1
|
Cobo-Vuilleumier N, Rodríguez-Fernandez S, López-Noriega L, Lorenzo PI, Franco JM, Lachaud CC, Vazquez EM, Legido RA, Dorronsoro A, López-Férnandez-Sobrino R, Fernández-Santos B, Serrano CE, Salas-Lloret D, van Overbeek N, Ramos-Rodriguez M, Mateo-Rodríguez C, Hidalgo L, Marin-Canas S, Nano R, Arroba AI, Caro AC, Vertegaal AC, Montalvo AM, Martín F, Aguilar-Diosdado M, Piemonti L, Pasquali L, Prieto RG, Sánchez MIG, Eizirik DL, Martínez-Brocca MA, Vives-Pi M, Gauthier BR. LRH-1/NR5A2 targets mitochondrial dynamics to reprogram type 1 diabetes macrophages and dendritic cells into an immune tolerance phenotype. Clin Transl Med 2024; 14:e70134. [PMID: 39702941 DOI: 10.1002/ctm2.70134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/01/2024] [Accepted: 12/05/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND The complex aetiology of type 1 diabetes (T1D), characterised by a detrimental cross-talk between the immune system and insulin-producing beta cells, has hindered the development of effective disease-modifying therapies. The discovery that the pharmacological activation of LRH-1/NR5A2 can reverse hyperglycaemia in mouse models of T1D by attenuating the autoimmune attack coupled to beta cell survival/regeneration prompted us to investigate whether immune tolerisation could be translated to individuals with T1D by LRH-1/NR5A2 activation and improve islet survival. METHODS Peripheral blood mononuclear cells (PBMCs) were isolated from individuals with and without T1D and derived into various immune cells, including macrophages and dendritic cells. Cell subpopulations were then treated or not with BL001, a pharmacological agonist of LRH-1/NR5A2, and processed for: (1) Cell surface marker profiling, (2) cytokine secretome profiling, (3) autologous T-cell proliferation, (4) RNAseq and (5) proteomic analysis. BL001-target gene expression levels were confirmed by quantitative PCR. Mitochondrial function was evaluated through the measurement of oxygen consumption rate using a Seahorse XF analyser. Co-cultures of PBMCs and iPSCs-derived islet organoids were performed to assess the impact of BL001 on beta cell viability. RESULTS LRH-1/NR5A2 activation induced a genetic and immunometabolic reprogramming of T1D immune cells, marked by reduced pro-inflammatory markers and cytokine secretion, along with enhanced mitohormesis in pro-inflammatory M1 macrophages and mitochondrial turnover in mature dendritic cells. These changes induced a shift from a pro-inflammatory to an anti-inflammatory/tolerogenic state, resulting in the inhibition of CD4+ and CD8+ T-cell proliferation. BL001 treatment also increased CD4+/CD25+/FoxP3+ regulatory T-cells and Th2 cells within PBMCs while decreasing CD8+ T-cell proliferation. Additionally, BL001 alleviated PBMC-induced apoptosis and maintained insulin expression in human iPSC-derived islet organoids. CONCLUSION These findings demonstrate the potential of LRH-1/NR5A2 activation to modulate immune responses and support beta cell viability in T1D, suggesting a new therapeutic approach. KEY POINTS LRH-1/NR5A2 activation in inflammatory cells of individuals with type 1 diabetes (T1D) reduces pro-inflammatory cell surface markers and cytokine release. LRH-1/NR5A2 promotes a mitohormesis-induced immuno-resistant phenotype to pro-inflammatory macrophages. Mature dendritic cells acquire a tolerogenic phenotype via LRH-1/NR5A2-stimulated mitochondria turnover. LRH-1/NR5A2 agonistic activation expands a CD4+/CD25+/FoxP3+ T-cell subpopulation. Pharmacological activation of LRH-1/NR5A2 improves the survival iPSC-islets-like organoids co-cultured with PBMCs from individuals with T1D.
Collapse
Affiliation(s)
- Nadia Cobo-Vuilleumier
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
- Nadia Cobo-Vuilleumier and Petra I Lorenzo, Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Silvia Rodríguez-Fernandez
- Immunology Department, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Livia López-Noriega
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Petra I Lorenzo
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
- Nadia Cobo-Vuilleumier and Petra I Lorenzo, Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Jaime M Franco
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Christian C Lachaud
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Eugenia Martin Vazquez
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Raquel Araujo Legido
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
- Nadia Cobo-Vuilleumier and Petra I Lorenzo, Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Akaitz Dorronsoro
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Raul López-Férnandez-Sobrino
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Beatriz Fernández-Santos
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Carmen Espejo Serrano
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Daniel Salas-Lloret
- Cell and Chemical Biology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Nila van Overbeek
- Cell and Chemical Biology, Leiden University Medical Centre, Leiden, The Netherlands
| | | | - Carmen Mateo-Rodríguez
- Department of Endocrinology and Nutrition, University Hospital Virgen Macarena, Sevilla, Spain
| | - Lucia Hidalgo
- Department of Endocrinology and Nutrition, University Hospital Virgen Macarena, Sevilla, Spain
| | - Sandra Marin-Canas
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Rita Nano
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Ana I Arroba
- Department of Endocrinology and Nutrition, University Hospital Puerta del Mar, Institute of Research and Innovation in Biomedical Sciences of Cádiz (INiBICA). University of Cádiz (UCA), Cádiz, Spain
| | - Antonio Campos Caro
- Department of Endocrinology and Nutrition, University Hospital Puerta del Mar, Institute of Research and Innovation in Biomedical Sciences of Cádiz (INiBICA). University of Cádiz (UCA), Cádiz, Spain
| | - Alfred Co Vertegaal
- Cell and Chemical Biology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Alejandro Martin Montalvo
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Franz Martín
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
- Nadia Cobo-Vuilleumier and Petra I Lorenzo, Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Manuel Aguilar-Diosdado
- Department of Endocrinology and Nutrition, University Hospital Puerta del Mar, Institute of Research and Innovation in Biomedical Sciences of Cádiz (INiBICA). University of Cádiz (UCA), Cádiz, Spain
| | - Lorenzo Piemonti
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Roman González Prieto
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
- Department of Cell Biology, Faculty of Biology, University of Sevilla, Sevilla, Spain
| | | | - Decio L Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Maria Asuncion Martínez-Brocca
- Department of Endocrinology and Nutrition, University Hospital Puerta del Mar, Institute of Research and Innovation in Biomedical Sciences of Cádiz (INiBICA). University of Cádiz (UCA), Cádiz, Spain
| | - Marta Vives-Pi
- Immunology Department, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Benoit R Gauthier
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
- Nadia Cobo-Vuilleumier and Petra I Lorenzo, Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| |
Collapse
|
2
|
Lambrecht R, Delgado ME, Gloe V, Schuetz K, Plazzo AP, Franke B, San Phan T, Fleming J, Mayans O, Brunner T. Liver receptor homolog-1 (NR5A2) orchestrates hepatic inflammation and TNF-induced cell death. Cell Rep 2023; 42:113513. [PMID: 38039134 DOI: 10.1016/j.celrep.2023.113513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/09/2023] [Accepted: 11/14/2023] [Indexed: 12/03/2023] Open
Abstract
The nuclear receptor liver receptor homolog-1 (LRH-1) has been shown to promote apoptosis resistance in various tissues and disease contexts; however, its role in liver cell death remains unexplored. Hepatocyte-specific deletion of LRH-1 causes mild steatosis and inflammation but unexpectedly shields female mice from tumor necrosis factor (TNF)-induced hepatocyte apoptosis and associated hepatitis. LRH-1-deficient hepatocytes show markedly attenuated estrogen receptor alpha and elevated nuclear factor κB (NF-κB) activity, while LRH-1 overexpression inhibits NF-κB activity. This inhibition relies on direct physical interaction of LRH-1's ligand-binding domain and the Rel homology domain of NF-κB subunit RelA. Mechanistically, increased transcription of anti-apoptotic NF-κB target genes and the proteasomal degradation of pro-apoptotic BCL-2 interacting mediator of cell death prevent mitochondrial apoptosis and ultimately protect mice from TNF-induced liver damage. Collectively, our study emphasizes LRH-1 as a critical, sex-dependent regulator of cell death and inflammation in the healthy and diseased liver.
Collapse
Affiliation(s)
- Rebekka Lambrecht
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany
| | - M Eugenia Delgado
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany
| | - Vincent Gloe
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany
| | - Karina Schuetz
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany
| | - Anna Pia Plazzo
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany
| | - Barbara Franke
- Biophysics and Structural Biology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany
| | - Truong San Phan
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany
| | - Jennifer Fleming
- Biophysics and Structural Biology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany
| | - Olga Mayans
- Biophysics and Structural Biology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany
| | - Thomas Brunner
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany.
| |
Collapse
|
3
|
Burgermeister E. Mitogen-Activated Protein Kinase and Exploratory Nuclear Receptor Crosstalk in Cancer Immunotherapy. Int J Mol Sci 2023; 24:14546. [PMID: 37833991 PMCID: PMC10572424 DOI: 10.3390/ijms241914546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/12/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
The three major mitogen-activated protein kinase (MAPK) pathways (ERK1/2, p38, and JNK/SAPK) are upstream regulators of the nuclear receptor superfamily (NRSF). These ligand-activated transcription factors are divided into subclasses comprising receptors for endocrine hormones, metabolic compounds (e.g., vitamins, diet), xenobiotics, and mediators released from host immune reactions such as tissue injury and inflammation. These internal and external cues place the NRSF at the frontline as sensors and translators of information from the environment towards the genome. For most of the former "orphan" receptors, physiological and synthetic ligands have been identified, opening intriguing opportunities for combination therapies with existing cancer medications. Hitherto, only preclinical data are available, warranting further validation in clinical trials in patients. The current review summarized the existing literature covering the expression and function of NRSF subclasses in human solid tumors and hematopoietic malignancies and their modulatory effects on innate (e.g., macrophages, dendritic cells) and adaptive (i.e., T cell subsets) immune cells, encouraging mechanistic and pharmacological studies in combination with current clinically approved therapeutics against immune checkpoint molecules (e.g., PD1).
Collapse
Affiliation(s)
- Elke Burgermeister
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| |
Collapse
|
4
|
Meng L, Dong F, Deng J. NR5A2 as a potential target for exercise to improve metabolic syndrome. Aging (Albany NY) 2023; 15:2485-2502. [PMID: 37053002 PMCID: PMC10120892 DOI: 10.18632/aging.204606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/04/2023] [Indexed: 04/14/2023]
Abstract
BACKGROUND Metabolic syndrome is a syndrome of a variety of metabolic disorders. Exercise is beneficial to the human body. However, the association of NR5A2 and exercise with metabolic syndrome remains unclear. METHODS Download the GSE10540 and GSE12385 from GEO database. Bioinformatics analysis was used to screen the hub molecular of the metabolic syndrome. Forty 3-week-old C57BL/6J male mice were used in this study. The mean body weight was (17.5 ± 2.1) g. After 10 days of adaptive feeding, they were randomly divided into 4 groups according to the random number table method: Model + Exercise (n = 10), Model (n = 10), Model/NR5A2-OE (n = 10), Model/NR5A2-KO (n = 10). Western Blotting was performed to detect the expression of hub genes and signaling pathway. RESULTS There were 349 DEGs in GSE10540 and 49 DEGs in GSE12385. 10 core genes were obtained. GO showed that differentially expressed genes were mainly enriched in vascular morphogenesis, contractile fiber fraction, chemotaxis, and MAPK cascade regulation. KEGG showed that MAPK signaling pathway was a significant section in the metabolic syndrome. PIK3R2, STRA8, FLT1, DMRT1, FGF22, NR5A2, and FLT were up-regulated and PRDM14, POU5F1, and KDR were down-regulated in metabolic syndrome after exercise. CONCLUSION The expression of NR5A2 is down-regulated in metabolic syndrome, and exercise can increase the expression level of NR5A2. NR5A2 might be used as a potential target for exercise to improve metabolic syndrome.
Collapse
Affiliation(s)
- Lingxiu Meng
- Department of Cardiology, Qinhuangdao Second Hospital, Qinhuangdao, Hebei 066600, PR China
| | - Fusheng Dong
- Department of Anesthesiology, Qinhuangdao Second Hospital, Qinhuangdao, Hebei 066600, PR China
| | - Junguo Deng
- Department of Cardiology, Qinhuangdao Second Hospital, Qinhuangdao, Hebei 066600, PR China
| |
Collapse
|
5
|
Yelagandula R, Stecher K, Novatchkova M, Michetti L, Michlits G, Wang J, Hofbauer P, Vainorius G, Pribitzer C, Isbel L, Mendjan S, Schübeler D, Elling U, Brennecke J, Bell O. ZFP462 safeguards neural lineage specification by targeting G9A/GLP-mediated heterochromatin to silence enhancers. Nat Cell Biol 2023; 25:42-55. [PMID: 36604593 PMCID: PMC10038669 DOI: 10.1038/s41556-022-01051-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/10/2022] [Indexed: 01/07/2023]
Abstract
ZNF462 haploinsufficiency is linked to Weiss-Kruszka syndrome, a genetic disorder characterized by neurodevelopmental defects, including autism. Though conserved in vertebrates and essential for embryonic development, the molecular functions of ZNF462 remain unclear. We identified its murine homologue ZFP462 in a screen for mediators of epigenetic gene silencing. Here we show that ZFP462 safeguards neural lineage specification of mouse embryonic stem cells (ESCs) by targeting the H3K9-specific histone methyltransferase complex G9A/GLP to silence meso-endodermal genes. ZFP462 binds to transposable elements that are potential enhancers harbouring pluripotency and meso-endoderm transcription factor binding sites. Recruiting G9A/GLP, ZFP462 seeds heterochromatin, restricting transcription factor binding. Loss of ZFP462 in ESCs results in increased chromatin accessibility at target sites and ectopic expression of meso-endodermal genes. Taken together, ZFP462 confers lineage and locus specificity to the broadly expressed epigenetic regulator G9A/GLP. Our results suggest that aberrant activation of lineage non-specific genes in the neuronal lineage underlies ZNF462-associated neurodevelopmental pathology.
Collapse
Affiliation(s)
- Ramesh Yelagandula
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria.
- Department of Biochemistry and Molecular Medicine and Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA.
| | - Karin Stecher
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Vienna, Austria
| | - Maria Novatchkova
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Luca Michetti
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Georg Michlits
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Jingkui Wang
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Pablo Hofbauer
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Gintautas Vainorius
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Carina Pribitzer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Luke Isbel
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Sasha Mendjan
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Dirk Schübeler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Ulrich Elling
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Julius Brennecke
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Oliver Bell
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria.
- Department of Biochemistry and Molecular Medicine and Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Raut P, Nimmakayala RK, Batra SK, Ponnusamy MP. Clinical and Molecular Attributes and Evaluation of Pancreatic Cystic Neoplasm. Biochim Biophys Acta Rev Cancer 2023; 1878:188851. [PMID: 36535512 PMCID: PMC9898173 DOI: 10.1016/j.bbcan.2022.188851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/08/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Intraductal papillary mucinous neoplasms (IPMNs) and mucinous cystic neoplasms (MCNs) are all considered "Pancreatic cystic neoplasms (PCNs)" and show a varying risk of developing into pancreatic ductal adenocarcinoma (PDAC). These lesions display different molecular characteristics, mutations, and clinical manifestations. A lack of detailed understanding of PCN subtype characteristics and their molecular mechanisms limits the development of efficient diagnostic tools and therapeutic strategies for these lesions. Proper in vivo mouse models that mimic human PCNs are also needed to study the molecular mechanisms and for therapeutic testing. A comprehensive understanding of the current status of PCN biology, mechanisms, current diagnostic methods, and therapies will help in the early detection and proper management of patients with these lesions and PDAC. This review aims to describe all these aspects of PCNs, specifically IPMNs, by describing the future perspectives.
Collapse
Affiliation(s)
- Pratima Raut
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Rama Krishna Nimmakayala
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| |
Collapse
|
7
|
Michalek S, Goj T, Plazzo AP, Marovca B, Bornhauser B, Brunner T. LRH
‐1/
NR5A2
interacts with the glucocorticoid receptor to regulate glucocorticoid resistance. EMBO Rep 2022; 23:e54195. [PMID: 35801407 PMCID: PMC9442305 DOI: 10.15252/embr.202154195] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Svenja Michalek
- Department of Biology, Biochemical Pharmacology University of Konstanz Konstanz Germany
- Konstanz Research School Chemical Biology KORS‐CB University of Konstanz Konstanz Germany
| | - Thomas Goj
- Department of Biology, Biochemical Pharmacology University of Konstanz Konstanz Germany
| | - Anna Pia Plazzo
- Department of Biology, Biochemical Pharmacology University of Konstanz Konstanz Germany
| | - Blerim Marovca
- Division of Oncology and Children's Research Centre University Children's Hospital Zurich Zurich Switzerland
| | - Beat Bornhauser
- Division of Oncology and Children's Research Centre University Children's Hospital Zurich Zurich Switzerland
| | - Thomas Brunner
- Department of Biology, Biochemical Pharmacology University of Konstanz Konstanz Germany
- Konstanz Research School Chemical Biology KORS‐CB University of Konstanz Konstanz Germany
| |
Collapse
|
8
|
Jin Y, Deng J, Luo B, Zhong Y, Yu S. Construction and validation of an immune-related genes prognostic index (IRGPI) model in colon cancer. Front Endocrinol (Lausanne) 2022; 13:963382. [PMID: 36440228 PMCID: PMC9682206 DOI: 10.3389/fendo.2022.963382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Though immunotherapy has become one of the standard therapies for colon cancer, the overall effective rate of immunotherapy is very low. Constructing an immune-related genes prognostic index (IRGPI) model may help to predict the response to immunotherapy and clinical outcomes. METHODS Differentially expressed immune-related genes (DEIRGs) between normal tissues and colon cancer tissues were identified and used to construct the co-expression network. Genes in the module with the most significant differences were further analyzed. Independent prognostic immune-related genes (IRGs) were identified by univariate and multivariate cox regression analysis. Independent prognostic IRGs were used to construct the IRGPI model using the multivariate cox proportional hazards regression model, and the IRGPI model was validated by independent dataset. ROC curves were plotted and AUCs were calculated to estimate the predictive power of the IRGPI model to prognosis. Gene set enrichment analysis (GSEA) was performed to screen the enriched KEGG pathways in the high-risk and low-risk phenotype. Correlations between IRGPI and clinical characteristic, immune checkpoint expression, TMB, immune cell infiltration, immune function, immune dysfunction, immune exclusion, immune subtype were analyzed. RESULTS Totally 680 DEIRGs were identified. Three independent IRGs,NR5A2, PPARGC1A and LGALS4, were independently related to survival. NR5A2, PPARGC1A and LGALS4 were used to establish the IRGPI model. Survival analysis showed that patients with high-risk showed worse survival than patients in the low-risk group. The AUC of the IRGPI model for 1-year, 3-year and 5-year were 0.584, 0.608 and 0.697, respectively. Univariate analysis and multivariate cox regression analysis indicated that IRGPI were independent prognostic factors for survival. Stratified survival analysis showed that patients with IRGPI low-risk and low TMB had the best survival, which suggested that combination of TMB and IRGPI can better predict clinical outcome. Immune cell infiltration, immune function, immune checkpoint expression and immune exclusion were different between IRGPI high-risk and low-risk patients. CONCLUSION An immune-related genes prognostic index (IRGPI) was constructed and validated in the current study and the IRGPI maybe a potential biomarker for evaluating response to immunotherapy and clinical outcome for colon cancer patients.
Collapse
Affiliation(s)
- Yabin Jin
- Institute of Clinical Research, The First People’s Hospital of Foshan, Foshan, China
| | - Jianzhong Deng
- Department of Anorectal Surgery, The First People’s Hospital of Foshan, Foshan, China
| | - Bing Luo
- Department of Gastrointestinal Surgery, The Second People’s Hospital of Foshan, Foshan, China
| | - Yubo Zhong
- Department of Gastrointestinal Surgery, The Second People’s Hospital of Foshan, Foshan, China
| | - Si Yu
- Department of Gastrointestinal Surgery, The Second People’s Hospital of Foshan, Foshan, China
- Division of Gastrointestinal Surgery, Department of Surgery, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- *Correspondence: Si Yu,
| |
Collapse
|
9
|
Duraiswamy J, Turrini R, Minasyan A, Barras D, Crespo I, Grimm AJ, Casado J, Genolet R, Benedetti F, Wicky A, Ioannidou K, Castro W, Neal C, Moriot A, Renaud-Tissot S, Anstett V, Fahr N, Tanyi JL, Eiva MA, Jacobson CA, Montone KT, Westergaard MCW, Svane IM, Kandalaft LE, Delorenzi M, Sorger PK, Färkkilä A, Michielin O, Zoete V, Carmona SJ, Foukas PG, Powell DJ, Rusakiewicz S, Doucey MA, Dangaj Laniti D, Coukos G. Myeloid antigen-presenting cell niches sustain antitumor T cells and license PD-1 blockade via CD28 costimulation. Cancer Cell 2021; 39:1623-1642.e20. [PMID: 34739845 PMCID: PMC8861565 DOI: 10.1016/j.ccell.2021.10.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 07/06/2021] [Accepted: 10/15/2021] [Indexed: 12/15/2022]
Abstract
The mechanisms regulating exhaustion of tumor-infiltrating lymphocytes (TIL) and responsiveness to PD-1 blockade remain partly unknown. In human ovarian cancer, we show that tumor-specific CD8+ TIL accumulate in tumor islets, where they engage antigen and upregulate PD-1, which restrains their functions. Intraepithelial PD-1+CD8+ TIL can be, however, polyfunctional. PD-1+ TIL indeed exhibit a continuum of exhaustion states, with variable levels of CD28 costimulation, which is provided by antigen-presenting cells (APC) in intraepithelial tumor myeloid niches. CD28 costimulation is associated with improved effector fitness of exhausted CD8+ TIL and is required for their activation upon PD-1 blockade, which also requires tumor myeloid APC. Exhausted TIL lacking proper CD28 costimulation in situ fail to respond to PD-1 blockade, and their response may be rescued by local CTLA-4 blockade and tumor APC stimulation via CD40L.
Collapse
Affiliation(s)
- Jaikumar Duraiswamy
- Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Riccardo Turrini
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Aspram Minasyan
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - David Barras
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland; Bioinformatics Core Facility, Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Isaac Crespo
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Alizée J Grimm
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Julia Casado
- Research Program of Systems Oncology, University of Helsinki, 00014 Helsinki, Finland
| | - Raphael Genolet
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Fabrizio Benedetti
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Alexandre Wicky
- Center for Precision Oncology, Department of Oncology, CHUV, 1011 Lausanne, Switzerland
| | - Kalliopi Ioannidou
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Wilson Castro
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Christopher Neal
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Amandine Moriot
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Stéphanie Renaud-Tissot
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland; Center of Experimental Therapeutics, Department of Oncology, CHUV, 1011 Lausanne, Switzerland
| | - Victor Anstett
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Noémie Fahr
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Janos L Tanyi
- Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Monika A Eiva
- Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Connor A Jacobson
- Harvard Ludwig Center, Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Kathleen T Montone
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Inge Marie Svane
- National Center for Cancer Immune Therapy, Copenhagen University Hospital, 2730 Herlev, Denmark
| | - Lana E Kandalaft
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland; Center of Experimental Therapeutics, Department of Oncology, CHUV, 1011 Lausanne, Switzerland
| | - Mauro Delorenzi
- Bioinformatics Core Facility, Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland; Department of Oncology, UNIL, 1011 Lausanne, Switzerland
| | - Peter K Sorger
- Harvard Ludwig Center, Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Anniina Färkkilä
- Research Program of Systems Oncology, University of Helsinki, 00014 Helsinki, Finland; Department of Obstetrics and Gynecology, Helsinki University Hospital, 00014 Helsinki, Finland
| | - Olivier Michielin
- Center for Precision Oncology, Department of Oncology, CHUV, 1011 Lausanne, Switzerland
| | - Vincent Zoete
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Santiago J Carmona
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Periklis G Foukas
- 2nd Department of Pathology, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Daniel J Powell
- Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sylvie Rusakiewicz
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland; Center of Experimental Therapeutics, Department of Oncology, CHUV, 1011 Lausanne, Switzerland
| | - Marie-Agnès Doucey
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Denarda Dangaj Laniti
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - George Coukos
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland.
| |
Collapse
|
10
|
Pantha R, Lee JH, Bae JH, Koh EH, Shin M, Song DK, Im SS. Perilipin 5 is a novel target of nuclear receptor LRH-1 to regulate hepatic triglycerides metabolism. BMB Rep 2021. [PMID: 34488925 PMCID: PMC8505233 DOI: 10.5483/bmbrep.2021.54.9.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Liver receptor homolog-1 (LRH-1) has emerged as a regulator of hepatic glucose, bile acid, and mitochondrial metabolism. However, the functional mechanism underlying the effect of LRH-1 on lipid mobilization has not been addressed. This study investigated the regulatory function of LRH-1 in lipid metabolism in maintaining a normal liver physiological state during fasting. The Lrh-1f/f and LRH-1 liver-specific knockout (Lrh-1LKO) mice were either fed or fasted for 24 h, and the liver and serum were isolated. The livers were used for qPCR, western blot, and histological analysis. Primary hepatocytes were isolated for immunocytochemistry assessments of lipids. During fasting, the Lrh-1LKO mice showed increased accumulation of triglycerides in the liver compared to that in Lrh-1f/f mice. Interestingly, in the Lrh-1LKO liver, decreases in perilipin 5 (PLIN5) expression and genes involved in β-oxidation were observed. In addition, the LRH-1 agonist dialauroylphosphati-dylcholine also enhanced PLIN5 expression in human cultured HepG2 cells. To identify new target genes of LRH-1, these findings directed us to analyze the Plin5 promoter sequence, which revealed −1620/−1614 to be a putative binding site for LRH-1. This was confirmed by promoter activity and chromatin immuno-precipitation assays. Additionally, fasted Lrh-1f/f primary hepatocytes showed increased co-localization of PLIN5 in lipid droplets (LDs) compared to that in fasted Lrh-1LKO primary hepatocytes. Overall, these findings suggest that PLIN5 might be a novel target of LRH-1 to mobilize LDs, protect the liver from lipid overload, and manage the cellular needs during fasting.
Collapse
Affiliation(s)
- Rubee Pantha
- Department of Physiology, Keimyung University School of Medicine, Daegu 42601, Korea
| | - Jae-Ho Lee
- Department of Physiology, Keimyung University School of Medicine, Daegu 42601, Korea
| | - Jae-Hoon Bae
- Department of Physiology, Keimyung University School of Medicine, Daegu 42601, Korea
| | - Eun Hee Koh
- Department of Internal Medicine, Asan Institute for Life Science, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Minsang Shin
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Dae-Kyu Song
- Department of Physiology, Keimyung University School of Medicine, Daegu 42601, Korea
| | - Seung-Soon Im
- Department of Physiology, Keimyung University School of Medicine, Daegu 42601, Korea
| |
Collapse
|
11
|
Cheng G, Zheng L. Regulation of the apolipoprotein M signaling pathway: a review. J Recept Signal Transduct Res 2021; 42:285-292. [PMID: 34006168 DOI: 10.1080/10799893.2021.1924203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Apolipoprotein M (apoM), an apolipoprotein predominantly associated with high-density lipoprotein (HDL), is considered a mediator of the numerous roles of HDL, including reverse cholesterol transport, anti-atherosclerotic, anti-inflammatory and anti-oxidant, and mediates pre-β-HDL formation. ApoM expression is known to be regulated by a variety of in vivo and in vitro factors. The transcription factors farnesoid X receptor, small heterodimer partner, liver receptor homolog-1, and liver X receptor comprise the signaling cascade network that regulates the expression and secretion of apoM. Moreover, hepatocyte nuclear factor-1α and c-Jun/JunB have been demonstrated to exert opposing regulatory effects on apoM through competitive binding to the same sites in the proximal region of the apoM gene. Furthermore, as a carrier and modulator of sphingosine 1-phosphate (S1P), apoM binds to S1P within its hydrophobic-binding pocket. The apoM/S1P axis has been discovered to play a crucial role in the apoM signaling pathway through its ability to regulate glucose and lipid metabolism, vascular barrier homeostasis, inflammatory response and other pathological and physiological processes. Using the findings of previous studies, the present review aimed to summarize the regulation of apoM expression by various factors and its role in different physiological and pathological conditions, and provide a new perspective for the further treatment of these diseases.
Collapse
Affiliation(s)
- Gangli Cheng
- Clinical Medical Research Center, the Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Lu Zheng
- Clinical Medical Research Center, the Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
12
|
Aney KJ, Nissim S. More than acinar identity? A novel cystic phenotype suggests broader roles for NR5A2 in pancreatic cancer †. J Pathol 2021; 254:1-4. [PMID: 33448017 PMCID: PMC8439571 DOI: 10.1002/path.5619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/05/2021] [Accepted: 01/10/2021] [Indexed: 11/10/2022]
Abstract
The prognosis for pancreatic ductal adenocarcinoma (PDAC) remains dismal. Multiple genome-wide association studies (GWAS) have implicated the nuclear receptor NR5A2 in modulating PDAC risk, but mechanisms for this association are not understood. NR5A2 is a transcription factor that maintains acinar cell identity, and heterozygous loss of Nr5a2 in mice accelerates oncogenic Kras-driven formation of pancreatic intraepithelial neoplasia (PanIN), a PDAC precursor derived from acinar cells. In a recent issue of The Journal of Pathology, Cobo et al characterize a novel mouse model that uses Ptf1a:Cre to drive oncogenic Kras as well as heterozygous Nr5a2 inactivation. In addition to the expected PanIN lesions, these mice exhibited a surprising phenotype: large pancreatic cystic lesions which have not been previously reported. Comparing expression of oncogenic Kras and heterozygous Nr5a2 in various mouse models reveals several possible explanations for these cystic lesions. Importantly, these differences across mouse models suggest that NR5A2 may contribute to PDAC precursors in ways beyond its previously characterized acinar cell-autonomous role. These observations highlight that pathways implicated by GWAS may have roles in unexpected cell types, and an understanding of these roles will be critical to guide new preventive and treatment strategies for PDAC. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Katherine J Aney
- Harvard–MIT Health Sciences and Technology, Harvard
Medical School, Boston, MA, USA
| | - Sahar Nissim
- Harvard–MIT Health Sciences and Technology, Harvard
Medical School, Boston, MA, USA
- Divisions of Gastroenterology and Genetics, Brigham and
Womenʼs Hospital, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
13
|
Ly LK, Doden HL, Ridlon JM. Gut feelings about bacterial steroid-17,20-desmolase. Mol Cell Endocrinol 2021; 525:111174. [PMID: 33503463 PMCID: PMC8886824 DOI: 10.1016/j.mce.2021.111174] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/17/2021] [Accepted: 01/20/2021] [Indexed: 12/12/2022]
Abstract
Advances in technology are only beginning to reveal the complex interactions between hosts and their resident microbiota that have co-evolved over centuries. In this review, we present compelling evidence that implicates the host-associated microbiome in the generation of 11β-hydroxyandrostenedione, leading to the formation of potent 11-oxy-androgens. Microbial steroid-17,20-desmolase cleaves the side-chain of glucocorticoids (GC), including cortisol (and its derivatives of cortisone, 5α-dihydrocortisol, and also (allo)- 3α, 5α-tetrahydrocortisol, but not 3α-5β-tetrahydrocortisol) and drugs (prednisone and dexamethasone). In addition to side-chain cleavage, we discuss the gut microbiome's robust potential to transform a myriad of steroids, mirroring much of the host's metabolism. We also explore the overlooked role of intestinal steroidogenesis and efflux pumps as a potential route for GC transport into the gut. Lastly, we propose several health implications from microbial steroid-17,20-desmolase function, including aberrant mineralocorticoid, GC, and androgen receptor signaling in colonocytes, immune cells, and prostate cells, which may exacerbate disease states.
Collapse
Affiliation(s)
- Lindsey K Ly
- Microbiome Metabolic Engineering Theme, Carl R. Woese Institute for Genomic Biology, Urbana, IL, 61801, USA; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Heidi L Doden
- Microbiome Metabolic Engineering Theme, Carl R. Woese Institute for Genomic Biology, Urbana, IL, 61801, USA; Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jason M Ridlon
- Microbiome Metabolic Engineering Theme, Carl R. Woese Institute for Genomic Biology, Urbana, IL, 61801, USA; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Cancer Center of Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| |
Collapse
|
14
|
Phan TS, Brunner T. The versatility of liver X receptors in T cell homeostasis: Location, location, location! J Exp Med 2021; 218:211700. [PMID: 33475707 PMCID: PMC7829932 DOI: 10.1084/jem.20202318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Nuclear receptors control the transcriptional program of target cells and thereby their phenotype and activities. Two complementary studies by Micheals et al. (https://doi.org/10.1084/jem.20201311) and Chan et al. (https://doi.org/10.1084/jem.20200318) published in JEM uncover the cell type–specific expression and role of the nuclear receptors liver X receptors in the regulation of T cell homeostasis and function.
Collapse
Affiliation(s)
- Truong San Phan
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Thomas Brunner
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
15
|
Zerlotin R, Arconzo M, Piccinin E, Moschetta A. Another One Bites the Gut: Nuclear Receptor LRH-1 in Intestinal Regeneration and Cancer. Cancers (Basel) 2021; 13:cancers13040896. [PMID: 33672730 PMCID: PMC7924345 DOI: 10.3390/cancers13040896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/25/2021] [Accepted: 02/16/2021] [Indexed: 11/16/2022] Open
Abstract
The process of self-renewal in normal intestinal epithelium is characterized by a fine balance between proliferation, differentiation, migration, and cell death. When even one of these aspects escapes the normal control, cellular proliferation and differentiation are impaired, with consequent onset of tumorigenesis. In humans, colorectal cancer (CRC) is the main pathological manifestation of this derangement. Nowadays, CRC is the world's fourth most deadly cancer with a limited survival after treatment. Several conditions can predispose to CRC development, including dietary habits and pre-existing inflammatory bowel diseases. Given their extraordinary ability to interact with DNA, it is widely known that nuclear receptors play a key role in the regulation of intestinal epithelium, orchestrating the expression of a series of genes involved in developmental and homeostatic pathways. In particular, the nuclear receptor Liver Receptor Homolog-1 (LRH-1), highly expressed in the stem cells localized in the crypts, promotes intestine cell proliferation and renewal in both direct and indirect DNA-binding manner. Furthermore, LRH-1 is extensively correlated with diverse intestinal inflammatory pathways. These evidence shed a light in the dynamic intestinal microenvironment in which increased regenerative epithelial cell turnover, mutagenic insults, and chronic DNA damages triggered by factors within an inflammatory cell-rich microenvironment act synergistically to favor cancer onset and progression.
Collapse
Affiliation(s)
- Roberta Zerlotin
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (R.Z.); (M.A.); (E.P.)
| | - Maria Arconzo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (R.Z.); (M.A.); (E.P.)
| | - Elena Piccinin
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (R.Z.); (M.A.); (E.P.)
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (R.Z.); (M.A.); (E.P.)
- INBB, National Institute for Biostructures and Biosystems, 00136 Rome, Italy
- National Cancer Center, IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy
- Correspondence: ; Tel.: +39-080-559-3262
| |
Collapse
|
16
|
Michalek S, Brunner T. Nuclear-mitochondrial crosstalk: On the role of the nuclear receptor liver receptor homolog-1 (NR5A2) in the regulation of mitochondrial metabolism, cell survival, and cancer. IUBMB Life 2020; 73:592-610. [PMID: 32931651 DOI: 10.1002/iub.2386] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022]
Abstract
Liver receptor homolog-1 (LRH-1, NR5A2) is an orphan nuclear receptor with widespread activities in the regulation of development, stemness, metabolism, steroidogenesis, and proliferation. Many of the LRH-1-regulated processes target the mitochondria and associated activities. While under physiological conditions, a balanced LRH-1 expression and regulation contribute to the maintenance of a physiological equilibrium, deregulation of LRH-1 has been associated with inflammation and cancer. In this review, we discuss the role and mechanism(s) of how LRH-1 regulates metabolic processes, cell survival, and cancer in a nuclear-mitochondrial crosstalk, and evaluate its potential as a pharmacological target.
Collapse
Affiliation(s)
- Svenja Michalek
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Thomas Brunner
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
17
|
Structural variations in a non-coding region at 1q32.1 are responsible for the NYS7 locus in two large families. Hum Genet 2020; 139:1057-1064. [PMID: 32248360 PMCID: PMC7406531 DOI: 10.1007/s00439-020-02156-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/24/2020] [Indexed: 01/20/2023]
Abstract
Congenital motor nystagmus (CMN) is characterized by early-onset bilateral ocular oscillations without other ocular deficits. To date, mutations in only one gene have been identified to be responsible for CMN, i.e., FRMD7 for X-linked CMN. Four loci for autosomal dominant CMN, including NYS7 (OMIM 614826), have been mapped but the causative genes have yet to be identified. NYS7 was mapped to 1q32.1 based on independent genome-wide linkage scan on two large families with CMN. In this study, mutations in all known protein-coding genes, both intronic sequence with predicted effect and coding sequence, in the linkage interval were excluded by whole-genome sequencing. Then, long-read genome sequencing based on the Nanopore platform was performed with a sample from each of the two families. Two deletions with an overlapping region of 775,699 bp, located in a region without any known protein-coding genes, were identified in the two families in the linkage region. The two deletions as well as their breakpoints were confirmed by Sanger sequencing and co-segregated with CMN in the two families. The 775,699 bp deleted region contains uncharacterized non-protein-coding expressed sequences and pseudogenes but no protein-coding genes. However, Hi-C data predicted that the deletions span two topologically associated domains and probably lead to a change in the 3D genomic architecture. These results provide novel evidence of a strong association between structural variations in non-coding genomic regions and human hereditary diseases like CMN with a potential mechanism involving changes in 3D genome architecture, which provides clues regarding the molecular pathogenicity of CMN.
Collapse
|
18
|
Cobo-Vuilleumier N, Gauthier BR. Time for a paradigm shift in treating type 1 diabetes mellitus: coupling inflammation to islet regeneration. Metabolism 2020; 104:154137. [PMID: 31904355 DOI: 10.1016/j.metabol.2020.154137] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/26/2019] [Accepted: 12/29/2019] [Indexed: 02/07/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune disease that targets the destruction of islet beta-cells resulting in insulin deficiency, hyperglycemia and death if untreated. Despite advances in medical devices and longer-acting insulin, there is still no robust therapy to substitute and protect beta-cells that are lost in T1DM. Attempts to refrain from the autoimmune attack have failed to achieve glycemic control in patients highlighting the necessity for a paradigm shift in T1DM treatment. Paradoxically, beta-cells are present in T1DM patients indicating a disturbed equilibrium between the immune attack and beta-cell regeneration reminiscent of unresolved wound healing that under normal circumstances progression towards an anti-inflammatory milieu promotes regeneration. Thus, the ultimate T1DM therapy should concomitantly restore immune self-tolerance and replenish the beta-cell mass similar to wound healing. Recently the agonistic activation of the nuclear receptor LRH-1/NR5A2 was shown to induce immune self-tolerance, increase beta-cell survival and promote regeneration through a mechanism of alpha-to-beta cell phenotypic switch. This trans-regeneration process appears to be facilitated by a pancreatic anti-inflammatory environment induced by LRH-1/NR5A2 activation. Herein, we review the literature on the role of LRH1/NR5A2 in immunity and islet physiology and propose that a cross-talk between these cellular compartments is mandatory to achieve therapeutic benefits.
Collapse
Affiliation(s)
- Nadia Cobo-Vuilleumier
- Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Benoit R Gauthier
- Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, 28029 Spain.
| |
Collapse
|
19
|
Pharmacological LRH-1/Nr5a2 inhibition limits pro-inflammatory cytokine production in macrophages and associated experimental hepatitis. Cell Death Dis 2020; 11:154. [PMID: 32111818 PMCID: PMC7048823 DOI: 10.1038/s41419-020-2348-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/31/2022]
Abstract
Liver receptor homolog-1 (LRH-1, Nr5a2) is an orphan nuclear receptor mainly expressed in tissues of endodermal origin, where its physiological role has been extensively studied. LRH-1 has been implicated in liver cell differentiation and proliferation, as well as glucose, lipid, and bile acid metabolism. In addition, increasing evidence highlights its role in immunoregulatory processes via glucocorticoid synthesis in the intestinal epithelium. Although the direct function of LRH-1 in immune cells is fairly elucidated, a role of LRH-1 in the regulation of macrophage differentiation has been recently reported. In this study, we aimed to investigate the role of LRH-1 in the regulation of pro-inflammatory cytokine production in macrophages. Our data demonstrate that pharmacological inhibition, along with LRH-1 knockdown, significantly reduced the lipopolysaccharide (LPS)-induced production of pro-inflammatory cytokines in the macrophage line RAW 264.7 cells, as well as in primary murine macrophages. This inhibitory effect was found to be independent of defects of LRH-1-regulated cell proliferation or toxic effects of the LRH-1 inhibitors. In contrast, LRH-1 inhibition reduced the mitochondrial ATP production and metabolism of macrophages through downregulation of the LRH-1 targets glucokinase and glutminase-2, and thus impairing the LPS-induced macrophage activation. Interestingly, in vivo pharmacological inhibition of LRH-1 also resulted in reduced tumor necrosis factor (TNF) production and associated decreased liver damage in a macrophage- and TNF-dependent mouse model of hepatitis. Noteworthy, despite hepatocytes expressing high levels of LRH-1, pharmacological inhibition of LRH-1 per se did not cause any obvious liver damage. Therefore, this study proposes LRH-1 as an emerging therapeutic target in the treatment of inflammatory disorders, especially where macrophages and cytokines critically decide the extent of inflammation.
Collapse
|