1
|
Hamp RE, Salzmann CG, Amato Z, Beaumont ML, Chinnery HE, Fawdon P, Headen TF, Henry PF, Perera L, Thompson SP, Fox-Powell MG. Metastable Dihydrate of Sodium Chloride at Ambient Pressure. J Phys Chem Lett 2024; 15:12301-12308. [PMID: 39639715 DOI: 10.1021/acs.jpclett.4c02752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Sodium chloride (NaCl) plays an important role in geochemistry, biology, industry, and food production, and it is among the most common salts in the solar system. Here, we report the discovery of a metastable NaCl dihydrate formed through rapid freezing (101-102 K s-1) of a NaCl solution at ambient pressure. Using synchrotron X-ray and neutron powder diffraction, we show that it transforms irreversibly to hydrohalite and ice Ih above 190 K upon heating and propose it is structurally related to hydrohalite with a 3 × 1 × 3 supercell as its unit cell. Calorimetric analyses reveal that the new hydrate transforms to hydrohalite with a heat release of -3.47 ± 0.55 kJ mol-1. The identification of this new NaCl dihydrate on the surfaces of icy worlds such as the moons of Jupiter and Saturn could indicate regions of recent activity where subsurface brines have frozen rapidly, priority targets for upcoming planetary missions.
Collapse
Affiliation(s)
- Rachael E Hamp
- AstrobiologyOU, School of Environment, Earth and Ecosystem Sciences, Open University, Walton Hall, Milton Keynes MK7 6AA, United Kingdom
| | - Christoph G Salzmann
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Zachary Amato
- School of Physical Sciences, Open University, Walton Hall, Milton Keynes MK7 6AA, United Kingdom
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX, United Kingdom
| | - Milz L Beaumont
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Hannah E Chinnery
- School of Physical Sciences, Open University, Walton Hall, Milton Keynes MK7 6AA, United Kingdom
| | - Peter Fawdon
- School of Physical Sciences, Open University, Walton Hall, Milton Keynes MK7 6AA, United Kingdom
| | - Thomas F Headen
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX, United Kingdom
| | - Paul F Henry
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX, United Kingdom
- Department of Chemistry─Ångström Laboratory, Uppsala University, Box 523, 751 20 Uppsala, Sweden
| | - Liam Perera
- Diamond Light Source, Didcot OX11 0DE, United Kingdom
| | | | - Mark G Fox-Powell
- AstrobiologyOU, School of Environment, Earth and Ecosystem Sciences, Open University, Walton Hall, Milton Keynes MK7 6AA, United Kingdom
| |
Collapse
|
2
|
Govinda Raj C, Odeh M, Salyards C, Stockton A. Early Technology Readiness Level (TRL) Development of the Microfluidic Inorganic Conductivity Detector for Europa and the Solenoid-Based Actuator Assembly for Impact Penetrators. SENSORS (BASEL, SWITZERLAND) 2024; 24:7704. [PMID: 39686241 DOI: 10.3390/s24237704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024]
Abstract
This study introduces an innovative in situ lander/impact-penetrator design tailored for Discovery-class missions to Europa, specifically focused on conducting astrobiological analyses. The platform integrates a microfluidic capacitively coupled contactless conductivity detector (C4D), optimized for the detection of low-concentration salts potentially indicative of biological activity. Our microfluidic system allows for automated sample routing and precise conductivity-based detection, making it suitable for the harsh environmental and logistical demands of Europa's icy surface. This technology provides a robust toolset for exploring extraterrestrial habitability by enabling in situ chemical analyses with minimal operational intervention, paving the way for advanced astrobiological investigations on Europa.
Collapse
Affiliation(s)
- Chinmayee Govinda Raj
- Georgia Institute of Technology, School of Chemistry and Biochemistry, 901 Atlantic Dr. NW, Atlanta, GA 30332, USA
| | - Mohamed Odeh
- Georgia Institute of Technology, School of Chemistry and Biochemistry, 901 Atlantic Dr. NW, Atlanta, GA 30332, USA
| | - Cambrie Salyards
- Georgia Institute of Technology, School of Chemistry and Biochemistry, 901 Atlantic Dr. NW, Atlanta, GA 30332, USA
| | - Amanda Stockton
- Georgia Institute of Technology, School of Chemistry and Biochemistry, 901 Atlantic Dr. NW, Atlanta, GA 30332, USA
| |
Collapse
|
3
|
Blaney DL, Hibbitts K, Diniega S, Davies AG, Clark RN, Green RO, Hedman M, Langevin Y, Lunine J, McCord TB, Murchie S, Paranicas C, Seelos F, Soderblom JM, Cable ML, Eckert R, Thompson DR, Trumbo SK, Bruce C, Lundeen SR, Bender HA, Helmlinger MC, Moore LB, Mouroulis P, Small Z, Tang H, Van Gorp B, Sullivan PW, Zareh S, Rodriquez JI, McKinley I, Hahn DV, Bowers M, Hourani R, Bryce BA, Nuding D, Bailey Z, Rettura A, Zarate ED. The Mapping Imaging Spectrometer for Europa (MISE). SPACE SCIENCE REVIEWS 2024; 220:80. [PMID: 39398102 PMCID: PMC11464581 DOI: 10.1007/s11214-024-01097-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 06/25/2024] [Indexed: 10/15/2024]
Abstract
The Mapping Imaging Spectrometer for Europa (MISE) is an infrared compositional instrument that will fly on NASA's Europa Clipper mission to the Jupiter system. MISE is designed to meet the Level-1 science requirements related to the mission's composition science objective to "understand the habitability of Europa's ocean through composition and chemistry" and to contribute to the geology science and ice shell and ocean objectives, thereby helping Europa Clipper achieve its mission goal to "explore Europa to investigate its habitability." MISE has a mass of 65 kg and uses an energy per flyby of 75.2 W-h. MISE will detect illumination from 0.8 to 5 μm with 10 nm spectral resolution, a spatial sampling of 25 m per pixel at 100 km altitude, and 300 cross-track pixels, enabling discrimination among the two principal states of water ice on Europa, identification of the main non-ice components of interest: salts, acids, and organics, and detection of trace materials as well as some thermal signatures. Furthermore, the spatial resolution and global coverage that MISE will achieve will be complemented by the higher spectral resolution of some Earth-based assets. MISE, combined with observations collected by the rest of the Europa Clipper payload, will enable significant advances in our understanding of how the large-scale structure of Europa's surface is shaped by geological processes and inform our understanding of the surface at microscale. This paper describes the planned MISE science investigations, instrument design, concept of operations, and data products.
Collapse
Affiliation(s)
- Diana L. Blaney
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Karl Hibbitts
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD USA
| | - Serina Diniega
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | | | | | - Robert O. Green
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | | | | | | | | | - Scott Murchie
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD USA
| | - Chris Paranicas
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD USA
| | - Frank Seelos
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD USA
| | | | - Morgan L. Cable
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Regina Eckert
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - David R. Thompson
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | | | - Carl Bruce
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Sarah R. Lundeen
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Holly A. Bender
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Mark C. Helmlinger
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Lori B. Moore
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Pantazis Mouroulis
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Zachary Small
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Hong Tang
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Byron Van Gorp
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Peter W. Sullivan
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Shannon Zareh
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Jose I. Rodriquez
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Ian McKinley
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Daniel V. Hahn
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD USA
| | - Matthew Bowers
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD USA
| | - Ramsey Hourani
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD USA
| | - Brian A. Bryce
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD USA
| | - Danielle Nuding
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Zachery Bailey
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Alessandro Rettura
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Evan D. Zarate
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| |
Collapse
|
4
|
Tosi F, Roatsch T, Galli A, Hauber E, Lucchetti A, Molyneux P, Stephan K, Achilleos N, Bovolo F, Carter J, Cavalié T, Cimò G, D’Aversa E, Gwinner K, Hartogh P, Huybrighs H, Langevin Y, Lellouch E, Migliorini A, Palumbo P, Piccioni G, Plaut JJ, Postberg F, Poulet F, Retherford K, Rezac L, Roth L, Solomonidou A, Tobie G, Tortora P, Tubiana C, Wagner R, Wirström E, Wurz P, Zambon F, Zannoni M, Barabash S, Bruzzone L, Dougherty M, Gladstone R, Gurvits LI, Hussmann H, Iess L, Wahlund JE, Witasse O, Vallat C, Lorente R. Characterization of the Surfaces and Near-Surface Atmospheres of Ganymede, Europa and Callisto by JUICE. SPACE SCIENCE REVIEWS 2024; 220:59. [PMID: 39132056 PMCID: PMC11310297 DOI: 10.1007/s11214-024-01089-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 07/01/2024] [Indexed: 08/13/2024]
Abstract
We present the state of the art on the study of surfaces and tenuous atmospheres of the icy Galilean satellites Ganymede, Europa and Callisto, from past and ongoing space exploration conducted with several spacecraft to recent telescopic observations, and we show how the ESA JUICE mission plans to explore these surfaces and atmospheres in detail with its scientific payload. The surface geology of the moons is the main evidence of their evolution and reflects the internal heating provided by tidal interactions. Surface composition is the result of endogenous and exogenous processes, with the former providing valuable information about the potential composition of shallow subsurface liquid pockets, possibly connected to deeper oceans. Finally, the icy Galilean moons have tenuous atmospheres that arise from charged particle sputtering affecting their surfaces. In the case of Europa, plumes of water vapour have also been reported, whose phenomenology at present is poorly understood and requires future close exploration. In the three main sections of the article, we discuss these topics, highlighting the key scientific objectives and investigations to be achieved by JUICE. Based on a recent predicted trajectory, we also show potential coverage maps and other examples of reference measurements. The scientific discussion and observation planning presented here are the outcome of the JUICE Working Group 2 (WG2): "Surfaces and Near-surface Exospheres of the Satellites, dust and rings".
Collapse
Affiliation(s)
- Federico Tosi
- Istituto Nazionale di Astrofisica – Istituto di Astrofisica e Planetologia Spaziali (INAF-IAPS), Rome, Italy
| | - Thomas Roatsch
- Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany
| | - André Galli
- Physics Institute, Space Research and Planetary Sciences, University of Bern, Bern, Switzerland
| | - Ernst Hauber
- Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany
| | - Alice Lucchetti
- Istituto Nazionale di Astrofisica – Osservatorio Astronomico di Padova (INAF-OAPd), Padua, Italy
| | | | - Katrin Stephan
- Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany
| | - Nicholas Achilleos
- Department of Physics & Astronomy, University College London, London, UK
| | - Francesca Bovolo
- Center for Digital Society, Fondazione Bruno Kessler (FBK), Trento, Italy
| | - John Carter
- Institut d’Astrophysique Spatiale (IAS), CNRS/Université Paris-Saclay, Orsay, France
| | - Thibault Cavalié
- Laboratoire d’Astrophysique de Bordeaux, Université de Bordeaux, CNRS, Pessac, France
- LESIA, Observatoire de Paris, Meudon, France
| | - Giuseppe Cimò
- Joint Institute for VLBI ERIC, Dwingeloo, The Netherlands
| | - Emiliano D’Aversa
- Istituto Nazionale di Astrofisica – Istituto di Astrofisica e Planetologia Spaziali (INAF-IAPS), Rome, Italy
| | - Klaus Gwinner
- Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany
| | - Paul Hartogh
- Max Planck Institute for Solar System Research, Göttingen, Germany
| | - Hans Huybrighs
- Space and Planetary Science Center, Khalifa University, Abu Dhabi, UAE
- School of Cosmic Physics, Dunsink Observatory, Dublin Institute for Advanced Studies (DIAS), Dublin, Ireland
| | - Yves Langevin
- Institut d’Astrophysique Spatiale (IAS), CNRS/Université Paris-Saclay, Orsay, France
| | | | - Alessandra Migliorini
- Istituto Nazionale di Astrofisica – Istituto di Astrofisica e Planetologia Spaziali (INAF-IAPS), Rome, Italy
| | - Pasquale Palumbo
- Istituto Nazionale di Astrofisica – Istituto di Astrofisica e Planetologia Spaziali (INAF-IAPS), Rome, Italy
| | - Giuseppe Piccioni
- Istituto Nazionale di Astrofisica – Istituto di Astrofisica e Planetologia Spaziali (INAF-IAPS), Rome, Italy
| | | | - Frank Postberg
- Department of Earth Sciences, Freie Universität Berlin, Berlin, Germany
| | - François Poulet
- Institut d’Astrophysique Spatiale (IAS), CNRS/Université Paris-Saclay, Orsay, France
| | | | - Ladislav Rezac
- Max Planck Institute for Solar System Research, Göttingen, Germany
| | - Lorenz Roth
- Division of Space and Plasma Physics, KTH Royal Institute of Technology, Stockholm, Sweden
| | | | - Gabriel Tobie
- Laboratoire de Planétologie et Géosciences, Nantes Université, Nantes, France
| | - Paolo Tortora
- Department of Industrial Engineering (DIN), Università di Bologna, Forlì, Italy
| | - Cecilia Tubiana
- Istituto Nazionale di Astrofisica – Istituto di Astrofisica e Planetologia Spaziali (INAF-IAPS), Rome, Italy
| | - Roland Wagner
- Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany
| | - Eva Wirström
- Chalmers University of Technology, Onsala, Sweden
| | - Peter Wurz
- Physics Institute, Space Research and Planetary Sciences, University of Bern, Bern, Switzerland
| | - Francesca Zambon
- Istituto Nazionale di Astrofisica – Istituto di Astrofisica e Planetologia Spaziali (INAF-IAPS), Rome, Italy
| | - Marco Zannoni
- Department of Industrial Engineering (DIN), Università di Bologna, Forlì, Italy
| | | | - Lorenzo Bruzzone
- Dipartimento di Ingegneria e Scienza dell’Informazione, Università degli Studi di Trento, Trento, Italy
| | | | | | - Leonid I. Gurvits
- Joint Institute for VLBI ERIC, Dwingeloo, The Netherlands
- Faculty of Aerospace Engineering, Delft University of Technology, Delft, The Netherlands
| | - Hauke Hussmann
- Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany
| | - Luciano Iess
- Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMA), Università degli Studi di Roma “La Sapienza”, Rome, Italy
| | | | - Olivier Witasse
- European Space Agency – European Space Research and Technology Centre (ESA-ESTEC), Noordwijk, The Netherlands
| | - Claire Vallat
- European Space Agency – European Space Astronomy Centre (ESA-ESAC), Madrid, Spain
| | - Rosario Lorente
- European Space Agency – European Space Astronomy Centre (ESA-ESAC), Madrid, Spain
| |
Collapse
|
5
|
Pozarycki C, Seaton KM, C Vincent E, Novak Sanders C, Nuñez N, Castillo M, Ingall E, Klempay B, Pontefract A, Fisher LA, Paris ER, Buessecker S, Alansson NB, Carr CE, Doran PT, Bowman JS, Schmidt BE, Stockton AM. Biosignature Molecules Accumulate and Persist in Evaporitic Brines: Implications for Planetary Exploration. ASTROBIOLOGY 2024; 24:795-812. [PMID: 39159437 DOI: 10.1089/ast.2023.0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
The abundance of potentially habitable hypersaline environments in our solar system compels us to understand the impacts of high-salt matrices and brine dynamics on biosignature detection efforts. We identified and quantified organic compounds in brines from South Bay Salt Works (SBSW), where evapoconcentration of ocean water enables exploration of the impact of NaCl- and MgCl2-dominated brines on the detection of potential biosignature molecules. In SBSW, organic biosignature abundance and distribution are likely influenced by evapoconcentration, osmolyte accumulation, and preservation effects. Bioluminescence assays show that adenosine triphosphate (ATP) concentrations are higher in NaCl-rich, low water activity (aw) samples (<0.85) from SBSW. This is consistent with the accumulation and preservation of ATP at low aw as described in past laboratory studies. The water-soluble small organic molecule inventory was determined by using microchip capillary electrophoresis paired with high-resolution mass spectrometry (µCE-HRMS). We analyzed the relative distribution of proteinogenic amino acids with a recently developed quantitative method using CE-separation and laser-induced fluorescence (LIF) detection of amino acids in hypersaline brines. Salinity trends for dissolved free amino acids were consistent with amino acid residue abundance determined from the proteome of the microbial community predicted from metagenomic data. This highlights a tangible connection up and down the "-omics" ladder across changing geochemical conditions. The detection of water-soluble organic compounds, specifically proteinogenic amino acids at high abundance (>7 mM) in concentrated brines, demonstrates that potential organic biomarkers accumulate at hypersaline sites and suggests the possibility of long-term preservation. The detection of such molecules in high abundance when using diverse analytical tools appropriate for spacecraft suggests that life detection within hypersaline environments, such as evaporates on Mars and the surface or subsurface brines of ocean world Europa, is plausible and argues such environments should be a high priority for future exploration. Key Words: Salts-Analytical chemistry-Amino acids-Biosignatures-Capillary electrophoresis-Preservation. Astrobiology 24, 795-812.
Collapse
Affiliation(s)
- Chad Pozarycki
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Kenneth M Seaton
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Emily C Vincent
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Carlie Novak Sanders
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Nickie Nuñez
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Mariah Castillo
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Ellery Ingall
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Benjamin Klempay
- Scripps Institution of Oceanography, University of California San Diego, San Diego, California, USA
| | | | - Luke A Fisher
- Scripps Institution of Oceanography, University of California San Diego, San Diego, California, USA
| | - Emily R Paris
- Department of Earth System Science, Stanford University, Stanford, California, USA
| | - Steffen Buessecker
- Department of Earth System Science, Stanford University, Stanford, California, USA
| | - Nikolas B Alansson
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Christopher E Carr
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Daniel Guggenheim School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Peter T Doran
- Geology and Geophysics, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Jeff S Bowman
- Scripps Institution of Oceanography, University of California San Diego, San Diego, California, USA
| | - Britney E Schmidt
- Departments of Astronomy and Earth & Atmospheric Sciences, Cornell University, Ithaca, New York, USA
| | - Amanda M Stockton
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
6
|
Blankenship DD, Moussessian A, Chapin E, Young DA, Wesley Patterson G, Plaut JJ, Freedman AP, Schroeder DM, Grima C, Steinbrügge G, Soderlund KM, Ray T, Richter TG, Jones-Wilson L, Wolfenbarger NS, Scanlan KM, Gerekos C, Chan K, Seker I, Haynes MS, Barr Mlinar AC, Bruzzone L, Campbell BA, Carter LM, Elachi C, Gim Y, Hérique A, Hussmann H, Kofman W, Kurth WS, Mastrogiuseppe M, McKinnon WB, Moore JM, Nimmo F, Paty C, Plettemeier D, Schmidt BE, Zolotov MY, Schenk PM, Collins S, Figueroa H, Fischman M, Tardiff E, Berkun A, Paller M, Hoffman JP, Kurum A, Sadowy GA, Wheeler KB, Decrossas E, Hussein Y, Jin C, Boldissar F, Chamberlain N, Hernandez B, Maghsoudi E, Mihaly J, Worel S, Singh V, Pak K, Tanabe J, Johnson R, Ashtijou M, Alemu T, Burke M, Custodero B, Tope MC, Hawkins D, Aaron K, Delory GT, Turin PS, Kirchner DL, Srinivasan K, Xie J, Ortloff B, Tan I, Noh T, Clark D, Duong V, Joshi S, Lee J, Merida E, Akbar R, Duan X, Fenni I, Sanchez-Barbetty M, Parashare C, Howard DC, Newman J, Cruz MG, Barabas NJ, Amirahmadi A, Palmer B, Gawande RS, Milroy G, Roberti R, Leader FE, West RD, Martin J, Venkatesh V, Adumitroaie V, Rains C, Quach C, Turner JE, O’Shea CM, Kempf SD, Ng G, Buhl DP, Urban TJ. Radar for Europa Assessment and Sounding: Ocean to Near-Surface (REASON). SPACE SCIENCE REVIEWS 2024; 220:51. [PMID: 38948073 PMCID: PMC11211191 DOI: 10.1007/s11214-024-01072-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 04/29/2024] [Indexed: 07/02/2024]
Abstract
The Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON) is a dual-frequency ice-penetrating radar (9 and 60 MHz) onboard the Europa Clipper mission. REASON is designed to probe Europa from exosphere to subsurface ocean, contributing the third dimension to observations of this enigmatic world. The hypotheses REASON will test are that (1) the ice shell of Europa hosts liquid water, (2) the ice shell overlies an ocean and is subject to tidal flexing, and (3) the exosphere, near-surface, ice shell, and ocean participate in material exchange essential to the habitability of this moon. REASON will investigate processes governing this material exchange by characterizing the distribution of putative non-ice material (e.g., brines, salts) in the subsurface, searching for an ice-ocean interface, characterizing the ice shell's global structure, and constraining the amplitude of Europa's radial tidal deformations. REASON will accomplish these science objectives using a combination of radar measurement techniques including altimetry, reflectometry, sounding, interferometry, plasma characterization, and ranging. Building on a rich heritage from Earth, the moon, and Mars, REASON will be the first ice-penetrating radar to explore the outer solar system. Because these radars are untested for the icy worlds in the outer solar system, a novel approach to measurement quality assessment was developed to represent uncertainties in key properties of Europa that affect REASON performance and ensure robustness across a range of plausible parameters suggested for the icy moon. REASON will shed light on a never-before-seen dimension of Europa and - in concert with other instruments on Europa Clipper - help to investigate whether Europa is a habitable world.
Collapse
Affiliation(s)
| | - Alina Moussessian
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Elaine Chapin
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Duncan A. Young
- Institute for Geophysics, University of Texas at Austin, Austin, TX 78758 USA
| | | | - Jeffrey J. Plaut
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Adam P. Freedman
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Dustin M. Schroeder
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305 USA
- Department of Geophysics, Stanford University, Stanford, CA 94305 USA
| | - Cyril Grima
- Institute for Geophysics, University of Texas at Austin, Austin, TX 78758 USA
| | - Gregor Steinbrügge
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Krista M. Soderlund
- Institute for Geophysics, University of Texas at Austin, Austin, TX 78758 USA
| | - Trina Ray
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Thomas G. Richter
- Institute for Geophysics, University of Texas at Austin, Austin, TX 78758 USA
| | - Laura Jones-Wilson
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | | | - Kirk M. Scanlan
- Geodesy & Earth Observation Division, DTU Space, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Christopher Gerekos
- Institute for Geophysics, University of Texas at Austin, Austin, TX 78758 USA
| | - Kristian Chan
- Institute for Geophysics, University of Texas at Austin, Austin, TX 78758 USA
- Department of Earth and Planetary Sciences, Jackson School of Geosciences, University of Texas at Austin, Austin, TX 78712 USA
| | - Ilgin Seker
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Mark S. Haynes
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | | | | | - Bruce A. Campbell
- Smithsonian Institution, Center for Earth & Planetary Studies, MRC 315, Washington, DC 20013-7012 USA
| | - Lynn M. Carter
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721 USA
| | - Charles Elachi
- California Institute of Technology, Pasadena, CA 91125 USA
| | - Yonggyu Gim
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Alain Hérique
- University Grenoble Alpes, CNRS, CNES, IPAG, 38000 Grenoble, France
| | - Hauke Hussmann
- Institute of Planetary Research, German Aerospace Center, Berlin, Germany
| | - Wlodek Kofman
- University Grenoble Alpes, CNRS, CNES, IPAG, 38000 Grenoble, France
- Centrum Badan Kosmicznych Polskiej Akademii Nauk (CBK PAN), Warsaw, Poland
| | - William S. Kurth
- Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 USA
| | | | | | | | - Francis Nimmo
- Dept. Earth and Planetary Sciences, University of California, Santa Cruz, CA 95064 USA
| | - Carol Paty
- Department of Earth Sciences, University of Oregon, Eugene, OR 97403 USA
| | | | - Britney E. Schmidt
- Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY USA
- Department of Astronomy, Cornell University, Ithaca, NY USA
| | - Mikhail Y. Zolotov
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 USA
| | | | - Simon Collins
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Harry Figueroa
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Mark Fischman
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Eric Tardiff
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Andy Berkun
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Mimi Paller
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | | | | | - Gregory A. Sadowy
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Kevin B. Wheeler
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Emmanuel Decrossas
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Yasser Hussein
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Curtis Jin
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Frank Boldissar
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Neil Chamberlain
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Brenda Hernandez
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Elham Maghsoudi
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Jonathan Mihaly
- Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303 USA
| | - Shana Worel
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Vik Singh
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Kyung Pak
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Jordan Tanabe
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Robert Johnson
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Mohammad Ashtijou
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Tafesse Alemu
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Michael Burke
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Brian Custodero
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Michael C. Tope
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - David Hawkins
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Kim Aaron
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | | | | | - Donald L. Kirchner
- Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 USA
| | - Karthik Srinivasan
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Julie Xie
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Brad Ortloff
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Ian Tan
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Tim Noh
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Duane Clark
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Vu Duong
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Shivani Joshi
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Jeng Lee
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Elvis Merida
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Ruzbeh Akbar
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Xueyang Duan
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Ines Fenni
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | | | - Chaitali Parashare
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Duane C. Howard
- Center for Quantum Computing, Amazon Web Services, Pasadena, CA 91125 USA
| | | | - Marvin G. Cruz
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | | | - Ahmadreza Amirahmadi
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Brendon Palmer
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Rohit S. Gawande
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Grace Milroy
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Rick Roberti
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Frank E. Leader
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Richard D. West
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Jan Martin
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Vijay Venkatesh
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Virgil Adumitroaie
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Christine Rains
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Cuong Quach
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| | - Jordi E. Turner
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD 20723 USA
| | - Colleen M. O’Shea
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD 20723 USA
| | - Scott D. Kempf
- Institute for Geophysics, University of Texas at Austin, Austin, TX 78758 USA
| | - Gregory Ng
- Institute for Geophysics, University of Texas at Austin, Austin, TX 78758 USA
| | - Dillon P. Buhl
- Institute for Geophysics, University of Texas at Austin, Austin, TX 78758 USA
| | - Timothy J. Urban
- Institute for Geophysics, University of Texas at Austin, Austin, TX 78758 USA
| |
Collapse
|
7
|
Caro-Astorga J, Meyerowitz JT, Stork DA, Nattermann U, Piszkiewicz S, Vimercati L, Schwendner P, Hocher A, Cockell C, DeBenedictis E. Polyextremophile engineering: a review of organisms that push the limits of life. Front Microbiol 2024; 15:1341701. [PMID: 38903795 PMCID: PMC11188471 DOI: 10.3389/fmicb.2024.1341701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/16/2024] [Indexed: 06/22/2024] Open
Abstract
Nature exhibits an enormous diversity of organisms that thrive in extreme environments. From snow algae that reproduce at sub-zero temperatures to radiotrophic fungi that thrive in nuclear radiation at Chernobyl, extreme organisms raise many questions about the limits of life. Is there any environment where life could not "find a way"? Although many individual extremophilic organisms have been identified and studied, there remain outstanding questions about the limits of life and the extent to which extreme properties can be enhanced, combined or transferred to new organisms. In this review, we compile the current knowledge on the bioengineering of extremophile microbes. We summarize what is known about the basic mechanisms of extreme adaptations, compile synthetic biology's efforts to engineer extremophile organisms beyond what is found in nature, and highlight which adaptations can be combined. The basic science of extremophiles can be applied to engineered organisms tailored to specific biomanufacturing needs, such as growth in high temperatures or in the presence of unusual solvents.
Collapse
Affiliation(s)
| | | | - Devon A. Stork
- Pioneer Research Laboratories, San Francisco, CA, United States
| | - Una Nattermann
- Pioneer Research Laboratories, San Francisco, CA, United States
| | | | - Lara Vimercati
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, United States
| | | | - Antoine Hocher
- London Institute of Medical Sciences, London, United Kingdom
| | - Charles Cockell
- UK Centre for Astrobiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Erika DeBenedictis
- The Francis Crick Institute, London, United Kingdom
- Pioneer Research Laboratories, San Francisco, CA, United States
| |
Collapse
|
8
|
Bramble MS, Hand KP. Spectral evidence for irradiated halite on Mars. Sci Rep 2024; 14:5503. [PMID: 38448458 PMCID: PMC10917766 DOI: 10.1038/s41598-024-55979-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
The proposed chloride salt-bearing deposits on Mars have an enigmatic composition due to the absence of distinct spectral absorptions for the unique mineral at all wavelengths investigated. We report on analyses of remote visible-wavelength spectroscopic observations that exhibit properties indicative of the mineral halite (NaCl) when irradiated. Visible spectra of halite are generally featureless, but when irradiated by high-energy particles they develop readily-identifiable spectral alterations in the form of color centers. Consistent spectral characteristics observed in the reflectance data of the chloride salt-bearing deposits support the presence of radiation-formed color centers of halite on the surface of Mars. We observe a seasonal cycle of color center formation with higher irradiated halite values during winter months, with the colder temperatures interpreted as increasing the formation efficiency and stability. Irradiated halite identified on the surface of Mars suggests that the visible surface is being irradiated to the degree that defects are forming in alkali halide crystal structures.
Collapse
Affiliation(s)
- Michael S Bramble
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA, 91109, USA.
| | - Kevin P Hand
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA, 91109, USA
| |
Collapse
|
9
|
Styczinski MJ, Cooper ZS, Glaser DM, Lehmer O, Mierzejewski V, Tarnas J. Chapter 7: Assessing Habitability Beyond Earth. ASTROBIOLOGY 2024; 24:S143-S163. [PMID: 38498826 DOI: 10.1089/ast.2021.0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
All known life on Earth inhabits environments that maintain conditions between certain extremes of temperature, chemical composition, energy availability, and so on (Chapter 6). Life may have emerged in similar environments elsewhere in the Solar System and beyond. The ongoing search for life elsewhere mainly focuses on those environments most likely to support life, now or in the past-that is, potentially habitable environments. Discussion of habitability is necessarily based on what we know about life on Earth, as it is our only example. This chapter gives an overview of the known and presumed requirements for life on Earth and discusses how these requirements can be used to assess the potential habitability of planetary bodies across the Solar System and beyond. We first consider the chemical requirements of life and potential feedback effects that the presence of life can have on habitable conditions, and then the planetary, stellar, and temporal requirements for habitability. We then review the state of knowledge on the potential habitability of bodies across the Solar System and exoplanets, with a particular focus on Mars, Venus, Europa, and Enceladus. While reviewing the case for the potential habitability of each body, we summarize the most prominent and impactful studies that have informed the perspective on where habitable environments are likely to be found.
Collapse
Affiliation(s)
- M J Styczinski
- University of Washington, Seattle, Washington, USA
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Z S Cooper
- University of Washington, Seattle, Washington, USA
| | - D M Glaser
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
| | - O Lehmer
- NASA Ames Research Center, Moffett Field, California, USA
| | - V Mierzejewski
- School of Earth and Space Exploration, Arizona State University, Arizona, USA
| | - J Tarnas
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
10
|
Pandey P, Qu C, Nandi A, Yu Q, Houston PL, Conte R, Bowman JM. Ab Initio Potential Energy Surface for NaCl-H 2 with Correct Long-Range Behavior. J Phys Chem A 2024; 128:902-908. [PMID: 38271992 PMCID: PMC10860134 DOI: 10.1021/acs.jpca.3c07687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/26/2023] [Accepted: 01/04/2024] [Indexed: 01/27/2024]
Abstract
We report a full dimensional ab initio potential energy surface for NaCl-H2 based on precise fitting of a large data set of CCSD(T)/aug-cc-pVTZ energies. A major goal of this fit is to describe the very long-range interaction accurately. This is done in this instance via the dipole-quadrupole interaction. The NaCl dipole and the H2 quadrupole are available through previous works over a large range of internuclear distances. We use these to obtain exact effect charges on each atom. Diffusion Monte Carlo calculations are done for the ground vibrational state using the new potential.
Collapse
Affiliation(s)
- Priyanka Pandey
- Department
of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia, 30322, United States
| | - Chen Qu
- Independent
Researcher, Toronto ON M9B 0E3, Canada
| | - Apurba Nandi
- Department
of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia, 30322, United States
- Department
of Physics and Materials Science, University of Luxembourg, Luxembourg City L-1511, Luxembourg
| | - Qi Yu
- Department
of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia, 30322, United States
| | - Paul L. Houston
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
- Department
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Riccardo Conte
- Dipartimento
di Chimica, Università Degli Studi
di Milano, Via Golgi 19, Milano 20133, Italy
| | - Joel M. Bowman
- Department
of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia, 30322, United States
| |
Collapse
|
11
|
Sieme D, Rezaei-Ghaleh N. Water dynamics in eutectic solutions of sodium chloride and magnesium sulfate: implications for life in Europa's subsurface ocean and ice shell. Phys Chem Chem Phys 2023; 26:105-115. [PMID: 38054803 DOI: 10.1039/d3cp03455k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Liquid water is essential for life as we know it and the coupling between water and biomolecular dynamics is crucial for life processes. Jupiter's moon Europa is a good candidate for searching for extraterrestrial life in our outer solar system, mainly because a liquid water salty ocean in contact with a rocky seafloor underlies its ice shell. Little, however, is known about the chemical composition of the subglacial ocean of Europa or the brine pockets within its ice shell and their impacts on water dynamics. Here, we employ 1H, 17O, 23Na and 35Cl NMR spectroscopy, especially NMR spin relaxation and diffusion methods, and investigate the mobility of water molecules and ions in eutectic solutions of magnesium sulfate and sodium chloride, two salts ubiquitously present on the surface of Europa, over a range of temperatures and pressures pertinent to Europa's subglacial ocean. The NMR data demonstrate the more pronounced effect of magnesium sulfate compared with sodium chloride on the mobility of water molecules. Even at its much lower eutectic temperature, the sodium chloride solution retains a relatively large level of water mobility. Our results highlight the higher potential of a sodium chloride-rich than magnesium sulfate-rich Europa's ocean to accommodate life and support life origination within the eutectic melts of Europa's ice shell.
Collapse
Affiliation(s)
- Daniel Sieme
- Department of NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, D-37077 Göttingen, Germany
| | - Nasrollah Rezaei-Ghaleh
- Heinrich Heine University (HHU) Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Physical Biology, Universitätsstrasse 1, D-40225 Düsseldorf, Germany.
- Institute of Biological Information Processing, IBI-7: Structural Biochemistry, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, D-52428 Jülich, Germany
| |
Collapse
|
12
|
Vance SD, Craft KL, Shock E, Schmidt BE, Lunine J, Hand KP, McKinnon WB, Spiers EM, Chivers C, Lawrence JD, Wolfenbarger N, Leonard EJ, Robinson KJ, Styczinski MJ, Persaud DM, Steinbrügge G, Zolotov MY, Quick LC, Scully JEC, Becker TM, Howell SM, Clark RN, Dombard AJ, Glein CR, Mousis O, Sephton MA, Castillo-Rogez J, Nimmo F, McEwen AS, Gudipati MS, Jun I, Jia X, Postberg F, Soderlund KM, Elder CM. Investigating Europa's Habitability with the Europa Clipper. SPACE SCIENCE REVIEWS 2023; 219:81. [PMID: 38046182 PMCID: PMC10687213 DOI: 10.1007/s11214-023-01025-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 11/03/2023] [Indexed: 12/05/2023]
Abstract
The habitability of Europa is a property within a system, which is driven by a multitude of physical and chemical processes and is defined by many interdependent parameters, so that its full characterization requires collaborative investigation. To explore Europa as an integrated system to yield a complete picture of its habitability, the Europa Clipper mission has three primary science objectives: (1) characterize the ice shell and ocean including their heterogeneity, properties, and the nature of surface-ice-ocean exchange; (2) characterize Europa's composition including any non-ice materials on the surface and in the atmosphere, and any carbon-containing compounds; and (3) characterize Europa's geology including surface features and localities of high science interest. The mission will also address several cross-cutting science topics including the search for any current or recent activity in the form of thermal anomalies and plumes, performing geodetic and radiation measurements, and assessing high-resolution, co-located observations at select sites to provide reconnaissance for a potential future landed mission. Synthesizing the mission's science measurements, as well as incorporating remote observations by Earth-based observatories, the James Webb Space Telescope, and other space-based resources, to constrain Europa's habitability, is a complex task and is guided by the mission's Habitability Assessment Board (HAB).
Collapse
Affiliation(s)
- Steven D. Vance
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Kathleen L. Craft
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD USA
| | - Everett Shock
- School of Earth & Space Exploration and School of Molecular Sciences, Arizona State University, Tempe, AZ USA
| | - Britney E. Schmidt
- Department of Astronomy and Department of Earth & Atmospheric Sciences, Cornell University, Ithaca, NY USA
| | - Jonathan Lunine
- Department of Astronomy and Department of Earth & Atmospheric Sciences, Cornell University, Ithaca, NY USA
| | - Kevin P. Hand
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - William B. McKinnon
- Department of Earth and Planetary Sciences and McDonnell Center for the Space Sciences, Washington University in St. Louis, Saint Louis, MO USA
| | - Elizabeth M. Spiers
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA USA
| | - Chase Chivers
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA USA
- Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA USA
| | - Justin D. Lawrence
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA USA
- Honeybee Robotics, Altadena, CA USA
| | - Natalie Wolfenbarger
- Institute for Geophysics, John A. and Katherine G. Jackson School of Geosciences, University of Texas at Austin, Austin, TX USA
| | - Erin J. Leonard
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | | | | | - Divya M. Persaud
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Gregor Steinbrügge
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Mikhail Y. Zolotov
- School of Earth & Space Exploration and School of Molecular Sciences, Arizona State University, Tempe, AZ USA
| | | | | | | | - Samuel M. Howell
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | | | - Andrew J. Dombard
- Dept. of Earth and Environmental Sciences, University of Illinois Chicago, Chicago, USA
| | | | - Olivier Mousis
- Aix Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille), Marseille, France
| | - Mark A. Sephton
- Impacts and Astromaterials Research Centre, Department of Earth Science and Engineering, Imperial College London, London, United Kingdom
| | | | - Francis Nimmo
- Department of Earth and Planetary Sciences, University of California, Santa Cruz, CA USA
| | - Alfred S. McEwen
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ USA
| | - Murthy S. Gudipati
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Insoo Jun
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Xianzhe Jia
- Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI USA
| | - Frank Postberg
- Institut für Geologische Wissenschaften, Freie Universität Berlin, Berlin, Germany
| | - Krista M. Soderlund
- Institute for Geophysics, John A. and Katherine G. Jackson School of Geosciences, University of Texas at Austin, Austin, TX USA
| | - Catherine M. Elder
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| |
Collapse
|
13
|
Trumbo SK, Brown ME. The distribution of CO 2 on Europa indicates an internal source of carbon. Science 2023; 381:1308-1311. [PMID: 37733851 DOI: 10.1126/science.adg4155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 08/22/2023] [Indexed: 09/23/2023]
Abstract
Jupiter's moon Europa has a subsurface ocean, the chemistry of which is largely unknown. Carbon dioxide (CO2) has previously been detected on the surface of Europa, but it was not possible to determine whether it originated from subsurface ocean chemistry, was delivered by impacts, or was produced on the surface by radiation processing of impact-delivered material. We mapped the distribution of CO2 on Europa using observations obtained with the James Webb Space Telescope (JWST). We found a concentration of CO2 within Tara Regio, a recently resurfaced terrain. This indicates that the CO2 is derived from an internal carbon source. We propose that the CO2 formed in the internal ocean, although we cannot rule out formation on the surface through radiolytic conversion of ocean-derived organics or carbonates.
Collapse
Affiliation(s)
- Samantha K Trumbo
- Cornell Center for Astrophysics and Planetary Science, Cornell University, Ithaca, NY 14853, USA
| | - Michael E Brown
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
14
|
Villanueva GL, Hammel HB, Milam SN, Faggi S, Kofman V, Roth L, Hand KP, Paganini L, Stansberry J, Spencer J, Protopapa S, Strazzulla G, Cruz-Mermy G, Glein CR, Cartwright R, Liuzzi G. Endogenous CO 2 ice mixture on the surface of Europa and no detection of plume activity. Science 2023; 381:1305-1308. [PMID: 37733858 DOI: 10.1126/science.adg4270] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 08/22/2023] [Indexed: 09/23/2023]
Abstract
Jupiter's moon Europa has a subsurface ocean beneath an icy crust. Conditions within the ocean are unknown, and it is unclear whether it is connected to the surface. We observed Europa with the James Webb Space Telescope (JWST) to search for active release of material by probing its surface and atmosphere. A search for plumes yielded no detection of water, carbon monoxide, methanol, ethane, or methane fluorescence emissions. Four spectral features of carbon dioxide (CO2) ice were detected; their spectral shapes and distribution across Europa's surface indicate that the CO2 is mixed with other compounds and concentrated in Tara Regio. The 13CO2 absorption is consistent with an isotopic ratio of 12C/13C = 83 ± 19. We interpret these observations as indicating that carbon is sourced from within Europa.
Collapse
Affiliation(s)
- G L Villanueva
- NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
| | - H B Hammel
- Association of Universities for Research in Astronomy, Washington, DC 20004, USA
| | - S N Milam
- NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
| | - S Faggi
- NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
- American University, Washington, DC 20016, USA
| | - V Kofman
- NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
- American University, Washington, DC 20016, USA
| | - L Roth
- Royal Institute of Technology, Stockholm 104 50, Sweden
| | - K P Hand
- Jet Propulsion Laboratory, Pasadena, CA 91109, USA
| | - L Paganini
- NASA Headquarters, Washington, DC 20546, USA
| | - J Stansberry
- Space Telescope Science Institute, Baltimore, MD 21218, USA
| | - J Spencer
- Southwest Research Institute, Boulder, CO 80302, USA
| | - S Protopapa
- Southwest Research Institute, Boulder, CO 80302, USA
| | - G Strazzulla
- Osservatorio Astrofisico di Catania, Istituto Nazionale di Astrofisica, 95123 Catania, Italy
| | - G Cruz-Mermy
- Universite Paris-Sarclay, 91190 Gif-sur-Yvette, France
| | - C R Glein
- Southwest Research Institute, San Antonio, TX 78238, USA
| | - R Cartwright
- Carl Sagan Center for Research, Search for Extraterrestrial Intelligence Institute, Mountain View, CA 94043, USA
| | - G Liuzzi
- Università degli Studi della Basilicata, 85100 Potenza, Italy
| |
Collapse
|
15
|
Weber JM, Marlin TC, Prakash M, Teece BL, Dzurilla K, Barge LM. A Review on Hypothesized Metabolic Pathways on Europa and Enceladus: Space-Flight Detection Considerations. Life (Basel) 2023; 13:1726. [PMID: 37629583 PMCID: PMC10456045 DOI: 10.3390/life13081726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Enceladus and Europa, icy moons of Saturn and Jupiter, respectively, are believed to be habitable with liquid water oceans and therefore are of interest for future life detection missions and mission concepts. With the limited data from missions to these moons, many studies have sought to better constrain these conditions. With these constraints, researchers have, based on modeling and experimental studies, hypothesized a number of possible metabolisms that could exist on Europa and Enceladus if these worlds host life. The most often hypothesized metabolisms are methanogenesis for Enceladus and methane oxidation/sulfate reduction on Europa. Here, we outline, review, and compare the best estimated conditions of each moon's ocean. We then discuss the hypothetical metabolisms that have been suggested to be present on these moons, based on laboratory studies and Earth analogs. We also detail different detection methods that could be used to detect these hypothetical metabolic reactions and make recommendations for future research and considerations for future missions.
Collapse
Affiliation(s)
- Jessica M. Weber
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA (B.L.T.); (K.D.); (L.M.B.)
| | | | | | | | | | | |
Collapse
|
16
|
Boulesteix D, Buch A, Samson J, Millan M, Jomaa J, Coscia D, Moulay V, McIntosh O, Freissinet C, Stern JC, Szopa C. Influence of pH and salts on DMF-DMA derivatization for future Space Applications. Anal Chim Acta 2023; 1266:341270. [PMID: 37244655 DOI: 10.1016/j.aca.2023.341270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/24/2023] [Accepted: 04/23/2023] [Indexed: 05/29/2023]
Abstract
For gas chromatography - mass spectrometry (GC-MS) analyses performed in situ, pH and salts (e.g., chlorides, sulfates) may enhance or inhibit the detection of targeted molecules of interest for astrobiology (e.g. amino acids, fatty acids, nucleobases). Obviously, salts influence the ionic strength of the solutions, the pH value, and the salting effect. But the presence of salts may also produce complexes or mask ions in the sample (masking effect on hydroxide ion, ammonia, etc.). For future space missions, wet chemistry will be conducted before GC-MS analyses to detect the full organic content of a sample. The defined organic targets for space GC-MS instrument requirements are generally strongly polar or refractory organic compounds, such as amino acids playing a role in the protein production and metabolism regulations for life on Earth, nucleobases essential for DNA and RNA formation and mutation, and fatty acids that composed most of the eukaryote and prokaryote membranes on Earth and resist to environmental stress long enough to still be observed on Mars or ocean worlds in geological well-preserved records. The wet-chemistry chemical treatment consists of reacting an organic reagent with the sample to extract and volatilize polar or refractory organic molecules (i.e. dimethylformamide dimethyl acetal (DMF-DMA) in this study). DMF-DMA derivatizes functional groups with labile H in organics, without modifying their chiral conformation. The influence of pH and salt concentration of extraterrestrial materials on the DMF-DMA derivatization remains understudied. In this research, we studied the influence of different salts and pHs on the derivatization of organic molecules of astrobiological interest with DMF-DMA, such as amino acids, carboxylic acids, and nucleobases. Results show that salts and pH influence the derivatization yield, and that their effect depend on the nature of the organics and the salts studied. Second, monovalent salts lead to a higher or similar organic recovery compared to divalent salts regardless of pH below 8. However, a pH above 8 inhibits the DMF-DMA derivatization influencing the carboxylic acid function to become an anionic group without labile H. Overall, considering the negative effect of the salts on the detection of organic molecules, future space missions may have to consider a desalting step prior to derivatization and GC-MS analyses.
Collapse
Affiliation(s)
- D Boulesteix
- Laboratoire Génie des Procédés et Matériaux, CentraleSupélec, University Paris-Saclay, 8-10 Rue Joliot-Curie, 91190, Gif-sur-Yvette, France.
| | - A Buch
- Laboratoire Génie des Procédés et Matériaux, CentraleSupélec, University Paris-Saclay, 8-10 Rue Joliot-Curie, 91190, Gif-sur-Yvette, France.
| | - J Samson
- Laboratoire Génie des Procédés et Matériaux, CentraleSupélec, University Paris-Saclay, 8-10 Rue Joliot-Curie, 91190, Gif-sur-Yvette, France
| | - M Millan
- LATMOS/IPSL, UVSQ University Paris-Saclay, Sorbonne University, CNRS, 11 Bd d'Alembert, 78280, Guyancourt, France
| | - J Jomaa
- Planetary Environments Laboratory (Code 699), NASA Goddard Space Flight Center, Greenbelt, MD, 20771, USA; School of Medicine, Wayne State University, 42 W. Warren Ave, Detroit, MI, 48202, USA
| | - D Coscia
- LATMOS/IPSL, UVSQ University Paris-Saclay, Sorbonne University, CNRS, 11 Bd d'Alembert, 78280, Guyancourt, France
| | - V Moulay
- LATMOS/IPSL, UVSQ University Paris-Saclay, Sorbonne University, CNRS, 11 Bd d'Alembert, 78280, Guyancourt, France
| | - O McIntosh
- LATMOS/IPSL, UVSQ University Paris-Saclay, Sorbonne University, CNRS, 11 Bd d'Alembert, 78280, Guyancourt, France
| | - C Freissinet
- LATMOS/IPSL, UVSQ University Paris-Saclay, Sorbonne University, CNRS, 11 Bd d'Alembert, 78280, Guyancourt, France
| | - J C Stern
- Space Science Exploration Division (Code 690), NASA, Goddard Space Flight Center, Greenbelt, MD, 20771, USA
| | - C Szopa
- LATMOS/IPSL, UVSQ University Paris-Saclay, Sorbonne University, CNRS, 11 Bd d'Alembert, 78280, Guyancourt, France
| |
Collapse
|
17
|
Trinh KT, Bierson CJ, O'Rourke JG. Slow evolution of Europa's interior: metamorphic ocean origin, delayed metallic core formation, and limited seafloor volcanism. SCIENCE ADVANCES 2023; 9:eadf3955. [PMID: 37327336 DOI: 10.1126/sciadv.adf3955] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 05/11/2023] [Indexed: 06/18/2023]
Abstract
Europa's ocean lies atop an interior made of metal and silicates. On the basis of gravity data from the Galileo mission, many argued that Europa's interior, like Earth, is differentiated into a metallic core and a mantle composed of anhydrous silicates. Some studies further assumed that Europa differentiated while (or soon after) it accreted, also like Earth. However, Europa probably formed at much colder temperatures, meaning that Europa plausibly ended accretion as a mixture containing water-ice and/or hydrated silicates. Here, we use numerical models to describe the thermal evolution of Europa's interior assuming low initial temperatures (~200 to 300 kelvin). We find that silicate dehydration can produce Europa's current ocean and icy shell. Rocks below the seafloor may remain cool and hydrated today. Europa's metallic core, if it exists, may have formed billions of years after accretion. Ultimately, we expect the chemistry of Europa's ocean to reflect protracted heating of the interior.
Collapse
Affiliation(s)
- Kevin T Trinh
- School of Earth and Space Exploration, Arizona State University, AZ 85287, USA
| | - Carver J Bierson
- School of Earth and Space Exploration, Arizona State University, AZ 85287, USA
| | - Joseph G O'Rourke
- School of Earth and Space Exploration, Arizona State University, AZ 85287, USA
| |
Collapse
|
18
|
Journaux B, Pakhomova A, Collings IE, Petitgirard S, Boffa Ballaran T, Brown JM, Vance SD, Chariton S, Prakapenka VB, Huang D, Ott J, Glazyrin K, Garbarino G, Comboni D, Hanfland M. On the identification of hyperhydrated sodium chloride hydrates, stable at icy moon conditions. Proc Natl Acad Sci U S A 2023; 120:e2217125120. [PMID: 36802438 PMCID: PMC9992769 DOI: 10.1073/pnas.2217125120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/20/2023] [Indexed: 02/23/2023] Open
Abstract
Sodium chloride is expected to be found on many of the surfaces of icy moons like Europa and Ganymede. However, spectral identification remains elusive as the known NaCl-bearing phases cannot match current observations, which require higher number of water of hydration. Working at relevant conditions for icy worlds, we report the characterization of three "hyperhydrated" sodium chloride (SC) hydrates, and refined two crystal structures [2NaCl·17H2O (SC8.5); NaCl·13H2O (SC13)]. We found that the dissociation of Na+ and Cl- ions within these crystal lattices allows for the high incorporation of water molecules and thus explain their hyperhydration. This finding suggests that a great diversity of hyperhydrated crystalline phases of common salts might be found at similar conditions. Thermodynamic constraints indicate that SC8.5 is stable at room pressure below 235 K, and it could be the most abundant NaCl hydrate on icy moon surfaces like Europa, Titan, Ganymede, Callisto, Enceladus, or Ceres. The finding of these hyperhydrated structures represents a major update to the H2O-NaCl phase diagram. These hyperhydrated structures provide an explanation for the mismatch between the remote observations of the surface of Europa and Ganymede and previously available data on NaCl solids. It also underlines the urgent need for mineralogical exploration and spectral data on hyperhydrates at relevant conditions to help future icy world exploration by space missions.
Collapse
Affiliation(s)
- Baptiste Journaux
- Department of Earth and Space Sciences, University of Washington, Seattle, WA98195
| | - Anna Pakhomova
- Deutsches Elektronen-Synchrotron, D-22607Hamburg, Germany
- European Synchrotron Radiation Facility, 38000Grenoble, France
| | - Ines E. Collings
- European Synchrotron Radiation Facility, 38000Grenoble, France
- Center for X-ray Analytics, Empa – Swiss Federal Laboratories for Materials Science and Technology, 8600Dübendorf, Switzerland
| | - Sylvain Petitgirard
- Institute of Geochemistry and Petrology, ETH Zürich, 8092Zürich, Switzerland
| | | | - J. Michael Brown
- Department of Earth and Space Sciences, University of Washington, Seattle, WA98195
| | - Steven D. Vance
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA91109
| | - Stella Chariton
- Center for Advanced Radiations Sources, University of Chicago, Chicago, IL60637
| | | | - Dongyang Huang
- Institute of Geochemistry and Petrology, ETH Zürich, 8092Zürich, Switzerland
| | - Jason Ott
- Department of Earth and Space Sciences, University of Washington, Seattle, WA98195
| | | | | | - Davide Comboni
- European Synchrotron Radiation Facility, 38000Grenoble, France
| | | |
Collapse
|
19
|
Calapez F, Dias R, Cesário R, Gonçalves D, Pedras B, Canário J, Martins Z. Spectroscopic Detection of Biosignatures in Natural Ice Samples as a Proxy for Icy Moons. Life (Basel) 2023; 13:478. [PMID: 36836835 PMCID: PMC9960113 DOI: 10.3390/life13020478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 01/29/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
Some of the icy moons of the solar system with a subsurface ocean, such as Europa and Enceladus, are the targets of future space missions that search for potential extraterrestrial life forms. While the ice shells that envelop these moons have been studied by several spacecrafts, the oceans beneath them remain unreachable. To better constrain the habitability conditions of these moons, we must understand the interactions between their frozen crusts, liquid layers, and silicate mantles. To that end, astrobiologists rely on planetary field analogues, for which the polar regions of Earth have proven to be great candidates. This review shows how spectroscopy is a powerful tool in space missions to detect potential biosignatures, in particular on the aforementioned moons, and how the polar regions of the Earth are being used as planetary field analogues for these extra-terrestrial environments.
Collapse
Affiliation(s)
- Francisco Calapez
- Centro de Química Estrutural, Institute of Molecular Sciences and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Rodrigo Dias
- Centro de Química Estrutural, Institute of Molecular Sciences and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Rute Cesário
- Centro de Química Estrutural, Institute of Molecular Sciences and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Diogo Gonçalves
- Centro de Química Estrutural, Institute of Molecular Sciences and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Bruno Pedras
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - João Canário
- Centro de Química Estrutural, Institute of Molecular Sciences and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Zita Martins
- Centro de Química Estrutural, Institute of Molecular Sciences and Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| |
Collapse
|
20
|
Dannenmann M, Klenner F, Bönigk J, Pavlista M, Napoleoni M, Hillier J, Khawaja N, Olsson-Francis K, Cable ML, Malaska MJ, Abel B, Postberg F. Toward Detecting Biosignatures of DNA, Lipids, and Metabolic Intermediates from Bacteria in Ice Grains Emitted by Enceladus and Europa. ASTROBIOLOGY 2023; 23:60-75. [PMID: 36454287 DOI: 10.1089/ast.2022.0063] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The reliable identification of biosignatures is key to the search for life elsewhere. On ocean worlds like Enceladus or Europa, this can be achieved by impact ionization mass spectrometers, such as the SUrface Dust Analyzer (SUDA) on board NASA's upcoming Europa Clipper mission. During spacecraft flybys, these instruments can sample ice grains formed from subsurface water and emitted by these moons. Previous laboratory analog experiments have demonstrated that SUDA-type instruments could identify amino acids, fatty acids, and peptides in ice grains and discriminate between their abiotic and biotic origins. Here, we report experiments simulating impact ionization mass spectra of ice grains containing DNA, lipids, and metabolic intermediates extracted from two bacterial cultures: Escherichia coli and Sphingopyxis alaskensis. Salty Enceladan or Europan ocean waters were simulated using matrices with different NaCl concentrations. Characteristic mass spectral signals, such as DNA nucleobases, are clearly identifiable at part-per-million-level concentrations. Mass spectra of all substances exhibit unambiguous biogenic patterns, which in some cases show significant differences between the two bacterial species. Sensitivity to the biosignatures decreases with increasing matrix salinity. The experimental parameters indicate that future impact ionization mass spectrometers will be most sensitive to the investigated biosignatures for ice grain encounter speeds of 4-6 km/s.
Collapse
Affiliation(s)
- Marie Dannenmann
- Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Fabian Klenner
- Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany
| | - Janine Bönigk
- Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany
| | - Miriam Pavlista
- Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany
| | - Maryse Napoleoni
- Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany
| | - Jon Hillier
- Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany
| | - Nozair Khawaja
- Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany
| | - Karen Olsson-Francis
- AstrobiologyOU, Faculty of Science, Technology, Engineering & Mathematics, The Open University, Milton Keynes, United Kingdom
| | - Morgan L Cable
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Michael J Malaska
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Bernd Abel
- Leibniz-Institute of Surface Engineering (IOM), Leipzig, Germany
- Wilhelm-Ostwald-Institute for Physical and Theoretical Chemistry, Leipzig University, Leipzig, Germany
| | - Frank Postberg
- Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
21
|
Mauceri S, Lee J, Wronkiewicz M, Mandrake L, Doran G, Lightholder J, Cieslarova Z, Kok M, Mora MF, Noell A. Autonomous CE Mass-Spectra Examination for the Ocean Worlds Life Surveyor. EARTH AND SPACE SCIENCE (HOBOKEN, N.J.) 2022; 9:e2022EA002247. [PMID: 36588670 PMCID: PMC9787773 DOI: 10.1029/2022ea002247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 06/17/2023]
Abstract
Ocean worlds such as Europa and Enceladus are high priority targets in the search for past or extant life beyond Earth. Evidence of life may be preserved in samples of surface ice by processes such as deposition from active plumes, hydrofracturing, or thermal convection. Terrestrial life produces unique distributions of organic molecules that translate into recognizable biosignatures. Identification and quantification of these organic compounds can be achieved by separation science such as capillary electrophoresis coupled to mass spectrometry (CE-MS). However, the data generated by such an instrument can be multiple orders of magnitude larger than what can be transmitted back to Earth during an ocean world's mission. This requires onboard science data analysis capabilities that summarize and prioritize CE-MS observations with limited computational resources. In response, the autonomous capillary electrophoresis mass-spectra examination (ACME) onboard science autonomy system was created for application to the ocean world's life surveyor (OWLS) instrument suite. ACME is able to compress raw mass spectra by two to three orders of magnitude while preserving most of its scientifically relevant information content. This summarization is achieved by the extraction of raw data surrounding autonomously identified ion peaks and the detection and parameterization of unique background regions. Prioritization of the summarized observations is then enabled by providing estimates of scientific utility, including presence of key target compounds, and the uniqueness of an observation relative to previous observations.
Collapse
Affiliation(s)
- Steffen Mauceri
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - Jake Lee
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - Mark Wronkiewicz
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - Lukas Mandrake
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - Gary Doran
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - Jack Lightholder
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - Zuzana Cieslarova
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - Miranda Kok
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - Maria F. Mora
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - Aaron Noell
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| |
Collapse
|
22
|
Wolfenbarger NS, Buffo JJ, Soderlund KM, Blankenship DD. Ice Shell Structure and Composition of Ocean Worlds: Insights from Accreted Ice on Earth. ASTROBIOLOGY 2022; 22:937-961. [PMID: 35787145 DOI: 10.1089/ast.2021.0044] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Accreted ice retains and preserves traces of the ocean from which it formed. In this work, we study two classes of accreted ice found on Earth-frazil ice, which forms through crystallization within a supercooled water column, and congelation ice, which forms through directional freezing at an existing interface-and discuss where each might be found in the ice shells of ocean worlds. We focus our study on terrestrial ice formed in low temperature gradient environments (e.g., beneath ice shelves), consistent with conditions expected at the ice-ocean interfaces of Europa and Enceladus, and we highlight the juxtaposition of compositional trends in relation to ice formed in higher temperature gradient environments (e.g., at the ocean surface). Observations from Antarctic sub-ice-shelf congelation ice and marine ice show that the purity of frazil ice can be nearly two orders of magnitude higher than congelation ice formed in the same low temperature gradient environment (∼0.1% vs. ∼10% of the ocean salinity). In addition, where congelation ice can maintain a planar ice-water interface on a microstructural scale, the efficiency of salt rejection is enhanced (∼1% of the ocean salinity) and lattice soluble impurities such as chloride are preferentially incorporated. We conclude that an ice shell that forms by gradual thickening as its interior cools would be composed of congelation ice, whereas frazil ice will accumulate where the ice shell thins on local (rifts and basal fractures) or regional (latitudinal gradients) scales through the operation of an "ice pump."
Collapse
Affiliation(s)
| | - Jacob J Buffo
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - Krista M Soderlund
- Institute for Geophysics, University of Texas at Austin, Austin, Texas, USA
| | | |
Collapse
|
23
|
Piszkin L, Bowman J. Extremophile enzyme optimization for low temperature and high salinity are fundamentally incompatible. Extremophiles 2021; 26:5. [PMID: 34940913 DOI: 10.1007/s00792-021-01254-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/09/2021] [Indexed: 11/25/2022]
Abstract
The evolutionary mechanisms behind cold and high-saline co-adaptation of proteins are not thoroughly understood. To explore how enzymes evolve in response to multiple environmental pressures we developed a novel in silico method to model the directed evolution of proteins, the Protein Evolution Parameter Calculator (PEPC). PEPC carries out single amino acid substitutions that lead to improvements in the selected user-defined parameters. To investigate the evolutionary relationship between increased flexibility and decreased isoelectric point, which are presumed indicators of cold and saline adaptation in proteins, we applied PEPC to a subset of core haloarchaea orthologous group (cHOG) proteins from the mesophilic Halobacterium salinarum NRC-1 and cold-tolerant Halorubrum lacusprofundi strain ATCC 49239. The results suggest that mutations that increase flexibility will also generally increase isoelectric point. These findings suggest that enzyme adaptation to low temperature and high salinity might be evolutionarily counterposed based on the structural characteristics of probable amino acid mutations. This may help to explain the apparent lack of truly psychrophilic halophiles in nature, and why microbes adapted to polar hypersaline environments typically have mesophilic temperature optima. A better understanding of protein evolution to extremely cold and salty conditions will aid in our understanding of where and how life is distributed on Earth and in our solar system.
Collapse
Affiliation(s)
- Luke Piszkin
- Department of Physics, UC San Diego, La Jolla, CA, USA.
| | - Jeff Bowman
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, USA
| |
Collapse
|
24
|
Polidori A, Rowlands RF, Zeidler A, Salanne M, Fischer HE, Annighöfer B, Klotz S, Salmon PS. Structure and dynamics of aqueous NaCl solutions at high temperatures and pressures. J Chem Phys 2021; 155:194506. [PMID: 34800945 DOI: 10.1063/5.0067166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The structure of a concentrated solution of NaCl in D2O was investigated by in situ high-pressure neutron diffraction with chlorine isotope substitution to give site-specific information on the coordination environment of the chloride ion. A broad range of densities was explored by first increasing the temperature from 323 to 423 K at 0.1 kbar and then increasing the pressure from 0.1 to 33.8 kbar at 423 K, thus mapping a cyclic variation in the static dielectric constant of the pure solvent. The experimental work was complemented by molecular dynamics simulations using the TIP4P/2005 model for water, which were validated against the measured equation of state and diffraction results. Pressure-induced anion ordering is observed, which is accompanied by a dramatic increase in the Cl-O and O-O coordination numbers. With the aid of bond-distance resolved bond-angle maps, it is found that the increased coordination numbers do not originate from a sizable alteration to the number of either Cl⋯D-O or O⋯D-O hydrogen bonds but from the appearance of non-hydrogen-bonded configurations. Increased pressure leads to a marked decrease in the self-diffusion coefficients but has only a moderate effect on the ion-water residence times. Contact ion pairs are observed under all conditions, mostly in the form of charge-neutral NaCl0 units, and coexist with solvent-separated Na+-Na+ and Cl--Cl- ion pairs. The exchange of water molecules with Na+ adopts a concerted mechanism under ambient conditions but becomes non-concerted as the state conditions are changed. Our findings are important for understanding the role of extreme conditions in geochemical processes.
Collapse
Affiliation(s)
- Annalisa Polidori
- Department of Physics, University of Bath, Bath BA2 7AY, United Kingdom
| | - Ruth F Rowlands
- Department of Physics, University of Bath, Bath BA2 7AY, United Kingdom
| | - Anita Zeidler
- Department of Physics, University of Bath, Bath BA2 7AY, United Kingdom
| | - Mathieu Salanne
- Sorbonne Université, CNRS, Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux, F-75005 Paris, France
| | - Henry E Fischer
- Institut Laue Langevin, 71 Avenue des Martyrs, 38042 Grenoble Cedex 9, France
| | - Burkhard Annighöfer
- Université Paris-Saclay, Laboratoire Léon Brillouin, CEA-CNRS, Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Stefan Klotz
- Sorbonne Université, UMR 7590, IMPMC, F-75252 Paris, France
| | - Philip S Salmon
- Department of Physics, University of Bath, Bath BA2 7AY, United Kingdom
| |
Collapse
|
25
|
Melwani Daswani M, Vance SD, Mayne MJ, Glein CR. A Metamorphic Origin for Europa's Ocean. GEOPHYSICAL RESEARCH LETTERS 2021; 48:e2021GL094143. [PMID: 35865189 PMCID: PMC9286408 DOI: 10.1029/2021gl094143] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/26/2021] [Accepted: 08/04/2021] [Indexed: 05/28/2023]
Abstract
Europa likely contains an iron-rich metal core. For it to have formed, temperatures within Europa reached ≳ 1250 K. Going up to that temperature, accreted chondritic minerals - for example, carbonates and phyllosilicates - would partially devolatilize. Here, we compute the amounts and compositions of exsolved volatiles. We find that volatiles released from the interior would have carried solutes, redox-sensitive species, and could have generated a carbonic ocean in excess of Europa's present-day hydrosphere, and potentially an early CO 2 atmosphere. No late delivery of cometary water was necessary. Contrasting with prior work, CO 2 could be the most abundant solute in the ocean, followed by Ca 2 + , SO 4 2 - , and HCO 3 - . However, gypsum precipitation going from the seafloor to the ice shell decreases the dissolved S/Cl ratio, such that Cl > S at the shallowest depths, consistent with recently inferred endogenous chlorides at Europa's surface. Gypsum would form a 3-10 km thick sedimentary layer at the seafloor.
Collapse
Affiliation(s)
| | - Steven D. Vance
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - Matthew J. Mayne
- Department of Earth SciencesStellenbosch UniversityStellenboschSouth Africa
| | - Christopher R. Glein
- Space Science and Engineering DivisionSouthwest Research InstituteSan AntonioTXUSA
| |
Collapse
|
26
|
Complex Brines and Their Implications for Habitability. Life (Basel) 2021; 11:life11080847. [PMID: 34440591 PMCID: PMC8398403 DOI: 10.3390/life11080847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 11/16/2022] Open
Abstract
There is evidence that life on Earth originated in cold saline waters around scorching hydrothermal vents, and that similar conditions might exist or have existed on Mars, Europa, Ganymede, Enceladus, and other worlds. Could potentially habitable complex brines with extremely low freezing temperatures exist in the shallow subsurface of these frigid worlds? Earth, Mars, and carbonaceous chondrites have similar bulk elemental abundances, but while the Earth is depleted in the most volatile elements, the Icy Worlds of the outer solar system are expected to be rich in them. The cooling of ionic solutions containing substances that likely exist in the Icy Worlds could form complex brines with the lowest eutectic temperature possible for the compounds available in them. Indeed, here, we show observational and theoretical evidence that even elements present in trace amounts in nature are concentrated by freeze–thaw cycles, and therefore contribute significantly to the formation of brine reservoirs that remain liquid throughout the year in some of the coldest places on Earth. This is interesting because the eutectic temperature of water–ammonia solutions can be as low as ~160 K, and significant fractions of the mass of the Icy Worlds are estimated to be water substance and ammonia. Thus, briny solutions with eutectic temperature of at least ~160 K could have formed where, historically, temperature have oscillated above and below ~160 K. We conclude that complex brines must exist in the shallow subsurface of Mars and the Icy Worlds, and that liquid saline water should be present where ice has existed, the temperature is above ~160 K, and evaporation and sublimation have been inhibited.
Collapse
|
27
|
Jaramillo EA, Ferreira Santos MS, Noell AC, Mora MF. Capillary electrophoresis method for analysis of inorganic and organic anions related to habitability and the search for life. Electrophoresis 2021; 42:1956-1964. [PMID: 34287988 DOI: 10.1002/elps.202100134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 11/08/2022]
Abstract
In situ missions of exploration require analytical methods that are capable of detecting a wide range of molecular targets in complex matrices without a priori assumptions of sample composition. Furthermore, these methods should minimize the number of reagents needed and any sample preparation steps. We have developed a method for the detection of metabolically relevant inorganic and organic anions that is suitable for implementation on in situ spaceflight missions. Using 55 mM acetic acid, 50 mM triethylamine, and 5% glycerol, more than 21 relevant anions are separated in less than 20 min. The method is robust to sample ionic strength, tolerating high concentrations of background salts (up to 900 mM NaCl and 300 mM MgSO4 ). This is an important feature for future missions to ocean worlds. The method was validated using a culture of Escherichia coli and with high salinity natural samples collected from Mono Lake, California.
Collapse
Affiliation(s)
| | | | - Aaron C Noell
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Maria F Mora
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
28
|
Abstract
This Feature introduces and discusses the findings of key analytical techniques used to study planetary bodies in our solar system in the search for life beyond Earth, future missions planned for high-priority astrobiology targets in our solar system, and the challenges we face in performing these investigations.
Collapse
Affiliation(s)
- Kenneth Marshall Seaton
- School of Chemistry & Biochemistry, Georgia Institute of Technology, North Avenue NW, Atlanta, Georgia 30332, United States
| | - Morgan Leigh Cable
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, United States
| | - Amanda Michelle Stockton
- School of Chemistry & Biochemistry, Georgia Institute of Technology, North Avenue NW, Atlanta, Georgia 30332, United States
| |
Collapse
|
29
|
Klenner F, Postberg F, Hillier J, Khawaja N, Cable ML, Abel B, Kempf S, Glein CR, Lunine JI, Hodyss R, Reviol R, Stolz F. Discriminating Abiotic and Biotic Fingerprints of Amino Acids and Fatty Acids in Ice Grains Relevant to Ocean Worlds. ASTROBIOLOGY 2020; 20:1168-1184. [PMID: 32493049 DOI: 10.1089/ast.2019.2188] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Identifying and distinguishing between abiotic and biotic signatures of organic molecules such as amino acids and fatty acids is key to the search for life on extraterrestrial ocean worlds. Impact ionization mass spectrometers can potentially achieve this by sampling water ice grains formed from ocean water and ejected by moons such as Enceladus and Europa, thereby exploring the habitability of their subsurface oceans in spacecraft flybys. Here, we extend previous high-sensitivity laser-based analog experiments of biomolecules in pure water to investigate the mass spectra of amino acids and fatty acids at simulated abiotic and biotic relative abundances. To account for the complex background matrix expected to emerge from a salty Enceladean ocean that has been in extensive chemical exchange with a carbonaceous rocky core, other organic and inorganic constituents are added to the biosignature mixtures. We find that both amino acids and fatty acids produce sodiated molecular peaks in salty solutions. Under the soft ionization conditions expected for low-velocity (2-6 km/s) encounters of an orbiting spacecraft with ice grains, the unfragmented molecular spectral signatures of amino acids and fatty acids accurately reflect the original relative abundances of the parent molecules within the source solution, enabling characteristic abiotic and biotic relative abundance patterns to be identified. No critical interferences with other abiotic organic compounds were observed. Detection limits of the investigated biosignatures under Enceladus-like conditions are salinity dependent (decreasing sensitivity with increasing salinity), at the μM or nM level. The survivability and ionization efficiency of large organic molecules during impact ionization appear to be significantly improved when they are protected by a frozen water matrix. We infer from our experimental results that encounter velocities of 4-6 km/s are most appropriate for impact ionization mass spectrometers to detect and discriminate between abiotic and biotic signatures.
Collapse
Affiliation(s)
- Fabian Klenner
- Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany
- Institute of Earth Sciences, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - Frank Postberg
- Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany
- Institute of Earth Sciences, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - Jon Hillier
- Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany
| | - Nozair Khawaja
- Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany
- Institute of Earth Sciences, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - Morgan L Cable
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Bernd Abel
- Leibniz-Institute of Surface Engineering, Leipzig, Germany
- Wilhelm-Ostwald-Institute for Physical and Theoretical Chemistry, Universität Leipzig, Leipzig, Germany
| | - Sascha Kempf
- Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Colorado, USA
| | - Christopher R Glein
- Space Science and Engineering Division, Southwest Research Institute, San Antonio, Texas, USA
| | - Jonathan I Lunine
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Department of Astronomy and Carl Sagan Institute, Cornell University, Ithaca, New York, USA
| | - Robert Hodyss
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - René Reviol
- Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany
- Institute of Earth Sciences, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - Ferdinand Stolz
- Leibniz-Institute of Surface Engineering, Leipzig, Germany
- Wilhelm-Ostwald-Institute for Physical and Theoretical Chemistry, Universität Leipzig, Leipzig, Germany
| |
Collapse
|
30
|
Fairén AG, Gómez-Elvira J, Briones C, Prieto-Ballesteros O, Rodríguez-Manfredi JA, López Heredero R, Belenguer T, Moral AG, Moreno-Paz M, Parro V. The Complex Molecules Detector (CMOLD): A Fluidic-Based Instrument Suite to Search for (Bio)chemical Complexity on Mars and Icy Moons. ASTROBIOLOGY 2020; 20:1076-1096. [PMID: 32856927 PMCID: PMC7116096 DOI: 10.1089/ast.2019.2167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Organic chemistry is ubiquitous in the Solar System, and both Mars and a number of icy satellites of the outer Solar System show substantial promise for having hosted or hosting life. Here, we propose a novel astrobiologically focused instrument suite that could be included as scientific payload in future missions to Mars or the icy moons: the Complex Molecules Detector, or CMOLD. CMOLD is devoted to determining different levels of prebiotic/biotic chemical and structural targets following a chemically general approach (i.e., valid for both terrestrial and nonterrestrial life), as well as their compatibility with terrestrial life. CMOLD is based on a microfluidic block that distributes a liquid suspension sample to three instruments by using complementary technologies: (1) novel microscopic techniques for identifying ultrastructures and cell-like morphologies, (2) Raman spectroscopy for detecting universal intramolecular complexity that leads to biochemical functionality, and (3) bioaffinity-based systems (including antibodies and aptamers as capture probes) for finding life-related and nonlife-related molecular structures. We highlight our current developments to make this type of instruments flight-ready for upcoming Mars missions: the Raman spectrometer included in the science payload of the ESAs Rosalind Franklin rover (Raman Laser Spectrometer instrument) to be launched in 2022, and the biomarker detector that was included as payload in the NASA Icebreaker lander mission proposal (SOLID instrument). CMOLD is a robust solution that builds on the combination of three complementary, existing techniques to cover a wide spectrum of targets in the search for (bio)chemical complexity in the Solar System.
Collapse
Affiliation(s)
- Alberto G. Fairén
- Centro de Astrobiología (CSIC-INTA), Madrid, Spain
- Department of Astronomy, Cornell University, Ithaca New York, USA
| | - Javier Gómez-Elvira
- Payload & Space Science Department, Instituto Nacional de Técnica Aeroespacial (INTA), Madrid, Spain
| | | | | | | | - Raquel López Heredero
- Payload & Space Science Department, Instituto Nacional de Técnica Aeroespacial (INTA), Madrid, Spain
| | - Tomás Belenguer
- Payload & Space Science Department, Instituto Nacional de Técnica Aeroespacial (INTA), Madrid, Spain
| | - Andoni G. Moral
- Payload & Space Science Department, Instituto Nacional de Técnica Aeroespacial (INTA), Madrid, Spain
| | | | - Víctor Parro
- Centro de Astrobiología (CSIC-INTA), Madrid, Spain
| |
Collapse
|
31
|
Ren A, Lu D, Wong E, Hauwiller MR, Alivisatos AP, Ren G. Real-time observation of dynamic structure of liquid-vapor interface at nanometer resolution in electron irradiated sodium chloride crystals. Sci Rep 2020; 10:8596. [PMID: 32451405 PMCID: PMC7248077 DOI: 10.1038/s41598-020-65274-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 04/30/2020] [Indexed: 01/29/2023] Open
Abstract
The dynamics and structure of the liquid and vapor interface has remained elusive for decades due to the lack of an effective tool for directly visualization beyond micrometer resolution. Here, we designed a simple liquid-cell for encapsulating the liquid state of sodium for transmission electron microscopic (TEM) observation. The real-time dynamic structure of the liquid-vapor interface was imaged and videoed by TEM on the sample of electron irradiated sodium chloride (NaCl) crystals, a well-studied sample with low melting temperature and quantum super-shells of clusters. The nanometer resolution images exhibit the fine structures of the capillary waves, composed of first-time observed three zones of structures and features, i.e. flexible nanoscale fibers, nanoparticles/clusters, and a low-pressure area that sucks the nanoparticles from the liquid to the interface. Although the phenomenons were observed based on irradiated NaCl crystals, the similarities of the phenomenons to predictions suggest our real-time ovserved dynamic structure might be useful in validating long-debated theoretical models of the liquid-vapor interface, and enhancing our knowledge in understanding the non-equilibrium thermodynamics of the liquid-vapor interface to benefit future engineering designs in microfluidics.
Collapse
Affiliation(s)
- Amy Ren
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- The Department of Physics, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - David Lu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- The Department of Chemistry, Brown University, Providence, RI, 02912, USA
| | - Edward Wong
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Matthew R Hauwiller
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
- Department of Materials Science, University of California, Berkeley, CA, 94720, USA
- Kavli Energy NanoScience Institute, University of California, Berkeley, CA, 94720, USA
| | - A Paul Alivisatos
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
- Department of Materials Science, University of California, Berkeley, CA, 94720, USA
- Kavli Energy NanoScience Institute, University of California, Berkeley, CA, 94720, USA
| | - Gang Ren
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
32
|
Longo A, Damer B. Factoring Origin of Life Hypotheses into the Search for Life in the Solar System and Beyond. Life (Basel) 2020; 10:E52. [PMID: 32349245 PMCID: PMC7281141 DOI: 10.3390/life10050052] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/14/2020] [Accepted: 04/22/2020] [Indexed: 01/13/2023] Open
Abstract
Two widely-cited alternative hypotheses propose geological localities and biochemical mechanisms for life's origins. The first states that chemical energy available in submarine hydrothermal vents supported the formation of organic compounds and initiated primitive metabolic pathways which became incorporated in the earliest cells; the second proposes that protocells self-assembled from exogenous and geothermally-delivered monomers in freshwater hot springs. These alternative hypotheses are relevant to the fossil record of early life on Earth, and can be factored into the search for life elsewhere in the Solar System. This review summarizes the evidence supporting and challenging these hypotheses, and considers their implications for the search for life on various habitable worlds. It will discuss the relative probability that life could have emerged in environments on early Mars, on the icy moons of Jupiter and Saturn, and also the degree to which prebiotic chemistry could have advanced on Titan. These environments will be compared to ancient and modern terrestrial analogs to assess their habitability and biopreservation potential. Origins of life approaches can guide the biosignature detection strategies of the next generation of planetary science missions, which could in turn advance one or both of the leading alternative abiogenesis hypotheses.
Collapse
Affiliation(s)
- Alex Longo
- National Aeronautics and Space Administration Headquarters, Washington, DC 20546, USA
- Department of Geology, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Bruce Damer
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA or
- Digital Space Research, Boulder Creek, CA 95006, USA
| |
Collapse
|
33
|
Ponce A. Radionuclide-induced defect sites in iron-bearing minerals may have accelerated the emergence of life. Interface Focus 2019; 9:20190085. [PMID: 31641440 PMCID: PMC6802128 DOI: 10.1098/rsfs.2019.0085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2019] [Indexed: 01/16/2023] Open
Abstract
The emergence of life on Earth (and elsewhere) must have occurred in a milieu that is far from equilibrium, such as at alkaline hydrothermal vents that would have harboured built-in gradients in temperature, redox potential and pH along with precipitated iron-bearing minerals capable of separating these gradients, concentrating reactants and catalysing requisite protobiotic reactions. Iron-bearing minerals such as mackinawite, greenalite and fougèrite have been investigated as catalysts for protobiotic reactions, including amino acid synthesis. In the field of heterogeneous catalysis, it is well known that defect sites in the crystal structure are often the most active sites for catalysis, and mineral catalysts that have been exposed to ionizing radiation are known to exhibit increased reactivity due to radiation-induced defect sites. In this work, we (i) review the literature on the radioactive environment of the Hadean era, (ii) highlight the role of radionuclide ionizing radiation from 238U, 232Th and 40K in generating defect sites with high catalytic activity for the chemical evolution of organic molecules, and (iii) hypothesize that these processes accelerated the emergence of life.
Collapse
Affiliation(s)
- Adrian Ponce
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| |
Collapse
|