.A.)
| |
Collapse
|
16
|
Hayden E, Holliday H, Lehmann R, Khan A, Tsoli M, Rayner BS, Ziegler DS. Therapeutic Targets in Diffuse Midline Gliomas-An Emerging Landscape. Cancers (Basel) 2021; 13:cancers13246251. [PMID: 34944870 PMCID: PMC8699135 DOI: 10.3390/cancers13246251] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Diffuse midline gliomas (DMGs) remain one of the most devastating childhood brain tumour types, for which there is currently no known cure. In this review we provide a summary of the existing knowledge of the molecular mechanisms underlying the pathogenesis of this disease, highlighting current analyses and novel treatment propositions. Together, the accumulation of these data will aid in the understanding and development of more effective therapeutic options for the treatment of DMGs. Abstract Diffuse midline gliomas (DMGs) are invariably fatal pediatric brain tumours that are inherently resistant to conventional therapy. In recent years our understanding of the underlying molecular mechanisms of DMG tumorigenicity has resulted in the identification of novel targets and the development of a range of potential therapies, with multiple agents now being progressed to clinical translation to test their therapeutic efficacy. Here, we provide an overview of the current therapies aimed at epigenetic and mutational drivers, cellular pathway aberrations and tumor microenvironment mechanisms in DMGs in order to aid therapy development and facilitate a holistic approach to patient treatment.
Collapse
Affiliation(s)
- Elisha Hayden
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
| | - Holly Holliday
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
- School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Kensington 2052, Australia
| | - Rebecca Lehmann
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
- School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Kensington 2052, Australia
| | - Aaminah Khan
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
| | - Maria Tsoli
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
- School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Kensington 2052, Australia
| | - Benjamin S. Rayner
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
- School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Kensington 2052, Australia
| | - David S. Ziegler
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington 2052, Australia; (E.H.); (H.H.); (R.L.); (A.K.); (M.T.); (B.S.R.)
- School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Kensington 2052, Australia
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick 2031, Australia
- Correspondence: ; Tel.: +61-2-9382-1730; Fax: +61-2-9382-1789
| |
Collapse
|
17
|
Bhakat KK, Ray S. The FAcilitates Chromatin Transcription (FACT) complex: Its roles in DNA repair and implications for cancer therapy. DNA Repair (Amst) 2021; 109:103246. [PMID: 34847380 DOI: 10.1016/j.dnarep.2021.103246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/07/2021] [Accepted: 11/03/2021] [Indexed: 12/17/2022]
Abstract
Genomic DNA in the nucleus is wrapped around nucleosomes, a repeating unit of chromatin. The nucleosome, consisting of octamer of core histones, is a barrier for several cellular processes that require access to the naked DNA. The FAcilitates Chromatin Transcription (FACT), a histone chaperone complex, is involved in nucleosome remodeling via eviction or assembly of histones during transcription, replication, and DNA repair. Increasing evidence suggests that FACT plays an important role in multiple DNA repair pathways including transcription-coupled nucleotide excision repair (TC-NER) of UV-induced damage, DNA single- and double-strand breaks (DSBs) repair, and base excision repair (BER) of oxidized or alkylated damaged bases. Further, studies have shown overexpression of FACT in multiple types of cancer and its association with drug resistance and patients' poor prognosis. In this review, we discuss how FACT is accumulated at the damage site and what functions it performs. We describe the known mechanisms by which FACT facilitates repair of different types of DNA damage. Further, we highlight the recent advances in a class of FACT inhibitors, called curaxins, which show promise as a new adjuvant therapy to sensitize multiple types of cancer to chemotherapy and radiation.
Collapse
Affiliation(s)
- Kishor K Bhakat
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA 68198; Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA 68198.
| | - Sutapa Ray
- Department of Pediatric, Division of Hematology/oncology, University of Nebraska Medical Center, Omaha, NE, USA 68198; Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA 68198
| |
Collapse
|
18
|
Histone chaperone FACT complex inhibitor CBL0137 interferes with DNA damage repair and enhances sensitivity of medulloblastoma to chemotherapy and radiation. Cancer Lett 2021; 520:201-212. [PMID: 34271103 DOI: 10.1016/j.canlet.2021.07.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 06/24/2021] [Accepted: 07/09/2021] [Indexed: 11/21/2022]
Abstract
Medulloblastoma (MB) is a malignant pediatric brain tumor with a poor prognosis. Post-surgical radiation and cisplatin-based chemotherapy have been a mainstay of treatment, which often leads to substantial neurocognitive impairments and morbidity, highlighting the need for a novel therapeutic target to enhance the sensitivity of MB tumors to cytotoxic therapies. We performed a comprehensive study using a cohort of 71 MB patients' samples and pediatric MB cell lines and found that MB tumors have elevated levels of nucleosome remodeling FACT (FAcilitates Chromatin Transcription) complex and DNA repair enzyme AP-endonuclease1 (APE1). FACT interacts with APE1 and facilitates recruitment and acetylation of APE1 to promote repair of radiation and cisplatin-induced DNA damage. Further, levels of FACT and acetylated APE1 both are correlate strongly with MB patients' survival. Targeting FACT complex with CBL0137 inhibits DNA repair and alters expression of a subset of genes, and significantly improves the potency of cisplatin and radiation in vitro and in MB xenograft. Notably, combination of CBL0137 and cisplatin significantly suppressed MB tumor growth in an intracranial orthotopic xenograft model. We conclude that FACT complex promotes chemo-radiation resistance in MB, and FACT inhibitor CBL0137 can be used as a chemo-radiation sensitizer to augment treatment efficacy and reduce therapy-related toxicity in high-risk pediatric patients.
Collapse
|
19
|
Chen M, Brackett CM, Burdelya LG, Punnanitinont A, Patnaik SK, Matsuzaki J, Odunsi AO, Gudkov AV, Singh AK, Repasky EA, Gurova KV. Stimulation of an anti-tumor immune response with "chromatin-damaging" therapy. Cancer Immunol Immunother 2021; 70:2073-2086. [PMID: 33439292 PMCID: PMC8726059 DOI: 10.1007/s00262-020-02846-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/29/2020] [Indexed: 02/08/2023]
Abstract
Curaxins are small molecules that bind genomic DNA and interfere with DNA-histone interactions leading to the loss of histones and decondensation of chromatin. We named this phenomenon 'chromatin damage'. Curaxins demonstrated anti-cancer activity in multiple pre-clinical tumor models. Here, we present data which reveals, for the first time, a role for the immune system in the anti-cancer effects of curaxins. Using the lead curaxin, CBL0137, we observed elevated expression of several group of genes in CBL0137-treated tumor cells including interferon sensitive genes, MHC molecules, some embryo-specific antigens suggesting that CBL0137 increases tumor cell immunogenicity and improves recognition of tumor cells by the immune system. In support of this, we found that the anti-tumor activity of CBL0137 was reduced in immune deficient SCID mice when compared to immune competent mice. Anti-tumor activity of CBL0137 was abrogated in CD8+ T cell depleted mice but only partially lost when natural killer or CD4+ T cells were depleted. Further support for a key role for the immune system in the anti-tumor activity of CBL0137 is evidenced by an increased antigen-specific effector CD8+ T cell and NK cell response, and an increased ratio of effector T cells to Tregs in the tumor and spleen. CBL0137 also elevated the number of CXCR3-expressing CTLs in the tumor and the level of interferon-γ-inducible protein 10 (IP-10) in serum, suggesting IP-10/CXCR3 controls CBL0137-elicited recruitment of effector CTLs to tumors. Our collective data underscores a previously unrecognized role for both innate and adaptive immunity in the anti-tumor activity of curaxins.
Collapse
Affiliation(s)
- Minhui Chen
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Sts, Buffalo, NY, 14263, USA
| | - Craig M Brackett
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Sts, Buffalo, NY, 14263, USA
| | - Lyudmila G Burdelya
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Sts, Buffalo, NY, 14263, USA
| | - Achamaporn Punnanitinont
- Cancer for Immunotherapy, Roswell Park Comprehensive Cancer Center, Elm and Carlton Sts, Buffalo, NY, 14263, USA
| | - Santosh K Patnaik
- Cancer for Immunotherapy, Roswell Park Comprehensive Cancer Center, Elm and Carlton Sts, Buffalo, NY, 14263, USA
| | - Junko Matsuzaki
- Cancer for Immunotherapy, Roswell Park Comprehensive Cancer Center, Elm and Carlton Sts, Buffalo, NY, 14263, USA
| | - Adekunle O Odunsi
- Cancer for Immunotherapy, Roswell Park Comprehensive Cancer Center, Elm and Carlton Sts, Buffalo, NY, 14263, USA
| | - Andrei V Gudkov
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Sts, Buffalo, NY, 14263, USA
| | - Anurag K Singh
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Elm and Carlton Sts, Buffalo, NY, 14263, USA
| | - Elizabeth A Repasky
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Sts, Buffalo, NY, 14263, USA.
| | - Katerina V Gurova
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Sts, Buffalo, NY, 14263, USA.
| |
Collapse
|
20
|
Viktorovskaya O, Chuang J, Jain D, Reim NI, López-Rivera F, Murawska M, Spatt D, Churchman LS, Park PJ, Winston F. Essential histone chaperones collaborate to regulate transcription and chromatin integrity. Genes Dev 2021; 35:698-712. [PMID: 33888559 PMCID: PMC8091981 DOI: 10.1101/gad.348431.121] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 03/30/2021] [Indexed: 12/15/2022]
Abstract
Histone chaperones are critical for controlling chromatin integrity during transcription, DNA replication, and DNA repair. Three conserved and essential chaperones, Spt6, Spn1/Iws1, and FACT, associate with elongating RNA polymerase II and interact with each other physically and/or functionally; however, there is little understanding of their individual functions or their relationships with each other. In this study, we selected for suppressors of a temperature-sensitive spt6 mutation that disrupts the Spt6-Spn1 physical interaction and that also causes both transcription and chromatin defects. This selection identified novel mutations in FACT. Surprisingly, suppression by FACT did not restore the Spt6-Spn1 interaction, based on coimmunoprecipitation, ChIP, and mass spectrometry experiments. Furthermore, suppression by FACT bypassed the complete loss of Spn1. Interestingly, the FACT suppressor mutations cluster along the FACT-nucleosome interface, suggesting that they alter FACT-nucleosome interactions. In agreement with this observation, we showed that the spt6 mutation that disrupts the Spt6-Spn1 interaction caused an elevated level of FACT association with chromatin, while the FACT suppressors reduced the level of FACT-chromatin association, thereby restoring a normal Spt6-FACT balance on chromatin. Taken together, these studies reveal previously unknown regulation between histone chaperones that is critical for their essential in vivo functions.
Collapse
Affiliation(s)
- Olga Viktorovskaya
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - James Chuang
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Dhawal Jain
- Department of Biomedical Informatics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Natalia I Reim
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Francheska López-Rivera
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Magdalena Murawska
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Dan Spatt
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - L Stirling Churchman
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Peter J Park
- Department of Biomedical Informatics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Fred Winston
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
21
|
Song H, Zeng J, Lele S, LaGrange CA, Bhakat KK. APE1 and SSRP1 is overexpressed in muscle invasive bladder cancer and associated with poor survival. Heliyon 2021; 7:e06756. [PMID: 33948507 PMCID: PMC8080038 DOI: 10.1016/j.heliyon.2021.e06756] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/18/2021] [Accepted: 04/06/2021] [Indexed: 12/22/2022] Open
Abstract
Background Human apurinic/apyrimidinic (AP) endonuclease 1 (APE1) plays a critical role in DNA base excision repair (BER) pathway and has been reported to be overexpressed in multiple cancers. Previously, we have shown that histone chaperone FACT complex (Facilitates Chromatin Transcription, a heterodimer of SSRP1 and SPT16 proteins) facilitates the chromatin access and DNA repair function of APE1, and their expression levels are correlated with promoting drug resistance in cancer. FACT inhibitor has been introduced in phase I and II clinical trials for chemosensitization of advanced solid cancers. However, the expression profile and prognostic significance of APE1 and FACT complex in bladder cancer remains largely unknown. Methods Retrospectively, 69 bladder cancer samples were retrieved and submitted for immunohistochemical staining of APE1 and SSRP1. Expression profile including cytoplasmic and nuclear staining of APE1 and expression level of SSRP1 was examined and semi-quantified to render a H-score. The prognostic significance of APE1 and SSRP1 was evaluated by Kaplan-Meier survival analysis in our cohort and R2 database. Results APE1 expression is elevated in bladder cancer compared to normal adjacent tissues. Compared with low grade tumors, high grade tumors show a shift in the staining pattern including higher intensity and positive cytoplasmic staining. Carcinoma in situ has a similar staining pattern to high grade tumors. APE1 and SSRP1 staining intensity increases as tumor progresses with stage. There is a correlation between APE1 and SSRP1 staining in invasive bladder cancer (Spearman r = 0.5466, p < 0.0001). The increased expression of APE1 and SSRP1 is associated with poor survival in Kaplan-Meier analysis in our cohort and in R2-TCGA bladder cancer database. Conclusions The expression levels of APE1 and SSRP1 are significantly elevated in bladder cancer as compared to normal adjacent tissues. APE1 correlates with SSRP1 expression in high grade tumors. Overexpression of APE1 and SSRP1 is associated with poor survival in bladder cancer. This suggests the usage of FACT inhibitor curaxins in muscle invasive bladder cancer to target FACT complex and APE1 to improve chemosensitization after further validation.
Collapse
Affiliation(s)
- Heyu Song
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Jiping Zeng
- College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States.,Department of Urology, University of Arizona College of Medicine, Tucson, AZ, United States
| | - Subodh Lele
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Chad A LaGrange
- Division of Urologic Surgery, Department of Surgery, University of Nebraska Medical Center, Omaha, NE, United States.,Fred & Pamela Buffett Cancer Center, Omaha, NE, United States
| | - Kishor K Bhakat
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States.,Fred & Pamela Buffett Cancer Center, Omaha, NE, United States
| |
Collapse
|
22
|
Mo J, Liu F, Sun X, Huang H, Tan K, Zhao X, Li R, Jiang W, Sui Y, Chen X, Shen K, Zhang L, Ma J, Zhao K, Tang Y. Inhibition of the FACT Complex Targets Aberrant Hedgehog Signaling and Overcomes Resistance to Smoothened Antagonists. Cancer Res 2021; 81:3105-3120. [PMID: 33853831 DOI: 10.1158/0008-5472.can-20-3186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 02/05/2021] [Accepted: 04/12/2021] [Indexed: 11/16/2022]
Abstract
Hedgehog signaling is aberrantly activated in hematologic malignancies and solid tumors, and targeting it is a promising therapeutic strategy against these cancers. Resistance to clinically available hedgehog-targeted Smoothened inhibitor (SMOi) drugs has become a critical issue in hedgehog-driven cancer treatment. Our previous studies identified inhibition of BET and CDK7 as two epigenetic/transcriptional-targeted therapeutic strategies for overcoming SMOi resistance, providing a promising direction for anti-hedgehog drug development. To uncover additional strategies for inhibiting aberrant hedgehog activity, here we performed CRISPR-Cas9 screening with an single-guide RNA library targeting epigenetic and transcriptional modulators in hedgehog-driven medulloblastoma cells, combined with tumor dataset analyses. Structure specific recognition protein 1 (SSRP1), a subunit of facilitates chromatin transcription (FACT) complex, was identified as a hedgehog-induced essential oncogene and therapeutic target in hedgehog-driven cancer. The FACT inhibitor CBL0137, which has entered clinical trials for cancer, effectively suppressed in vitro and in vivo growth of multiple SMOi-responsive and SMOi-resistant hedgehog-driven cancer models. Mechanistically, CBL0137 exerted anti-hedgehog activity by targeting transcription of GLI1 and GLI2, which are core transcription factors of the hedgehog pathway. SSRP1 bound the promoter regions of GLI1 and GLI2, while CBL0137 treatment substantially disrupted these interactions. Moreover, CBL0137 synergized with BET or CDK7 inhibitors to antagonize aberrant hedgehog pathway and growth of hedgehog-driven cancer models. Taken together, these results identify FACT inhibition as a promising epigenetic/transcriptional-targeted therapeutic strategy for treating hedgehog-driven cancers and overcoming SMOi resistance. SIGNIFICANCE: This study identifies FACT inhibition as an anti-hedgehog therapeutic strategy for overcoming resistance to Smoothened inhibitors and provides preclinical support for initiating clinical trials of FACT-targeted drug CBL0137 against hedgehog-driven cancers.
Collapse
Affiliation(s)
- Jialin Mo
- Research Center of Translational Medicine, Shanghai Children's Hospital, State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Fang Liu
- Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Xi Sun
- Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Hongting Huang
- Department of Hepatic Surgery and Liver Transplantation Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Kezhe Tan
- Research Center of Translational Medicine, Shanghai Children's Hospital, State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Xiaojing Zhao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, P.R. China
| | - Rui Li
- Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Wenyan Jiang
- Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Yi Sui
- Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Xiaosong Chen
- Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Kunwei Shen
- Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Liye Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, P.R. China
| | - Jie Ma
- Department of Pediatric Neurosurgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China.
| | - Kewen Zhao
- Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China.
| | - Yujie Tang
- Research Center of Translational Medicine, Shanghai Children's Hospital, State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China.
| |
Collapse
|
23
|
Positioning of nucleosomes containing γ-H2AX precedes active DNA demethylation and transcription initiation. Nat Commun 2021; 12:1072. [PMID: 33594057 PMCID: PMC7886895 DOI: 10.1038/s41467-021-21227-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 01/12/2021] [Indexed: 01/09/2023] Open
Abstract
In addition to nucleosomes, chromatin contains non-histone chromatin-associated proteins, of which the high-mobility group proteins are the most abundant. Chromatin-mediated regulation of transcription involves DNA methylation and histone modifications. However, the order of events and the precise function of high-mobility group proteins during transcription initiation remain unclear. Here we show that high-mobility group AT-hook 2 protein (HMGA2) induces DNA nicks at the transcription start site, which are required by the histone chaperone FACT complex to incorporate nucleosomes containing the histone variant H2A.X. Further, phosphorylation of H2A.X at S139 (γ-H2AX) is required for repair-mediated DNA demethylation and transcription activation. The relevance of these findings is demonstrated within the context of TGFB1 signaling and idiopathic pulmonary fibrosis, suggesting therapies against this lethal disease. Our data support the concept that chromatin opening during transcriptional initiation involves intermediates with DNA breaks that subsequently require DNA repair mechanisms to ensure genome integrity. The order of DNA methylation and histone modifications during transcription remained unclear. Here the authors show that HMGA2 induces DNA nicks at TGFB1-responsive genes, promoting nucleosome incorporation containing γ-H2AX, which is required for repair-mediated DNA demethylation and transcription.
Collapse
|
24
|
Wang P, Yang W, Zhao S, Nashun B. Regulation of chromatin structure and function: insights into the histone chaperone FACT. Cell Cycle 2021; 20:465-479. [PMID: 33590780 DOI: 10.1080/15384101.2021.1881726] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In eukaryotic cells, changes in chromatin accessibility are necessary for chromatin to maintain its highly dynamic nature at different times during the cell cycle. Histone chaperones interact with histones and regulate chromatin dynamics. Facilitates chromatin transcription (FACT) is an important histone chaperone that plays crucial roles during various cellular processes. Here, we analyze the structural characteristics of FACT, discuss how FACT regulates nucleosome/chromatin reorganization and summarize possible functions of FACT in transcription, replication, and DNA repair. The possible involvement of FACT in cell fate determination is also discussed.Abbreviations: FACT: facilitates chromatin transcription, Spt16: suppressor of Ty16, SSRP1: structure-specific recognition protein-1, NTD: N-terminal domain, DD: dimerization domain, MD: middle domain, CTD: C-terminus domain, IDD: internal intrinsically disordered domain, HMG: high mobility group, CID: C-terminal intrinsically disordered domain, Nhp6: non-histone chromosomal protein 6, RNAPII: RNA polymerase II, CK2: casein kinase 2, AID: acidic inner disorder, PIC: pre-initiation complex, IR: ionizing radiation, DDSB: DNA double-strand break, PARlation: poly ADP-ribosylation, BER: base-excision repair, UVSSA: UV-stimulated scaffold protein A, HR: homologous recombination, CAF-1: chromatin assembly factor 1, Asf1: anti-silencing factor 1, Rtt106: regulator of Ty1 transposition protein 106, H3K56ac: H3K56 acetylation, KD: knock down, SETD2: SET domain containing 2, H3K36me3: trimethylation of lysine36 in histone H3, H2Bub: H2B ubiquitination, iPSCs: induced pluripotent stem cells, ESC: embryonic stem cell, H3K4me3: trimethylation of lysine 4 on histone H3 protein subunit, CHD1: chromodomain protein.
Collapse
Affiliation(s)
- Peijun Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Wanting Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Shuxin Zhao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Buhe Nashun
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
25
|
Lu K, Liu C, Liu Y, Luo A, Chen J, Lei Z, Kong J, Xiao X, Zhang S, Wang YZ, Ma L, Dou SX, Wang PY, Li M, Li G, Li W, Chen P. Curaxin-Induced DNA Topology Alterations Trigger the Distinct Binding Response of CTCF and FACT at the Single-Molecule Level. Biochemistry 2021; 60:494-499. [PMID: 33570402 DOI: 10.1021/acs.biochem.1c00014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The candidate anticancer drug curaxins can insert into DNA base pairs and efficiently inhibit the growth of various cancers. However, how curaxins alter the genomic DNA structure and affect the DNA binding property of key proteins remains to be clarified. Here, we first showed that curaxin CBL0137 strongly stabilizes the interaction between the double strands of DNA and reduces DNA bending and twist rigidity simultaneously, by single-molecule magnetic tweezers. More importantly, we found that CBL0137 greatly impairs the binding of CTCF but facilitates trapping FACT on DNA. We revealed that CBL0137 clamps the DNA double helix that may induce a huge barrier for DNA unzipping during replication and transcription and causes the distinct binding response of CTCF and FACT on DNA. Our work provides a novel mechanical insight into CBL0137's anticancer mechanisms at the nucleic acid level.
Collapse
Affiliation(s)
- Ke Lu
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cuifang Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yinuo Liu
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Anfeng Luo
- Department of Immunology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Jun Chen
- Department of Immunology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Zhichao Lei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, and iChEM, Xiamen University, Xiamen 361005, China
| | - Jingwei Kong
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue Xiao
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuming Zhang
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Yi-Zhou Wang
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Synthetic Biology Center, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, China
| | - Lu Ma
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Shuo-Xing Dou
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng-Ye Wang
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Ming Li
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Guohong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Li
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Ping Chen
- Department of Immunology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China.,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
26
|
Shukla A, Bhalla P, Potdar PK, Jampala P, Bhargava P. Transcription-dependent enrichment of the yeast FACT complex influences nucleosome dynamics on the RNA polymerase III-transcribed genes. RNA (NEW YORK, N.Y.) 2020; 27:rna.077974.120. [PMID: 33277439 PMCID: PMC7901838 DOI: 10.1261/rna.077974.120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 11/30/2020] [Indexed: 05/04/2023]
Abstract
The FACT (FAcilitates Chromatin Transactions) complex influences transcription initiation and enables passage of RNA polymerase (pol) II through gene body nucleosomes during elongation. In the budding yeast, ~280 non-coding RNA genes highly transcribed in vivo by pol III are found in the nucleosome-free regions bordered by positioned nucleosomes. The downstream nucleosome dynamics was found to regulate transcription via controlling the gene terminator accessibility and hence, terminator-dependent pol III recycling. As opposed to the enrichment at the 5'-ends of pol II-transcribed genes, our genome-wide mapping found transcription-dependent enrichment of the FACT subunit Spt16 near the 3'-end of all pol III-transcribed genes. Spt16 physically associates with the pol III transcription complex and shows gene-specific occupancy levels on the individual genes. On the non-tRNA pol III-transcribed genes, Spt16 facilitates transcription by reducing the nucleosome occupany on the gene body. On the tRNA genes, it maintains the position of the nucleosome at the 3' gene-end and affects transcription in gene-specific manner. Under nutritional stress, Spt16 enrichment is abolished in the gene downstream region of all pol III-transcribed genes and reciprocally changed on the induced or repressed pol II-transcribed ESR genes. Under the heat and replicative stress, its occupancy on the pol III-transcribed genes increases significantly. Our results show that Spt16 elicits a differential, gene-specific and stress-responsive dynamics, which provides a novel stress-sensor mechanism of regulating transcription against external stress. By primarily influencing the nucleosomal organization, FACT links the downstream nucleosome dynamics to transcription and environmental stress on the pol III-transcribed genes.
Collapse
|
27
|
Falbo L, Costanzo V. Epigenetic regulation of replication origin assembly: A role for histone H1 and chromatin remodeling factors. Bioessays 2020; 43:e2000181. [PMID: 33165968 DOI: 10.1002/bies.202000181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/09/2020] [Accepted: 09/18/2020] [Indexed: 12/18/2022]
Abstract
During early embryonic development in several metazoans, accurate DNA replication is ensured by high number of replication origins. This guarantees rapid genome duplication coordinated with fast cell divisions. In Xenopus laevis embryos this program switches to one with a lower number of origins at a developmental stage known as mid-blastula transition (MBT) when cell cycle length increases and gene transcription starts. Consistent with this regulation, somatic nuclei replicate poorly when transferred to eggs, suggesting the existence of an epigenetic memory suppressing replication assembly origins at all available sites. Recently, it was shown that histone H1 imposes a non-permissive chromatin configuration preventing replication origin assembly on somatic nuclei. This somatic state can be erased by SSRP1, a subunit of the FACT complex. Here, we further develop the hypothesis that this novel form of epigenetic memory might impact on different areas of vertebrate biology going from nuclear reprogramming to cancer development.
Collapse
Affiliation(s)
- Lucia Falbo
- IFOM, The FIRC Institute of Molecular Oncology, Via Adamello 16, Milan, 20139, Italy
| | - Vincenzo Costanzo
- IFOM, The FIRC Institute of Molecular Oncology, Via Adamello 16, Milan, 20139, Italy.,Department of Oncology and Haematology-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
28
|
Chen F, Zhang W, Xie D, Gao T, Dong Z, Lu X. Histone chaperone FACT represses retrotransposon MERVL and MERVL-derived cryptic promoters. Nucleic Acids Res 2020; 48:10211-10225. [PMID: 32894293 PMCID: PMC7544220 DOI: 10.1093/nar/gkaa732] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
Endogenous retroviruses (ERVs) were usually silenced by various histone modifications on histone H3 variants and respective histone chaperones in embryonic stem cells (ESCs). However, it is still unknown whether chaperones of other histones could repress ERVs. Here, we show that H2A/H2B histone chaperone FACT plays a critical role in silencing ERVs and ERV-derived cryptic promoters in ESCs. Loss of FACT component Ssrp1 activated MERVL whereas the re-introduction of Ssrp1 rescued the phenotype. Additionally, Ssrp1 interacted with MERVL and suppressed cryptic transcription of MERVL-fused genes. Remarkably, Ssrp1 interacted with and recruited H2B deubiquitinase Usp7 to Ssrp1 target genes. Suppression of Usp7 caused similar phenotypes as loss of Ssrp1. Furthermore, Usp7 acted by deubiquitinating H2Bub and thereby repressed the expression of MERVL-fused genes. Taken together, our study uncovers a unique mechanism by which FACT complex silences ERVs and ERV-derived cryptic promoters in ESCs.
Collapse
Affiliation(s)
- Fuquan Chen
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, People's Republic of China
- College of Pharmacy, Nankai University, Tianjin 300350, People's Republic of China
| | - Weiyu Zhang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, People's Republic of China
- College of Pharmacy, Nankai University, Tianjin 300350, People's Republic of China
| | - Dan Xie
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, People's Republic of China
- College of Pharmacy, Nankai University, Tianjin 300350, People's Republic of China
| | - Tingting Gao
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, People's Republic of China
- College of Pharmacy, Nankai University, Tianjin 300350, People's Republic of China
| | - Zhiqiang Dong
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, People's Republic of China
- College of Life Sciences, Nankai University, Tianjin 300307, People's Republic of China
| | - Xinyi Lu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, People's Republic of China
- College of Pharmacy, Nankai University, Tianjin 300350, People's Republic of China
| |
Collapse
|
29
|
Aoki D, Awazu A, Fujii M, Uewaki JI, Hashimoto M, Tochio N, Umehara T, Tate SI. Ultrasensitive Change in Nucleosome Binding by Multiple Phosphorylations to the Intrinsically Disordered Region of the Histone Chaperone FACT. J Mol Biol 2020; 432:4637-4657. [PMID: 32553729 DOI: 10.1016/j.jmb.2020.06.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 10/24/2022]
Abstract
Facilitates chromatin transcription (FACT) is a histone chaperone that functions as a nucleosome remodeler and a chaperone. The two subunits of FACT, Spt16 and SSRP1, mediate multiple interactions between the subunits and components of the nucleosome. Among the interactions, the role of the DNA-binding domain in SSRP1 has not been characterized. We reported previously that the DNA-binding domain in Drosophila SSRP1 (dSSRP1) has multiple casein kinase II phosphorylation sites, and the DNA binding affinity of the domain changes sigmoidally in response to the degree of phosphorylation ("ultrasensitive response"). In this report, we explored the molecular mechanisms for the ultrasensitive response of the DNA-binding domain in dSSRP1 using the shortest fragment (AB-HMG, residues 434-624) responsible for nucleosome binding. AB-HMG contains two intrinsically disordered (ID) regions: the N-terminal part rich in acidic residues (AID) and the C-terminal part rich in basic residues (BID) followed by the HMG box. NMR and coarse-grained molecular dynamics simulations revealed a phosphorylation-dependent change in intramolecular contacts between the AID and BID-HMG, which is mediated by a hinge bending motion of AB-HMG to enable the ultrasensitive response. Ultrasensitivity generates two distinct forms of dSSRP1, which are high- and low-affinity nucleosome-binding forms. Drosophila FACT (dFACT) switches function according to the degree of phosphorylation of the AID in dSSRP1. We propose that dFACT in various phosphorylation states functions cooperatively to facilitate gene regulation in the context of the chromatin.
Collapse
Affiliation(s)
- Daisuke Aoki
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8567, Japan; Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro, Tsurumi, Yokohama 230-0045, Japan
| | - Akinori Awazu
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8567, Japan; Research Center for the Mathematics on Chromatin Live Dynamics (RcMcD), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan; Department of Mathematical and Life Sciences, Graduate School of the Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Masashi Fujii
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8567, Japan
| | - Jun-Ichi Uewaki
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8567, Japan; Research Center for the Mathematics on Chromatin Live Dynamics (RcMcD), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Manami Hashimoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8567, Japan
| | - Naoya Tochio
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8567, Japan; Research Center for the Mathematics on Chromatin Live Dynamics (RcMcD), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Takashi Umehara
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro, Tsurumi, Yokohama 230-0045, Japan
| | - Shin-Ichi Tate
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8567, Japan; Research Center for the Mathematics on Chromatin Live Dynamics (RcMcD), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan; Department of Mathematical and Life Sciences, Graduate School of the Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan.
| |
Collapse
|
30
|
Luzhin AV, Avanesyan B, Velichko AK, Shender VO, Ovsyannikova N, Arapidi GP, Shnaider PV, Petrova NV, Kireev II, Razin SV, Kantidze OL. Chromatin Trapping of Factors Involved in DNA Replication and Repair Underlies Heat-Induced Radio- and Chemosensitization. Cells 2020; 9:cells9061423. [PMID: 32521766 PMCID: PMC7349668 DOI: 10.3390/cells9061423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/05/2020] [Accepted: 06/05/2020] [Indexed: 11/20/2022] Open
Abstract
Hyperthermia has been used as an adjuvant treatment for radio- and chemotherapy for decades. In addition to its effects on perfusion and oxygenation of cancer tissues, hyperthermia can enhance the efficacy of DNA-damaging treatments such as radiotherapy and chemotherapy. Although it is believed that the adjuvant effects are based on hyperthermia-induced dysfunction of DNA repair systems, the mechanisms of these dysfunctions remain elusive. Here, we propose that elevated temperatures can induce chromatin trapping (c-trapping) of essential factors, particularly those involved in DNA repair, and thus enhance the sensitization of cancer cells to DNA-damaging therapeutics. Using mass spectrometry-based proteomics, we identified proteins that could potentially undergo c-trapping in response to hyperthermia. Functional analyses of several identified factors involved in DNA repair demonstrated that c-trapping could indeed be a mechanism of hyperthermia-induced transient deficiency of DNA repair systems. Based on our proteomics data, we showed for the first time that hyperthermia could inhibit maturation of Okazaki fragments and activate a corresponding poly(ADP-ribose) polymerase-dependent DNA damage response. Together, our data suggest that chromatin trapping of factors involved in DNA repair and replication contributes to heat-induced radio- and chemosensitization.
Collapse
Affiliation(s)
- Artem V. Luzhin
- Institute of Gene Biology Russian Academy of Science, 119334 Moscow, Russia; (A.V.L.); (B.A.); (A.K.V.); (N.V.P.); (S.V.R.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology Russian Academy of Sciences, 119334 Moscow, Russia
| | - Bogdan Avanesyan
- Institute of Gene Biology Russian Academy of Science, 119334 Moscow, Russia; (A.V.L.); (B.A.); (A.K.V.); (N.V.P.); (S.V.R.)
| | - Artem K. Velichko
- Institute of Gene Biology Russian Academy of Science, 119334 Moscow, Russia; (A.V.L.); (B.A.); (A.K.V.); (N.V.P.); (S.V.R.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology Russian Academy of Sciences, 119334 Moscow, Russia
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Victoria O. Shender
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (V.O.S.); (G.P.A.); (P.V.S.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| | - Natalia Ovsyannikova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (N.O.); (I.I.K.)
| | - Georgij P. Arapidi
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (V.O.S.); (G.P.A.); (P.V.S.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
- Moscow Institute of Physics and Technology (State University), 141701 Moscow, Russia
| | - Polina V. Shnaider
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (V.O.S.); (G.P.A.); (P.V.S.)
| | - Nadezhda V. Petrova
- Institute of Gene Biology Russian Academy of Science, 119334 Moscow, Russia; (A.V.L.); (B.A.); (A.K.V.); (N.V.P.); (S.V.R.)
| | - Igor I. Kireev
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (N.O.); (I.I.K.)
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology, and Perinatology, 117997 Moscow, Russia
| | - Sergey V. Razin
- Institute of Gene Biology Russian Academy of Science, 119334 Moscow, Russia; (A.V.L.); (B.A.); (A.K.V.); (N.V.P.); (S.V.R.)
- Department of Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Omar L. Kantidze
- Institute of Gene Biology Russian Academy of Science, 119334 Moscow, Russia; (A.V.L.); (B.A.); (A.K.V.); (N.V.P.); (S.V.R.)
- Correspondence: ; Tel.: +7-499-135-9787
| |
Collapse
|
31
|
Shen J, Chen M, Lee D, Law CT, Wei L, Tsang FHC, Chin DWC, Cheng CLH, Lee JMF, Ng IOL, Wong CCL, Wong CM. Histone chaperone FACT complex mediates oxidative stress response to promote liver cancer progression. Gut 2020; 69:329-342. [PMID: 31439637 DOI: 10.1136/gutjnl-2019-318668] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 07/19/2019] [Accepted: 08/06/2019] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Facilitates Chromatin Transcription (FACT) complex is a histone chaperone participating in DNA repair-related and transcription-related chromatin dynamics. In this study, we investigated its oncogenic functions, underlying mechanisms and therapeutic implications in human hepatocellular carcinoma (HCC). DESIGN We obtained HCC and its corresponding non-tumorous liver samples from 16 patients and identified FACT complex as the most upregulated histone chaperone by RNA-Seq. We further used CRISPR-based gene activation and knockout systems to demonstrate the functions of FACT complex in HCC growth and metastasis. Functional roles and mechanistic insights of FACT complex in oxidative stress response were investigated by ChIP assay, flow cytometry, gene expression assays and 4sU-DRB transcription elongation assay. Therapeutic effect of FACT complex inhibitor, Curaxin, was tested in both in vitro and in vivo models. RESULTS We showed that FACT complex was remarkably upregulated in HCC and contributed to HCC progression. Importantly, we unprecedentedly revealed an indispensable role of FACT complex in NRF2-driven oxidative stress response. Oxidative stress prevented NRF2 and FACT complex from KEAP1-mediated protein ubiquitination and degradation. Stabilised NRF2 and FACT complex form a positive feedback loop; NRF2 transcriptionally activates the FACT complex, while FACT complex promotes the transcription elongation of NRF2 and its downstream antioxidant genes through facilitating rapid nucleosome disassembly for the passage of RNA polymerase. Therapeutically, Curaxin effectively suppressed HCC growth and sensitised HCC cell to sorafenib. CONCLUSION In conclusion, our findings demonstrated that FACT complex is essential for the expeditious HCC oxidative stress response and is a potential therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Jialing Shen
- State Key Laboratory of Liver Research, University of Hong Kong, Hong Kong, Hong Kong.,Department of Pathology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong
| | - Mengnuo Chen
- State Key Laboratory of Liver Research, University of Hong Kong, Hong Kong, Hong Kong.,Department of Pathology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong
| | - Derek Lee
- State Key Laboratory of Liver Research, University of Hong Kong, Hong Kong, Hong Kong.,Department of Pathology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong
| | - Cheuk-Ting Law
- State Key Laboratory of Liver Research, University of Hong Kong, Hong Kong, Hong Kong.,Department of Pathology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong
| | - Lai Wei
- State Key Laboratory of Liver Research, University of Hong Kong, Hong Kong, Hong Kong.,Department of Pathology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong
| | - Felice Ho-Ching Tsang
- State Key Laboratory of Liver Research, University of Hong Kong, Hong Kong, Hong Kong.,Department of Pathology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong
| | - Don Wai-Ching Chin
- State Key Laboratory of Liver Research, University of Hong Kong, Hong Kong, Hong Kong.,Department of Pathology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong
| | - Carol Lai-Hung Cheng
- State Key Laboratory of Liver Research, University of Hong Kong, Hong Kong, Hong Kong.,Department of Pathology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong
| | - Joyce Man-Fong Lee
- State Key Laboratory of Liver Research, University of Hong Kong, Hong Kong, Hong Kong.,Department of Pathology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong
| | - Irene Oi-Lin Ng
- State Key Laboratory of Liver Research, University of Hong Kong, Hong Kong, Hong Kong.,Department of Pathology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong
| | - Carmen Chak-Lui Wong
- State Key Laboratory of Liver Research, University of Hong Kong, Hong Kong, Hong Kong .,Department of Pathology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong
| | - Chun-Ming Wong
- State Key Laboratory of Liver Research, University of Hong Kong, Hong Kong, Hong Kong .,Department of Pathology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
32
|
The 3D Genome as a Target for Anticancer Therapy. Trends Mol Med 2020; 26:141-149. [PMID: 31679987 PMCID: PMC9929230 DOI: 10.1016/j.molmed.2019.09.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/23/2019] [Accepted: 09/23/2019] [Indexed: 01/08/2023]
Abstract
The role of 3D genome organization in the precise regulation of gene expression is well established. Accordingly, the mechanistic connections between 3D genome alterations and disease development are becoming increasingly apparent. This opinion article provides a snapshot of our current understanding of the 3D genome alterations associated with cancers. We discuss potential connections of the 3D genome and cancer transcriptional addiction phenomenon as well as molecular mechanisms of action of 3D genome-disrupting drugs. Finally, we highlight issues and perspectives raised by the discovery of the first pharmaceutical strongly affecting 3D genome organization.
Collapse
|
33
|
Chang HW, Nizovtseva EV, Razin SV, Formosa T, Gurova KV, Studitsky VM. Histone Chaperone FACT and Curaxins: Effects on Genome Structure and Function. ACTA ACUST UNITED AC 2019; 5. [PMID: 31853507 DOI: 10.20517/2394-4722.2019.31] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The histone chaperone FACT plays important roles in essentially every chromatin-associated process and is an important indirect target of the curaxin class of anti-cancer drugs. Curaxins are aromatiс compounds that intercalate into DNA and can trap FACT in bulk chromatin, thus interfering with its distribution and its functions in cancer cells. Recent studies have provided mechanistic insight into how FACT and curaxins cooperate to promote unfolding of nucleosomes and chromatin fibers, resulting in genome-wide disruption of contact chromatin domain boundaries, perturbation of higher order chromatin organization, and global disregulation of gene expression. Here, we discuss the implications of these insights for cancer biology.
Collapse
Affiliation(s)
- Han-Wen Chang
- Cancer Epigenetics Program, Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA 19422, USA
| | - Ekaterina V Nizovtseva
- Cancer Epigenetics Program, Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA 19422, USA
| | - Sergey V Razin
- Institute of Gene Biology RAS, 34/5 Vavilov Str., 119334 Moscow, Russia.,Biology Faculty, Lomonosov Moscow State University, 1 Leninskie Gory, 119992 Moscow, Russia
| | - Tim Formosa
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84132, USA
| | - Katerina V Gurova
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm and Carlton St, Buffalo, NY14263, USA
| | - Vasily M Studitsky
- Cancer Epigenetics Program, Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA 19422, USA.,Biology Faculty, Lomonosov Moscow State University, 1 Leninskie Gory, 119992 Moscow, Russia
| |
Collapse
|
34
|
Oien DB, Pathoulas CL, Ray U, Thirusangu P, Kalogera E, Shridhar V. Repurposing quinacrine for treatment-refractory cancer. Semin Cancer Biol 2019; 68:21-30. [PMID: 31562955 DOI: 10.1016/j.semcancer.2019.09.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023]
Abstract
Quinacrine, also known as mepacrine, has originally been used as an antimalarial drug for close to a century, but was recently rediscovered as an anticancer agent. The mechanisms of anticancer effects of quinacrine are not well understood. The anticancer potential of quinacrine was discovered in a screen for small molecule activators of p53, and was specifically shown to inhibit NFκB suppression of p53. However, quinacrine can cause cell death in cells that lack p53 or have p53 mutations, which is a common occurrence in many malignant tumors including high grade serous ovarian cancer. Recent reports suggest quinacrine may inhibit cancer cell growth through multiple mechanisms including regulating autophagy, FACT (facilitates chromatin transcription) chromatin trapping, and the DNA repair process. Additional reports also suggest quinacrine is effective against chemoresistant gynecologic cancer. In this review, we discuss anticancer effects of quinacrine and potential mechanisms of action with a specific focus on gynecologic and breast cancer where treatment-refractory tumors are associated with increased mortality rates. Repurposing quinacrine as an anticancer agent appears to be a promising strategy based on its ability to target multiple pathways, its selectivity against cancer cells, and the synergistic cytotoxicity when combined with other anticancer agents with limited side effects and good tolerability profile.
Collapse
Affiliation(s)
- Derek B Oien
- Division of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, United States
| | - Christopher L Pathoulas
- Division of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, United States
| | - Upasana Ray
- Division of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, United States
| | - Prabhu Thirusangu
- Division of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, United States
| | | | - Viji Shridhar
- Division of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, United States.
| |
Collapse
|
35
|
Karachaliou N, Codony-Servat J, Bracht JWP, Ito M, Filipska M, Pedraz C, Chaib I, Bertran-Alamillo J, Cardona AF, Molina MA, Rosell R. Characterising acquired resistance to erlotinib in non-small cell lung cancer patients. Expert Rev Respir Med 2019; 13:1019-1028. [PMID: 31411906 DOI: 10.1080/17476348.2019.1656068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: The therapy of patients with lung adenocarcinoma has significantly changed after the discovery of epidermal growth factor receptor (EGFR) mutations. EGFR mutations occur in 10-15% of Caucasian lung cancer patients and are associated with favorable outcome to orally administered EGFR tyrosine kinase inhibitors (TKIs), like erlotinib. However, as soon as the tumor cells are under the pressure of the specific inhibitor, compensatory signaling pathways are activated and resistance emerges. Areas covered: In this review we will focus on the mechanisms of resistance to the first-generation EGFR TKI, erlotinib, and will mainly summarize the findings throughout the last 10 years in the field of EGFR-mutant lung cancer. Expert opinion: Widespread research has been performed and several mechanisms of resistance to EGFR TKIs, especially first- and second-generation, have been identified. Still, no adequate combinatory therapies have received regulatory approval for the treatment of EGFR-mutant patients at the time of resistance. The third-generation EGFR TKI, osimertinib has been approved for patients whose tumor has become resistant through the secondary T790M resistant EGFR mutation. The identification of the mechanisms of resistance and the application of the adequate therapy to each patient is still an unmet need.
Collapse
Affiliation(s)
- Niki Karachaliou
- Global Clinical Development, Merck Healthcare KGaA , Darmstadt , Germany
| | - Jordi Codony-Servat
- Pangaea Oncology, Laboratory of Molecular Biology, Quiron-Dexeus University Institute , Barcelona , Spain
| | | | - Masaoki Ito
- Pangaea Oncology, Laboratory of Molecular Biology, Quiron-Dexeus University Institute , Barcelona , Spain
| | - Martyna Filipska
- Cancer Biology and Precision Medicine, Institut d'Investigació en Ciències Germans Trias i Pujol , Badalona , Spain
| | - Carlos Pedraz
- Cancer Biology and Precision Medicine, Institut d'Investigació en Ciències Germans Trias i Pujol , Badalona , Spain
| | - Imane Chaib
- Cancer Biology and Precision Medicine, Institut d'Investigació en Ciències Germans Trias i Pujol , Badalona , Spain
| | - Jordi Bertran-Alamillo
- Pangaea Oncology, Laboratory of Molecular Biology, Quiron-Dexeus University Institute , Barcelona , Spain
| | - Andres Felipe Cardona
- Thoracic Oncology Unit, Clinical and Translational Oncology Group, Clinica del Country , Bogotá , Colombia
| | - Miguel Angel Molina
- Pangaea Oncology, Laboratory of Molecular Biology, Quiron-Dexeus University Institute , Barcelona , Spain
| | - Rafael Rosell
- Pangaea Oncology, Laboratory of Molecular Biology, Quiron-Dexeus University Institute , Barcelona , Spain.,Cancer Biology and Precision Medicine, Institut d'Investigació en Ciències Germans Trias i Pujol , Badalona , Spain.,Institute of Oncology Rosell (IOR), Quiron-Dexeus University Institute , Barcelona , Spain.,Institut Català d'Oncologia, Hospital Germans Trias i Pujol , Badalona , Spain
| |
Collapse
|
36
|
The anti-cancer drugs curaxins target spatial genome organization. Nat Commun 2019; 10:1441. [PMID: 30926878 PMCID: PMC6441033 DOI: 10.1038/s41467-019-09500-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 03/14/2019] [Indexed: 12/20/2022] Open
Abstract
Recently we characterized a class of anti-cancer agents (curaxins) that disturbs DNA/histone interactions within nucleosomes. Here, using a combination of genomic and in vitro approaches, we demonstrate that curaxins strongly affect spatial genome organization and compromise enhancer-promoter communication, which is necessary for the expression of several oncogenes, including MYC. We further show that curaxins selectively inhibit enhancer-regulated transcription of chromatinized templates in cell-free conditions. Genomic studies also suggest that curaxins induce partial depletion of CTCF from its binding sites, which contributes to the observed changes in genome topology. Thus, curaxins can be classified as epigenetic drugs that target the 3D genome organization. Curaxins are a recently discovered class of anti-cancer agents that disturbs DNA/histone interactions within. Here the authors provide evidence that curaxins affect the spatial genome organization and compromise enhancer-promoter communication necessary for expression of several oncogenes, including MYC.
Collapse
|