1
|
Zhu H, Xu H, Zhang Y, Brodský J, Gablech I, Korabečná M, Neuzil P. Exploring the Frontiers of Cell Temperature Measurement and Thermogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2402135. [PMID: 39467049 DOI: 10.1002/advs.202402135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 09/24/2024] [Indexed: 10/30/2024]
Abstract
The precise measurement of cell temperature and an in-depth understanding of thermogenic processes are critical in unraveling the complexities of cellular metabolism and its implications for health and disease. This review focuses on the mechanisms of local temperature generation within cells and the array of methods developed for accurate temperature assessment. The contact and noncontact techniques are introduced, including infrared thermography, fluorescence thermometry, and other innovative approaches to localized temperature measurement. The role of thermogenesis in cellular metabolism, highlighting the integral function of temperature regulation in cellular processes, environmental adaptation, and the implications of thermogenic dysregulation in diseases such as metabolic disorders and cancer are further discussed. The challenges and limitations in this field are critically analyzed while technological advancements and future directions are proposed to overcome these barriers. This review aims to provide a consolidated resource for current methodologies, stimulate discussion on the limitations and challenges, and inspire future innovations in the study of cellular thermodynamics.
Collapse
Affiliation(s)
- Hanliang Zhu
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Haotian Xu
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Yue Zhang
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Jan Brodský
- Department of Microelectronics, The Faculty of Electrical Engineering and Communication Technology, Brno University of Technology, Technická 3058/10, Brno, 616 00, Czech Republic
| | - Imrich Gablech
- Department of Microelectronics, The Faculty of Electrical Engineering and Communication Technology, Brno University of Technology, Technická 3058/10, Brno, 616 00, Czech Republic
| | - Marie Korabečná
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, Prague, 128 00, Czech Republic
- Department of Laboratory Medicine, Faculty of Health Care and Social Work, University of Trnava in Trnava, Universitne namestie 1, Trnava, 918 43, Slovakia
| | - Pavel Neuzil
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| |
Collapse
|
2
|
Khanal D, Cao Y, Tai W, Kim Chan H. O-PTIR spectroscopy for characterizing active pharmaceutical ingredient specific particle size distributions of nasal spray suspension products. Int J Pharm 2024; 664:124653. [PMID: 39216652 DOI: 10.1016/j.ijpharm.2024.124653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Evaluation of the particle size distribution (PSD) of active pharmaceutical ingredients (APIs) in nasal suspension products is challenging due to the presence of both API and excipients. To characterize these intricate formulations, it is essential to have sophisticated analytical methods that offer high spatial resolution and the ability to chemically pinpoint and map out the presence of API particles. However, such advanced techniques have not been documented for nasal formulations yet. In this proof-of-concept study, we investigated the utility of optical photothermal infrared spectroscopy (O-PTIR) to analyze the PSD of commercially available Nasonex® and its generic Azonaire® nasal mometasone furoate (MM) suspensions. Simultaneous O-PTIR and Raman spectra, as well as IR chemical maps, were collected from the particles in both formulations. Spatially resolved spectra from the particles confirmed the presence of peaks related to MM (1727 cm-1, 1661 cm-1, and 1122 cm-1) and excipient microcrystalline cellulose (MCC) (1061 cm-1). The PSD of MM particles was characterized using chemical maps specific to MM (1661 cm-1) and automated imaging. Results confirmed that the PSD of both formulations were comparable. Spectral analysis also revealed the presence of free MM, free MCC, and particles containing co-localized MM and MCC. For suspension-based nasal products, O-PTIR enables the measurement of API PSD, which is critical for formulators in developing nasal suspension products. This approach holds potential as an innovative complimentary analytical tool that could diminish the need for extensive clinical endpoint bioequivalence studies when evaluating the comparability of generic and brand-name nasal suspension products.
Collapse
Affiliation(s)
- Dipesh Khanal
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia.
| | - Yue Cao
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| | - Waiting Tai
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| | - Hak Kim Chan
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
3
|
Reihanisaransari R, Gajjela CC, Wu X, Ishrak R, Corvigno S, Zhong Y, Liu J, Sood AK, Mayerich D, Berisha S, Reddy R. Rapid Hyperspectral Photothermal Mid-Infrared Spectroscopic Imaging from Sparse Data for Gynecologic Cancer Tissue Subtyping. Anal Chem 2024; 96:15880-15887. [PMID: 39312212 PMCID: PMC11521199 DOI: 10.1021/acs.analchem.4c01093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Ovarian cancer detection has traditionally relied on a multistep process that includes biopsy, tissue staining, and morphological analysis by experienced pathologists. While widely practiced, this conventional approach suffers from several drawbacks: it is qualitative, time-intensive, and heavily dependent on the quality of staining. Mid-infrared (MIR) hyperspectral photothermal imaging is a label-free, biochemically quantitative technology that, when combined with machine learning algorithms, can eliminate the need for staining and provide quantitative results comparable to traditional histology. However, this technology is slow. This work presents a novel approach to MIR photothermal imaging that enhances its speed by an order of magnitude. This method resolves the longstanding trade-off between imaging resolution and data collection speed, enabling the reconstruction of high-quality, high-resolution images from undersampled data sets and achieving a 10X improvement in data acquisition time. We assessed the performance of our sparse imaging methodology using a variety of quantitative metrics, including mean squared error (MSE), structural similarity index (SSIM), and tissue subtype classification accuracies, employing both random forest and convolutional neural network (CNN) models, accompanied by Receiver Operating Characteristic (ROC) curves. Our statistically robust analysis, based on data from 100 ovarian cancer patient samples and over 65 million data points, demonstrates the method's capability to produce superior image quality and accurately distinguish between different gynecological tissue types with segmentation accuracy exceeding 95%. Our work demonstrates the feasibility of integrating rapid MIR hyperspectral photothermal imaging with machine learning in enhancing ovarian cancer tissue characterization, paving the way for quantitative, label-free, automated histopathology.
Collapse
Affiliation(s)
- Reza Reihanisaransari
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas 77204, United States
| | - Chalapathi Charan Gajjela
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas 77204, United States
| | - Xinyu Wu
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas 77204, United States
| | - Ragib Ishrak
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas 77204, United States
| | - Sara Corvigno
- The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Yanping Zhong
- The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Jinsong Liu
- The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Anil K Sood
- The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - David Mayerich
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas 77204, United States
| | - Sebastian Berisha
- Milwaukee School of Engineering, Milwaukee, Wisconsin 53202, United States
| | - Rohith Reddy
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
4
|
Reihanisaransari R, Gajjela CC, Wu X, Ishrak R, Zhong Y, Mayerich D, Berisha S, Reddy R. Cervical Cancer Tissue Analysis Using Photothermal Midinfrared Spectroscopic Imaging. CHEMICAL & BIOMEDICAL IMAGING 2024; 2:651-658. [PMID: 39328427 PMCID: PMC11423401 DOI: 10.1021/cbmi.4c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 09/28/2024]
Abstract
Hyperspectral photothermal mid-infrared spectroscopic imaging (HP-MIRSI) is an emerging technology with promising applications in cervical cancer diagnosis and quantitative, label-free histopathology. This study pioneers the application of HP-MIRSI to the evaluation of clinical cervical cancer tissues, achieving excellent tissue type segmentation accuracy of over 95%. This achievement stems from an integrated approach of optimized data acquisition, computational data reconstruction, and the application of machine learning algorithms. The results are statistically robust, drawing from tissue samples of 98 cervical cancer patients and incorporating over 40 million data points. Traditional cervical cancer diagnosis methods entail biopsy, staining, and visual evaluation by a pathologist. This process is qualitative, subject to variations in staining and subjective interpretations, and requires extensive tissue processing, making it costly and time-consuming. In contrast, our proposed alternative can produce images comparable to those from histological analyses without the need for staining or complex sample preparation. This label-free, quantitative method utilizes biochemical data from HP-MIRSI and employs machine-learning algorithms for the rapid and precise segmentation of cervical tissue subtypes. This approach can potentially transform histopathological analysis by offering a more accurate and label-free alternative to conventional diagnostic processes.
Collapse
Affiliation(s)
- Reza Reihanisaransari
- Department
of Electrical and Computer Engineering, University of Houston, Houston, Texas 77030, United States
| | - Chalapathi Charan Gajjela
- Department
of Electrical and Computer Engineering, University of Houston, Houston, Texas 77030, United States
| | - Xinyu Wu
- Department
of Electrical and Computer Engineering, University of Houston, Houston, Texas 77030, United States
| | - Ragib Ishrak
- Department
of Electrical and Computer Engineering, University of Houston, Houston, Texas 77030, United States
| | - Yanping Zhong
- The
University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - David Mayerich
- Department
of Electrical and Computer Engineering, University of Houston, Houston, Texas 77030, United States
| | - Sebastian Berisha
- Milwaukee
School of Engineering, Milwaukee, Wisconsin 53202, United States
| | - Rohith Reddy
- Department
of Electrical and Computer Engineering, University of Houston, Houston, Texas 77030, United States
| |
Collapse
|
5
|
Adi W, Rubio Perez BE, Liu Y, Runkle S, Eliceiri KW, Yesilkoy F. Machine learning-assisted mid-infrared spectrochemical fibrillar collagen imaging in clinical tissues. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:093511. [PMID: 39364328 PMCID: PMC11448345 DOI: 10.1117/1.jbo.29.9.093511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024]
Abstract
Significance Label-free multimodal imaging methods that can provide complementary structural and chemical information from the same sample are critical for comprehensive tissue analyses. These methods are specifically needed to study the complex tumor-microenvironment where fibrillar collagen's architectural changes are associated with cancer progression. To address this need, we present a multimodal computational imaging method where mid-infrared spectral imaging (MIRSI) is employed with second harmonic generation (SHG) microscopy to identify fibrillar collagen in biological tissues. Aim To demonstrate a multimodal approach where a morphology-specific contrast mechanism guides an MIRSI method to detect fibrillar collagen based on its chemical signatures. Approach We trained a supervised machine learning (ML) model using SHG images as ground truth collagen labels to classify fibrillar collagen in biological tissues based on their mid-infrared hyperspectral images. Five human pancreatic tissue samples (sizes are in the order of millimeters) were imaged by both MIRSI and SHG microscopes. In total, 2.8 million MIRSI spectra were used to train a random forest (RF) model. The other 68 million spectra were used to validate the collagen images generated by the RF-MIRSI model in terms of collagen segmentation, orientation, and alignment. Results Compared with the SHG ground truth, the generated RF-MIRSI collagen images achieved a high average boundary F -score (0.8 at 4-pixel thresholds) in the collagen distribution, high correlation (Pearson's R 0.82) in the collagen orientation, and similarly high correlation (Pearson's R 0.66) in the collagen alignment. Conclusions We showed the potential of ML-aided label-free mid-infrared hyperspectral imaging for collagen fiber and tumor microenvironment analysis in tumor pathology samples.
Collapse
Affiliation(s)
- Wihan Adi
- University of Wisconsin-Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
| | - Bryan E. Rubio Perez
- University of Wisconsin-Madison, Department of Electrical and Computer Engineering, Madison, Wisconsin, United States
| | - Yuming Liu
- University of Wisconsin-Madison, Center for Quantitative Cell Imaging, Madison, Wisconsin, United States
| | - Sydney Runkle
- University of Wisconsin-Madison, Department of Computer Science, Madison, Wisconsin, United States
| | - Kevin W. Eliceiri
- University of Wisconsin-Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
- University of Wisconsin-Madison, Center for Quantitative Cell Imaging, Madison, Wisconsin, United States
- Morgridge Institute for Research, Madison, Wisconsin, United States
| | - Filiz Yesilkoy
- University of Wisconsin-Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
| |
Collapse
|
6
|
Prater CB, Kansiz M, Cheng JX. A tutorial on optical photothermal infrared (O-PTIR) microscopy. APL PHOTONICS 2024; 9:091101. [PMID: 39290719 PMCID: PMC11404004 DOI: 10.1063/5.0219983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/01/2024] [Indexed: 09/19/2024]
Abstract
This tutorial reviews the rapidly growing field of optical photothermal infrared (O-PTIR) spectroscopy and chemical imaging. O-PTIR is an infrared super-resolution measurement technique where a shorter wavelength visible probe is used to measure and map infrared (IR) absorption with spatial resolution up to 30× better than conventional techniques such as Fourier transform infrared and direct IR laser imaging systems. This article reviews key limitations of conventional IR instruments, the O-PTIR technology breakthroughs, and their origins that have overcome the prior limitations. This article also discusses recent developments in expanding multi-modal O-PTIR approaches that enable complementary Raman spectroscopy and fluorescence microscopy imaging, including wide-field O-PTIR imaging with fluorescence-based detection of IR absorption. Various practical subjects are covered, including sample preparation techniques, optimal measurement configurations, use of IR tags/labels and techniques for data analysis, and visualization. Key O-PTIR applications are reviewed in many areas, including biological and biomedical sciences, environmental and microplastics research, (bio)pharmaceuticals, materials science, cultural heritage, forensics, photonics, and failure analysis.
Collapse
Affiliation(s)
- Craig B Prater
- Photothermal Spectroscopy Corporation, Santa Barbara, California 93111, USA
| | - Mustafa Kansiz
- Photothermal Spectroscopy Corporation, Santa Barbara, California 93111, USA
| | - Ji-Xin Cheng
- Photonics Center, Boston University, Boston, Massachusetts 02215, USA
| |
Collapse
|
7
|
Hao S, Suebka S, Su J. Single 5-nm quantum dot detection via microtoroid optical resonator photothermal microscopy. LIGHT, SCIENCE & APPLICATIONS 2024; 13:195. [PMID: 39160151 PMCID: PMC11333578 DOI: 10.1038/s41377-024-01536-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 08/21/2024]
Abstract
Label-free detection techniques for single particles and molecules play an important role in basic science, disease diagnostics, and nanomaterial investigations. While fluorescence-based methods are tools for single molecule detection and imaging, they are limited by available molecular probes and photoblinking and photobleaching. Photothermal microscopy has emerged as a label-free imaging technique capable of detecting individual nanoabsorbers with high sensitivity. Whispering gallery mode (WGM) microresonators can confine light in a small volume for enhanced light-matter interaction and thus are a promising ultra-sensitive photothermal microscopy platform. Previously, microtoroid optical resonators were combined with photothermal microscopy to detect 250 nm long gold nanorods and 100 nm long polymers. Here, we combine microtoroids with photothermal microscopy to spatially detect single 5 nm diameter quantum dots (QDs) with a signal-to-noise ratio exceeding 104. Photothermal images were generated by point-by-point scanning of the pump laser. Single particle detection was confirmed for 18 nm QDs by high sensitivity fluorescence imaging and for 5 nm QDs via comparison with theory. Our system demonstrates the capability to detect a minimum heat dissipation of 0.75 pW. To achieve this, we integrated our microtoroid based photothermal microscopy setup with a low amplitude modulated pump laser and utilized the proportional-integral-derivative controller output as the photothermal signal source to reduce noise and enhance signal stability. The heat dissipation of these QDs is below that from single dye molecules. We anticipate that our work will have application in a wide variety of fields, including the biological sciences, nanotechnology, materials science, chemistry, and medicine.
Collapse
Affiliation(s)
- Shuang Hao
- Wyant College of Optical Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Sartanee Suebka
- Wyant College of Optical Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Judith Su
- Wyant College of Optical Sciences and Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
8
|
Baden N, Watanabe H, Aoyagi M, Ujii H, Fujita Y. Surface-enhanced optical-mid-infrared photothermal microscopy using shortened colloidal silver nanowires: a noble approach for mid-infrared surface sensing. NANOSCALE HORIZONS 2024; 9:1311-1317. [PMID: 38808389 DOI: 10.1039/d4nh00106k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
We propose surface-enhanced optical-mid-infrared photothermal (MIP) microscopy using highly crystalline silver nanowires, acting as a Fabry-Perot resonator, and demonstrate its applicability to enhanced mid-infrared surface sensing of thin polymer layers as thin as 20 nm.
Collapse
Affiliation(s)
- Naoki Baden
- Nihon Thermal Consulting, Co., Ltd, 3-9-2 Nishishinjuku, Sinjuku-ku, Tokyo 160-0023, Japan
| | - Hirohmi Watanabe
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Kagamiyama 3-11-32, Higashihiroshima, Hiroshima, 739-0046, Japan.
| | - Masaru Aoyagi
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Kagamiyama 3-11-32, Higashihiroshima, Hiroshima, 739-0046, Japan.
| | - Hiroshi Ujii
- Research Institute for Electronic Science (RIES) and Division of Information Science and Technology, Graduate School of Information Science and Technology, Hokkaido University, N20W10, Sapporo, Hokkaido 001-0020, Japan
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yasuhiko Fujita
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Kagamiyama 3-11-32, Higashihiroshima, Hiroshima, 739-0046, Japan.
| |
Collapse
|
9
|
Adi W, Perez BER, Liu Y, Runkle S, Eliceiri KW, Yesilkoy F. Machine learning assisted mid-infrared spectrochemical fibrillar collagen imaging in clinical tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595393. [PMID: 38826188 PMCID: PMC11142197 DOI: 10.1101/2024.05.22.595393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Significance Label-free multimodal imaging methods that can provide complementary structural and chemical information from the same sample are critical for comprehensive tissue analyses. These methods are specifically needed to study the complex tumor-microenvironment where fibrillar collagen's architectural changes are associated with cancer progression. To address this need, we present a multimodal computational imaging method where mid-infrared spectral imaging (MIRSI) is employed with second harmonic generation (SHG) microscopy to identify fibrillar collagen in biological tissues. Aim To demonstrate a multimodal approach where a morphology-specific contrast mechanism guides a mid-infrared spectral imaging method to detect fibrillar collagen based on its chemical signatures. Approach We trained a supervised machine learning (ML) model using SHG images as ground truth collagen labels to classify fibrillar collagen in biological tissues based on their mid-infrared hyperspectral images. Five human pancreatic tissue samples (sizes are in the order of millimeters) were imaged by both MIRSI and SHG microscopes. In total, 2.8 million MIRSI spectra were used to train a random forest (RF) model. The remaining 68 million spectra were used to validate the collagen images generated by the RF-MIRSI model in terms of collagen segmentation, orientation, and alignment. Results Compared to the SHG ground truth, the generated MIRSI collagen images achieved a high average boundary F-score (0.8 at 4 pixels threshold) in the collagen distribution, high correlation (Pearson's R 0.82) in the collagen orientation, and similarly high correlation (Pearson's R 0.66) in the collagen alignment. Conclusions We showed the potential of ML-aided label-free mid-infrared hyperspectral imaging for collagen fiber and tumor microenvironment analysis in tumor pathology samples.
Collapse
Affiliation(s)
- Wihan Adi
- Department of Biomedical Engineering University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Bryan E. Rubio Perez
- Department of Electrical and Computer Engineering University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Yuming Liu
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sydney Runkle
- Department of Computer Science University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Kevin W. Eliceiri
- Department of Biomedical Engineering University of Wisconsin-Madison, Madison, WI, 53705, USA
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53706, USA
| | - Filiz Yesilkoy
- Department of Biomedical Engineering University of Wisconsin-Madison, Madison, WI, 53705, USA
| |
Collapse
|
10
|
Teng X, Li M, He H, Jia D, Yin J, Bolarinho R, Cheng JX. Mid-infrared Photothermal Imaging: Instrument and Life Science Applications. Anal Chem 2024; 96:7895-7906. [PMID: 38702858 DOI: 10.1021/acs.analchem.4c02017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2024]
Affiliation(s)
- Xinyan Teng
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
- Photonics Center, Boston University, Boston, Massachusetts 02215, United States
| | - Mingsheng Li
- Photonics Center, Boston University, Boston, Massachusetts 02215, United States
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Hongjian He
- Photonics Center, Boston University, Boston, Massachusetts 02215, United States
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Danchen Jia
- Photonics Center, Boston University, Boston, Massachusetts 02215, United States
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Jiaze Yin
- Photonics Center, Boston University, Boston, Massachusetts 02215, United States
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Rylie Bolarinho
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
- Photonics Center, Boston University, Boston, Massachusetts 02215, United States
| | - Ji-Xin Cheng
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
- Photonics Center, Boston University, Boston, Massachusetts 02215, United States
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
11
|
Samolis PD, Sander MY. Increasing contrast in water-embedded particles via time-gated mid-infrared photothermal microscopy. OPTICS LETTERS 2024; 49:1457-1460. [PMID: 38489424 DOI: 10.1364/ol.513742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/06/2024] [Indexed: 03/17/2024]
Abstract
The transient dynamics of photothermal signals provide interesting insights into material properties and heat diffusion. In a mid-infrared (mid-IR) photothermal microscope, the imaging contrast in a standard amplitude imaging can decrease due to thermal diffusion effects. It is shown that contrast varies for poly-methyl 2-methylpropenoate (PMMA) particles of different sizes when embedded in an absorbing medium of water (H2O) based on levels of heat exchange under the water absorption resonance. Using time-resolved boxcar (BC) detection, analysis of the transient thermal dynamics at the bead-water interface is presented, and the time decay parameters for 500 nm and 100 nm beads are determined. Enhanced (negative) imaging contrast is observed for less heat exchange between the water and bead, as in the case for the 100 nm bead. For the 500 nm bead, boxcar imaging before heat exchange starts occurring, leads to an increase of the imaging contrast up to a factor of 1.6.
Collapse
|
12
|
Reihanisaransari R, Gajjela CC, Wu X, Ishrak R, Corvigno S, Zhong Y, Liui J, Sood AK, Mayerich D, Berisha S, Reddy R. Rapid hyperspectral photothermal mid-infrared spectroscopic imaging from sparse data for gynecologic cancer tissue subtyping. ARXIV 2024:arXiv:2402.17960v1. [PMID: 38463509 PMCID: PMC10925386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Ovarian cancer detection has traditionally relied on a multi-step process that includes biopsy, tissue staining, and morphological analysis by experienced pathologists. While widely practiced, this conventional approach suffers from several drawbacks: it is qualitative, time-intensive, and heavily dependent on the quality of staining. Mid-infrared (MIR) hyperspectral photothermal imaging is a label-free, biochemically quantitative technology that, when combined with machine learning algorithms, can eliminate the need for staining and provide quantitative results comparable to traditional histology. However, this technology is slow. This work presents a novel approach to MIR photothermal imaging that enhances its speed by an order of magnitude. Our method significantly accelerates data collection by capturing a combination of highresolution and interleaved, lower-resolution infrared band images and applying computational techniques for data interpolation. We effectively minimize data collection requirements by leveraging sparse data acquisition and employing curvelet-based reconstruction algorithms. This approach enhances imaging speed without compromising image quality and ensures robust tissue segmentation. This method resolves the longstanding trade-off between imaging resolution and data collection speed, enabling the reconstruction of high-quality, high-resolution images from undersampled datasets and achieving a 10X improvement in data acquisition time. We assessed the performance of our sparse imaging methodology using a variety of quantitative metrics, including mean squared error (MSE), structural similarity index (SSIM), and tissue subtype classification accuracies, employing both random forest and convolutional neural network (CNN) models, accompanied by Receiver Operating Characteristic (ROC) curves. Our statistically robust analysis, based on data from 100 ovarian cancer patient samples and over 65 million data points, demonstrates the method's capability to produce superior image quality and accurately distinguish between different gynecological tissue types with segmentation accuracy exceeding 95%. Our work demonstrates the feasibility of integrating rapid MIR hyperspectral photothermal imaging with machine learning in enhancing ovarian cancer tissue characterization, paving the way for quantitative, label-free, automated histopathology. It represents a significant leap forward from traditional histopathological methods, offering profound implications for cancer diagnostics and treatment decision-making.
Collapse
Affiliation(s)
- Reza Reihanisaransari
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX
| | | | - Xinyu Wu
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX
| | - Ragib Ishrak
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX
| | - Sara Corvigno
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yanping Zhong
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jinsong Liui
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anil K. Sood
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David Mayerich
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX
| | | | - Rohith Reddy
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX
| |
Collapse
|
13
|
Fang J, Huang K, Qin R, Liang Y, Wu E, Yan M, Zeng H. Wide-field mid-infrared hyperspectral imaging beyond video rate. Nat Commun 2024; 15:1811. [PMID: 38418468 PMCID: PMC10902379 DOI: 10.1038/s41467-024-46274-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/21/2024] [Indexed: 03/01/2024] Open
Abstract
Mid-infrared hyperspectral imaging has become an indispensable tool to spatially resolve chemical information in a wide variety of samples. However, acquiring three-dimensional data cubes is typically time-consuming due to the limited speed of raster scanning or wavelength tuning, which impedes real-time visualization with high spatial definition across broad spectral bands. Here, we devise and implement a high-speed, wide-field mid-infrared hyperspectral imaging system relying on broadband parametric upconversion of high-brightness supercontinuum illumination at the Fourier plane. The upconverted replica is spectrally decomposed by a rapid acousto-optic tunable filter, which records high-definition monochromatic images at a frame rate of 10 kHz based on a megapixel silicon camera. Consequently, the hyperspectral imager allows us to acquire 100 spectral bands over 2600-4085 cm-1 in 10 ms, corresponding to a refreshing rate of 100 Hz. Moreover, the angular dependence of phase matching in the image upconversion is leveraged to realize snapshot operation with spatial multiplexing for multiple spectral channels, which may further boost the spectral imaging rate. The high acquisition rate, wide-field operation, and broadband spectral coverage could open new possibilities for high-throughput characterization of transient processes in material and life sciences.
Collapse
Affiliation(s)
- Jianan Fang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, China
| | - Kun Huang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, China.
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, 401121, China.
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, China.
| | - Ruiyang Qin
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, China
| | - Yan Liang
- School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - E Wu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, 401121, China
| | - Ming Yan
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, 401121, China
| | - Heping Zeng
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, China.
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, 401121, China.
- Shanghai Research Center for Quantum Sciences, Shanghai, 201315, China.
- Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, 400064, China.
| |
Collapse
|
14
|
Park C, Cho M. Dual phase-detected infrared photothermal microscopy. OPTICS EXPRESS 2024; 32:6865-6875. [PMID: 38439382 DOI: 10.1364/oe.510044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/22/2023] [Indexed: 03/06/2024]
Abstract
Infrared photothermal microscopy (IPM) has recently gained considerable attention as a versatile analytical platform capable of providing spatially resolved molecular insights across diverse research fields. This technique has led to numerous breakthroughs in the study of compositional variations in functional materials and cellular dynamics in living cells. However, its application to investigate multiple components of temporally dynamic systems, such as living cells and operational devices, has been hampered by the limited information content of the IP signal, which only covers a narrow spectral window (< 1 cm-1). Here, we present a straightforward approach for measuring two distinct IPM images utilizing the orthogonality between the in-phase and quadrature outputs of a lock-in amplifier, called dual-phase IR photothermal (DP-IP) detection. We demonstrate the feasibility of DP-IP detection for IPM in distinguishing two different micro-sized polymer beads.
Collapse
|
15
|
Yan C, Wang C, Wagner JC, Ren J, Lee C, Wan Y, Wang SE, Xiong W. Multidimensional Widefield Infrared-Encoded Spontaneous Emission Microscopy: Distinguishing Chromophores by Ultrashort Infrared Pulses. J Am Chem Soc 2024; 146:1874-1886. [PMID: 38085547 PMCID: PMC10811677 DOI: 10.1021/jacs.3c07251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 01/25/2024]
Abstract
Photoluminescence (PL) imaging has broad applications in visualizing biological activities, detecting chemical species, and characterizing materials. However, the chemical information encoded in the PL images is often limited by the overlapping emission spectra of chromophores. Here, we report a PL microscopy based on the nonlinear interactions between mid-infrared and visible excitations on matters, which we termed MultiDimensional Widefield Infrared-encoded Spontaneous Emission (MD-WISE) microscopy. MD-WISE microscopy can distinguish chromophores that possess nearly identical emission spectra via conditions in a multidimensional space formed by three independent variables: the temporal delay between the infrared and the visible pulses (t), the wavelength of visible pulses (λvis), and the frequencies of the infrared pulses (ωIR). This method is enabled by two mechanisms: (1) modulating the optical absorption cross sections of molecular dyes by exciting specific vibrational functional groups and (2) reducing the PL quantum yield of semiconductor nanocrystals, which was achieved through strong field ionization of excitons. Importantly, MD-WISE microscopy operates under widefield imaging conditions with a field of view of tens of microns, other than the confocal configuration adopted by most nonlinear optical microscopies, which require focusing the optical beams tightly. By demonstrating the capacity of registering multidimensional information into PL images, MD-WISE microscopy has the potential of expanding the number of species and processes that can be simultaneously tracked in high-speed widefield imaging applications.
Collapse
Affiliation(s)
- Chang Yan
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
- Center
for Ultrafast Science and Technology, School of Chemistry and Chemical
Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhangjiang
Institute for Advanced Study, Shanghai Jiao
Tong University, Shanghai 200240, China
| | - Chenglai Wang
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
| | - Jackson C. Wagner
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
| | - Jianyu Ren
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
| | - Carlynda Lee
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
| | - Yuhao Wan
- Department
of Pathology, University of California San
Diego, La Jolla, California 92093, United States
| | - Shizhen E. Wang
- Department
of Pathology, University of California San
Diego, La Jolla, California 92093, United States
| | - Wei Xiong
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
- Materials
Science and Engineering Program, University
of California San Diego, La Jolla, California 92093, United States
- Department
of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
16
|
Park C, Lim JM, Hong SC, Cho M. Monitoring the synthesis of neutral lipids in lipid droplets of living human cancer cells using two-color infrared photothermal microscopy. Chem Sci 2024; 15:1237-1247. [PMID: 38274065 PMCID: PMC10806728 DOI: 10.1039/d3sc04705a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/25/2023] [Indexed: 01/27/2024] Open
Abstract
There has been growing interest in the functions of lipid droplets (LDs) due to recent discoveries regarding their diverse roles. These functions encompass lipid metabolism, regulation of lipotoxicity, and signaling pathways that extend beyond their traditional role in energy storage. Consequently, there is a need to examine the molecular dynamics of LDs at the subcellular level. Two-color infrared photothermal microscopy (2C-IPM) has proven to be a valuable tool for elucidating the molecular dynamics occurring in LDs with sub-micrometer spatial resolution and molecular specificity. In this study, we employed the 2C-IPM to investigate the molecular dynamics of LDs in both fixed and living human cancer cells (U2OS cells) using the isotope labeling method. We investigated the synthesis of neutral lipids occurring in individual LDs over time after exposing the cells to excess saturated fatty acids while simultaneously comparing inherent lipid contents in LDs. We anticipate that these research findings will reveal new opportunities for studying lesser-known biological processes within LDs and other subcellular organelles.
Collapse
Affiliation(s)
- Chanjong Park
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science Seoul 02841 Korea
- Department of Chemistry, Korea University Seoul 02841 Korea
| | - Jong Min Lim
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science Seoul 02841 Korea
| | - Seok-Cheol Hong
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science Seoul 02841 Korea
- Department of Physics, Korea University Seoul 02841 Korea
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science Seoul 02841 Korea
- Department of Chemistry, Korea University Seoul 02841 Korea
| |
Collapse
|
17
|
Kobayashi-Kirschvink KJ, Comiter CS, Gaddam S, Joren T, Grody EI, Ounadjela JR, Zhang K, Ge B, Kang JW, Xavier RJ, So PTC, Biancalani T, Shu J, Regev A. Prediction of single-cell RNA expression profiles in live cells by Raman microscopy with Raman2RNA. Nat Biotechnol 2024:10.1038/s41587-023-02082-2. [PMID: 38200118 PMCID: PMC11233426 DOI: 10.1038/s41587-023-02082-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/01/2023] [Indexed: 01/12/2024]
Abstract
Single-cell RNA sequencing and other profiling assays have helped interrogate cells at unprecedented resolution and scale, but are inherently destructive. Raman microscopy reports on the vibrational energy levels of proteins and metabolites in a label-free and nondestructive manner at subcellular spatial resolution, but it lacks genetic and molecular interpretability. Here we present Raman2RNA (R2R), a method to infer single-cell expression profiles in live cells through label-free hyperspectral Raman microscopy images and domain translation. We predict single-cell RNA sequencing profiles nondestructively from Raman images using either anchor-based integration with single molecule fluorescence in situ hybridization, or anchor-free generation with adversarial autoencoders. R2R outperformed inference from brightfield images (cosine similarities: R2R >0.85 and brightfield <0.15). In reprogramming of mouse fibroblasts into induced pluripotent stem cells, R2R inferred the expression profiles of various cell states. With live-cell tracking of mouse embryonic stem cell differentiation, R2R traced the early emergence of lineage divergence and differentiation trajectories, overcoming discontinuities in expression space. R2R lays a foundation for future exploration of live genomic dynamics.
Collapse
Affiliation(s)
- Koseki J Kobayashi-Kirschvink
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Charles S Comiter
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Shreya Gaddam
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Genentech, South San Francisco, CA, USA
| | - Taylor Joren
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Emanuelle I Grody
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Johain R Ounadjela
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ke Zhang
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Baoliang Ge
- Department of Mechanical and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jeon Woong Kang
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ramnik J Xavier
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Computational and Integrative Biology and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Peter T C So
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tommaso Biancalani
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Genentech, South San Francisco, CA, USA.
| | - Jian Shu
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Genentech, South San Francisco, CA, USA.
| |
Collapse
|
18
|
Bai Y, Camargo CM, Glasauer SMK, Gifford R, Tian X, Longhini AP, Kosik KS. Single-cell mapping of lipid metabolites using an infrared probe in human-derived model systems. Nat Commun 2024; 15:350. [PMID: 38191490 PMCID: PMC10774263 DOI: 10.1038/s41467-023-44675-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 12/20/2023] [Indexed: 01/10/2024] Open
Abstract
Understanding metabolic heterogeneity is the key to uncovering the underlying mechanisms of metabolic-related diseases. Current metabolic imaging studies suffer from limitations including low resolution and specificity, and the model systems utilized often lack human relevance. Here, we present a single-cell metabolic imaging platform to enable direct imaging of lipid metabolism with high specificity in various human-derived 2D and 3D culture systems. Through the incorporation of an azide-tagged infrared probe, selective detection of newly synthesized lipids in cells and tissue became possible, while simultaneous fluorescence imaging enabled cell-type identification in complex tissues. In proof-of-concept experiments, newly synthesized lipids were directly visualized in human-relevant model systems among different cell types, mutation status, differentiation stages, and over time. We identified upregulated lipid metabolism in progranulin-knockdown human induced pluripotent stem cells and in their differentiated microglia cells. Furthermore, we observed that neurons in brain organoids exhibited a significantly lower lipid metabolism compared to astrocytes.
Collapse
Affiliation(s)
- Yeran Bai
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA.
- Photothermal Spectroscopy Corp., Santa Barbara, CA, USA.
| | - Carolina M Camargo
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Stella M K Glasauer
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Raymond Gifford
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Xinran Tian
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Andrew P Longhini
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Kenneth S Kosik
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA.
| |
Collapse
|
19
|
Zong H, Yurdakul C, Zhao J, Wang Z, Chen F, Ünlü MS, Cheng JX. Bond-selective full-field optical coherence tomography. OPTICS EXPRESS 2023; 31:41202-41218. [PMID: 38087525 DOI: 10.1364/oe.503861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023]
Abstract
Optical coherence tomography (OCT) is a label-free, non-invasive 3D imaging tool widely used in both biological research and clinical diagnosis. Conventional OCT modalities can only visualize specimen tomography without chemical information. Here, we report a bond-selective full-field OCT (BS-FF-OCT), in which a pulsed mid-infrared laser is used to modulate the OCT signal through the photothermal effect, achieving label-free bond-selective 3D sectioned imaging of highly scattering samples. We first demonstrate BS-FF-OCT imaging of 1 µm PMMA beads embedded in agarose gel. Next, we show 3D hyperspectral imaging of up to 75 µm of polypropylene fiber mattress from a standard surgical mask. We then demonstrate BS-FF-OCT imaging on biological samples, including cancer cell spheroids and C. elegans. Using an alternative pulse timing configuration, we finally demonstrate the capability of BS-FF-OCT on imaging a highly scattering myelinated axons region in a mouse brain tissue slice.
Collapse
|
20
|
Kato R, Maeda K, Yano TA, Tanaka K, Tanaka T. Label-free visualization of photosynthetic microbial biofilms using mid-infrared photothermal and autofluorescence imaging. Analyst 2023; 148:6241-6247. [PMID: 37947037 DOI: 10.1039/d3an01453c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The formation of photosynthetic microbial biofilms comprising multispecies biomolecules, such as extracellular polymeric substances (EPSs), and microbial cells play pivotal roles in maintaining or stimulating their biological functions. Although there are numerous studies on photosynthetic microbial biofilms, the spatial distribution of EPS components that are vital for microbial biofilm formation, such as exopolysaccharides and proteins, is not well understood. Visualization of photosynthetic microbial biofilms requires label-free methods, because labelling EPSs results in structural changes or aggregation. Raman spectroscopy is useful for label-free visualization of biofilm constituents based on chemical contrast. However, interference resulting from the bright autofluorescence of photosynthetic molecules and the low detection efficiency of Raman scattering make visualization a challenge. Herein, we visualized photosynthetic microbial biofilms in a label-free manner using a super-resolution optical infrared absorption imaging technique, called mid-infrared photothermal (MIP) microscopy. By leveraging the advantages of MIP microscopy, such as its sub-micrometer spatial resolution, autofluorescence-free features, and high detection sensitivity, the distribution of cyanobacteria and their extracellular polysaccharides in the biofilm matrix were successfully visualized. This showed that cyanobacterial cells were aligned along acidic/sulfated polysaccharides in the extracellular environment. Furthermore, spectroscopic analyses elucidated that during formation of biofilms, sulfated polysaccharides initially form linear structures followed by entrapment of cyanobacterial cells. The present study provides the foundation for further studies on the formation, structure, and biological functions of microbial biofilms.
Collapse
Affiliation(s)
- Ryo Kato
- Institute of Post-LED Photonics, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima, Tokushima 770-0856, Japan.
- Innovative Photon Manipulation Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
- Metamaterials Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Kaisei Maeda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Midori-Ku, Yokohama, Kanagawa 226-8503, Japan.
| | - Taka-Aki Yano
- Institute of Post-LED Photonics, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima, Tokushima 770-0856, Japan.
- Innovative Photon Manipulation Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
- Metamaterials Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Kan Tanaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Midori-Ku, Yokohama, Kanagawa 226-8503, Japan.
| | - Takuo Tanaka
- Institute of Post-LED Photonics, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima, Tokushima 770-0856, Japan.
- Innovative Photon Manipulation Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
- Metamaterials Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| |
Collapse
|
21
|
Astratov VN, Sahel YB, Eldar YC, Huang L, Ozcan A, Zheludev N, Zhao J, Burns Z, Liu Z, Narimanov E, Goswami N, Popescu G, Pfitzner E, Kukura P, Hsiao YT, Hsieh CL, Abbey B, Diaspro A, LeGratiet A, Bianchini P, Shaked NT, Simon B, Verrier N, Debailleul M, Haeberlé O, Wang S, Liu M, Bai Y, Cheng JX, Kariman BS, Fujita K, Sinvani M, Zalevsky Z, Li X, Huang GJ, Chu SW, Tzang O, Hershkovitz D, Cheshnovsky O, Huttunen MJ, Stanciu SG, Smolyaninova VN, Smolyaninov II, Leonhardt U, Sahebdivan S, Wang Z, Luk’yanchuk B, Wu L, Maslov AV, Jin B, Simovski CR, Perrin S, Montgomery P, Lecler S. Roadmap on Label-Free Super-Resolution Imaging. LASER & PHOTONICS REVIEWS 2023; 17:2200029. [PMID: 38883699 PMCID: PMC11178318 DOI: 10.1002/lpor.202200029] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Indexed: 06/18/2024]
Abstract
Label-free super-resolution (LFSR) imaging relies on light-scattering processes in nanoscale objects without a need for fluorescent (FL) staining required in super-resolved FL microscopy. The objectives of this Roadmap are to present a comprehensive vision of the developments, the state-of-the-art in this field, and to discuss the resolution boundaries and hurdles which need to be overcome to break the classical diffraction limit of the LFSR imaging. The scope of this Roadmap spans from the advanced interference detection techniques, where the diffraction-limited lateral resolution is combined with unsurpassed axial and temporal resolution, to techniques with true lateral super-resolution capability which are based on understanding resolution as an information science problem, on using novel structured illumination, near-field scanning, and nonlinear optics approaches, and on designing superlenses based on nanoplasmonics, metamaterials, transformation optics, and microsphere-assisted approaches. To this end, this Roadmap brings under the same umbrella researchers from the physics and biomedical optics communities in which such studies have often been developing separately. The ultimate intent of this paper is to create a vision for the current and future developments of LFSR imaging based on its physical mechanisms and to create a great opening for the series of articles in this field.
Collapse
Affiliation(s)
- Vasily N. Astratov
- Department of Physics and Optical Science, University of North Carolina at Charlotte, Charlotte, North Carolina 28223-0001, USA
| | - Yair Ben Sahel
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yonina C. Eldar
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Luzhe Huang
- Electrical and Computer Engineering Department, University of California, Los Angeles, California 90095, USA
- Bioengineering Department, University of California, Los Angeles, California 90095, USA
- California Nano Systems Institute (CNSI), University of California, Los Angeles, California 90095, USA
| | - Aydogan Ozcan
- Electrical and Computer Engineering Department, University of California, Los Angeles, California 90095, USA
- Bioengineering Department, University of California, Los Angeles, California 90095, USA
- California Nano Systems Institute (CNSI), University of California, Los Angeles, California 90095, USA
- David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| | - Nikolay Zheludev
- Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ, UK
- Centre for Disruptive Photonic Technologies, The Photonics Institute, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Junxiang Zhao
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Zachary Burns
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Zhaowei Liu
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
- Material Science and Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Evgenii Narimanov
- School of Electrical Engineering, and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA
| | - Neha Goswami
- Quantitative Light Imaging Laboratory, Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-Champaign, Illinois 61801, USA
| | - Gabriel Popescu
- Quantitative Light Imaging Laboratory, Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-Champaign, Illinois 61801, USA
| | - Emanuel Pfitzner
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | - Philipp Kukura
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | - Yi-Teng Hsiao
- Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica 1, Roosevelt Rd. Sec. 4, Taipei 10617 Taiwan
| | - Chia-Lung Hsieh
- Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica 1, Roosevelt Rd. Sec. 4, Taipei 10617 Taiwan
| | - Brian Abbey
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, La Trobe University, Melbourne, Victoria, Australia
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria, Australia
| | - Alberto Diaspro
- Optical Nanoscopy and NIC@IIT, CHT, Istituto Italiano di Tecnologia, Via Enrico Melen 83B, 16152 Genoa, Italy
- DIFILAB, Department of Physics, University of Genoa, Via Dodecaneso 33, 16146 Genoa, Italy
| | - Aymeric LeGratiet
- Optical Nanoscopy and NIC@IIT, CHT, Istituto Italiano di Tecnologia, Via Enrico Melen 83B, 16152 Genoa, Italy
- Université de Rennes, CNRS, Institut FOTON - UMR 6082, F-22305 Lannion, France
| | - Paolo Bianchini
- Optical Nanoscopy and NIC@IIT, CHT, Istituto Italiano di Tecnologia, Via Enrico Melen 83B, 16152 Genoa, Italy
- DIFILAB, Department of Physics, University of Genoa, Via Dodecaneso 33, 16146 Genoa, Italy
| | - Natan T. Shaked
- Tel Aviv University, Faculty of Engineering, Department of Biomedical Engineering, Tel Aviv 6997801, Israel
| | - Bertrand Simon
- LP2N, Institut d’Optique Graduate School, CNRS UMR 5298, Université de Bordeaux, Talence France
| | - Nicolas Verrier
- IRIMAS UR UHA 7499, Université de Haute-Alsace, Mulhouse, France
| | | | - Olivier Haeberlé
- IRIMAS UR UHA 7499, Université de Haute-Alsace, Mulhouse, France
| | - Sheng Wang
- School of Physics and Technology, Wuhan University, China
- Wuhan Institute of Quantum Technology, China
| | - Mengkun Liu
- Department of Physics and Astronomy, Stony Brook University, USA
- National Synchrotron Light Source II, Brookhaven National Laboratory, USA
| | - Yeran Bai
- Boston University Photonics Center, Boston, MA 02215, USA
| | - Ji-Xin Cheng
- Boston University Photonics Center, Boston, MA 02215, USA
| | - Behjat S. Kariman
- Optical Nanoscopy and NIC@IIT, CHT, Istituto Italiano di Tecnologia, Via Enrico Melen 83B, 16152 Genoa, Italy
- DIFILAB, Department of Physics, University of Genoa, Via Dodecaneso 33, 16146 Genoa, Italy
| | - Katsumasa Fujita
- Department of Applied Physics and the Advanced Photonics and Biosensing Open Innovation Laboratory (AIST); and the Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Moshe Sinvani
- Faculty of Engineering and the Nano-Technology Center, Bar-Ilan University, Ramat Gan, 52900 Israel
| | - Zeev Zalevsky
- Faculty of Engineering and the Nano-Technology Center, Bar-Ilan University, Ramat Gan, 52900 Israel
| | - Xiangping Li
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
| | - Guan-Jie Huang
- Department of Physics and Molecular Imaging Center, National Taiwan University, Taipei 10617, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Shi-Wei Chu
- Department of Physics and Molecular Imaging Center, National Taiwan University, Taipei 10617, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Omer Tzang
- School of Chemistry, The Sackler faculty of Exact Sciences, and the Center for Light matter Interactions, and the Tel Aviv University Center for Nanoscience and Nanotechnology, Tel Aviv 69978, Israel
| | - Dror Hershkovitz
- School of Chemistry, The Sackler faculty of Exact Sciences, and the Center for Light matter Interactions, and the Tel Aviv University Center for Nanoscience and Nanotechnology, Tel Aviv 69978, Israel
| | - Ori Cheshnovsky
- School of Chemistry, The Sackler faculty of Exact Sciences, and the Center for Light matter Interactions, and the Tel Aviv University Center for Nanoscience and Nanotechnology, Tel Aviv 69978, Israel
| | - Mikko J. Huttunen
- Laboratory of Photonics, Physics Unit, Tampere University, FI-33014, Tampere, Finland
| | - Stefan G. Stanciu
- Center for Microscopy – Microanalysis and Information Processing, Politehnica University of Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| | - Vera N. Smolyaninova
- Department of Physics Astronomy and Geosciences, Towson University, 8000 York Rd., Towson, MD 21252, USA
| | - Igor I. Smolyaninov
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742, USA
| | - Ulf Leonhardt
- Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sahar Sahebdivan
- EMTensor GmbH, TechGate, Donau-City-Strasse 1, 1220 Wien, Austria
| | - Zengbo Wang
- School of Computer Science and Electronic Engineering, Bangor University, Bangor, LL57 1UT, United Kingdom
| | - Boris Luk’yanchuk
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Limin Wu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Alexey V. Maslov
- Department of Radiophysics, University of Nizhny Novgorod, Nizhny Novgorod, 603022, Russia
| | - Boya Jin
- Department of Physics and Optical Science, University of North Carolina at Charlotte, Charlotte, North Carolina 28223-0001, USA
| | - Constantin R. Simovski
- Department of Electronics and Nano-Engineering, Aalto University, FI-00076, Espoo, Finland
- Faculty of Physics and Engineering, ITMO University, 199034, St-Petersburg, Russia
| | - Stephane Perrin
- ICube Research Institute, University of Strasbourg - CNRS - INSA de Strasbourg, 300 Bd. Sébastien Brant, 67412 Illkirch, France
| | - Paul Montgomery
- ICube Research Institute, University of Strasbourg - CNRS - INSA de Strasbourg, 300 Bd. Sébastien Brant, 67412 Illkirch, France
| | - Sylvain Lecler
- ICube Research Institute, University of Strasbourg - CNRS - INSA de Strasbourg, 300 Bd. Sébastien Brant, 67412 Illkirch, France
| |
Collapse
|
22
|
Samolis P, Zhu X, Sander MY. Time-Resolved Mid-Infrared Photothermal Microscopy for Imaging Water-Embedded Axon Bundles. Anal Chem 2023; 95:16514-16521. [PMID: 37880191 PMCID: PMC10652238 DOI: 10.1021/acs.analchem.3c02352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/07/2023] [Indexed: 10/27/2023]
Abstract
Few experimental tools exist for performing label-free imaging of biological samples in a water-rich environment due to the high infrared absorption of water, overlapping with major protein and lipid bands. A novel imaging modality based on time-resolved mid-infrared photothermal microscopy is introduced and applied to imaging axon bundles in a saline bath environment. Photothermally induced spatial gradients at the axon bundle membrane interfaces with saline and surrounding biological tissue are observed and temporally characterized by a high-speed boxcar detection system. Localized time profiles with an enhanced signal-to-noise, hyper-temporal image stacks, and two-dimensional mapping of the time decay profiles are acquired without the need for complex post image processing. Axon bundles are found to have a larger distribution of time decay profiles compared to the water background, allowing background differentiation based on these transient dynamics. The quantitative analysis of the signal evolution over time allows characterizing the level of thermal confinement at different regions. When axon bundles are surrounded by complex heterogeneous tissue, which contains smaller features, a stronger thermal confinement is observed compared to a water environment, thus shedding light on the heat transfer dynamics across aqueous biological interfaces.
Collapse
Affiliation(s)
- Panagis
D. Samolis
- Department
of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
- Photonics
Center, Boston University, Boston, Massachusetts 02215, United States
| | - Xuedong Zhu
- Photonics
Center, Boston University, Boston, Massachusetts 02215, United States
- Department
of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Michelle Y. Sander
- Department
of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
- Photonics
Center, Boston University, Boston, Massachusetts 02215, United States
- Department
of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
- Division
of Materials Science and Engineering, Boston
University, Brookline, Massachusetts 02446, United States
| |
Collapse
|
23
|
Wang H, Meyer SM, Murphy CJ, Chen YS, Zhao Y. Visualizing ultrafast photothermal dynamics with decoupled optical force nanoscopy. Nat Commun 2023; 14:7267. [PMID: 37949867 PMCID: PMC10638245 DOI: 10.1038/s41467-023-42666-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/18/2023] [Indexed: 11/12/2023] Open
Abstract
The photothermal effect in nanomaterials, resulting from resonant optical absorption, finds wide applications in biomedicine, cancer therapy, and microscopy. Despite its prevalence, the photothermal effect in light-absorbing nanoparticles has typically been assessed using bulk measurements, neglecting near-field effects. Beyond standard imaging and therapeutic uses, nanosecond-transient photothermal effects have been harnessed for bacterial inactivation, neural stimulation, drug delivery, and chemical synthesis. While scanning probe microscopy and electron microscopy offer single-particle imaging of photothermal fields, their slow speed limits observations to milliseconds or seconds, preventing nanoscale dynamic investigations. Here, we introduce decoupled optical force nanoscopy (Dofn), enabling nanometer-scale mapping of photothermal forces by exploiting unique phase responses to temporal modulation. We employ the photothermal effect's back-action to distinguish various time frames within a modulation period. This allows us to capture the dynamic photothermal process of a single gold nanorod in the nanosecond range, providing insights into non-stationary thermal diffusion at the nanoscale.
Collapse
Affiliation(s)
- Hanwei Wang
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Nick Holonyak Micro and Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Sean M Meyer
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Catherine J Murphy
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Yun-Sheng Chen
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Nick Holonyak Micro and Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Yang Zhao
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Nick Holonyak Micro and Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute of Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
24
|
Xia Q, Guo Z, Zong H, Seitz S, Yurdakul C, Ünlü MS, Wang L, Connor JH, Cheng JX. Single virus fingerprinting by widefield interferometric defocus-enhanced mid-infrared photothermal microscopy. Nat Commun 2023; 14:6655. [PMID: 37863905 PMCID: PMC10589364 DOI: 10.1038/s41467-023-42439-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023] Open
Abstract
Clinical identification and fundamental study of viruses rely on the detection of viral proteins or viral nucleic acids. Yet, amplification-based and antigen-based methods are not able to provide precise compositional information of individual virions due to small particle size and low-abundance chemical contents (e.g., ~ 5000 proteins in a vesicular stomatitis virus). Here, we report a widefield interferometric defocus-enhanced mid-infrared photothermal (WIDE-MIP) microscope for high-throughput fingerprinting of single viruses. With the identification of feature absorption peaks, WIDE-MIP reveals the contents of viral proteins and nucleic acids in single DNA vaccinia viruses and RNA vesicular stomatitis viruses. Different nucleic acid signatures of thymine and uracil residue vibrations are obtained to differentiate DNA and RNA viruses. WIDE-MIP imaging further reveals an enriched β sheet components in DNA varicella-zoster virus proteins. Together, these advances open a new avenue for compositional analysis of viral vectors and elucidating protein function in an assembled virion.
Collapse
Affiliation(s)
- Qing Xia
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| | - Zhongyue Guo
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Haonan Zong
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| | - Scott Seitz
- Department of Microbiology and National Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Celalettin Yurdakul
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| | - M Selim Ünlü
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| | - Le Wang
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| | - John H Connor
- Department of Microbiology and National Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA, 02118, USA.
| | - Ji-Xin Cheng
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
- Photonics Center, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
25
|
Yeh K, Sharma I, Falahkheirkhah K, Confer MP, Orr AC, Liu YT, Phal Y, Ho RJ, Mehta M, Bhargava A, Mei W, Cheng G, Cheville JC, Bhargava R. Infrared spectroscopic laser scanning confocal microscopy for whole-slide chemical imaging. Nat Commun 2023; 14:5215. [PMID: 37626026 PMCID: PMC10457288 DOI: 10.1038/s41467-023-40740-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Chemical imaging, especially mid-infrared spectroscopic microscopy, enables label-free biomedical analyses while achieving expansive molecular sensitivity. However, its slow speed and poor image quality impede widespread adoption. We present a microscope that provides high-throughput recording, low noise, and high spatial resolution where the bottom-up design of its optical train facilitates dual-axis galvo laser scanning of a diffraction-limited focal point over large areas using custom, compound, infinity-corrected refractive objectives. We demonstrate whole-slide, speckle-free imaging in ~3 min per discrete wavelength at 10× magnification (2 μm/pixel) and high-resolution capability with its 20× counterpart (1 μm/pixel), both offering spatial quality at theoretical limits while maintaining high signal-to-noise ratios (>100:1). The data quality enables applications of modern machine learning and capabilities not previously feasible - 3D reconstructions using serial sections, comprehensive assessments of whole model organisms, and histological assessments of disease in time comparable to clinical workflows. Distinct from conventional approaches that focus on morphological investigations or immunostaining techniques, this development makes label-free imaging of minimally processed tissue practical.
Collapse
Affiliation(s)
- Kevin Yeh
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ishaan Sharma
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Kianoush Falahkheirkhah
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Matthew P Confer
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Andres C Orr
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yen-Ting Liu
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yamuna Phal
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ruo-Jing Ho
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Manu Mehta
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ankita Bhargava
- University of Illinois Laboratory High School, Urbana, IL, 61801, USA
| | - Wenyan Mei
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Georgina Cheng
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Carle Health, Urbana, IL, 61801, USA
| | - John C Cheville
- Department of Laboratory Medicine and Pathology, College of Medicine and Science, Mayo Clinic, Rochester, MN, 55905, USA
| | - Rohit Bhargava
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
26
|
Ishigane G, Toda K, Tamamitsu M, Shimada H, Badarla VR, Ideguchi T. Label-free mid-infrared photothermal live-cell imaging beyond video rate. LIGHT, SCIENCE & APPLICATIONS 2023; 12:174. [PMID: 37463888 DOI: 10.1038/s41377-023-01214-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/20/2023]
Abstract
Advancement in mid-infrared (MIR) technology has led to promising biomedical applications of MIR spectroscopy, such as liquid biopsy or breath diagnosis. On the contrary, MIR microscopy has been rarely used for live biological samples in an aqueous environment due to the lack of spatial resolution and the large water absorption background. Recently, mid-infrared photothermal (MIP) imaging has proven to be applicable to 2D and 3D single-cell imaging with high spatial resolution inherited from visible light. However, the maximum measurement rate has been limited to several frames s-1, limiting its range of use. Here, we develop a significantly improved wide-field MIP quantitative phase microscope with two orders-of-magnitude higher signal-to-noise ratio than previous MIP imaging techniques and demonstrate live-cell imaging beyond video rate. We first derive optimal system design by numerically simulating thermal conduction following the photothermal effect. Then, we develop the designed system with a homemade nanosecond MIR optical parametric oscillator and a high full-well-capacity image sensor. Our high-speed and high-spatial-resolution MIR microscope has great potential to become a new tool for life science, in particular for live-cell analysis.
Collapse
Affiliation(s)
- Genki Ishigane
- Department of Physics, The University of Tokyo, Tokyo, Japan
| | - Keiichiro Toda
- Department of Physics, The University of Tokyo, Tokyo, Japan
- Institute for Photon Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Miu Tamamitsu
- Department of Physics, The University of Tokyo, Tokyo, Japan
- Institute for Photon Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Shimada
- Institute for Photon Science and Technology, The University of Tokyo, Tokyo, Japan
| | | | - Takuro Ideguchi
- Department of Physics, The University of Tokyo, Tokyo, Japan.
- Institute for Photon Science and Technology, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
27
|
Jia D, Zhang Y, Yang Q, Xue Y, Tan Y, Guo Z, Zhang M, Tian L, Cheng JX. 3D Chemical Imaging by Fluorescence-detected Mid-Infrared Photothermal Fourier Light Field Microscopy. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:260-267. [PMID: 37388959 PMCID: PMC10302888 DOI: 10.1021/cbmi.3c00022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 07/01/2023]
Abstract
Three-dimensional molecular imaging of living organisms and cells plays a significant role in modern biology. Yet, current volumetric imaging modalities are largely fluorescence-based and thus lack chemical content information. Mid-infrared photothermal microscopy as a chemical imaging technology provides infrared spectroscopic information at submicrometer spatial resolution. Here, by harnessing thermosensitive fluorescent dyes to sense the mid-infrared photothermal effect, we demonstrate 3D fluorescence-detected mid-infrared photothermal Fourier light field (FMIP-FLF) microscopy at the speed of 8 volumes per second and submicron spatial resolution. Protein contents in bacteria and lipid droplets in living pancreatic cancer cells are visualized. Altered lipid metabolism in drug-resistant pancreatic cancer cells is observed with the FMIP-FLF microscope.
Collapse
Affiliation(s)
- Danchen Jia
- Department
of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Yi Zhang
- Department
of Physics, Boston University, Boston, Massachusetts 02215, United States
| | - Qianwan Yang
- Department
of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Yujia Xue
- Department
of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Yuying Tan
- Department
of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Zhongyue Guo
- Department
of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Meng Zhang
- Department
of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Lei Tian
- Department
of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
- Department
of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Ji-Xin Cheng
- Department
of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
- Department
of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
28
|
Yin J, Zhang M, Tan Y, Guo Z, He H, Lan L, Cheng JX. Video-rate mid-infrared photothermal imaging by single-pulse photothermal detection per pixel. SCIENCE ADVANCES 2023; 9:eadg8814. [PMID: 37315131 PMCID: PMC10266719 DOI: 10.1126/sciadv.adg8814] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/09/2023] [Indexed: 06/16/2023]
Abstract
By optically sensing absorption-induced photothermal effect, mid-infrared (IR) photothermal (MIP) microscope enables super-resolution IR imaging of biological systems in water. However, the speed of current sample-scanning MIP system is limited to milliseconds per pixel, which is insufficient for capturing living dynamics. By detecting the transient photothermal signal induced by a single IR pulse through fast digitization, we report a laser-scanning MIP microscope that increases the imaging speed by three orders of magnitude. To realize single-pulse photothermal detection, we use synchronized galvo scanning of both mid-IR and probe beams to achieve an imaging line rate of more than 2 kilohertz. With video-rate speed, we observed the dynamics of various biomolecules in living organisms at multiple scales. Furthermore, by using hyperspectral imaging, we chemically dissected the layered ultrastructure of fungal cell wall. Last, with a uniform field of view more than 200 by 200 square micrometer, we mapped fat storage in free-moving Caenorhabditis elegans and live embryos.
Collapse
Affiliation(s)
- Jiaze Yin
- Department of Electrical & Computer Engineering, Boston University, Boston, MA 02215, USA
| | - Meng Zhang
- Department of Electrical & Computer Engineering, Boston University, Boston, MA 02215, USA
| | - Yuying Tan
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Zhongyue Guo
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Hongjian He
- Department of Electrical & Computer Engineering, Boston University, Boston, MA 02215, USA
| | - Lu Lan
- Department of Electrical & Computer Engineering, Boston University, Boston, MA 02215, USA
| | - Ji-Xin Cheng
- Department of Electrical & Computer Engineering, Boston University, Boston, MA 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Photonics Center, Boston University, Boston, MA 02215, USA
| |
Collapse
|
29
|
Zhao J, Jiang L, Matlock A, Xu Y, Zhu J, Zhu H, Tian L, Wolozin B, Cheng JX. Mid-infrared chemical imaging of intracellular tau fibrils using fluorescence-guided computational photothermal microscopy. LIGHT, SCIENCE & APPLICATIONS 2023; 12:147. [PMID: 37322011 PMCID: PMC10272128 DOI: 10.1038/s41377-023-01191-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/18/2023] [Accepted: 05/21/2023] [Indexed: 06/17/2023]
Abstract
Amyloid proteins are associated with a broad spectrum of neurodegenerative diseases. However, it remains a grand challenge to extract molecular structure information from intracellular amyloid proteins in their native cellular environment. To address this challenge, we developed a computational chemical microscope integrating 3D mid-infrared photothermal imaging with fluorescence imaging, termed Fluorescence-guided Bond-Selective Intensity Diffraction Tomography (FBS-IDT). Based on a low-cost and simple optical design, FBS-IDT enables chemical-specific volumetric imaging and 3D site-specific mid-IR fingerprint spectroscopic analysis of tau fibrils, an important type of amyloid protein aggregates, in their intracellular environment. Label-free volumetric chemical imaging of human cells with/without seeded tau fibrils is demonstrated to show the potential correlation between lipid accumulation and tau aggregate formation. Depth-resolved mid-infrared fingerprint spectroscopy is performed to reveal the protein secondary structure of the intracellular tau fibrils. 3D visualization of the β-sheet for tau fibril structure is achieved.
Collapse
Affiliation(s)
- Jian Zhao
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA.
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA.
| | - Lulu Jiang
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Alex Matlock
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Yihong Xu
- Department of Physics, Boston University, Boston, MA, 02215, USA
| | - Jiabei Zhu
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| | - Hongbo Zhu
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 130033, Changchun, China
| | - Lei Tian
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Benjamin Wolozin
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Ji-Xin Cheng
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA.
- Department of Physics, Boston University, Boston, MA, 02215, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
- Photonics Center, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
30
|
Bhargava R. Digital Histopathology by Infrared Spectroscopic Imaging. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2023; 16:205-230. [PMID: 37068745 PMCID: PMC10408309 DOI: 10.1146/annurev-anchem-101422-090956] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Infrared (IR) spectroscopic imaging records spatially resolved molecular vibrational spectra, enabling a comprehensive measurement of the chemical makeup and heterogeneity of biological tissues. Combining this novel contrast mechanism in microscopy with the use of artificial intelligence can transform the practice of histopathology, which currently relies largely on human examination of morphologic patterns within stained tissue. First, this review summarizes IR imaging instrumentation especially suited to histopathology, analyses of its performance, and major trends. Second, an overview of data processing methods and application of machine learning is given, with an emphasis on the emerging use of deep learning. Third, a discussion on workflows in pathology is provided, with four categories proposed based on the complexity of methods and the analytical performance needed. Last, a set of guidelines, termed experimental and analytical specifications for spectroscopic imaging in histopathology, are proposed to help standardize the diversity of approaches in this emerging area.
Collapse
Affiliation(s)
- Rohit Bhargava
- Department of Bioengineering; Department of Electrical and Computer Engineering; Department of Mechanical Science and Engineering; Department of Chemical and Biomolecular Engineering; Department of Chemistry; Cancer Center at Illinois; and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
| |
Collapse
|
31
|
Tang M, Han Y, Jia D, Yang Q, Cheng JX. Far-field super-resolution chemical microscopy. LIGHT, SCIENCE & APPLICATIONS 2023; 12:137. [PMID: 37277396 PMCID: PMC10240140 DOI: 10.1038/s41377-023-01182-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 06/07/2023]
Abstract
Far-field chemical microscopy providing molecular electronic or vibrational fingerprint information opens a new window for the study of three-dimensional biological, material, and chemical systems. Chemical microscopy provides a nondestructive way of chemical identification without exterior labels. However, the diffraction limit of optics hindered it from discovering more details under the resolution limit. Recent development of super-resolution techniques gives enlightenment to open this door behind far-field chemical microscopy. Here, we review recent advances that have pushed the boundary of far-field chemical microscopy in terms of spatial resolution. We further highlight applications in biomedical research, material characterization, environmental study, cultural heritage conservation, and integrated chip inspection.
Collapse
Affiliation(s)
- Mingwei Tang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Intelligent Perception Research Institute, Zhejiang Lab, Hangzhou, 311100, China
| | - Yubing Han
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Danchen Jia
- Department of Biomedical Engineering, Department of Electrical and Computer Engineering, Photonics Center, Boston University, Boston, MA, 02459, USA
| | - Qing Yang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Intelligent Perception Research Institute, Zhejiang Lab, Hangzhou, 311100, China
| | - Ji-Xin Cheng
- Department of Biomedical Engineering, Department of Electrical and Computer Engineering, Photonics Center, Boston University, Boston, MA, 02459, USA.
| |
Collapse
|
32
|
Wang H, Lee D, Wei L. Toward the Next Frontiers of Vibrational Bioimaging. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:3-17. [PMID: 37122829 PMCID: PMC10131268 DOI: 10.1021/cbmi.3c00004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 05/02/2023]
Abstract
Chemical imaging based on vibrational contrasts can extract molecular information entangled in complex biological systems. To this end, nonlinear Raman scattering microscopy, mid-infrared photothermal (MIP) microscopy, and atomic force microscopy (AFM)-based force-detected photothermal microscopies are emerging with better chemical sensitivity, molecular specificity, and spatial resolution than conventional vibrational methods. Their utilization in bioimaging applications has provided biological knowledge in unprecedented detail. This Perspective outlines key methodological developments, bioimaging applications, and recent technical innovations of the three techniques. Representative biological demonstrations are also highlighted to exemplify the unique advantages of obtaining vibrational contrasts. With years of effort, these three methods compose an expanding vibrational bioimaging toolbox to tackle specific bioimaging needs, benefiting many biological investigations with rich information in both label-free and labeling manners. Each technique will be discussed and compared in the outlook, leading to possible future directions to accommodate growing needs in vibrational bioimaging.
Collapse
Affiliation(s)
- Haomin Wang
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Dongkwan Lee
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Lu Wei
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
33
|
Kato R, Yano TA, Tanaka T. Single-cell infrared vibrational analysis by optical trapping mid-infrared photothermal microscopy. Analyst 2023; 148:1285-1290. [PMID: 36811918 DOI: 10.1039/d2an01917e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Single-cell analysis by means of vibrational spectroscopy combined with optical trapping is a reliable platform for unveiling cell-to-cell heterogeneities in vast populations. Although infrared (IR) vibrational spectroscopy provides rich molecular fingerprint information on biological samples in a label-free manner, its application with optical trapping has never been achieved due to weak gradient forces generated by the diffraction-limited focused IR beam and strong background of water absorption. Herein, we present single-cell IR vibrational analysis that incorporates mid-infrared photothermal (MIP) microscopy with optical trapping. Optically trapped single polymer particles and red blood cells (RBCs) in blood could be chemically identified owing to their IR vibrational fingerprints. This single-cell IR vibrational analysis further allowed us to probe the chemical heterogeneities of RBCs originating from the variation in the intracellular characteristics. Our demonstration paves the way for the IR vibrational analysis of single cells and chemical characterization in various fields.
Collapse
Affiliation(s)
- Ryo Kato
- Institute of Post-LED Photonics, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima, Tokushima 770-0856, Japan. .,Innovative Photon Manipulation Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan. .,Metamaterials Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Taka-Aki Yano
- Institute of Post-LED Photonics, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima, Tokushima 770-0856, Japan. .,Innovative Photon Manipulation Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan. .,Metamaterials Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Takuo Tanaka
- Institute of Post-LED Photonics, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima, Tokushima 770-0856, Japan. .,Innovative Photon Manipulation Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan. .,Metamaterials Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| |
Collapse
|
34
|
Yin J, Zhang M, Tan Y, Guo Z, He H, Lan L, Cheng JX. Video-rate Mid-infrared Photothermal Imaging by Single Pulse Photothermal Detection per Pixel. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.27.530116. [PMID: 36909493 PMCID: PMC10002684 DOI: 10.1101/2023.02.27.530116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
By optically sensing the mid-infrared absorption induced photothermal effect, midinfrared photothermal (MIP) microscope enables super-resolution IR imaging and scrutinizing of biological systems in an aqueous environment. However, the speed of current lock-in based sample-scanning MIP system is limited to 1.0 millisecond or longer per pixel, which is insufficient for capturing dynamics inside living systems. Here, we report a single pulse laserscanning MIP microscope that dramatically increases the imaging speed by three orders of magnitude. We harness a lock-in free demodulation scheme which uses high-speed digitization to resolve single IR pulse induced contrast at nanosecond time scale. To realize single pulse photothermal detection at each pixel, we employ two sets of galvo mirrors for synchronized scanning of mid-infrared and probe beams to achieve an imaging line rate over 2 kHz. With video-rate imaging capability, we observed two types of distinct dynamics of lipids in living cells. Furthermore, by hyperspectral imaging, we chemically dissected a single cell wall at nanometer scale. Finally, with a uniform field of view over 200 by 200 μm 2 and 2 Hz frame rate, we mapped fat storage in free-moving C. elegans and live embryos.
Collapse
|
35
|
He H, Yin J, Li M, Teng X, Zhang M, Li Y, Du Z, Xu B, Cheng JX. Mapping Enzyme Activity in Living Systems by Real-Time Mid-Infrared Photothermal Imaging of Nitrile Chameleons. RESEARCH SQUARE 2023:rs.3.rs-2592139. [PMID: 36909612 PMCID: PMC10002843 DOI: 10.21203/rs.3.rs-2592139/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Enzymes are vital components in a variety of physiological and biochemical processes. Participation of various enzyme species are required for many biological events and signaling networks. Thus, spatially mapping the activity of multiple enzymes in a living system is significant for elucidating enzymatic functions in health and connections to diseases. Here, we report the development of nitrile (C≡N)-tagged enzyme activity reporters, named nitrile chameleons for the shifted peak between substrate and product. By real-time mid-infrared photothermal imaging of the enzymatic substrates and products at 300 nm resolution, our approach can map the activity distribution of different enzymes and quantitate the relative catalytic efficiency in living cancer cells, C. elegans, and brain tissues. An important finding is the direct visualization of caspase-phosphatase cooperation during apoptosis. Our method is generally applicable to a broad category of enzymes and will advance the discovery of potential targets for diagnosis and drug development.
Collapse
Affiliation(s)
- Hongjian He
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
- Photonics Center, Boston University, Boston, MA 02215, USA
| | - Jiaze Yin
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
- Photonics Center, Boston University, Boston, MA 02215, USA
| | - Mingsheng Li
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
- Photonics Center, Boston University, Boston, MA 02215, USA
| | - Xinyan Teng
- Photonics Center, Boston University, Boston, MA 02215, USA
- Department of Chemistry, Boston University, Boston, MA 02215, USA
| | - Meng Zhang
- Photonics Center, Boston University, Boston, MA 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Yueming Li
- Photonics Center, Boston University, Boston, MA 02215, USA
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA
| | - Zhiyi Du
- Photonics Center, Boston University, Boston, MA 02215, USA
- Department of Chemistry, Boston University, Boston, MA 02215, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, Waltham, MA 02453, USA
| | - Ji-Xin Cheng
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
- Photonics Center, Boston University, Boston, MA 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Department of Chemistry, Boston University, Boston, MA 02215, USA
| |
Collapse
|
36
|
Guo Z, Bai Y, Zhang M, Lan L, Cheng JX. High-Throughput Antimicrobial Susceptibility Testing of Escherichia coli by Wide-Field Mid-Infrared Photothermal Imaging of Protein Synthesis. Anal Chem 2023; 95:2238-2244. [PMID: 36651850 DOI: 10.1021/acs.analchem.2c03683] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Antimicrobial resistance poses great threats to global health and economics. Current gold-standard antimicrobial susceptibility testing (AST) requires extensive culture time (36-72 h) to determine susceptibility. There is an urgent need for rapid AST methods to slow down antimicrobial resistance. Here, we present a rapid AST method based on wide-field mid-infrared photothermal imaging of protein synthesis from 13C-glucose in Escherichia coli. Our wide-field approach achieved metabolic imaging for hundreds of bacteria at the single-cell resolution within seconds. The perturbed microbial protein synthesis can be probed within 1 h after antibiotic treatment in E. coli cells. The susceptibility of antibiotics with various mechanisms of action has been probed through monitoring protein synthesis, which promises great potential of the proposed platform toward clinical translation.
Collapse
Affiliation(s)
- Zhongyue Guo
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States.,Photonics Center, Boston University, Boston, Massachusetts 02215, United States
| | - Yeran Bai
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States.,Photonics Center, Boston University, Boston, Massachusetts 02215, United States
| | - Meng Zhang
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States.,Photonics Center, Boston University, Boston, Massachusetts 02215, United States
| | - Lu Lan
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States.,Photonics Center, Boston University, Boston, Massachusetts 02215, United States
| | - Ji-Xin Cheng
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States.,Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States.,Photonics Center, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
37
|
Bai Y, Guo Z, Pereira FC, Wagner M, Cheng JX. Mid-Infrared Photothermal-Fluorescence In Situ Hybridization for Functional Analysis and Genetic Identification of Single Cells. Anal Chem 2023; 95:2398-2405. [PMID: 36652555 PMCID: PMC9893215 DOI: 10.1021/acs.analchem.2c04474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Simultaneous identification and metabolic analysis of microbes with single-cell resolution and high throughput are necessary to answer the question of "who eats what, when, and where" in complex microbial communities. Here, we present a mid-infrared photothermal-fluorescence in situ hybridization (MIP-FISH) platform that enables direct bridging of genotype and phenotype. Through multiple improvements of MIP imaging, the sensitive detection of isotopically labeled compounds incorporated into proteins of individual bacterial cells became possible, while simultaneous detection of FISH labeling with rRNA-targeted probes enabled the identification of the analyzed cells. In proof-of-concept experiments, we showed that the clear spectral red shift in the protein amide I region due to incorporation of 13C atoms originating from 13C-labeled glucose can be exploited by MIP-FISH to discriminate and identify 13C-labeled bacterial cells within a complex human gut microbiome sample. The presented methods open new opportunities for single-cell structure-function analyses for microbiology.
Collapse
Affiliation(s)
- Yeran Bai
- Department
of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States,Photonics
Center, Boston University, Boston, Massachusetts 02215, United States
| | - Zhongyue Guo
- Department
of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States,Photonics
Center, Boston University, Boston, Massachusetts 02215, United States
| | - Fátima C. Pereira
- Centre
for Microbiology and Environmental Systems Science, Department of
Microbiology and Ecosystem Science, University
of Vienna, Vienna 1030, Austria
| | - Michael Wagner
- Centre
for Microbiology and Environmental Systems Science, Department of
Microbiology and Ecosystem Science, University
of Vienna, Vienna 1030, Austria,Department
of Chemistry and Bioscience, Aalborg University, Aalborg 9220, Denmark,
| | - Ji-Xin Cheng
- Department
of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States,Department
of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States,Photonics
Center, Boston University, Boston, Massachusetts 02215, United States,
| |
Collapse
|
38
|
Zhao J, Matlock A, Zhu H, Song Z, Zhu J, Wang B, Chen F, Zhan Y, Chen Z, Xu Y, Lin X, Tian L, Cheng JX. Bond-selective intensity diffraction tomography. Nat Commun 2022; 13:7767. [PMID: 36522316 PMCID: PMC9755124 DOI: 10.1038/s41467-022-35329-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Recovering molecular information remains a grand challenge in the widely used holographic and computational imaging technologies. To address this challenge, we developed a computational mid-infrared photothermal microscope, termed Bond-selective Intensity Diffraction Tomography (BS-IDT). Based on a low-cost brightfield microscope with an add-on pulsed light source, BS-IDT recovers both infrared spectra and bond-selective 3D refractive index maps from intensity-only measurements. High-fidelity infrared fingerprint spectra extraction is validated. Volumetric chemical imaging of biological cells is demonstrated at a speed of ~20 s per volume, with a lateral and axial resolution of ~350 nm and ~1.1 µm, respectively. BS-IDT's application potential is investigated by chemically quantifying lipids stored in cancer cells and volumetric chemical imaging on Caenorhabditis elegans with a large field of view (~100 µm x 100 µm).
Collapse
Affiliation(s)
- Jian Zhao
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Alex Matlock
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Hongbo Zhu
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China.
| | - Ziqi Song
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiabei Zhu
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| | - Biao Wang
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China
| | - Fukai Chen
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | - Yuewei Zhan
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Zhicong Chen
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| | - Yihong Xu
- Department of Physics, Boston University, Boston, MA, 02215, USA
| | - Xingchen Lin
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, China
| | - Lei Tian
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
| | - Ji-Xin Cheng
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
- Department of Physics, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
39
|
Xia Q, Yin J, Guo Z, Cheng JX. Mid-Infrared Photothermal Microscopy: Principle, Instrumentation, and Applications. J Phys Chem B 2022; 126:8597-8613. [PMID: 36285985 DOI: 10.1021/acs.jpcb.2c05827] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Midinfrared photothermal (MIP) microscopy, also called optical photothermal infrared (O-PTIR) microscopy, is an emerging tool for bond-selective chemical imaging of living biological and material samples. In MIP microscopy, a visible probe beam detects the photothermal-based contrast induced by a vibrational absorption. With submicron spatial resolution, high spectral fidelity, and reduced water absorption background, MIP microscopy has overcome the limitations in infrared chemical imaging methods. In this review, we summarize the basic principle of MIP microscopy, the different origins of MIP contrasts, and recent technology development that pushed the resolution, speed, and sensitivity of MIP imaging to a new stage. We further emphasize its broad applications in life science and material characterization, and provide a perspective of future technical advances.
Collapse
Affiliation(s)
- Qing Xia
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States.,Photonics Center, Boston University, Boston, Massachusetts 02215, United States
| | - Jiaze Yin
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States.,Photonics Center, Boston University, Boston, Massachusetts 02215, United States
| | - Zhongyue Guo
- Photonics Center, Boston University, Boston, Massachusetts 02215, United States.,Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Ji-Xin Cheng
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States.,Photonics Center, Boston University, Boston, Massachusetts 02215, United States.,Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
40
|
Abstract
![]()
Mid-infrared photothermal (MIP) microscopy is a valuable
tool for
sensitive and fast chemical imaging with high spatial resolution beyond
the mid-infrared diffraction limit. The highest sensitivity is usually
achieved with heterodyne MIP employing photodetector point-scans and
lock-in detection, while the fastest systems use camera-based widefield
MIP with pulsed probe light. One challenge is to simultaneously achieve
high sensitivity, spatial resolution, and speed in a large field of
view. Here, we present widefield mid-infrared photothermal heterodyne
(WIPH) imaging, where a digital frequency-domain lock-in (DFdLi) filter
is used for simultaneous multiharmonic demodulation of MIP signals
recorded by individual camera pixels at frame rates up to 200 kHz.
The DFdLi filter enables the use of continuous-wave probe light, which,
in turn, eliminates the need for synchronization schemes and allows
measuring MIP decay curves. The WIPH approach is characterized by
imaging potassium ferricyanide microparticles and applied to detect
lipid droplets (alkyne-palmitic acid) in 3T3-L1 fibroblast cells,
both in the cell-silent spectral region around 2100 cm–1 using an external-cavity quantum cascade laser. The system achieved
up to 4000 WIPH images per second at a signal-to-noise ratio of 5.52
and 1 μm spatial resolution in a 128 × 128 μm field
of view. The technique opens up for real-time chemical imaging of
fast processes in biology, medicine, and material science.
Collapse
Affiliation(s)
- Eduardo M Paiva
- Department of Applied Physics and Electronics, Umeå University, SE-90187Umeå, Sweden
| | - Florian M Schmidt
- Department of Applied Physics and Electronics, Umeå University, SE-90187Umeå, Sweden
| |
Collapse
|
41
|
High-sensitivity hyperspectral vibrational imaging of heart tissues by mid-infrared photothermal microscopy. ANAL SCI 2022; 38:1497-1503. [PMID: 36070070 DOI: 10.1007/s44211-022-00182-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/20/2022] [Indexed: 11/01/2022]
Abstract
Visualizing the spatial distribution of chemical compositions in biological tissues is of great importance to study fundamental biological processes and origin of diseases. Raman microscopy, one of the label-free vibrational imaging techniques, has been employed for chemical characterization of tissues. However, the low sensitivity of Raman spectroscopy often requires a long acquisition time of Raman measurement or a high laser power, or both, which prevents one from investigating large-area tissues in a nondestructive manner. In this work, we demonstrated chemical imaging of heart tissues using mid-infrared photothermal (MIP) microscopy that simultaneously achieves the high sensitivity benefited from IR absorption of molecules and the high spatial resolution down to a few micrometers. We successfully visualized the distributions of different biomolecules, including proteins, phosphate-including proteins, and lipids/carbohydrates/amino acids. Further, we experimentally compared MIP microscopy with Raman microscopy to evaluate the sensitivity and photodamage to tissues. We proved that MIP microscopy is a highly sensitive technique for obtaining vibrational information of molecules in a broad fingerprint region, thereby it could be employed for biological and diagnostic applications, such as live-tissue imaging.
Collapse
|
42
|
Cho M. Molecular photothermal effects on time-resolved IR spectroscopy. J Chem Phys 2022; 157:124201. [DOI: 10.1063/5.0108826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Time-resolved IR pump-probe (IR-PP) and two-dimensional IR (2D-IR) spectroscopy are valuable techniques for studying various ultrafast chemical and biological processes in solutions. The time-dependent changes of nonlinear IR signals reflecting fast molecular processes such as vibrational energy transfer and chemical exchange provide invaluable information on the rates and mechanisms of solvation dynamics and structural transitions of multi-species vibrationally interacting molecular systems. However, due to the intrinsic difficulties in distinguishing the contributions of molecule-specific processes to the time-resolved IR signals from those resulting from local heating, it becomes challenging to interpret time-resolved IR-PP and 2D-IR spectra exhibiting transient growing-in spectral components and cross-peaks unambiguously. Here, theoretical considerations of various effects of vibrational coupling, energy transfer, chemical exchange, the generation of hot ground states, molecular photothermal process, and their combinations on the lineshapes and time-dependent intensities of IR-PP spectra and 2D-IR diagonal and cross-peaks are presented. We anticipate that the present work will help researchers using IR pump-probe and 2D-IR techniques to distinguish local heating-induced photothermal signals from genuine nonlinear IR signals.
Collapse
Affiliation(s)
- Minhaeng Cho
- Chemistry, Korea University, Korea, Republic of (South Korea)
| |
Collapse
|
43
|
Leighton RE, Alperstein AM, Frontiera RR. Label-Free Super-Resolution Imaging Techniques. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2022; 15:37-55. [PMID: 35316608 PMCID: PMC9454238 DOI: 10.1146/annurev-anchem-061020-014723] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Biological and material samples contain nanoscale heterogeneities that are unresolvable with conventional microscopy techniques. Super-resolution fluorescence methods can break the optical diffraction limit to observe these features, but they require samples to be fluorescently labeled. Over the past decade, progress has been made toward developing super-resolution techniques that do not require the use of labels. These label-free techniques span a variety of different approaches, including structured illumination, transient absorption, infrared absorption, and coherent Raman spectroscopies. Many draw inspiration from widely successful fluorescence-based techniques such as stimulated emission depletion (STED) microscopy, photoactivated localization microscopy (PALM), and stochastic optical reconstruction microscopy (STORM). In this review, we discuss the progress made in these fields along with the current challenges and prospects in reaching resolutions comparable to those achieved with fluorescence-based methods.
Collapse
Affiliation(s)
- Ryan E Leighton
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA;
| | - Ariel M Alperstein
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA;
| | - Renee R Frontiera
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA;
| |
Collapse
|
44
|
Hilzenrat G, Gill ET, McArthur SL. Imaging approaches for monitoring three-dimensional cell and tissue culture systems. JOURNAL OF BIOPHOTONICS 2022; 15:e202100380. [PMID: 35357086 DOI: 10.1002/jbio.202100380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
The past decade has seen an increasing demand for more complex, reproducible and physiologically relevant tissue cultures that can mimic the structural and biological features of living tissues. Monitoring the viability, development and responses of such tissues in real-time are challenging due to the complexities of cell culture physical characteristics and the environments in which these cultures need to be maintained in. Significant developments in optics, such as optical manipulation, improved detection and data analysis, have made optical imaging a preferred choice for many three-dimensional (3D) cell culture monitoring applications. The aim of this review is to discuss the challenges associated with imaging and monitoring 3D tissues and cell culture, and highlight topical label-free imaging tools that enable bioengineers and biophysicists to non-invasively characterise engineered living tissues.
Collapse
Affiliation(s)
- Geva Hilzenrat
- Bioengineering Engineering Group, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria, Australia
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria, Australia
| | - Emma T Gill
- Bioengineering Engineering Group, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria, Australia
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria, Australia
| | - Sally L McArthur
- Bioengineering Engineering Group, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria, Australia
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria, Australia
| |
Collapse
|
45
|
Spaeth P, Adhikari S, Lahabi K, Baaske MD, Wang Y, Orrit M. Imaging the Magnetization of Single Magnetite Nanoparticle Clusters via Photothermal Circular Dichroism. NANO LETTERS 2022; 22:3645-3650. [PMID: 35420830 PMCID: PMC9101077 DOI: 10.1021/acs.nanolett.2c00178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/12/2022] [Indexed: 05/30/2023]
Abstract
Magnetic imaging is a versatile tool in biological and condensed-matter physics. Existing magnetic imaging techniques either require demanding experimental conditions which restrict the range of their applications or lack the spatial resolution required for single-particle measurements. Here, we combine photothermal (PT) microscopy with magnetic circular dichroism (MCD) to develop a versatile magnetic imaging technique using visible light. Unlike most magnetic imaging techniques, photothermal magnetic circular dichroism (PT MCD) microscopy works particularly well for single nanoparticles immersed in liquids. As a proof of principle, we demonstrate magnetic CD imaging of superparamagnetic magnetite nanoparticulate clusters immersed in microscope immersion oil. The sensitivity of our method allowed us to probe the magnetization curve of single ∼400-nm-diameter magnetite nanoparticulate clusters.
Collapse
Affiliation(s)
- Patrick Spaeth
- Huygens-Kamerlingh
Onnes Laboratory, Leiden University, 2300 RA Leiden, The Netherlands
| | - Subhasis Adhikari
- Huygens-Kamerlingh
Onnes Laboratory, Leiden University, 2300 RA Leiden, The Netherlands
| | - Kaveh Lahabi
- Huygens-Kamerlingh
Onnes Laboratory, Leiden University, 2300 RA Leiden, The Netherlands
| | - Martin Dieter Baaske
- Huygens-Kamerlingh
Onnes Laboratory, Leiden University, 2300 RA Leiden, The Netherlands
| | - Yonghui Wang
- Huygens-Kamerlingh
Onnes Laboratory, Leiden University, 2300 RA Leiden, The Netherlands
- School
of Mechatronics Engineering, Harbin Institute
of Technology, Harbin 150001, P. R. China
| | - Michel Orrit
- Huygens-Kamerlingh
Onnes Laboratory, Leiden University, 2300 RA Leiden, The Netherlands
| |
Collapse
|
46
|
Choi B, Jeong G, Shin HH, Kim ZH. Molecular vibrational imaging at nanoscale. J Chem Phys 2022; 156:160902. [PMID: 35490022 DOI: 10.1063/5.0082747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The demand to visualize the spatial distribution of chemical species based on vibrational spectra is rapidly increasing. Driven by such a need, various Raman and infrared spectro-microscopies with a nanometric spatial resolution have been developed over the last two decades. Despite rapid progress, a large gap still exists between the general needs and what these techniques can achieve. This Perspective highlights the key challenges and recent breakthroughs of the two vibrational nano-imaging techniques, scattering-type scanning near-field optical microscopy and tip-enhanced Raman scattering.
Collapse
Affiliation(s)
- Boogeon Choi
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Gyouil Jeong
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Hyun-Hang Shin
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Zee Hwan Kim
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
47
|
Adhikari S, Orrit M. Progress and perspectives in single-molecule optical spectroscopy. J Chem Phys 2022; 156:160903. [PMID: 35489995 DOI: 10.1063/5.0087003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We review some of the progress of single-molecule optical experiments in the past 20 years and propose some perspectives for the coming years. We particularly focus on methodological advances in fluorescence, super-resolution, photothermal contrast, and interferometric scattering and briefly discuss a few of the applications. These advances have enabled the exploration of new emitters and quantum optics; the chemistry and biology of complex heterogeneous systems, nanoparticles, and plasmonics; and the detection and study of non-fluorescing and non-absorbing nano-objects. We conclude by proposing some ideas for future experiments. The field will move toward more and better signals of a broader variety of objects and toward a sharper view of the surprising complexity of the nanoscale world of single (bio-)molecules, nanoparticles, and their nano-environments.
Collapse
Affiliation(s)
- Subhasis Adhikari
- Huygens-Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2333 CA Leiden, The Netherlands
| | - Michel Orrit
- Huygens-Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2333 CA Leiden, The Netherlands
| |
Collapse
|
48
|
Nanosecond-resolution photothermal dynamic imaging via MHZ digitization and match filtering. Nat Commun 2021; 12:7097. [PMID: 34876556 PMCID: PMC8651735 DOI: 10.1038/s41467-021-27362-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022] Open
Abstract
Photothermal microscopy has enabled highly sensitive label-free imaging of absorbers, from metallic nanoparticles to chemical bonds. Photothermal signals are conventionally detected via modulation of excitation beam and demodulation of probe beam using lock-in amplifier. While convenient, the wealth of thermal dynamics is not revealed. Here, we present a lock-in free, mid-infrared photothermal dynamic imaging (PDI) system by MHz digitization and match filtering at harmonics of modulation frequency. Thermal-dynamic information is acquired at nanosecond resolution within single pulse excitation. Our method not only increases the imaging speed by two orders of magnitude but also obtains four-fold enhancement of signal-to-noise ratio over lock-in counterpart, enabling high-throughput metabolism analysis at single-cell level. Moreover, by harnessing the thermal decay difference between water and biomolecules, water background is effectively separated in mid-infrared PDI of living cells. This ability to nondestructively probe chemically specific photothermal dynamics offers a valuable tool to characterize biological and material specimens. Photothermal microscopy is limited for imaging of thermal dynamics. Here, the authors introduce a lock-in free, mid-infrared photothermal dynamic imaging system, which significantly increases SNR and imaging speed, and demonstrate metabolism analysis at single-cell level and background removal.
Collapse
|
49
|
Zong H, Yurdakul C, Bai Y, Zhang M, Ünlü MS, Cheng JX. Background-Suppressed High-Throughput Mid-Infrared Photothermal Microscopy via Pupil Engineering. ACS PHOTONICS 2021; 8:3323-3336. [PMID: 35966035 PMCID: PMC9373987 DOI: 10.1021/acsphotonics.1c01197] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Mid-infrared photothermal (MIP) microscopy has been a promising label-free chemical imaging technique for functional characterization of specimens owing to its enhanced spatial resolution and high specificity. Recently developed wide-field MIP imaging modalities have drastically improved speed and enabled high-throughput imaging of micron-scale subjects. However, the weakly scattered signal from subwavelength particles becomes indistinguishable from the shot-noise as a consequence of the strong background light, leading to limited sensitivity. Here, we demonstrate background-suppressed chemical fingerprinting at a single nanoparticle level by selectively attenuating the reflected light through pupil engineering in the collection path. Our technique provides over 3 orders of magnitude background suppression by quasi-darkfield illumination in the epi-configuration without sacrificing lateral resolution. We demonstrate 6-fold signal-to-background noise ratio improvement, allowing for simultaneous detection and discrimination of hundreds of nanoparticles across a field of view of 70 μm × 70 μm. A comprehensive theoretical framework for photothermal image formation is provided and experimentally validated with 300 and 500 nm PMMA beads. The versatility and utility of our technique are demonstrated via hyperspectral dark-field MIP imaging of S. aureus and E. coli bacteria and MIP imaging of subcellular lipid droplets inside C. albicans and cancer cells.
Collapse
Affiliation(s)
- Haonan Zong
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Celalettin Yurdakul
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Yeran Bai
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Meng Zhang
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - M Selim Ünlü
- Department of Electrical and Computer Engineering and Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Ji-Xin Cheng
- Department of Electrical and Computer Engineering and Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
50
|
Bowman AJ, Kasevich MA. Resonant Electro-Optic Imaging for Microscopy at Nanosecond Resolution. ACS NANO 2021; 15:16043-16054. [PMID: 34546704 DOI: 10.1021/acsnano.1c04470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We demonstrate an electro-optic wide-field method to enable fluorescence lifetime microscopy (FLIM) with high throughput and single-molecule sensitivity. Resonantly driven Pockels cells are used to efficiently gate images at 39 MHz, allowing fluorescence lifetime to be captured on standard camera sensors. Lifetime imaging of single molecules is enabled in wide field with exposure times of less than 100 ms. This capability allows combination of wide-field FLIM with single-molecule super-resolution localization microscopy. Fast single-molecule dynamics such as FRET and molecular binding events are captured from wide-field images without prior spatial knowledge. A lifetime sensitivity of 1.9 times the photon shot-noise limit is achieved, and high throughput is shown by acquiring wide-field FLIM images with millisecond exposure and >108 photons per frame. Resonant electro-optic FLIM allows lifetime contrast in any wide-field microscopy method.
Collapse
Affiliation(s)
- Adam J Bowman
- Physics Department, Stanford University, 382 Via Pueblo Mall, Stanford, California 94305, United States
| | - Mark A Kasevich
- Physics Department, Stanford University, 382 Via Pueblo Mall, Stanford, California 94305, United States
| |
Collapse
|