1
|
Schöneberg T. Modulating vertebrate physiology by genomic fine-tuning of GPCR functions. Physiol Rev 2025; 105:383-439. [PMID: 39052017 DOI: 10.1152/physrev.00017.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/08/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024] Open
Abstract
G protein-coupled receptors (GPCRs) play a crucial role as membrane receptors, facilitating the communication of eukaryotic species with their environment and regulating cellular and organ interactions. Consequently, GPCRs hold immense potential in contributing to adaptation to ecological niches and responding to environmental shifts. Comparative analyses of vertebrate genomes reveal patterns of GPCR gene loss, expansion, and signatures of selection. Integrating these genomic data with insights from functional analyses of gene variants enables the interpretation of genotype-phenotype correlations. This review underscores the involvement of GPCRs in adaptive processes, presenting numerous examples of how alterations in GPCR functionality influence vertebrate physiology or, conversely, how environmental changes impact GPCR functions. The findings demonstrate that modifications in GPCR function contribute to adapting to aquatic, arid, and nocturnal habitats, influencing camouflage strategies, and specializing in particular dietary preferences. Furthermore, the adaptability of GPCR functions provides an effective mechanism in facilitating past, recent, or ongoing adaptations in animal domestication and human evolution and should be considered in therapeutic strategies and drug development.
Collapse
Affiliation(s)
- Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany
- School of Medicine, University of Global Health Equity, Kigali, Rwanda
| |
Collapse
|
2
|
Panara V, Varaliová Z, Wilting J, Koltowska K, Jeltsch M. The relationship between the secondary vascular system and the lymphatic vascular system in fish. Biol Rev Camb Philos Soc 2024; 99:2108-2133. [PMID: 38940420 DOI: 10.1111/brv.13114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
New technologies have resulted in a better understanding of blood and lymphatic vascular heterogeneity at the cellular and molecular levels. However, we still need to learn more about the heterogeneity of the cardiovascular and lymphatic systems among different species at the anatomical and functional levels. Even the deceptively simple question of the functions of fish lymphatic vessels has yet to be conclusively answered. The most common interpretation assumes a similar dual setup of the vasculature in zebrafish and mammals: a cardiovascular circulatory system, and a lymphatic vascular system (LVS), in which the unidirectional flow is derived from surplus interstitial fluid and returned into the cardiovascular system. A competing interpretation questions the identity of the lymphatic vessels in fish as at least some of them receive their flow from arteries via specialised anastomoses, neither requiring an interstitial source for the lymphatic flow nor stipulating unidirectionality. In this alternative view, the 'fish lymphatics' are a specialised subcompartment of the cardiovascular system, called the secondary vascular system (SVS). Many of the contradictions found in the literature appear to stem from the fact that the SVS develops in part or completely from an embryonic LVS by transdifferentiation. Future research needs to establish the extent of embryonic transdifferentiation of lymphatics into SVS blood vessels. Similarly, more insight is needed into the molecular regulation of vascular development in fish. Most fish possess more than the five vascular endothelial growth factor (VEGF) genes and three VEGF receptor genes that we know from mice or humans, and the relative tolerance of fish to whole-genome and gene duplications could underlie the evolutionary diversification of the vasculature. This review discusses the key elements of the fish lymphatics versus the SVS and attempts to draw a picture coherent with the existing data, including phylogenetic knowledge.
Collapse
Affiliation(s)
- Virginia Panara
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjölds väg 20, Uppsala, 751 85, Sweden
- Beijer Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjölds väg 20, Uppsala, 751 85, Sweden
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18 A, Uppsala, 752 36, Sweden
| | - Zuzana Varaliová
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjölds väg 20, Uppsala, 751 85, Sweden
- Drug Research Program, University of Helsinki, Viikinkaari 5E, Helsinki, 00790, Finland
| | - Jörg Wilting
- Institute of Anatomy and Embryology, University Medical School Göttingen, Kreuzbergring 36, Göttingen, 37075, Germany
| | - Katarzyna Koltowska
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjölds väg 20, Uppsala, 751 85, Sweden
- Beijer Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjölds väg 20, Uppsala, 751 85, Sweden
| | - Michael Jeltsch
- Drug Research Program, University of Helsinki, Viikinkaari 5E, Helsinki, 00790, Finland
- Individualized Drug Therapy Research Program, University of Helsinki, Haartmaninkatu 8, Helsinki, 00290, Finland
- Wihuri Research Institute, Haartmaninkatu 8, Helsinki, 00290, Finland
- Helsinki One Health, University of Helsinki, P.O. Box 4, Helsinki, 00014, Finland
- Helsinki Institute of Sustainability Science, Yliopistonkatu 3, Helsinki, 00100, Finland
| |
Collapse
|
3
|
Retzinger AC, Retzinger GS. The Acari Hypothesis, VI: human sebum and the cutaneous microbiome in allergy and in lipid homeostasis. FRONTIERS IN ALLERGY 2024; 5:1478279. [PMID: 39640432 PMCID: PMC11617560 DOI: 10.3389/falgy.2024.1478279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
The Acari Hypothesis posits that acarians, i.e., mites and ticks, are causative agents of IgE-mediated conditions. This report further develops The Hypothesis, providing rationale for the childhood predilection of allergy. In short, Malassezia, a fungus native to human skin and utterly dependent on sebaceous lipids, prevents allergy by deterring acarians. Because sebum output is limited before puberty, children are more prone to allergy than are adults. Competition for sebaceous lipids by Staphylococcus aureus influences not only Malassezia number-and, consequently, allergic predisposition-but also lipid homeostasis. The latter, in turn, contributes to dyslipidemia and associated conditions, e.g., the metabolic syndrome.
Collapse
Affiliation(s)
- Andrew C. Retzinger
- Department of Emergency Medicine, Camden Clark Medical Center, West Virginia University, Parkersburg, WV, United States
| | - Gregory S. Retzinger
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
4
|
Jiang B, Xiao C, Liu L. Progressive transcriptomic shifts in evolved yeast strains following gene knockout. iScience 2024; 27:111219. [PMID: 39559754 PMCID: PMC11570485 DOI: 10.1016/j.isci.2024.111219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/29/2024] [Accepted: 10/17/2024] [Indexed: 11/20/2024] Open
Abstract
Gene knockout disrupts cellular homeostasis, altering gene expression, and phenotypes. We investigated whether cells return to their pre-knockout transcriptomic state through adaptive evolution experiments on hap4Δ and ade1Δ yeast strains. Analysis revealed that genes with higher expression levels and more physical interaction partners in wild-type strains were more likely to be restored, suggesting that genes of significant functional importance have increased resilience to genetic perturbations. However, as the experiment progressed, most initially restored genes became unrestored. Over 60% of differentially expressed genes in knockout strains remained unrestored in evolved strains. Evolved strains exhibited distinct transcriptomic states, diverging from the original strain over time. Ribosome biogenesis components exhibited systematic sequential changes during the evolution. Our findings suggest the knockout strain transcriptomes struggle to return to the original state even after 28 days of culture. Instead, compensatory mechanisms lead to distinct suboptimal states, highlighting the complex transcriptomic dynamics following genetic perturbations.
Collapse
Affiliation(s)
- Bei Jiang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Chuyao Xiao
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Nansha District, Guangzhou 511400, China
- Institute of Life Sciences, Fudan University, Shanghai 200433, China
| | - Li Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
5
|
Firsanov D, Zacher M, Tian X, Sformo TL, Zhao Y, Tombline G, Lu JY, Zheng Z, Perelli L, Gurreri E, Zhang L, Guo J, Korotkov A, Volobaev V, Biashad SA, Zhang Z, Heid J, Maslov A, Sun S, Wu Z, Gigas J, Hillpot E, Martinez J, Lee M, Williams A, Gilman A, Hamilton N, Haseljic E, Patel A, Straight M, Miller N, Ablaeva J, Tam LM, Couderc C, Hoopman M, Moritz R, Fujii S, Hayman DJ, Liu H, Cai Y, Leung AKL, Simons MJP, Zhang Z, Nelson CB, Abegglen LM, Schiffman JD, Gladyshev VN, Modesti M, Genovese G, Vijg J, Seluanov A, Gorbunova V. DNA repair and anti-cancer mechanisms in the long-lived bowhead whale. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.07.539748. [PMID: 39574710 PMCID: PMC11580846 DOI: 10.1101/2023.05.07.539748] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
At over 200 years, the maximum lifespan of the bowhead whale exceeds that of all other mammals. The bowhead is also the second-largest animal on Earth, reaching over 80,000 kg1. Despite its very large number of cells and long lifespan, the bowhead is not highly cancer-prone, an incongruity termed Peto's Paradox2. This phenomenon has been explained by the evolution of additional tumor suppressor genes in other larger animals, supported by research on elephants demonstrating expansion of the p53 gene3-5. Here we show that bowhead whale fibroblasts undergo oncogenic transformation after disruption of fewer tumor suppressors than required for human fibroblasts. However, analysis of DNA repair revealed that bowhead cells repair double strand breaks (DSBs) and mismatches with uniquely high efficiency and accuracy compared to other mammals. The protein CIRBP, implicated in protection from genotoxic stress, was present in very high abundance in the bowhead whale relative to other mammals. We show that CIRBP and its downstream protein RPA2, also present at high levels in bowhead cells, increase the efficiency and fidelity of DNA repair in human cells. These results indicate that rather than possessing additional tumor suppressor genes as barriers to oncogenesis, the bowhead whale relies on more accurate and efficient DNA repair to preserve genome integrity. This strategy which does not eliminate damaged cells but repairs them may be critical for the long and cancer-free lifespan of the bowhead whale.
Collapse
Affiliation(s)
- Denis Firsanov
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Max Zacher
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Xiao Tian
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Todd L. Sformo
- Department of Wildlife Management, North Slope Borough, Utqiaġvik (Barrow), AK 99723, USA
| | - Yang Zhao
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Greg Tombline
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - J. Yuyang Lu
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Zhizhong Zheng
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Luigi Perelli
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Enrico Gurreri
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Li Zhang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Guo
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Anatoly Korotkov
- Department of Biology, University of Rochester, Rochester, NY, USA
| | | | | | - Zhihui Zhang
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Johanna Heid
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Alex Maslov
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Shixiang Sun
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Zhuoer Wu
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Jonathan Gigas
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Eric Hillpot
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - John Martinez
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Minseon Lee
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Alyssa Williams
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Abbey Gilman
- Department of Biology, University of Rochester, Rochester, NY, USA
| | | | - Ena Haseljic
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Avnee Patel
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Maggie Straight
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Nalani Miller
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Julia Ablaeva
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Lok Ming Tam
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Chloé Couderc
- Department of Biology, University of Rochester, Rochester, NY, USA
| | | | | | - Shingo Fujii
- Cancer Research Center of Marseille, Department of Genome Integrity, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix Marseille Univ, Marseille, France
| | | | - Hongrui Liu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- Cross-Disciplinary Graduate Program in Biomedical Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Yuxuan Cai
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Anthony K. L. Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- McKusick-Nathans Institute of the Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Zhengdong Zhang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - C. Bradley Nelson
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Lisa M. Abegglen
- Department of Pediatrics & Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Peel Therapeutics, Inc., Salt Lake City, UT, USA
| | - Joshua D. Schiffman
- Department of Pediatrics & Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Peel Therapeutics, Inc., Salt Lake City, UT, USA
| | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mauro Modesti
- Cancer Research Center of Marseille, Department of Genome Integrity, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix Marseille Univ, Marseille, France
| | - Giannicola Genovese
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, NY, USA
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY, USA
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
6
|
Avelino-de-Souza K, Mynssen H, Chaim K, Parks AN, Ikeda JMP, Cunha HA, Mota B, Patzke N. Anatomical and volumetric description of the guiana dolphin (Sotalia guianensis) brain from an ultra-high-field magnetic resonance imaging. Brain Struct Funct 2024; 229:1889-1911. [PMID: 38664257 PMCID: PMC11485192 DOI: 10.1007/s00429-024-02789-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/12/2024] [Indexed: 10/18/2024]
Abstract
The Guiana dolphin (Sotalia guianensis) is a common species along Central and South American coastal waters. Although much effort has been made to understand its behavioral ecology and evolution, very little is known about its brain. The use of ultra-high field MRI in anatomical descriptions of cetacean brains is a very promising approach that is still uncommon. In this study, we present for the first time a full anatomical description of the Guiana dolphin's brain based on high-resolution ultra-high-field magnetic resonance imaging, providing an exceptional level of brain anatomical details, and enriching our understanding of the species. Brain structures were labeled and volumetric measurements were delineated for many distinguishable structures, including the gray matter and white matter of the cerebral cortex, amygdala, hippocampus, superior and inferior colliculi, thalamus, corpus callosum, ventricles, brainstem and cerebellum. Additionally, we provide the surface anatomy of the Guiana dolphin brain, including the labeling of main sulci and gyri as well as the calculation of its gyrification index. These neuroanatomical data, absent from the literature to date, will help disentangle the history behind cetacean brain evolution and consequently, mammalian evolution, representing a significant new source for future comparative studies.
Collapse
Affiliation(s)
- Kamilla Avelino-de-Souza
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-590, Brazil.
- Laboratório de Biologia Teórica e Matemática Experimental (MetaBIO), Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil.
- Rede Brasileira de Neurobiodiversidade, Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil.
| | - Heitor Mynssen
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-590, Brazil
- Laboratório de Biologia Teórica e Matemática Experimental (MetaBIO), Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil
- Rede Brasileira de Neurobiodiversidade, Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil
| | - Khallil Chaim
- Rede Brasileira de Neurobiodiversidade, Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil
- LIM44, Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Ashley N Parks
- Rede Brasileira de Neurobiodiversidade, Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil
- Renaissance School of Medicine, Stony Brook University, New York, USA
| | - Joana M P Ikeda
- Laboratório de Mamíferos Aquáticos e Bioindicadores Professora Izabel M.G do N. Gurgel (MAQUA), Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Haydée Andrade Cunha
- Rede Brasileira de Neurobiodiversidade, Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil
- Laboratório de Mamíferos Aquáticos e Bioindicadores Professora Izabel M.G do N. Gurgel (MAQUA), Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Genética, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruno Mota
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-590, Brazil
- Laboratório de Biologia Teórica e Matemática Experimental (MetaBIO), Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil
- Rede Brasileira de Neurobiodiversidade, Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil
| | - Nina Patzke
- Rede Brasileira de Neurobiodiversidade, Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil.
- Faculty of Medicine, Institute of Mind, Brain and Behavior, Health and Medical University, Olympischer Weg 1, 14471, Potsdam, Germany.
| |
Collapse
|
7
|
Zhang L, Leonard N, Passaro R, Luan MS, Van Tuyen P, Han LTN, Cam NH, Vogelnest L, Lynch M, Fine AE, Nga NTT, Van Long N, Rawson BM, Behie A, Van Nguyen T, Le MD, Nadler T, Walter L, Marques-Bonet T, Hofreiter M, Li M, Liu Z, Roos C. Genomic adaptation to small population size and saltwater consumption in the critically endangered Cat Ba langur. Nat Commun 2024; 15:8531. [PMID: 39358348 PMCID: PMC11447269 DOI: 10.1038/s41467-024-52811-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
Many mammal species have declining populations, but the consequences of small population size on the genomic makeup of species remain largely unknown. We investigated the evolutionary history, genetic load and adaptive potential of the Cat Ba langur (Trachypithecus poliocephalus), a primate species endemic to Vietnam's famous Ha Long Bay and with less than 100 living individuals one of the most threatened primates in the world. Using high-coverage whole genome data of four wild individuals, we revealed the Cat Ba langur as sister species to its conspecifics of the northern limestone langur clade and found no evidence for extensive secondary gene flow after their initial separation. Compared to other primates and mammals, the Cat Ba langur showed low levels of genetic diversity, long runs of homozygosity, high levels of inbreeding and an excess of deleterious mutations in homozygous state. On the other hand, genetic diversity has been maintained in protein-coding genes and on the gene-rich human chromosome 19 ortholog, suggesting that the Cat Ba langur retained most of its adaptive potential. The Cat Ba langur also exhibits several unique non-synonymous variants that are related to calcium and sodium metabolism, which may have improved adaptation to high calcium intake and saltwater consumption.
Collapse
Affiliation(s)
- Liye Zhang
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany.
- International Max Planck Research School for Genome Science (IMPRS-GS), University of Göttingen, Göttingen, Germany.
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Neahga Leonard
- Cat Ba Langur Conservation Project (CBLCP), Cat Ba National Park, Cat Ba Island, Cat Hai District, Hai Phong Province, Vietnam
| | - Rick Passaro
- Cat Ba Langur Conservation Project (CBLCP), Cat Ba National Park, Cat Ba Island, Cat Hai District, Hai Phong Province, Vietnam
| | - Mai Sy Luan
- Cat Ba Langur Conservation Project (CBLCP), Cat Ba National Park, Cat Ba Island, Cat Hai District, Hai Phong Province, Vietnam
| | - Pham Van Tuyen
- Cat Ba Langur Conservation Project (CBLCP), Cat Ba National Park, Cat Ba Island, Cat Hai District, Hai Phong Province, Vietnam
| | - Le Thi Ngoc Han
- Cat Ba Langur Conservation Project (CBLCP), Cat Ba National Park, Cat Ba Island, Cat Hai District, Hai Phong Province, Vietnam
| | - Nguyen Huy Cam
- Cat Ba Langur Conservation Project (CBLCP), Cat Ba National Park, Cat Ba Island, Cat Hai District, Hai Phong Province, Vietnam
| | - Larry Vogelnest
- Taronga Conservation Society Australia, Mosman, NSW, Australia
| | - Michael Lynch
- Melbourne Zoo, Zoos Victoria, Parkville, VIC, Australia
| | - Amanda E Fine
- Wildlife Conservation Society (WCS), Health Program, New York, NY, USA
| | | | - Nguyen Van Long
- Wildlife Conservation Society (WCS), Vietnam Country Program, Hanoi, Vietnam
| | - Benjamin M Rawson
- World Wildlife Fund for Nature (WWF) International, Gland, Switzerland
| | - Alison Behie
- School of Archaeology and Anthropology, The Australian National University, Canberra, ACT, Australia
| | - Truong Van Nguyen
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- Evolutionary Adaptive Genomics, Institute of Biochemistry and Biology, Department of Science, University of Potsdam, Potsdam, Germany
- Central Institute for Natural Resources and Environmental Studies, Vietnam National University, Hanoi, Vietnam
| | - Minh D Le
- Central Institute for Natural Resources and Environmental Studies, Vietnam National University, Hanoi, Vietnam
- Faculty of Environmental Sciences, University of Science, Vietnam National University, Hanoi, Vietnam
| | - Tilo Nadler
- Three Monkeys Wildlife Conservancy, Nho Quan District, Ninh Binh Province, Ninh Binh, Vietnam
| | - Lutz Walter
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Barcelona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, Cerdanyola del Vallès, Spain
| | - Michael Hofreiter
- Evolutionary Adaptive Genomics, Institute of Biochemistry and Biology, Department of Science, University of Potsdam, Potsdam, Germany.
| | - Ming Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Zhijin Liu
- College of Life Sciences, Capital Normal University, Beijing, China.
| | - Christian Roos
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany.
- Gene Bank of Primates, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany.
| |
Collapse
|
8
|
Shamanaev A, Litvak M, Ivanov I, Srivastava P, Sun MF, Dickeson SK, Kumar S, He TZ, Gailani D. Factor XII Structure-Function Relationships. Semin Thromb Hemost 2024; 50:937-952. [PMID: 37276883 PMCID: PMC10696136 DOI: 10.1055/s-0043-1769509] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Factor XII (FXII), the zymogen of the protease FXIIa, contributes to pathologic processes such as bradykinin-dependent angioedema and thrombosis through its capacity to convert the homologs prekallikrein and factor XI to the proteases plasma kallikrein and factor XIa. FXII activation and FXIIa activity are enhanced when the protein binds to a surface. Here, we review recent work on the structure and enzymology of FXII with an emphasis on how they relate to pathology. FXII is a homolog of pro-hepatocyte growth factor activator (pro-HGFA). We prepared a panel of FXII molecules in which individual domains were replaced with corresponding pro-HGFA domains and tested them in FXII activation and activity assays. When in fluid phase (not surface bound), FXII and prekallikrein undergo reciprocal activation. The FXII heavy chain restricts reciprocal activation, setting limits on the rate of this process. Pro-HGFA replacements for the FXII fibronectin type 2 or kringle domains markedly accelerate reciprocal activation, indicating disruption of the normal regulatory function of the heavy chain. Surface binding also enhances FXII activation and activity. This effect is lost if the FXII first epidermal growth factor (EGF1) domain is replaced with pro-HGFA EGF1. These results suggest that FXII circulates in blood in a "closed" form that is resistant to activation. Intramolecular interactions involving the fibronectin type 2 and kringle domains maintain the closed form. FXII binding to a surface through the EGF1 domain disrupts these interactions, resulting in an open conformation that facilitates FXII activation. These observations have implications for understanding FXII contributions to diseases such as hereditary angioedema and surface-triggered thrombosis, and for developing treatments for thrombo-inflammatory disorders.
Collapse
Affiliation(s)
- Aleksandr Shamanaev
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Maxim Litvak
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ivan Ivanov
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Priyanka Srivastava
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mao-Fu Sun
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - S. Kent Dickeson
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Sunil Kumar
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Tracey Z. He
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - David Gailani
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
9
|
Telizhenko V, Kosiol C, McGowen MR, Gol'din P. Relaxed selection in evolution of genes regulating limb development gives clue to variation in forelimb morphology of cetaceans and other mammals. Proc Biol Sci 2024; 291:20241106. [PMID: 39378996 PMCID: PMC11606503 DOI: 10.1098/rspb.2024.1106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/29/2024] [Accepted: 09/02/2024] [Indexed: 10/10/2024] Open
Abstract
Cetaceans have evolved unique limb structures, such as flippers, due to genetic changes during their transition to aquatic life. However, the full understanding of the genetic and evolutionary mechanisms behind these changes is still developing. By examining 25 limb-related protein-coding genes across various mammalian species, we compared genetic changes between aquatic mammals, like whales, and other mammals with unique limb structures such as bats, rodents and elephants. Our findings revealed significant modifications in limb-related genes, including variations in the Hox, GDF5 and Evx genes. Notably, a relaxed selection in several key genes was observed, suggesting a lifting of developmental constraints, which might have facilitated the emergence of morphological innovations in cetacean limb morphology. We also uncovered non-synonymous changes, insertions and deletions in these genes, particularly in the polyalanine tract of HOXD13, which are distinctive to cetaceans or convergent with other aquatic mammals. These genetic variations correlated with the diverse and specialized limb structures observed in cetaceans, indicating a complex interplay of relaxed selection and specific mutations in mammalian limb evolution.
Collapse
Affiliation(s)
| | | | - Michael R. McGowen
- Department of Vertebrate Zoology, Smithsonian National Museum of Natural History, Washington, DC20560, USA
| | | |
Collapse
|
10
|
Lang D, Zhao J, Liu S, Mu Y, Zou T. Adaptive evolution of pancreatic ribonuclease gene (RNase1) in Cetartiodactyla. Integr Zool 2024. [PMID: 39267349 DOI: 10.1111/1749-4877.12895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Pancreatic ribonuclease (RNase1), a digestive enzyme produced by the pancreas, is associated with the functional adaptation of dietary habits and is regarded as an attractive model system for studies of molecular evolution. In this study, we identified 218 functional genes and 48 pseudogenes from 114 species that span all four Cetartiodactyla lineages: two herbivorous lineages (Ruminantia and Tylopoda) and two non-herbivorous lineages (Cetancodonta and Suoidea). Multiple RNase1 genes were detected in all species of the two herbivorous lineages, and phylogenetic and genomic location analyses demonstrated that independent gene duplication events occurred in Ruminantia and Tylopoda. In Ruminantia, the gene duplication events occurred in the ancestral branches of the lineage in the Middle Eocene, a time of increasing climatic seasonality during which Ruminantia rapidly radiated. In contrast, only a single RNase1 gene was observed in the species of the two non-herbivorous lineages (Cetancodonta and Suoidea), suggesting that the previous Cetacea-specific loss hypothesis should be rejected. Moreover, the duplicated genes of RNase1 in the two herbivorous lineages (Ruminantia and Tylopoda) may have undergone functional divergence. In combination with the temporal coincidence between gene replication and the enhanced climatic seasonality during the Middle Eocene, this functional divergence suggests that RNase1 gene duplication was beneficial for Ruminantia to use the limited quantities of sparse fibrous vegetation and adapt to seasonal changes in climate. In summary, the findings indicate a complex and intriguing evolutionary pattern of RNase1 in Cetartiodactyla and demonstrate the molecular mechanisms by which organisms adapt to the environment.
Collapse
Affiliation(s)
- Datian Lang
- Department of Agronomy and Life Science, Zhaotong University, Zhaotong, Yunnan, China
| | - Junsong Zhao
- Department of Agronomy and Life Science, Zhaotong University, Zhaotong, Yunnan, China
| | - Songju Liu
- Department of Agronomy and Life Science, Zhaotong University, Zhaotong, Yunnan, China
| | - Yuan Mu
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, Yunnan, China
| | - Tiantian Zou
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan, China
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
11
|
Valente R, Cordeiro M, Pinto B, Machado A, Alves F, Sousa-Pinto I, Ruivo R, Castro LFC. Alterations of pleiotropic neuropeptide-receptor gene couples in Cetacea. BMC Biol 2024; 22:186. [PMID: 39218857 PMCID: PMC11367936 DOI: 10.1186/s12915-024-01984-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Habitat transitions have considerable consequences in organism homeostasis, as they require the adjustment of several concurrent physiological compartments to maintain stability and adapt to a changing environment. Within the range of molecules with a crucial role in the regulation of different physiological processes, neuropeptides are key agents. Here, we examined the coding status of several neuropeptides and their receptors with pleiotropic activity in Cetacea. RESULTS Analysis of 202 mammalian genomes, including 41 species of Cetacea, exposed an intricate mutational landscape compatible with gene sequence modification and loss. Specifically for Cetacea, in the 12 genes analysed we have determined patterns of loss ranging from species-specific disruptive mutations (e.g. neuropeptide FF-amide peptide precursor; NPFF) to complete erosion of the gene across the cetacean stem lineage (e.g. somatostatin receptor 4; SSTR4). CONCLUSIONS Impairment of some of these neuromodulators may have contributed to the unique energetic metabolism, circadian rhythmicity and diving response displayed by this group of iconic mammals.
Collapse
Affiliation(s)
- Raul Valente
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208, Matosinhos, S/N, Portugal
- FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua Do Campo Alegre, Porto, Portugal
| | - Miguel Cordeiro
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208, Matosinhos, S/N, Portugal
| | - Bernardo Pinto
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208, Matosinhos, S/N, Portugal
- FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua Do Campo Alegre, Porto, Portugal
| | - André Machado
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208, Matosinhos, S/N, Portugal
- FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua Do Campo Alegre, Porto, Portugal
| | - Filipe Alves
- MARE - Marine and Environmental Sciences Centre, Funchal, Madeira, Portugal
- ARNET - Aquatic Research Network, ARDITI, Funchal, Madeira, Portugal
| | - Isabel Sousa-Pinto
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208, Matosinhos, S/N, Portugal
- FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua Do Campo Alegre, Porto, Portugal
| | - Raquel Ruivo
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208, Matosinhos, S/N, Portugal.
| | - L Filipe C Castro
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208, Matosinhos, S/N, Portugal.
- FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua Do Campo Alegre, Porto, Portugal.
| |
Collapse
|
12
|
Kang J, Gu L, Guo B, Rong W, Xu S, Yang G, Ren W. Molecular evolution of wound healing-related genes during cetacean secondary aquatic adaptation. Integr Zool 2024; 19:898-912. [PMID: 37897119 DOI: 10.1111/1749-4877.12781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
The marine environment presents challenges for wound healing in cetaceans, despite their remarkable recovery abilities with minimal infections or complications. However, the molecular mechanism underlying this efficient wound healing remains underexplored. To better understand the molecular mechanisms behind wound healing in cetaceans, we investigated the evolutionary patterns of 37 wound healing-related genes in representative mammals. We found wound healing-related genes experience adaptive evolution in cetaceans: (1) Three extrinsic coagulation pathway-related genes-tissue factor (F3), coagulation factor VII (F7), and coagulation factor X (F10)-are subject to positive selection in cetaceans, which might promote efficient hemostasis after injury; positive selection in transforming growth factor-beta 2 (TGF-β2), transforming growth factor-beta 3 (TGF-β3), and platelet-derived growth factor D (PDGFD), which play immunological roles in wound healing, may help cetaceans enhance inflammatory response and tissue debridement. (2) Coagulation factor XII (F12) is the initiation factor in the intrinsic coagulation pathway. It had a premature stop codon mutation and was subjected to selective stress relaxation in cetaceans, suggesting that the early termination of F12 may help cetaceans avoid the risk of vascular blockage during diving. (3) Fibrinogen alpha chain (FGA) and FIII, which were detected to contain the specific amino acid substitutions in marine mammals, indicating similar evolutionary mechanisms might exist among marine mammals to maintain strong wound-healing ability. Thus, our research provides further impetus to study the evolution of the wound healing system in cetaceans and other marine mammals, extending knowledge of preventing coagulation disorder and atherosclerosis in humans.
Collapse
Affiliation(s)
- Jieqiong Kang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Long Gu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Boxiong Guo
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Wenqi Rong
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Shixia Xu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Guang Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Wenhua Ren
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
13
|
Le-Bert CR, Mitchell GS, Reznikov LR. Cardiopulmonary adaptations of a diving marine mammal, the bottlenose dolphin: Physiology during anesthesia. Physiol Rep 2024; 12:e16183. [PMID: 39245795 PMCID: PMC11381195 DOI: 10.14814/phy2.16183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 09/10/2024] Open
Abstract
Diving marine mammals are a diverse group of semi- to completely aquatic species. Some species are targets of conservation and rehabilitation efforts; other populations are permanently housed under human care and may contribute to clinical and biomedical investigations. Veterinary medical care for species under human care, at times, may necessitate the use of general anesthesia for diagnostic and surgical indications. However, the unique physiologic and anatomic adaptations of one representative diving marine mammal, the bottlenose dolphin, present several challenges in providing ventilatory and cardiovascular support to maintain adequate organ perfusion under general anesthesia. The goal of this review is to highlight the unique cardiopulmonary adaptations of the completely aquatic bottlenose dolphin (Tursiops truncatus), and to identify knowledge gaps in our understanding of how those adaptations influence their physiology and pose potential challenges for sedation and anesthesia of these mammals.
Collapse
Affiliation(s)
- Carolina R Le-Bert
- Department of Physiology & Aging, College of Medicine, University of Florida, Gainesville, Florida, USA
- U.S. Navy Marine Mammal Program, Naval Information Warfare Center Pacific, San Diego, California, USA
| | - Gordon S Mitchell
- Department of Physical Therapy, College of Public Human and Health Professionals, University of Florida, Gainesville, Florida, USA
| | - Leah R Reznikov
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
14
|
Uribe C, Nery MF, Zavala K, Mardones GA, Riadi G, Opazo JC. Evolution of ion channels in cetaceans: a natural experiment in the tree of life. Sci Rep 2024; 14:17024. [PMID: 39043711 PMCID: PMC11266680 DOI: 10.1038/s41598-024-66082-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/26/2024] [Indexed: 07/25/2024] Open
Abstract
Cetaceans represent a natural experiment within the tree of life in which a lineage changed from terrestrial to aquatic habitats. This shift involved phenotypic modifications, representing an opportunity to explore the genetic bases of phenotypic diversity. Among the different molecular systems that maintain cellular homeostasis, ion channels are crucial for the proper physiological functioning of all living species. This study aims to explore the evolution of ion channels during the evolutionary history of cetaceans. To do so, we created a bioinformatic pipeline to annotate the repertoire of ion channels in the genome of the species included in our sampling. Our main results show that cetaceans have, on average, fewer protein-coding genes and a higher percentage of annotated ion channels than non-cetacean mammals. Signals of positive selection were detected in ion channels related to the heart, locomotion, visual and neurological phenotypes. Interestingly, we predict that the NaV1.5 ion channel of most toothed whales (odontocetes) is sensitive to tetrodotoxin, similar to NaV1.7, given the presence of tyrosine instead of cysteine, in a specific position of the ion channel. Finally, the gene turnover rate of the cetacean crown group is more than three times faster than that of non-cetacean mammals.
Collapse
Affiliation(s)
- Cristóbal Uribe
- Department of Bioinformatics, Program in Sciences Mention Modeling of Chemical and Biological Systems, School of Bioinformatics Engineering, Center for Bioinformatics, Simulation and Modeling, CBSM, Faculty of Engineering, University of Talca, Campus Talca, Talca, Chile
| | - Mariana F Nery
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas-UNICAMP, Cidade Universitária, Campinas, Brazil
| | - Kattina Zavala
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile
| | - Gonzalo A Mardones
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile
- Integrative Biology Group, Valdivia, Chile
| | - Gonzalo Riadi
- Department of Bioinformatics, Center for Bioinformatics, Simulation and Modeling, Faculty of Engineering, CBSM, University of Talca, Talca, Chile.
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Valdivia, Chile.
| | - Juan C Opazo
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile.
- Integrative Biology Group, Valdivia, Chile.
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Valdivia, Chile.
| |
Collapse
|
15
|
Huang X, Dong G, Fan H, Zhou W, Huang G, Guan D, Zhang D, Wei F. The genome of African manatee Trichechus senegalensis reveals secondary adaptation to the aquatic environment. iScience 2024; 27:110394. [PMID: 39092175 PMCID: PMC11292518 DOI: 10.1016/j.isci.2024.110394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/26/2024] [Accepted: 06/25/2024] [Indexed: 08/04/2024] Open
Abstract
Sirenians exhibit unique aquatic adaptations, showcasing both convergent adaptive features shared with cetaceans and unique characteristics such as cold sensitivity and dense bones. Here, we report a chromosome-level genome of the African manatee (Trichechus senegalensis) with high continuity, completeness, and accuracy. We found that genes associated with osteopetrosis have undergone positive selection (CSF1R and LRRK1) or pseudogenized (FAM111A and IGSF23) in the African manatee, potentially contributing to the dense bone formation. The loss of KCNK18 may have increased their sensitivity to cold water temperatures. Moreover, we identified convergent evolutionary signatures in 392 genes among fully aquatic mammals, primarily enriched in skin or skeletal system development and circadian rhythm, which contributed to the transition from terrestrial to fully aquatic lifestyles. The African manatee currently possesses a small effective population size and low genome-wide heterozygosity. Overall, our study provides genetic resources for understanding the evolutionary characteristics and conservation efforts of this species.
Collapse
Affiliation(s)
- Xin Huang
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guixin Dong
- Guangdong Chimelong Group, Co., Ltd., Guangzhou 511400, China
| | - Huizhong Fan
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenliang Zhou
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Guangping Huang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Jiangxi Provincial Key Laboratory of Conservation Biology, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Dengfeng Guan
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Delu Zhang
- Chimelong Ocean Kingdom, Zhuhai 519000, China
| | - Fuwen Wei
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Jiangxi Provincial Key Laboratory of Conservation Biology, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
16
|
Tralamazza SM, Gluck-Thaler E, Feurtey A, Croll D. Copy number variation introduced by a massive mobile element facilitates global thermal adaptation in a fungal wheat pathogen. Nat Commun 2024; 15:5728. [PMID: 38977688 PMCID: PMC11231334 DOI: 10.1038/s41467-024-49913-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 06/25/2024] [Indexed: 07/10/2024] Open
Abstract
Copy number variation (CNV) can drive rapid evolution in changing environments. In microbial pathogens, such adaptation is a key factor underpinning epidemics and colonization of new niches. However, the genomic determinants of such adaptation remain poorly understood. Here, we systematically investigate CNVs in a large genome sequencing dataset spanning a worldwide collection of 1104 genomes from the major wheat pathogen Zymoseptoria tritici. We found overall strong purifying selection acting on most CNVs. Genomic defense mechanisms likely accelerated gene loss over episodes of continental colonization. Local adaptation along climatic gradients was likely facilitated by CNVs affecting secondary metabolite production and gene loss in general. One of the strongest loci for climatic adaptation is a highly conserved gene of the NAD-dependent Sirtuin family. The Sirtuin CNV locus localizes to an ~68-kb Starship mobile element unique to the species carrying genes highly expressed during plant infection. The element has likely lost the ability to transpose, demonstrating how the ongoing domestication of cargo-carrying selfish elements can contribute to selectable variation within populations. Our work highlights how standing variation in gene copy numbers at the global scale can be a major factor driving climatic and metabolic adaptation in microbial species.
Collapse
Affiliation(s)
- Sabina Moser Tralamazza
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland
| | - Emile Gluck-Thaler
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA
| | - Alice Feurtey
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland
- Plant Pathology, D-USYS, ETH Zurich, CH-8092, Zurich, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland.
| |
Collapse
|
17
|
Tian R, Zhang Y, Kang H, Zhang F, Jin Z, Wang J, Zhang P, Zhou X, Lanyon JM, Sneath HL, Woolford L, Fan G, Li S, Seim I. Sirenian genomes illuminate the evolution of fully aquatic species within the mammalian superorder afrotheria. Nat Commun 2024; 15:5568. [PMID: 38956050 PMCID: PMC11219930 DOI: 10.1038/s41467-024-49769-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 06/12/2024] [Indexed: 07/04/2024] Open
Abstract
Sirenians of the superorder Afrotheria were the first mammals to transition from land to water and are the only herbivorous marine mammals. Here, we generated a chromosome-level dugong (Dugong dugon) genome. A comparison of our assembly with other afrotherian genomes reveals possible molecular adaptations to aquatic life by sirenians, including a shift in daily activity patterns (circadian clock) and tolerance to a high-iodine plant diet mediated through changes in the iodide transporter NIS (SLC5A5) and its co-transporters. Functional in vitro assays confirm that sirenian amino acid substitutions alter the properties of the circadian clock protein PER2 and NIS. Sirenians show evidence of convergent regression of integumentary system (skin and its appendages) genes with cetaceans. Our analysis also uncovers gene losses that may be maladaptive in a modern environment, including a candidate gene (KCNK18) for sirenian cold stress syndrome likely lost during their evolutionary shift in daily activity patterns. Genomes from nine Australian locations and the functionally extinct Okinawan population confirm and date a genetic break ~10.7 thousand years ago on the Australian east coast and provide evidence of an associated ecotype, and highlight the need for whole-genome resequencing data from dugong populations worldwide for conservation and genetic management.
Collapse
Affiliation(s)
- Ran Tian
- Integrative Biology Laboratory, Nanjing Normal University, Nanjing, 210023, China
| | - Yaolei Zhang
- BGI Research, Qingdao, 266555, China
- BGI Research, Shenzhen, 518083, China
- Qingdao Key Laboratory of Marine Genomics BGI Research, Qingdao, 266555, China
| | - Hui Kang
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
- The Innovation Research Center for Aquatic Mammals, and Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Fan Zhang
- Integrative Biology Laboratory, Nanjing Normal University, Nanjing, 210023, China
| | - Zhihong Jin
- Integrative Biology Laboratory, Nanjing Normal University, Nanjing, 210023, China
| | - Jiahao Wang
- BGI Research, Qingdao, 266555, China
- BGI Research, Shenzhen, 518083, China
| | - Peijun Zhang
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| | - Xuming Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Janet M Lanyon
- School of the Environment, The University of Queensland, Lucia, 4072, Australia
| | - Helen L Sneath
- School of the Environment, The University of Queensland, Lucia, 4072, Australia
| | - Lucy Woolford
- School of Veterinary Sciences, The University of Adelaide, Roseworthy, 5371, Australia
| | - Guangyi Fan
- BGI Research, Qingdao, 266555, China.
- BGI Research, Shenzhen, 518083, China.
- Qingdao Key Laboratory of Marine Genomics BGI Research, Qingdao, 266555, China.
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, 518083, China.
| | - Songhai Li
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China.
- The Innovation Research Center for Aquatic Mammals, and Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Inge Seim
- Integrative Biology Laboratory, Nanjing Normal University, Nanjing, 210023, China.
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China.
| |
Collapse
|
18
|
Roh YR, Yim HS, Park K, Lee JH. Molecular characterization of positively selected genes contributing aquatic adaptation in marine mammals. Genes Genomics 2024; 46:775-783. [PMID: 38733518 DOI: 10.1007/s13258-023-01487-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 12/20/2023] [Indexed: 05/13/2024]
Abstract
BACKGROUND Marine mammals, which have evolved independently into three distinct lineages, share common physiological features that contribute to their adaptation to the marine environment. OBJECTIVE To identify positively selected genes (PSGs) for adaptation to the marine environment using available genomic data from three taxonomic orders: cetaceans, pinnipeds, and sirenians. METHODS Based on the genomes within each group of Artiodactyla, Carnivora and Afrotheria, we performed selection analysis using the branch-site model in CODEML. RESULTS Based on the branch-site model, 460, 614, and 359 PSGs were predicted for the cetaceans, pinnipeds, and sirenians, respectively. Functional enrichment analysis indicated that genes associated with hemostasis were positively selected across all lineages of marine mammals. We observed positive selection signals for the hemostasis and coagulation-related genes plasminogen activator, urokinase (PLAU), multimerin 1 (MMRN1), gamma-glutamyl carboxylase (GGCX), and platelet endothelial aggregation receptor 1 (PEAR1). Additionally, we found out that the sodium voltage-gated channel alpha subunit 9 (SCN9A), serine/arginine repetitive matrix 4 (SRRM4), and Ki-ras-induced actin-interacting protein (KRAP) are under positive selection pressure and are associated with cognition, neurite outgrowth, and IP3-mediated Ca2 + release, respectively. CONCLUSION This study will contribute to our understanding of the adaptive evolution of marine mammals by providing information on a group of candidate genes that are predicted to influence adaptation to aquatic environments, as well as their functional characteristics.
Collapse
Affiliation(s)
- Yoo-Rim Roh
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, 385 Haeyang-ro, Yeongdo-gu, Busan, 49111, Republic of Korea
- Department of Marine Biotechnology, Korea National University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Hyung-Soon Yim
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, 385 Haeyang-ro, Yeongdo-gu, Busan, 49111, Republic of Korea
- Department of Marine Biotechnology, Korea National University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Kiejung Park
- Cheonan Industry-Academic Collaboration Foundation, Sangmyung University, 31 Sangmyeongdae-gil, Dongnam-gu, Cheonan, 31066, Republic of Korea.
| | - Jung-Hyun Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, 385 Haeyang-ro, Yeongdo-gu, Busan, 49111, Republic of Korea.
- Department of Marine Biotechnology, Korea National University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
19
|
Brenner EE, Alexander AB, Londoño LA, Stacy NI, Crevasse SE, Hernandez JA, Wellehan JFX. USE OF VISCOELASTIC COAGULATION TESTING IN MEGACHIROPTERA ( PTEROPUS HYPOMELANUS AND PTEROPUS VAMPYRUS) REVEALS HIGH VARIABILITY IN CLOT KINETICS. J Zoo Wildl Med 2024; 55:393-403. [PMID: 38875195 DOI: 10.1638/2023-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2024] [Indexed: 06/16/2024] Open
Abstract
Megachiroptera is a mammalian suborder that includes old world fruit bats. Common clinical problems among captive Megachiroptera, such as liver disease (e.g., iron storage disease), kidney disease (e.g., protein-losing nephropathy), and heart disease (e.g., dilated cardiomyopathy), carry elevated risk for hemostatic derangements. The assessment of viscoelastic coagulation assays, however, has not yet been reported in bats. The main objective of the study was to describe viscoelastography data using the Viscoelastic Coagulation Monitor (VCM) Vet in captive large flying foxes (Pteropus vampyrus) (n = 20) and variable flying foxes (Pteropus hypomelanus) (n = 10). Additional objectives were to compare viscoelastic and clotting parameters (1) between healthy P. vampyrus and P. hypomelanus bats and (2) between untreated bats and those treated with meloxicam or aspirin, and (3) to examine relationships between activated partial thromboplastin time (aPTT) and potentially homologous viscoelastic parameters clotting time (CT) and clot formation time (CFT). The results showed marked variability among clinically normal bats. The intrinsic pathway, as measured by aPTT, had prolonged times compared with most terrestrial mammals, but similar times to birds, marine mammals, and sea turtles. A search of P. vampyrus genome found stop codons present in two exons of the factor XI gene; alterations in factor XI expression would be expected to alter intrinsic coagulation. Because of the high variability, no statistically significant findings were noted in the secondary objectives. Correlation between aPTT and CT or CFT was not strong (rs = 0.406 or 0.192, respectively). The results from this study suggest that clot kinetics vary widely among Megachiroptera when using the VCM Vet with untreated blood. A prolonged intrinsic coagulation pathway, as has been found in other megachiropteran species, and activation of the extrinsic coagulation pathway during venipuncture may be responsible for the inconsistent results.
Collapse
Affiliation(s)
- Emily E Brenner
- Department of Comparative, Diagnostic, and Population Medicine, University of Florida, College of Veterinary Medicine, Gainesville, FL 32610-0126, USA,
| | - Amy B Alexander
- Department of Comparative, Diagnostic, and Population Medicine, University of Florida, College of Veterinary Medicine, Gainesville, FL 32610-0126, USA
| | - Leonel A Londoño
- Department of Small Animal Clinical Sciences, University of Florida, College of Veterinary Medicine, Gainesville, FL 32610-0126, USA
| | - Nicole I Stacy
- Department of Comparative, Diagnostic, and Population Medicine, University of Florida, College of Veterinary Medicine, Gainesville, FL 32610-0126, USA
| | - Sarah E Crevasse
- Department of Comparative, Diagnostic, and Population Medicine, University of Florida, College of Veterinary Medicine, Gainesville, FL 32610-0126, USA
| | - Jorge A Hernandez
- Department of Large Animal Clinical Sciences, University of Florida, College of Veterinary Medicine, Gainesville, FL 32610-0126, USA
| | - James F X Wellehan
- Department of Comparative, Diagnostic, and Population Medicine, University of Florida, College of Veterinary Medicine, Gainesville, FL 32610-0126, USA
| |
Collapse
|
20
|
Bankir L, Crambert G, Vargas-Poussou R. The SLC6A18 Transporter Is Most Likely a Na-Dependent Glycine/Urea Antiporter Responsible for Urea Secretion in the Proximal Straight Tubule: Influence of This Urea Secretion on Glomerular Filtration Rate. Nephron Clin Pract 2024; 148:796-822. [PMID: 38824912 PMCID: PMC11651341 DOI: 10.1159/000539602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/25/2024] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND Urea is the major end-product of protein metabolism in mammals. In carnivores and omnivores, a large load of urea is excreted daily in urine, with a concentration that is 30-100 times above that in plasma. This is important for the sake of water economy. Too little attention has been given to the existence of energy-dependent urea transport that plays an important role in this concentrating activity. SUMMARY This review first presents functional evidence for an energy-dependent urea secretion that occurs exclusively in the straight part of the proximal tubule (PST). Second, it proposes a candidate transmembrane transporter responsible for this urea secretion in the PST. SLC6A18 is expressed exclusively in the PST and has been identified as a glycine transporter, based on findings in SLC6A18 knockout mice. We propose that it is actually a glycine/urea antiport, secreting urea into the lumen in exchange for glycine and Na. Glycine is most likely recycled back into the cell via a transporter located in the brush border. Urea secretion in the PST modifies the composition of the tubular fluid in the thick ascending limb and, thus, contributes, indirectly, to influence the "signal" at the macula densa that plays a crucial role in the regulation of the glomerular filtration rate (GFR) by the tubulo-glomerular feedback. KEY MESSAGES Taking into account this secondary active secretion of urea in the mammalian kidney provides a new understanding of the influence of protein intake on GFR, of the regulation of urea excretion, and of the urine-concentrating mechanism.
Collapse
Affiliation(s)
- Lise Bankir
- Laboratoire de Physiologie Rénale et Tubulopathies, Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université Paris Cité, Paris, France
- CNRS EMR 8228, Unité Métabolisme et Physiologie Rénale, Centre de Recherche des Cordeliers, Paris, France
| | - Gilles Crambert
- Laboratoire de Physiologie Rénale et Tubulopathies, Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université Paris Cité, Paris, France
- CNRS EMR 8228, Unité Métabolisme et Physiologie Rénale, Centre de Recherche des Cordeliers, Paris, France
| | - Rosa Vargas-Poussou
- CNRS EMR 8228, Unité Métabolisme et Physiologie Rénale, Centre de Recherche des Cordeliers, Paris, France
- Service de Médecine Génomique des Maladies Rares, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l’Enfant et de l’Adulte, MARHEA, Hôpital Européen Georges Pompidou, Paris, France
| |
Collapse
|
21
|
Ding Y, Zou M, Guo B. Genomic signatures associated with recurrent scale loss in cyprinid fish. Integr Zool 2024. [PMID: 38816909 DOI: 10.1111/1749-4877.12851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Scale morphology represents a fundamental feature of fish and a key evolutionary trait underlying fish diversification. Despite frequent and recurrent scale loss throughout fish diversification, comprehensive genome-wide analyses of the genomic signatures associated with scale loss in divergent fish lineages remain scarce. In the current study, we investigated genome-wide signatures, specifically convergent protein-coding gene loss, amino acid substitutions, and cis-regulatory sequence changes, associated with recurrent scale loss in two divergent Cypriniformes lineages based on large-scale genomic, transcriptomic, and epigenetic data. Results demonstrated convergent changes in many genes related to scale formation in divergent scaleless fish lineages, including loss of P/Q-rich scpp genes (e.g. scpp6 and scpp7), accelerated evolution of non-coding elements adjacent to the fgf and fgfr genes, and convergent amino acid changes in genes (e.g. snap29) under relaxed selection. Collectively, these findings highlight the existence of a shared genetic architecture underlying recurrent scale loss in divergent fish lineages, suggesting that evolutionary outcomes may be genetically repeatable and predictable in the convergence of scale loss in fish.
Collapse
Affiliation(s)
- Yongli Ding
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ming Zou
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Baocheng Guo
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, China
| |
Collapse
|
22
|
Zhao Y, Wang L, Liu S, Pu Y, Sun K, Xiao Y, Feng J. Adaptive Evolution of the Greater Horseshoe Bat AANAT: Insights into the Link between AANAT and Hibernation Rhythms. Animals (Basel) 2024; 14:1426. [PMID: 38791644 PMCID: PMC11117286 DOI: 10.3390/ani14101426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/12/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Arylalkylamine N-acetyltransferase (AANAT) is a crucial rate-limiting enzyme in the synthesis of melatonin. AANAT has been confirmed to be independently duplicated and inactivated in different animal taxa in order to adapt to the environment. However, the evolutionary forces associated with having a single copy of AANAT remain unclear. The greater horseshoe bat has a single copy of AANAT but exhibits different hibernation rhythms in various populations. We analyzed the adaptive evolution at the gene and protein levels of AANAT from three distinct genetic lineages in China: northeast (NE), central east (CE), and southwest (SW). The results revealed greater genetic diversity in the AANAT loci of the NE and CE lineage populations that have longer hibernation times, and there were two positive selection loci. The catalytic capacity of AANAT in the Liaoning population that underwent positive selection was significantly higher than that of the Yunnan population (p < 0.05). This difference may be related to the lower proportion of α helix and the variation in two interface residues. The adaptive evolution of AANAT was significantly correlated with climate and environment (p < 0.05). After controlling for geographical factors (latitude and altitude), the evolution of AANAT by the negative temperature factor was represented by the monthly mean temperature (r = -0.6, p < 0.05). The results identified the gene level variation, functional adaptation, and evolutionary driving factors of AANAT, provide an important foundation for further understanding the adaptive evolution of the single copy of AANAT in pteropods, and may offer evidence for adaptive hibernation rhythms in bats.
Collapse
Affiliation(s)
- Yanhui Zhao
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130117, China; (Y.Z.); (Y.P.); (J.F.)
- Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China
| | - Lei Wang
- School of Water Conservancy & Environment Engineering, Changchun Institute of Technology, Changchun 130012, China;
| | - Sen Liu
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China;
| | - Yingting Pu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130117, China; (Y.Z.); (Y.P.); (J.F.)
- Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China
| | - Keping Sun
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130117, China; (Y.Z.); (Y.P.); (J.F.)
- Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China
| | - Yanhong Xiao
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130117, China; (Y.Z.); (Y.P.); (J.F.)
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130117, China; (Y.Z.); (Y.P.); (J.F.)
| |
Collapse
|
23
|
Steinbinder J, Sachslehner AP, Holthaus KB, Eckhart L. Comparative genomics of sirenians reveals evolution of filaggrin and caspase-14 upon adaptation of the epidermis to aquatic life. Sci Rep 2024; 14:9278. [PMID: 38653760 PMCID: PMC11039687 DOI: 10.1038/s41598-024-60099-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/18/2024] [Indexed: 04/25/2024] Open
Abstract
The mammalian epidermis has evolved to protect the body in a dry environment. Genes of the epidermal differentiation complex (EDC), such as FLG (filaggrin), are implicated in the barrier function of the epidermis. Here, we investigated the molecular evolution of the EDC in sirenians (manatees and dugong), which have adapted to fully aquatic life, in comparison to the EDC of terrestrial mammals and aquatic mammals of the clade Cetacea (whales and dolphins). We show that the main subtypes of EDC genes are conserved or even duplicated, like late cornified envelope (LCE) genes of the dugong, whereas specific EDC genes have undergone inactivating mutations in sirenians. FLG contains premature stop codons in the dugong, and the ortholog of human CASP14 (caspase-14), which proteolytically processes filaggrin, is pseudogenized in the same species. As FLG and CASP14 have also been lost in whales, these mutations represent convergent evolution of skin barrier genes in different lineages of aquatic mammals. In contrast to the dugong, the manatee has retained functional FLG and CASP14 genes. FLG2 (filaggrin 2) is truncated in both species of sirenians investigated. We conclude that the land-to-water transition of sirenians was associated with modifications of the epidermal barrier at the molecular level.
Collapse
Affiliation(s)
- Julia Steinbinder
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | | | | | - Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
24
|
Guo B, Sun Y, Wang Y, Zhang Y, Zheng Y, Xu S, Yang G, Ren W. Evolutionary genetics of pulmonary anatomical adaptations in deep-diving cetaceans. BMC Genomics 2024; 25:339. [PMID: 38575860 PMCID: PMC10993460 DOI: 10.1186/s12864-024-10263-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/27/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Cetaceans, having experienced prolonged adaptation to aquatic environments, have undergone evolutionary changes in their respiratory systems. This process of evolution has resulted in the emergence of distinctive phenotypic traits, notably the abundance of elastic fibers and thickened alveolar walls in their lungs, which may facilitate alveolar collapse during diving. This structure helps selective exchange of oxygen and carbon dioxide, while minimizing nitrogen exchange, thereby reducing the risk of DCS. Nevertheless, the scientific inquiry into the mechanisms through which these unique phenotypic characteristics govern the diving behavior of marine mammals, including cetaceans, remains unresolved. RESULTS This study entails an evolutionary analysis of 42 genes associated with pulmonary fibrosis across 45 mammalian species. Twenty-one genes in cetaceans exhibited accelerated evolution, featuring specific amino acid substitutions in 14 of them. Primarily linked to the development of the respiratory system and lung morphological construction, these genes play a crucial role. Moreover, among marine mammals, we identified eight genes undergoing positive selection, and the evolutionary rates of three genes significantly correlated with diving depth. Specifically, the SFTPC gene exhibited convergent amino acid substitutions. Through in vitro cellular experiments, we illustrated that convergent amino acid site mutations in SFTPC contribute positively to pulmonary fibrosis in marine mammals, and the presence of this phenotype can induce deep alveolar collapse during diving, thereby reducing the risk of DCS during diving. CONCLUSIONS The study unveils pivotal genetic signals in cetaceans and other marine mammals, arising through evolution. These genetic signals may influence lung characteristics in marine mammals and have been linked to a reduced risk of developing DCS. Moreover, the research serves as a valuable reference for delving deeper into human diving physiology.
Collapse
Affiliation(s)
- Boxiong Guo
- Jiangsu Key Laboratory for Bioaffiliationersity and Biotechnology, College of Life Sciences, Nanjing Normal University, 210023, Nanjing, China
| | - Yixuan Sun
- Jiangsu Key Laboratory for Bioaffiliationersity and Biotechnology, College of Life Sciences, Nanjing Normal University, 210023, Nanjing, China
| | - Yuehua Wang
- Jiangsu Key Laboratory for Bioaffiliationersity and Biotechnology, College of Life Sciences, Nanjing Normal University, 210023, Nanjing, China
| | - Ya Zhang
- Jiangsu Key Laboratory for Bioaffiliationersity and Biotechnology, College of Life Sciences, Nanjing Normal University, 210023, Nanjing, China
| | - Yu Zheng
- Jiangsu Key Laboratory for Bioaffiliationersity and Biotechnology, College of Life Sciences, Nanjing Normal University, 210023, Nanjing, China
| | - Shixia Xu
- Jiangsu Key Laboratory for Bioaffiliationersity and Biotechnology, College of Life Sciences, Nanjing Normal University, 210023, Nanjing, China
| | - Guang Yang
- Jiangsu Key Laboratory for Bioaffiliationersity and Biotechnology, College of Life Sciences, Nanjing Normal University, 210023, Nanjing, China
| | - Wenhua Ren
- Jiangsu Key Laboratory for Bioaffiliationersity and Biotechnology, College of Life Sciences, Nanjing Normal University, 210023, Nanjing, China.
| |
Collapse
|
25
|
Xu S, Shao S, Feng X, Li S, Zhang L, Wu W, Liu M, Tracy ME, Zhong C, Guo Z, Wu CI, Shi S, He Z. Adaptation in Unstable Environments and Global Gene Losses: Small but Stable Gene Networks by the May-Wigner Theory. Mol Biol Evol 2024; 41:msae059. [PMID: 38507653 PMCID: PMC10991078 DOI: 10.1093/molbev/msae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/07/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024] Open
Abstract
Although gene loss is common in evolution, it remains unclear whether it is an adaptive process. In a survey of seven major mangrove clades that are woody plants in the intertidal zones of daily environmental perturbations, we noticed that they generally evolved reduced gene numbers. We then focused on the largest clade of Rhizophoreae and observed the continual gene set reduction in each of the eight species. A great majority of gene losses are concentrated on environmental interaction processes, presumably to cope with the constant fluctuations in the tidal environments. Genes of the general processes for woody plants are largely retained. In particular, fewer gene losses are found in physiological traits such as viviparous seeds, high salinity, and high tannin content. Given the broad and continual genome reductions, we propose the May-Wigner theory (MWT) of system stability as a possible mechanism. In MWT, the most effective solution for buffering continual perturbations is to reduce the size of the system (or to weaken the total genic interactions). Mangroves are unique as immovable inhabitants of the compound environments in the land-sea interface, where environmental gradients (such as salinity) fluctuate constantly, often drastically. Extending MWT to gene regulatory network (GRN), computer simulations and transcriptome analyses support the stabilizing effects of smaller gene sets in mangroves vis-à-vis inland plants. In summary, we show the adaptive significance of gene losses in mangrove plants, including the specific role of promoting phenotype innovation and a general role in stabilizing GRN in unstable environments as predicted by MWT.
Collapse
Affiliation(s)
- Shaohua Xu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
- School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Shao Shao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Xiao Feng
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Sen Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Lingjie Zhang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Weihong Wu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Min Liu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Miles E Tracy
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Cairong Zhong
- Institute of Wetland Research, Hainan Academy of Forestry (Hainan Academy of Mangrove), Haikou, China
| | - Zixiao Guo
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Chung-I Wu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Suhua Shi
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Ziwen He
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
26
|
Yépez Y, Marcano-Ruiz M, Bortolini MC. Adaptive strategies of aquatic mammals: Exploring the role of the HIF pathway and hypoxia tolerance. Genet Mol Biol 2024; 46:e20230140. [PMID: 38252060 PMCID: PMC10802827 DOI: 10.1590/1678-4685-gmb-2023-0140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 12/06/2023] [Indexed: 01/23/2024] Open
Abstract
Aquatic mammals (marine and freshwater species) share significant and similar adaptations, enabling them to tolerate hypoxia during regular breath-hold diving. Despite the established importance of HIF1A, a master regulator in the molecular mechanism of hypoxia response, and other associated genes, their role in the evolutionary adaptation of aquatic mammals is not fully understood. In this study, we investigated this topic by employing a candidate gene approach to analyze 11 critical genes involved in the HIF1A signaling pathway in aquatic mammals. Our gene analyses included evaluating positive and negative selection, relaxation or constriction of selection, and molecular convergence compared to other terrestrial mammals, including subterranean mammals. Evidence of selection suggested a significant role of negative selection, as well as relaxation of the selective regime in cetaceans for most of these genes. We found that the glutamine 68 variant in the HIF3α protein is unique to cetaceans and initial evaluations indicated a destabilizing effect on protein structure. However, further analyses are necessary to evaluate its functional impact and adaptive relevance in this taxon.
Collapse
Affiliation(s)
- Yuri Yépez
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Laboratório de Evolução Humana e Molecular, Porto Alegre, RS, Brazil
| | - Mariana Marcano-Ruiz
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Laboratório de Evolução Humana e Molecular, Porto Alegre, RS, Brazil
| | - Maria Cátira Bortolini
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Laboratório de Evolução Humana e Molecular, Porto Alegre, RS, Brazil
| |
Collapse
|
27
|
Padilla S, Prado R, Anitua E. An evolutionary history of F12 gene: Emergence, loss, and vulnerability with the environment as a driver. Bioessays 2023; 45:e2300077. [PMID: 37750435 DOI: 10.1002/bies.202300077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 09/27/2023]
Abstract
In the context of macroevolutionary transitions, environmental changes prompted vertebrates already bearing genetic variations to undergo gradual adaptations resulting in profound anatomical, physiological, and behavioral adaptations. The emergence of new genes led to the genetic variation essential in metazoan evolution, just as was gene loss, both sources of genetic variation resulting in adaptive phenotypic diversity. In this context, F12-coding protein with defense and hemostatic roles emerged some 425 Mya, and it might have contributed in aquatic vertebrates to the transition from water-to-land. Conversely, the F12 loss in marine, air-breathing mammals like cetaceans has been associated with phenotypic adaptations in some terrestrial mammals in their transition to aquatic lifestyle. More recently, the advent of technological innovations in western lifestyle with blood-contacting devices and harmful environmental nanoparticles, has unfolded new roles of FXII. Environment operates as either a positive or a relaxed selective pressure on genes, and consequently genes are selected or lost. FXII, an old dog facing environmental novelties can learn new tricks and teach us new therapeutic avenues.
Collapse
Affiliation(s)
- Sabino Padilla
- BTI-Biotechnology Institute ImasD, Vitoria, Spain
- Eduardo Anitua Foundation for Biomedical Research, Vitoria, Spain
- University Institute for Regenerative Medicine & Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
| | - Roberto Prado
- BTI-Biotechnology Institute ImasD, Vitoria, Spain
- Eduardo Anitua Foundation for Biomedical Research, Vitoria, Spain
- University Institute for Regenerative Medicine & Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
| | - Eduardo Anitua
- BTI-Biotechnology Institute ImasD, Vitoria, Spain
- Eduardo Anitua Foundation for Biomedical Research, Vitoria, Spain
- University Institute for Regenerative Medicine & Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
| |
Collapse
|
28
|
Courcelle M, Fabre PH, Douzery EJP. Phylogeny, Ecology, and Gene Families Covariation Shaped the Olfactory Subgenome of Rodents. Genome Biol Evol 2023; 15:evad197. [PMID: 37972291 PMCID: PMC10653590 DOI: 10.1093/gbe/evad197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2023] [Indexed: 11/19/2023] Open
Abstract
Olfactory receptor (OR) genes represent the largest multigenic family in mammalian genomes and encode proteins that bind environmental odorant molecules. The OR repertoire is extremely variable among species and is subject to many gene duplications and losses, which have been linked to ecological adaptations in mammals. Although they have been studied on a broad taxonomic scale (i.e., placental), finer sampling has rarely been explored in order to better capture the mechanisms that drove the evolution of the OR repertoire. Among placental mammals, rodents are well-suited for this task, as they exhibit diverse life history traits, and genomic data are available for most major families and a diverse array of lifestyles. In this study, 53 rodent published genomes were mined for their OR subgenomes. We retrieved more than 85,000 functional and pseudogene OR sequences that were subsequently classified into phylogenetic clusters. Copy number variation among rodents is similar to that of other mammals. Using our OR counts along with comparative phylogenetic approaches, we demonstrated that ecological niches such as diet, period of activity, and a fossorial lifestyle strongly impacted the proportion of OR pseudogenes. Within the OR subgenome, phylogenetic inertia was the main factor explaining the relative variations of the 13 OR gene families. However, a striking exception was a convergent 10-fold expansion of the OR family 14 among the phylogenetically divergent subterranean mole-rat lineages belonging to Bathyergidae and Spalacidae families. This study illustrates how the diversity of the OR repertoire has evolved among rodents, both shaped by selective forces stemming from species life history traits and neutral evolution along the rodent phylogeny.
Collapse
Affiliation(s)
- Maxime Courcelle
- Institutdes Sciences de l’Evolution de Montpellier (ISEM), CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France
- CIRAD, UMR ASTRE, Montpellier, France
| | - Pierre-Henri Fabre
- Institutdes Sciences de l’Evolution de Montpellier (ISEM), CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France
- Mammal Section, Life Sciences, Vertebrate Division, The Natural History Museum, London, United Kingdom
- Institut Universitaire de France (IUF), Section Biologie-Médecine-Santé, Paris, France
| | - Emmanuel J P Douzery
- Institutdes Sciences de l’Evolution de Montpellier (ISEM), CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France
| |
Collapse
|
29
|
Chen X, Fang D, Xu Y, Duan K, Yoshida S, Yang S, Sahu SK, Fu H, Guang X, Liu M, Wu C, Liu Y, Mu W, Chen Y, Fan Y, Wang F, Peng S, Shi D, Wang Y, Yu R, Zhang W, Bai Y, Liu ZJ, Yan Q, Liu X, Xu X, Yang H, Wu J, Graham SW, Liu H. Balanophora genomes display massively convergent evolution with other extreme holoparasites and provide novel insights into parasite-host interactions. NATURE PLANTS 2023; 9:1627-1642. [PMID: 37735254 DOI: 10.1038/s41477-023-01517-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 08/18/2023] [Indexed: 09/23/2023]
Abstract
Parasitic plants have evolved to be subtly or severely dependent on host plants to complete their life cycle. To provide new insights into the biology of parasitic plants in general, we assembled genomes for members of the sandalwood order Santalales, including a stem hemiparasite (Scurrula) and two highly modified root holoparasites (Balanophora) that possess chimaeric host-parasite tubers. Comprehensive genome comparisons reveal that hemiparasitic Scurrula has experienced a relatively minor degree of gene loss compared with autotrophic plants, consistent with its moderate degree of parasitism. Nonetheless, patterns of gene loss appear to be substantially divergent across distantly related lineages of hemiparasites. In contrast, Balanophora has experienced substantial gene loss for the same sets of genes as an independently evolved holoparasite lineage, the endoparasitic Sapria (Malpighiales), and the two holoparasite lineages experienced convergent contraction of large gene families through loss of paralogues. This unprecedented convergence supports the idea that despite their extreme and strikingly divergent life histories and morphology, the evolution of these and other holoparasitic lineages can be shaped by highly predictable modes of genome reduction. We observe substantial evidence of relaxed selection in retained genes for both hemi- and holoparasitic species. Transcriptome data also document unusual and novel interactions between Balanophora and host plants at the host-parasite tuber interface tissues, with evidence of mRNA exchange, substantial and active hormone exchange and immune responses in parasite and host.
Collapse
Affiliation(s)
- Xiaoli Chen
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
| | - Dongming Fang
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
| | - Yuxing Xu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Kunyu Duan
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Satoko Yoshida
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Shuai Yang
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
| | - Hui Fu
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xuanmin Guang
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
| | - Min Liu
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
| | - Chenyu Wu
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
| | - Yang Liu
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen and Chinese Academy of Sciences, Shenzhen, China
| | - Weixue Mu
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
| | - Yewen Chen
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yannan Fan
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
| | - Fang Wang
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shufeng Peng
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Dishen Shi
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yayu Wang
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
| | - Runxian Yu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wen Zhang
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Yuqing Bai
- Administrative Office of Wutong Mountain National Park, Shenzhen, China
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qiaoshun Yan
- Ailaoshan Station for Subtropical Forest Ecosystem Studies, Chinese Academy of Sciences, Jingdong, China
| | - Xin Liu
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
| | - Xun Xu
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, China
| | - Huanming Yang
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen and Chinese Academy of Sciences, Shenzhen, China
- James D. Watson Institute of Genome Sciences, Hangzhou, China
| | - Jianqiang Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Sean W Graham
- Department of Botany, University of British Columbia, Vancouver, BC, Canada.
- Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada.
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
30
|
Carscadden KA, Batstone RT, Hauser FE. Origins and evolution of biological novelty. Biol Rev Camb Philos Soc 2023; 98:1472-1491. [PMID: 37056155 DOI: 10.1111/brv.12963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023]
Abstract
Understanding the origins and impacts of novel traits has been a perennial interest in many realms of ecology and evolutionary biology. Here, we build on previous evolutionary and philosophical treatments of this subject to encompass novelties across biological scales and eco-evolutionary perspectives. By defining novelties as new features at one biological scale that have emergent effects at other biological scales, we incorporate many forms of novelty that have previously been treated in isolation (such as novelty from genetic mutations, new developmental pathways, new morphological features, and new species). Our perspective is based on the fundamental idea that the emergence of a novelty, at any biological scale, depends on its environmental and genetic context. Through this lens, we outline a broad array of generative mechanisms underlying novelty and highlight how genomic tools are transforming our understanding of the origins of novelty. Lastly, we present several case studies to illustrate how novelties across biological scales and systems can be understood based on common mechanisms of change and their environmental and genetic contexts. Specifically, we highlight how gene duplication contributes to the evolution of new complex structures in visual systems; how genetic exchange in symbiosis alters functions of both host and symbiont, resulting in a novel organism; and how hybridisation between species can generate new species with new niches.
Collapse
Affiliation(s)
- Kelly A Carscadden
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, 1900 Pleasant St, Boulder, CO, 80309, USA
| | - Rebecca T Batstone
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL, 61801, USA
| | - Frances E Hauser
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| |
Collapse
|
31
|
Pinto B, Valente R, Caramelo F, Ruivo R, Castro LFC. Decay of Skin-Specific Gene Modules in Pangolins. J Mol Evol 2023:10.1007/s00239-023-10118-z. [PMID: 37249590 DOI: 10.1007/s00239-023-10118-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/10/2023] [Indexed: 05/31/2023]
Abstract
The mammalian skin exhibits a rich spectrum of evolutionary adaptations. The pilosebaceous unit, composed of the hair shaft, follicle, and the sebaceous gland, is the most striking synapomorphy. The evolutionary diversification of mammals across different ecological niches was paralleled by the appearance of an ample variety of skin modifications. Pangolins, order Pholidota, exhibit keratin-derived scales, one of the most iconic skin appendages. This formidable armor is intended to serve as a deterrent against predators. Surprisingly, while pangolins have hair on their abdomens, the occurrence of sebaceous and sweat glands is contentious. Here, we explore various molecular modules of skin physiology in four pangolin genomes, including that of sebum production. We show that genes driving wax monoester formation, Awat1/2, show patterns of inactivation in the stem pangolin branch, while the triacylglycerol synthesis gene Dgat2l6 seems independently eroded in the African and Asian clades. In contrast, Elovl3 implicated in the formation of specific neutral lipids required for skin barrier function is intact and expressed in the pangolin skin. An extended comparative analysis shows that genes involved in skin pathogen defense and structural integrity of keratinocyte layers also show inactivating mutations: associated with both ancestral and independent pseudogenization events. Finally, we deduce that the suggested absence of sweat glands is not paralleled by the inactivation of the ATP-binding cassette transporter Abcc11, as previously described in Cetacea. Our findings reveal the sophisticated and complex history of gene retention and loss as key mechanisms in the evolution of the highly modified mammalian skin phenotypes.
Collapse
Affiliation(s)
- Bernardo Pinto
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
- Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua Do Campo Alegre S/N, 4169-007, Porto, Portugal
| | - Raul Valente
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
- Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua Do Campo Alegre S/N, 4169-007, Porto, Portugal
| | - Filipe Caramelo
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
- Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua Do Campo Alegre S/N, 4169-007, Porto, Portugal
| | - Raquel Ruivo
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal.
| | - L Filipe C Castro
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua Do Campo Alegre S/N, 4169-007, Porto, Portugal.
| |
Collapse
|
32
|
Zheng Y, Liu C, Wang S, Qian K, Feng Y, Yu F, Wang J. Genome-wide analysis of cuticle protein family genes in rice stem borer Chilo suppressalis: Insights into their role in environmental adaptation and insecticidal stress response. Int J Biol Macromol 2023:124989. [PMID: 37244330 DOI: 10.1016/j.ijbiomac.2023.124989] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/29/2023]
Abstract
Insect cuticle plays a key role in insect survival, adaptation and prosperity by serving as the exoskeleton and the first barrier against environmental stresses. As the major components of insect cuticle, the diverse structural cuticle proteins (CPs) contribute to variation in physical properties and functions of cuticle. However, the roles of CPs in cuticular versatility, especially in the stress response or adaption, remain incompletely understood. In this study, we performed a genome-wide analysis of CP superfamily in the rice-boring pest Chilo suppressalis. A total of 211 CP genes were identified and their encoding proteins were classified into eleven families and three subfamilies (RR1, RR2, and RR3). The comparative genomic analysis of CPs revealed that C. suppressalis had fewer CP genes compared to other lepidopteran species, which largely resulted from a less expansion of his-rich RR2 genes involved in cuticular sclerotization, suggesting long-term boring life of C. suppressalis inside rice hosts might evolutionarily prefer cuticular elasticity rather than cuticular sclerotization. We also investigated the response pattern of all CP genes under insecticidal stresses. >50 % CsCPs were upregulated at least 2-fold under insecticidal stresses. Notably, the majority of the highly upregulated CsCPs formed gene pairs or gene clusters on chromosomes, indicating the rapid response of adjacent CsCPs to insecticidal stress. Most high-response CsCPs encoded AAPA/V/L motifs that are related to cuticular elasticity and >50 % of the sclerotization-related his-rich RR2 genes were also upregulated. These results suggested the potential roles of CsCPs in balancing the elasticity and sclerotization of cuticles, which is essential for the survival and adaptation of plant borers including C. suppressalis. Our study provides valuable information for further developing cuticle-based strategies of both pest management and biomimetic applications.
Collapse
Affiliation(s)
- Yang Zheng
- College of Plant Protection, Yangzhou University, Yangzhou, China.
| | - Changpeng Liu
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Shuang Wang
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Kun Qian
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Yinghao Feng
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Fuhai Yu
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu 273155, Shandong, China
| | - Jianjun Wang
- College of Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
33
|
Kirilenko BM, Munegowda C, Osipova E, Jebb D, Sharma V, Blumer M, Morales AE, Ahmed AW, Kontopoulos DG, Hilgers L, Lindblad-Toh K, Karlsson EK, Hiller M, Andrews G, Armstrong JC, Bianchi M, Birren BW, Bredemeyer KR, Breit AM, Christmas MJ, Clawson H, Damas J, Di Palma F, Diekhans M, Dong MX, Eizirik E, Fan K, Fanter C, Foley NM, Forsberg-Nilsson K, Garcia CJ, Gatesy J, Gazal S, Genereux DP, Goodman L, Grimshaw J, Halsey MK, Harris AJ, Hickey G, Hiller M, Hindle AG, Hubley RM, Hughes GM, Johnson J, Juan D, Kaplow IM, Karlsson EK, Keough KC, Kirilenko B, Koepfli KP, Korstian JM, Kowalczyk A, Kozyrev SV, Lawler AJ, Lawless C, Lehmann T, Levesque DL, Lewin HA, Li X, Lind A, Lindblad-Toh K, Mackay-Smith A, Marinescu VD, Marques-Bonet T, Mason VC, Meadows JRS, Meyer WK, Moore JE, Moreira LR, Moreno-Santillan DD, Morrill KM, Muntané G, Murphy WJ, Navarro A, Nweeia M, Ortmann S, Osmanski A, Paten B, Paulat NS, Pfenning AR, Phan BN, Pollard KS, Pratt HE, Ray DA, Reilly SK, Rosen JR, Ruf I, Ryan L, Ryder OA, Sabeti PC, Schäffer DE, Serres A, Shapiro B, Smit AFA, Springer M, Srinivasan C, Steiner C, Storer JM, Sullivan KAM, Sullivan PF, Sundström E, Supple MA, Swofford R, Talbot JE, Teeling E, Turner-Maier J, Valenzuela A, Wagner F, Wallerman O, Wang C, Wang J, Weng Z, Wilder AP, Wirthlin ME, Xue JR, Zhang X. Integrating gene annotation with orthology inference at scale. Science 2023; 380:eabn3107. [PMID: 37104600 DOI: 10.1126/science.abn3107] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Annotating coding genes and inferring orthologs are two classical challenges in genomics and evolutionary biology that have traditionally been approached separately, limiting scalability. We present TOGA (Tool to infer Orthologs from Genome Alignments), a method that integrates structural gene annotation and orthology inference. TOGA implements a different paradigm to infer orthologous loci, improves ortholog detection and annotation of conserved genes compared with state-of-the-art methods, and handles even highly fragmented assemblies. TOGA scales to hundreds of genomes, which we demonstrate by applying it to 488 placental mammal and 501 bird assemblies, creating the largest comparative gene resources so far. Additionally, TOGA detects gene losses, enables selection screens, and automatically provides a superior measure of mammalian genome quality. TOGA is a powerful and scalable method to annotate and compare genes in the genomic era.
Collapse
Affiliation(s)
- Bogdan M Kirilenko
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
- Goethe University Frankfurt, Faculty of Biosciences, 60438 Frankfurt, Germany
| | - Chetan Munegowda
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
- Goethe University Frankfurt, Faculty of Biosciences, 60438 Frankfurt, Germany
| | - Ekaterina Osipova
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
- Goethe University Frankfurt, Faculty of Biosciences, 60438 Frankfurt, Germany
| | - David Jebb
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Virag Sharma
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Moritz Blumer
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Ariadna E Morales
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
- Goethe University Frankfurt, Faculty of Biosciences, 60438 Frankfurt, Germany
| | - Alexis-Walid Ahmed
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
- Goethe University Frankfurt, Faculty of Biosciences, 60438 Frankfurt, Germany
| | - Dimitrios-Georgios Kontopoulos
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
- Goethe University Frankfurt, Faculty of Biosciences, 60438 Frankfurt, Germany
| | - Leon Hilgers
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
- Goethe University Frankfurt, Faculty of Biosciences, 60438 Frankfurt, Germany
| | - Kerstin Lindblad-Toh
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 751 32 Uppsala, Sweden
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Elinor K Karlsson
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester, MA 01605, USA
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
- Goethe University Frankfurt, Faculty of Biosciences, 60438 Frankfurt, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Hu Y, Wang X, Xu Y, Yang H, Tong Z, Tian R, Xu S, Yu L, Guo Y, Shi P, Huang S, Yang G, Shi S, Wei F. Molecular mechanisms of adaptive evolution in wild animals and plants. SCIENCE CHINA. LIFE SCIENCES 2023; 66:453-495. [PMID: 36648611 PMCID: PMC9843154 DOI: 10.1007/s11427-022-2233-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 08/30/2022] [Indexed: 01/18/2023]
Abstract
Wild animals and plants have developed a variety of adaptive traits driven by adaptive evolution, an important strategy for species survival and persistence. Uncovering the molecular mechanisms of adaptive evolution is the key to understanding species diversification, phenotypic convergence, and inter-species interaction. As the genome sequences of more and more non-model organisms are becoming available, the focus of studies on molecular mechanisms of adaptive evolution has shifted from the candidate gene method to genetic mapping based on genome-wide scanning. In this study, we reviewed the latest research advances in wild animals and plants, focusing on adaptive traits, convergent evolution, and coevolution. Firstly, we focused on the adaptive evolution of morphological, behavioral, and physiological traits. Secondly, we reviewed the phenotypic convergences of life history traits and responding to environmental pressures, and the underlying molecular convergence mechanisms. Thirdly, we summarized the advances of coevolution, including the four main types: mutualism, parasitism, predation and competition. Overall, these latest advances greatly increase our understanding of the underlying molecular mechanisms for diverse adaptive traits and species interaction, demonstrating that the development of evolutionary biology has been greatly accelerated by multi-omics technologies. Finally, we highlighted the emerging trends and future prospects around the above three aspects of adaptive evolution.
Collapse
Affiliation(s)
- Yibo Hu
- CAS Key Lab of Animal Ecology and Conservation Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xiaoping Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Yongchao Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hui Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Zeyu Tong
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Ran Tian
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Shaohua Xu
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Li Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China.
| | - Yalong Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| | - Peng Shi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Shuangquan Huang
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China.
| | - Guang Yang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| | - Suhua Shi
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Fuwen Wei
- CAS Key Lab of Animal Ecology and Conservation Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
35
|
Wang P, Wang F. A proposed metric set for evaluation of genome assembly quality. Trends Genet 2023; 39:175-186. [PMID: 36402623 DOI: 10.1016/j.tig.2022.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/18/2022]
Abstract
Quality control is essential for genome assemblies; however, a consensus has yet to be reached on what metrics should be adopted for the evaluation of assembly quality. N50 is widely used for contiguity measurement, but its effectiveness is constantly in question. Prevailing metrics for the completeness evaluation focus on gene space, yet challenging areas such as tandem repeats are commonly overlooked. Achieving correctness has become an indispensable dimension for quality control, while prevailing assembly releases lack scores reflecting this aspect. We propose a metric set with a set of statistic indexes for effective, comprehensive evaluation of assemblies and provide a score of a finished assembly for each metric, which can be utilized as a benchmark for achieving high-quality genome assemblies.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rural Affairs, Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, No. 4 Xueyuan Rd, Haikou City, Hainan 571101, China.
| | - Fei Wang
- School of Electrical and Electronic Engineering, Shanghai Institute of Technology, No. 100 Haiquan Rd, Shanghai 201416, China.
| |
Collapse
|
36
|
Silva FA, Souza ÉMS, Ramos E, Freitas L, Nery MF. The molecular evolution of genes previously associated with large sizes reveals possible pathways to cetacean gigantism. Sci Rep 2023; 13:67. [PMID: 36658131 PMCID: PMC9852289 DOI: 10.1038/s41598-022-24529-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/16/2022] [Indexed: 01/21/2023] Open
Abstract
Cetaceans are a group of aquatic mammals with the largest body sizes among living animals, including giant representatives such as blue and fin whales. To understand the genetic bases of gigantism in cetaceans, we performed molecular evolutionary analyses on five genes (GHSR, IGF2, IGFBP2, IGFBP7, and EGF) from the growth hormone/insulin-like growth factor axis, and four genes (ZFAT, EGF, LCORL, and PLAG1) previously described as related to the size of species evolutionarily close to cetaceans, such as pigs, cows, and sheep. Our dataset comprised 19 species of cetaceans, seven of which are classified as giants because they exceed 10 m in length. Our results revealed signs of positive selection in genes from the growth hormone/insulin-like growth factor axis and also in those related to body increase in cetacean-related species. In addition, pseudogenization of the EGF gene was detected in the lineage of toothless cetaceans, Mysticeti. Our results suggest the action of positive selection on gigantism in genes that act both in body augmentation and in mitigating its consequences, such as cancer suppression when involved in processes such as division, migration, and cell development control.
Collapse
Affiliation(s)
- Felipe André Silva
- grid.411087.b0000 0001 0723 2494Laboratório de Genômica Evolutiva, Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas-UNICAMP, 255, Monteiro Lobato, Cidade Universitária, IB, Bloco H, Campinas, SP 13083-862 Brazil
| | - Érica M. S. Souza
- grid.411087.b0000 0001 0723 2494Laboratório de Genômica Evolutiva, Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas-UNICAMP, 255, Monteiro Lobato, Cidade Universitária, IB, Bloco H, Campinas, SP 13083-862 Brazil
| | - Elisa Ramos
- grid.411087.b0000 0001 0723 2494Laboratório de Genômica Evolutiva, Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas-UNICAMP, 255, Monteiro Lobato, Cidade Universitária, IB, Bloco H, Campinas, SP 13083-862 Brazil
| | - Lucas Freitas
- grid.411087.b0000 0001 0723 2494Laboratório de Genômica Evolutiva, Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas-UNICAMP, 255, Monteiro Lobato, Cidade Universitária, IB, Bloco H, Campinas, SP 13083-862 Brazil
| | - Mariana F. Nery
- grid.411087.b0000 0001 0723 2494Laboratório de Genômica Evolutiva, Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas-UNICAMP, 255, Monteiro Lobato, Cidade Universitária, IB, Bloco H, Campinas, SP 13083-862 Brazil
| |
Collapse
|
37
|
Adaptive Evolution of the OAS Gene Family Provides New Insights into the Antiviral Ability of Laurasiatherian Mammals. Animals (Basel) 2023; 13:ani13020209. [PMID: 36670749 PMCID: PMC9854896 DOI: 10.3390/ani13020209] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Many mammals risk damage from virus invasion due to frequent environmental changes. The oligoadenylate synthesis (OAS) gene family, which is an important component of the immune system, provides an essential response to the antiviral activities of interferons by regulating immune signal pathways. However, little is known about the evolutionary characteristics of OASs in Laurasiatherian mammals. Here, we examined the evolution of the OAS genes in 64 mammals to explore the accompanying molecular mechanisms of the antiviral ability of Laurasiatherian mammals living in different environments. We found that OAS2 and OAS3 were found to be pseudogenes in Odontoceti species. This may be related to the fact that they live in water. Some Antilopinae, Caprinae, and Cervidae species lacked the OASL gene, which may be related to their habitats being at higher altitudes. The OASs had a high number of positive selection sites in Cetartiodactyla, which drove the expression of strong antiviral ability. The OAS gene family evolved in Laurasiatherian mammals at different rates and was highly correlated with the species' antiviral ability. The gene evolution rate in Cetartiodactyla was significantly higher than that in the other orders. Compared to other species of the Carnivora family, the higher selection pressure on the OAS gene and the absence of positive selection sites in Canidae may be responsible for its weak resistance to rabies virus. The OAS gene family was relatively conserved during evolution. Conserved genes are able to provide better maintenance of gene function. The rate of gene evolution and the number of positively selected sites combine to influence the resistance of a species to viruses. The positive selection sites demonstrate the adaptive evolution of the OAS gene family to the environment. Adaptive evolution combined with conserved gene function improves resistance to viruses. Our findings offer insights into the molecular and functional evolution of the antiviral ability of Laurasian mammals.
Collapse
|
38
|
Coban A, Bornberg-Bauer E, Kemena C. Domain Evolution of Vertebrate Blood Coagulation Cascade Proteins. J Mol Evol 2022; 90:418-428. [PMID: 36181519 PMCID: PMC9643190 DOI: 10.1007/s00239-022-10071-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 08/26/2022] [Indexed: 10/06/2022]
Abstract
Vertebrate blood coagulation is controlled by a cascade containing more than 20 proteins. The cascade proteins are found in the blood in their zymogen forms and when the cascade is triggered by tissue damage, zymogens are activated and in turn activate their downstream proteins by serine protease activity. In this study, we examined proteomes of 21 chordates, of which 18 are vertebrates, to reveal the modular evolution of the blood coagulation cascade. Additionally, two Arthropoda species were used to compare domain arrangements of the proteins belonging to the hemolymph clotting and the blood coagulation cascades. Within the vertebrate coagulation protein set, almost half of the studied proteins are shared with jawless vertebrates. Domain similarity analyses revealed that there are multiple possible evolutionary trajectories for each coagulation protein. During the evolution of higher vertebrate clades, gene and genome duplications led to the formation of other coagulation cascade proteins.
Collapse
Affiliation(s)
- Abdulbaki Coban
- Institute for Evolutionary Biology, WWU Münster, Münster, Germany
| | - Erich Bornberg-Bauer
- Institute for Evolutionary Biology, WWU Münster, Münster, Germany
- Max Planck-Institute for Biology Tuebingen, Tübingen, Germany
| | - Carsten Kemena
- Institute for Evolutionary Biology, WWU Münster, Münster, Germany.
| |
Collapse
|
39
|
Lang D, Wang X, Liu C, Geng W, Irwin DM, Chen S, Li C, Yu L, Xiao H. Birth-and-death evolution of ribonuclease 9 genes in Cetartiodactyla. SCIENCE CHINA LIFE SCIENCES 2022; 66:1170-1182. [PMID: 36443512 DOI: 10.1007/s11427-022-2195-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022]
Abstract
RNase9 plays a reproductive function and has been recognized as an important member of the ribonuclease (RNase) A superfamily, a gene family that is widely used as a model for molecular evolutionary studies. Here, we identified 178 RNase9 genes from 95 Cetartiodactyla species that represent all four lineages and 21 families of this clade. Unexpectedly, RNase9 experienced an evolutionary scenario of "birth and death" in Ruminantia, and expression analyses showed that duplicated RNase9A and RNase9B genes are expressed in reproductive tissues (epididymis, vas deferens or prostate). This expression pattern combined with the estimate that these genes duplicated during the middle Eocene, a time when Ruminantia become a successful lineage, suggests that the RNase9 gene duplication might have been advantageous for promoting sperm motility and male fertility as an adaptation to climate seasonality changes of this period. In contrast, all RNase9 genes were lost in the Cetacean lineage, which might be associated with their high levels of prostatic lesions and lower reproductive rates as adaptations to a fully aquatic environment and a balance to the demands of ocean resources. This study reveals a complex and intriguing evolutionary history and functional divergence for RNase9 in Cetartiodactyla, providing new insights into the evolution of the RNaseA superfamily and molecular mechanisms for organismal adaptations to the environment.
Collapse
Affiliation(s)
- Datian Lang
- School of Life Sciences, Yunnan University, Kunming, 650500, China
- Biodiversity Research Center of Wumeng Mountain, Department of Agronomy and Life Science, Zhaotong University, Zhaotong, 657000, China
| | - Xiaoping Wang
- School of Life Sciences, Yunnan University, Kunming, 650500, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China
| | - Chunbing Liu
- School of Life Sciences, Yunnan University, Kunming, 650500, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China
| | - Weihang Geng
- School of Life Sciences, Yunnan University, Kunming, 650500, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Shanyuan Chen
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| | - Chunqing Li
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| | - Li Yu
- School of Life Sciences, Yunnan University, Kunming, 650500, China.
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China.
| | - Heng Xiao
- School of Life Sciences, Yunnan University, Kunming, 650500, China.
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
40
|
Xie HX, Liang XX, Li WM, Chen ZQ, Wang XF, Ding ZH, Zhou XM, Du WG. The eggshell-matrix protein gene OC-17 is functionally lost in the viviparous Chinese crocodile lizard. J Evol Biol 2022; 35:1568-1575. [PMID: 36129910 DOI: 10.1111/jeb.14097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 07/21/2022] [Accepted: 07/31/2022] [Indexed: 11/29/2022]
Abstract
Thickness reduction or loss of the calcareous eggshell is one of major phenotypic changes in the transition from oviparity to viviparity. Whether the reduction of eggshells in viviparous squamates is associated with specific gene losses is unknown. Taking advantage of a newly generated high-quality genome of the viviparous Chinese crocodile lizard (Shinisaurus crocodilurus), we found that ovocleidin-17 gene (OC-17), which encodes an eggshell matrix protein that is essential for calcium deposition in eggshells, is not intact in the crocodile lizard genome. Only OC-17 transcript fragments were found in the oviduct transcriptome, and no OC-17 peptides were identified in the eggshell proteome of crocodile lizards. In contrast, OC-17 was present in the eggshells of the oviparous Mongolia racerunner (Eremias argus). Although the loss of OC-17 is not common in viviparous species, viviparous squamates show fewer intact eggshell-specific proteins than oviparous squamates. Our study implies that functional loss of eggshell-matrix protein genes may be involved in the reduction of eggshells during the transition from oviparity to viviparity in the crocodile lizard.
Collapse
Affiliation(s)
- Hong-Xin Xie
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xi-Xi Liang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wei-Ming Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | | | - Xi-Feng Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zi-Han Ding
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xu-Ming Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wei-Guo Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
41
|
Nishiyama A, Kitada K, Suzuki M. Blood pressure adaptation in vertebrates: Comparative biology. Kidney Int 2022; 102:242-247. [PMID: 35671910 DOI: 10.1016/j.kint.2022.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/18/2022] [Accepted: 03/30/2022] [Indexed: 11/26/2022]
Abstract
With evolution from water to land, the osmotic regulation of body fluids and cardiovascular systems of vertebrates evolved to cope with dryness and gravity. While aquatic vertebrates can use buoyancy to compensate for the effects of gravity, terrestrial vertebrates cannot, and must circulate blood throughout their body - a necessity that likely led to the development of strong hearts and high blood pressure. These changes may be supported by anatomical evolution of the cardiovascular system and by functional evolution, with alterations in hormonal systems. Thus, during the evolution of terrestrial animals, increased performance of body functions to endure harsher environments was required, necessitating increased blood pressure. In an age of overeating and insufficient exercise, modern man does not fully utilize the high levels of physical functions acquired through evolution. Drastic changes in our living environment cause hypertension, the pathogenesis of which remains unknown. To survive in new environments, as might be expected in outer space or underwater, an understanding is required of how changes in blood pressure have occurred that enabled adaptation through evolution in vertebrates.
Collapse
Affiliation(s)
- Akira Nishiyama
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan.
| | - Kento Kitada
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Miwa Suzuki
- Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| |
Collapse
|
42
|
Randall JG, Gatesy J, Springer MS. Molecular evolutionary analyses of tooth genes support sequential loss of enamel and teeth in baleen whales (Mysticeti). Mol Phylogenet Evol 2022; 171:107463. [PMID: 35358696 DOI: 10.1016/j.ympev.2022.107463] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/16/2021] [Accepted: 03/01/2022] [Indexed: 10/18/2022]
Abstract
The loss of teeth and evolution of baleen racks in Mysticeti was a profound transformation that permitted baleen whales to radiate and diversify into a previously underutilized ecological niche of bulk filter-feeding on zooplankton and other small prey. Ancestral state reconstructions suggest that postnatal teeth were lost in the common ancestor of crown Mysticeti. Genomic studies provide some support for this hypothesis and suggest that the genetic toolkit for enamel production was inactivated in the common ancestor of living baleen whales. However, molecular studies to date have not provided direct evidence for the complete loss of teeth, including their dentin component, on the stem mysticete branch. Given these results, several questions remain unanswered: (1) Were teeth lost in a single step or did enamel loss precede dentin loss? (2) Was enamel lost early or late on the stem mysticete branch? (3) If enamel and dentin/tooth loss were decoupled in the ancestry of baleen whales, did dentin loss occur on the stem mysticete branch or independently in different crown mysticete lineages? To address these outstanding questions, we compiled and analyzed complete protein-coding sequences for nine tooth-related genes from cetaceans with available genome data. Seven of these genes are associated with enamel formation (ACP4, AMBN, AMELX, AMTN, ENAM, KLK4, MMP20) whereas two other genes are either dentin-specific (DSPP) or tooth-specific (ODAPH) but not enamel-specific. Molecular evolutionary analyses indicate that all seven enamel-specific genes have inactivating mutations that are scattered across branches of the mysticete tree. Three of the enamel genes (ACP4, KLK4, MMP20) have inactivating mutations that are shared by all mysticetes. The two genes that are dentin-specific (DSPP) or tooth-specific (ODAPH) do not have any inactivating mutations that are shared by all mysticetes, but there are shared mutations in Balaenidae as well as in Plicogulae (Neobalaenidae + Balaenopteroidea). These shared mutations suggest that teeth were lost at most two times. Shared inactivating mutations and dN/dS analyses, in combination with cetacean divergence times, were used to estimate inactivation times of genes and by proxy enamel and tooth phenotypes at ancestral nodes. The results of these analyses are most compatible with a two-step model for the loss of teeth in the ancestry of living baleen whales: enamel was lost very early on the stem Mysticeti branch followed by the independent loss of dentin (and teeth) in the common ancestors of Balaenidae and Plicogulae, respectively. These results imply that some stem mysticetes, and even early crown mysticetes, may have had vestigial teeth comprised of dentin with no enamel. Our results also demonstrate that all odontocete species (in our study) with absent or degenerative enamel have inactivating mutations in one or more of their enamel genes.
Collapse
Affiliation(s)
- Jason G Randall
- Department of Evolution, Ecology, and Evolutionary Biology, University of California, Riverside, CA 92521, USA.
| | - John Gatesy
- Division of Vertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA.
| | - Mark S Springer
- Department of Evolution, Ecology, and Evolutionary Biology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
43
|
Blumer M, Brown T, Freitas MB, Destro AL, Oliveira JA, Morales AE, Schell T, Greve C, Pippel M, Jebb D, Hecker N, Ahmed AW, Kirilenko BM, Foote M, Janke A, Lim BK, Hiller M. Gene losses in the common vampire bat illuminate molecular adaptations to blood feeding. SCIENCE ADVANCES 2022; 8:eabm6494. [PMID: 35333583 PMCID: PMC8956264 DOI: 10.1126/sciadv.abm6494] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/03/2022] [Indexed: 05/06/2023]
Abstract
Vampire bats are the only mammals that feed exclusively on blood. To uncover genomic changes associated with this dietary adaptation, we generated a haplotype-resolved genome of the common vampire bat and screened 27 bat species for genes that were specifically lost in the vampire bat lineage. We found previously unknown gene losses that relate to reduced insulin secretion (FFAR1 and SLC30A8), limited glycogen stores (PPP1R3E), and a unique gastric physiology (CTSE). Other gene losses likely reflect the biased nutrient composition (ERN2 and CTRL) and distinct pathogen diversity of blood (RNASE7) and predict the complete lack of cone-based vision in these strictly nocturnal bats (PDE6H and PDE6C). Notably, REP15 loss likely helped vampire bats adapt to high dietary iron levels by enhancing iron excretion, and the loss of CYP39A1 could have contributed to their exceptional cognitive abilities. These findings enhance our understanding of vampire bat biology and the genomic underpinnings of adaptations to blood feeding.
Collapse
Affiliation(s)
- Moritz Blumer
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
- Goethe University, Faculty of Biosciences, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Tom Brown
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | | | - Ana Luiza Destro
- Department of Animal Biology, Federal University of Viçosa, Viçosa, Brazil
| | - Juraci A. Oliveira
- Department of General Biology, Federal University of Viçosa, Viçosa, Brazil
| | - Ariadna E. Morales
- Goethe University, Faculty of Biosciences, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany
- Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Tilman Schell
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany
- Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Carola Greve
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany
- Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Martin Pippel
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - David Jebb
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Nikolai Hecker
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Alexis-Walid Ahmed
- Goethe University, Faculty of Biosciences, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany
- Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Bogdan M. Kirilenko
- Goethe University, Faculty of Biosciences, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany
- Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Maddy Foote
- Native Bat Conservation Program, Toronto Zoo, 361A Old Finch Avenue, Toronto, Ontario M1B 5K7, Canada
| | - Axel Janke
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany
- Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Burton K. Lim
- Department of Natural History, Royal Ontario Museum, 100 Queen’s Park, Toronto, Ontario M5S 2C6, Canada
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
- Goethe University, Faculty of Biosciences, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany
- Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt, Germany
| |
Collapse
|
44
|
Noh HJ, Turner-Maier J, Schulberg SA, Fitzgerald ML, Johnson J, Allen KN, Hückstädt LA, Batten AJ, Alfoldi J, Costa DP, Karlsson EK, Zapol WM, Buys ES, Lindblad-Toh K, Hindle AG. The Antarctic Weddell seal genome reveals evidence of selection on cardiovascular phenotype and lipid handling. Commun Biol 2022; 5:140. [PMID: 35177770 PMCID: PMC8854659 DOI: 10.1038/s42003-022-03089-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 01/31/2022] [Indexed: 12/24/2022] Open
Abstract
AbstractThe Weddell seal (Leptonychotes weddellii) thrives in its extreme Antarctic environment. We generated the Weddell seal genome assembly and a high-quality annotation to investigate genome-wide evolutionary pressures that underlie its phenotype and to study genes implicated in hypoxia tolerance and a lipid-based metabolism. Genome-wide analyses included gene family expansion/contraction, positive selection, and diverged sequence (acceleration) compared to other placental mammals, identifying selection in coding and non-coding sequence in five pathways that may shape cardiovascular phenotype. Lipid metabolism as well as hypoxia genes contained more accelerated regions in the Weddell seal compared to genomic background. Top-significant genes were SUMO2 and EP300; both regulate hypoxia inducible factor signaling. Liver expression of four genes with the strongest acceleration signals differ between Weddell seals and a terrestrial mammal, sheep. We also report a high-density lipoprotein-like particle in Weddell seal serum not present in other mammals, including the shallow-diving harbor seal.
Collapse
|
45
|
Zheng Z, Hua R, Xu G, Yang H, Shi P. Gene losses may contribute to subterranean adaptations in naked mole-rat and blind mole-rat. BMC Biol 2022; 20:44. [PMID: 35172813 PMCID: PMC8851862 DOI: 10.1186/s12915-022-01243-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/28/2022] [Indexed: 01/18/2023] Open
Abstract
Background Naked mole-rats (Heterocephalus glaber, NMRs) and blind mole-rats (Spalax galili, BMRs) are representative subterranean rodents that have evolved many extraordinary traits, including hypoxia tolerance, longevity, and cancer resistance. Although multiple candidate loci responsible for these traits have been uncovered by genomic studies, many of them are limited to functional changes to amino acid sequence and little is known about the contributions of other genetic events. To address this issue, we focused on gene losses (unitary pseudogenes) and systematically analyzed gene losses in NMRs and BMRs, aiming to elucidate the potential roles of pseudogenes in their adaptation to subterranean lifestyle. Results We obtained the pseudogene repertoires in NMRs and BMRs, as well as their respective aboveground relatives, guinea pigs and rats, on a genome-wide scale. As a result, 167, 139, 341, and 112 pseudogenes were identified in NMRs, BMRs, guinea pigs, and rats, respectively. Functional enrichment analysis identified 4 shared and 2 species-specific enriched functional groups (EFGs) in subterranean lineages. Notably, the pseudogenes in these EFGs might be associated with either regressive (e.g., visual system) or adaptive (e.g., altered DNA damage response) traits. In addition, several pseudogenes including TNNI3K and PDE5A might be associated with specific cardiac features observed in subterranean lineages. Interestingly, we observed 20 convergent gene losses in NMRs and BMRs. Given that the functional investigations of these genes are generally scarce, we provided functional evidence that independent loss of TRIM17 in NMRs and BMRs might be beneficial for neuronal survival under hypoxia, supporting the positive role of eliminating TRIM17 function in hypoxia adaptation. Our results also suggested that pseudogenes, together with positively selected genes, reinforced subterranean adaptations cooperatively. Conclusions Our study provides new insights into the molecular underpinnings of subterranean adaptations and highlights the importance of gene losses in mammalian evolution. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01243-0.
Collapse
Affiliation(s)
- Zhizhong Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Rong Hua
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China.,Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.,Joint Laboratory of Animal Models for Human Diseases and Drug Development, Soochow University and Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Hui Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China.
| | - Peng Shi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China. .,Joint Laboratory of Animal Models for Human Diseases and Drug Development, Soochow University and Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China. .,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 101408, China.
| |
Collapse
|
46
|
Pratt EAL, Beheregaray LB, Bilgmann K, Zanardo N, Diaz-Aguirre F, Brauer C, Sandoval-Castillo J, Möller LM. Seascape genomics of coastal bottlenose dolphins along strong gradients of temperature and salinity. Mol Ecol 2022; 31:2223-2241. [PMID: 35146819 DOI: 10.1111/mec.16389] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 11/30/2022]
Abstract
Heterogeneous seascapes and strong environmental gradients in coastal waters are expected to influence adaptive divergence, particularly in species with large population sizes where selection is expected to be highly efficient. However, these influences might also extend to species characterized by strong social structure, natal philopatry and small home ranges. We implemented a seascape genomic study to test this hypothesis in Indo-Pacific bottlenose dolphins (Tursiops aduncus) distributed along the environmentally heterogeneous coast of southern Australia. The datasets included oceanographic and environmental variables thought to be good predictors of local adaptation in dolphins and 8,081 filtered single nucleotide polymorphisms (SNPs) genotyped for individuals sampled from seven different bioregions. From a neutral perspective, population structure and connectivity of the dolphins were generally influenced by habitat type and social structuring. Genotype-environment association analysis identified 241 candidate adaptive loci and revealed that sea surface temperature and salinity gradients influenced adaptive divergence in these animals at both large- (1,000s km) and fine-scales (<100 km). Enrichment analysis and annotation of candidate genes revealed functions related to sodium-activated ion transport, kidney development, adipogenesis and thermogenesis. The findings of spatial adaptive divergence and inferences of putative physiological adaptations challenge previous suggestions that marine megafauna is most likely to be affected by environmental and climatic changes via indirect, trophic effects. Our work contributes to conservation management of coastal bottlenose dolphins subjected to anthropogenic disturbance and to efforts of clarifying how seascape heterogeneity influences adaptive diversity and evolution in small cetaceans.
Collapse
Affiliation(s)
- Eleanor A L Pratt
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Bedford Park, 5042, South Australia, Australia.,Cetacean Ecology, Behaviour and Evolution Laboratory, College of Science and Engineering, Flinders University, Bedford Park, 5042, South Australia, Australia
| | - Luciano B Beheregaray
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Bedford Park, 5042, South Australia, Australia
| | - Kerstin Bilgmann
- Department of Biological Sciences, Macquarie University, 2109, New South Wales, Australia
| | - Nikki Zanardo
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Bedford Park, 5042, South Australia, Australia.,Cetacean Ecology, Behaviour and Evolution Laboratory, College of Science and Engineering, Flinders University, Bedford Park, 5042, South Australia, Australia.,Department of Environment and Water, Adelaide, 5000, South Australia, Australia
| | - Fernando Diaz-Aguirre
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Bedford Park, 5042, South Australia, Australia.,Cetacean Ecology, Behaviour and Evolution Laboratory, College of Science and Engineering, Flinders University, Bedford Park, 5042, South Australia, Australia
| | - Chris Brauer
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Bedford Park, 5042, South Australia, Australia
| | - Jonathan Sandoval-Castillo
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Bedford Park, 5042, South Australia, Australia
| | - Luciana M Möller
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Bedford Park, 5042, South Australia, Australia.,Cetacean Ecology, Behaviour and Evolution Laboratory, College of Science and Engineering, Flinders University, Bedford Park, 5042, South Australia, Australia
| |
Collapse
|
47
|
Evolutionary History of RNA Modifications at N6-Adenosine Originating from the R-M System in Eukaryotes and Prokaryotes. BIOLOGY 2022; 11:biology11020214. [PMID: 35205080 PMCID: PMC8868631 DOI: 10.3390/biology11020214] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/13/2022] [Accepted: 01/24/2022] [Indexed: 12/11/2022]
Abstract
Simple Summary The m6A is the most abundant and well-studied modification of mRNA, and plays an important role in transcription and translation. It is known to be evolutionarily conserved machinery present in the last eukaryotic common ancestor (LECA). The writers and erasers responsible for adding or removing m6A belong to specific protein families, respectively, suggesting that these members are evolutionarily related. However, only some of these mRNA m6A modification-associated proteins have been studied from an evolutionary perspective, while there has been no comprehensive and systematic analysis of the distributions and evolutionary history of N6mA-associated proteins in the three kingdoms of life. In this study, we identified orthologues of all the reported N6mA-associated proteins in 88 organisms from three kingdoms of life and comprehensively reconstructed the evolutionary history of the RNA N6mA modification machinery. The results demonstrate that RNA N6mA-MTases are derived from at least two different types of prokaryotic DNA MTases (class α and β MTases). As the m6A reader, YTH proteins may be acquired by LECA from an individual prokaryotic YTH-domain protein that evolved from the N-terminals of an R-M system endonuclease. In addition, the origin of eukaryotic ALKBH family proteins is inferred to be driven by at least two occasions of independent HTG from the bacterial ALKB family. Abstract Methylation at the N6-position of adenosine (N6mA) on mRNA (m6A) is one of the most widespread, highly selective and dynamically regulated RNA modifications and plays an important role in transcription and translation. In the present study, a comprehensive analysis of phylogenetic relationships, conserved domain sequence characteristics and protein structure comparisons were employed to explore the distribution of RNA N6mA modification (m6A, m6,6A, m6Am, m6, 6Am and m6t6A)-associated proteins (writers, readers and erasers) in three kingdoms of life and reveal the evolutionary history of these modifications. These findings further confirmed that the restriction-modification (R-M) system is the origin of DNA and RNA N6mA modifications. Among them, the existing mRNA m6A modification system derived from the last eukaryotic common ancestor (LECA) is the evolutionary product of elements from the last universal common ancestor (LUCA) or driven by horizontal gene transfer (HGT) from bacterial elements. The subsequent massive gene gains and losses contribute to the development of unique and diverse functions in distinct species. Particularly, RNA methyltransferases (MTases) as the writer responsible for adding N6mA marks on mRNA and ncRNAs may have evolved from class α and β prokaryotic “orphan” MTases originating from the R-M system. The reader, YTH proteins that specifically recognize the m6A deposit, may be acquired by LECA from an individual prokaryotic YTH-domain protein that evolved from N-terminals of an R-M system endonuclease. The eraser, which emerged from the ALKB family (ALKBH5 and FTO) in eukaryotes, may be driven by independent HTG from bacterial ALKB proteins. The evolutionary history of RNA N6mA modifications was inferred in the present study, which will deepen our understanding of these modifications in different species.
Collapse
|
48
|
Fuchs P, Drexler C, Ratajczyk S, Eckhart L. Comparative genomics reveals evolutionary loss of epiplakin in cetaceans. Sci Rep 2022; 12:1112. [PMID: 35064199 PMCID: PMC8782857 DOI: 10.1038/s41598-022-05087-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/06/2022] [Indexed: 12/14/2022] Open
Abstract
The adaptation of vertebrates to different environments was associated with changes in the molecular composition and regulation of epithelia. Whales and dolphins, together forming the clade cetaceans, have lost multiple epithelial keratins during or after their evolutionary transition from life on land to life in water. It is unknown whether the changes in keratins were accompanied by gain or loss of cytoskeletal adapter proteins of the plakin family. Here we investigated whether plakin proteins are conserved in cetaceans and other vertebrates. Comparative analysis of genome sequences showed conservation of dystonin, microtubule actin crosslinking factor 1 (MACF1), plectin, desmoplakin, periplakin and envoplakin in cetaceans. By contrast, EPPK1 (epiplakin) was disrupted by inactivating mutations in all cetaceans investigated. Orthologs of EPPK1 are present in bony and cartilaginous fishes and tetrapods, indicating an evolutionary origin of EPPK1 in a common ancestor of jawed vertebrates (Gnathostomes). In many vertebrates, EPPK1 is flanked by an as-yet uncharacterized gene that encodes protein domains homologous to the carboxy-terminal segment of MACF1. We conclude that epiplakin, unlike other plakins, was lost in cetaceans.
Collapse
Affiliation(s)
- Peter Fuchs
- Max Perutz Labs, Department of Biochemistry and Cell Biology, University of Vienna, Vienna Biocenter Campus (VBC), Vienna, Austria.
| | - Corinne Drexler
- Max Perutz Labs, Department of Biochemistry and Cell Biology, University of Vienna, Vienna Biocenter Campus (VBC), Vienna, Austria
| | - Sonia Ratajczyk
- Max Perutz Labs, Department of Biochemistry and Cell Biology, University of Vienna, Vienna Biocenter Campus (VBC), Vienna, Austria
| | - Leopold Eckhart
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
49
|
Roscito JG, Sameith K, Kirilenko BM, Hecker N, Winkler S, Dahl A, Rodrigues MT, Hiller M. Convergent and lineage-specific genomic differences in limb regulatory elements in limbless reptile lineages. Cell Rep 2022; 38:110280. [DOI: 10.1016/j.celrep.2021.110280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/24/2021] [Accepted: 12/27/2021] [Indexed: 01/02/2023] Open
|
50
|
Wagner F, Ruf I, Lehmann T, Hofmann R, Ortmann S, Schiffmann C, Hiller M, Stefen C, Stuckas H. Reconstruction of evolutionary changes in fat and toxin consumption reveals associations with gene losses in mammals: a case study for the lipase inhibitor PNLIPRP1 and the xenobiotic receptor NR1I3. J Evol Biol 2021; 35:225-239. [PMID: 34882899 DOI: 10.1111/jeb.13970] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 11/28/2022]
Abstract
The inactivation of ancestral protein-coding genes (gene loss) can be associated with phenotypic modifications. Within placental mammals, repeated losses of PNLIPRP1 (gene inhibiting fat digestion) occurred preferentially in strictly herbivorous species, while repeated NR1I3 losses (gene involved in detoxification) occurred preferentially in strictly carnivorous species. It was hypothesized that lower fat contents of herbivorous diets and lower toxin contents of carnivorous diets cause relaxed selection pressure on these genes resulting in the accumulation of mutations and ultimately to convergent gene losses. However, since herbivorous and carnivorous diets differ vastly in their composition, a fine-grained analysis is required for hypothesis testing. We generated a trait matrix recording diet and semi-quantitative estimates of fat and toxin consumption for 52 placental species. By including data from 31 fossil taxa, we reconstructed the ancestral diets in major lineages (grundplan reconstruction). We found support that PNLIPRP1 loss is primarily associated with low levels of fat intake and not simply with herbivory/carnivory. In particular, PNLIPRP1 loss also occurred in carnivorous lineages feeding on a fat-poor diet, suggesting that the loss of this gene may be beneficial for occupying ecological niches characterized by fat-poor food resources. Similarly, we demonstrated that carnivorous species are indeed less exposed to diet-related toxins suggesting that the loss of NR1I3 and related genes (NR1I2, UGT1A6) resulted from relaxed selection pressure. This study illustrates the need of detailed phenotype studies to obtain a deeper understanding of factors underlying gene losses and to progress in understanding genomic causes of phenotypic variation in mammals.
Collapse
Affiliation(s)
- F Wagner
- Senckenberg, Leibniz Institution for Biodiversity and Earth System Research, Senckenberg Natural History Collections Dresden, Königsbrücker Landstraße 159, 01109, Dresden, Germany
| | - I Ruf
- Senckenberg, Leibniz Institution for Biodiversity and Earth System Research, Senckenberg Research Institute and Natural History Museum Frankfurt, Senckenberganlage 25, 60325, Frankfurt am Main, Germany.,Goethe-University, Department of Geosciences, Altenöferallee 1, 60438, Frankfurt am Main, Germany
| | - T Lehmann
- Senckenberg, Leibniz Institution for Biodiversity and Earth System Research, Senckenberg Research Institute and Natural History Museum Frankfurt, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - R Hofmann
- Senckenberg, Leibniz Institution for Biodiversity and Earth System Research, Senckenberg Research Institute and Natural History Museum Frankfurt, Senckenberganlage 25, 60325, Frankfurt am Main, Germany.,Goethe-University, Department of Geosciences, Altenöferallee 1, 60438, Frankfurt am Main, Germany
| | - S Ortmann
- Leibniz Institut für Zoo- und Wildtierforschung, Abteilung für Evolutionäre Ökologie, Alfred-Kowalke-Straße 17, 10315, Berlin, Germany
| | - C Schiffmann
- Leibniz Institut für Zoo- und Wildtierforschung, Abteilung für Evolutionäre Ökologie, Alfred-Kowalke-Straße 17, 10315, Berlin, Germany
| | - M Hiller
- Senckenberg, Leibniz Institution for Biodiversity and Earth System Research, Senckenberg Research Institute and Natural History Museum Frankfurt, Senckenberganlage 25, 60325, Frankfurt am Main, Germany.,Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, 01187, Dresden, Germany.,Center for Systems Biology Dresden, Pfotenhauerstr. 108, 01307, Dresden, Germany.,LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325, Frankfurt am Main, Germany.,Goethe University, Faculty of Biosciences, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - C Stefen
- Senckenberg, Leibniz Institution for Biodiversity and Earth System Research, Senckenberg Natural History Collections Dresden, Königsbrücker Landstraße 159, 01109, Dresden, Germany
| | - H Stuckas
- Senckenberg, Leibniz Institution for Biodiversity and Earth System Research, Senckenberg Natural History Collections Dresden, Königsbrücker Landstraße 159, 01109, Dresden, Germany
| |
Collapse
|