1
|
Wang J, Chen Z, Zhang R, Wang Y, Li Y, Xu Z, Lin Q. PDGFR-α shRNA encoded nanoparticle with epithelial mesenchymal transformation interfering for corneal scarring treatment. Int J Pharm 2025; 671:125249. [PMID: 39842735 DOI: 10.1016/j.ijpharm.2025.125249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/13/2025] [Accepted: 01/18/2025] [Indexed: 01/24/2025]
Abstract
Maintaining the clarity of the cornea is crucial for optimal vision. Corneal scarring (CS), resulting from corneal inflammation, trauma, or surgery, can lead to a reduction in corneal transparency and visual impairment. While corneal transplantation is the primary method for restoring vision, the limited availability of corneal donor presents a significant challenge on a global scale. This study aimed to develop a non-viral gene complex utilizing gene silencing technology to deliver interfering fragments of the platelet-derived growth factor alpha receptor (PDGFR-α) to prevent CS. The hydrophilic segment of polyethylene glycol on the surface of the complex significantly improved its cellular safety as a delivery vehicle. The proton sponge effect of cationic carriers facilitates the escape of the target fragment from lysosomes and enables its entry into the cytoplasm for gene interference. In the TGF-β-induced epithelial-mesenchymal transition (EMT) cell model, it demonstrates remarkable capabilities in inhibiting cell fibrosis and migration. A mouse model was utilized to assess the gene complex's capacity to penetrate into the cornea and inhibit the production of corneal scar. This study highlights the significance of inhibiting the EMT process as a potential strategy for treating fibrosis, and has achieved technical success in intervening in corneal scarring.
Collapse
Affiliation(s)
- Jiahao Wang
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027 China
| | - Zhirong Chen
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027 China
| | - Renjie Zhang
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027 China
| | - Yajia Wang
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027 China
| | - Yijin Li
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027 China
| | - Zhenbiao Xu
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027 China
| | - Quankui Lin
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027 China.
| |
Collapse
|
2
|
Cheng PSW, Zaccaria M, Biffi G. Functional heterogeneity of fibroblasts in primary tumors and metastases. Trends Cancer 2025; 11:135-153. [PMID: 39674792 DOI: 10.1016/j.trecan.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/29/2024] [Accepted: 11/18/2024] [Indexed: 12/16/2024]
Abstract
Cancer-associated fibroblasts (CAFs) are abundant components of the tumor microenvironment (TME) of most solid malignancies and have emerged as key regulators of cancer progression and therapy response. Although recent technological advances have uncovered substantial CAF molecular heterogeneity at the single-cell level, defining functional roles for most described CAF populations remains challenging. With the aim of bridging CAF molecular and functional heterogeneity, this review focuses on recently identified functional interactions of CAF subtypes with malignant cells, immune cells, and other stromal cells in primary tumors and metastases. Dissecting the heterogeneous functional crosstalk of specific CAF populations with other components is starting to uncover candidate combinatorial strategies for therapeutically targeting the TME and cancer progression.
Collapse
Affiliation(s)
- Priscilla S W Cheng
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Marta Zaccaria
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Giulia Biffi
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK.
| |
Collapse
|
3
|
Wu Q, Yang C, Huang C, Lin Z. Screening key genes for intracranial aneurysm rupture using LASSO regression and the SVM-RFE algorithm. Front Med (Lausanne) 2025; 11:1487224. [PMID: 39835095 PMCID: PMC11743535 DOI: 10.3389/fmed.2024.1487224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025] Open
Abstract
Background Although an intracranial aneurysm (IA) is widespread and fatal, few drugs can be used to prevent its rupture. This study explored the molecular mechanism and potential targets of IA rupture through bioinformatics methods. Methods The gene expression matrices of GSE13353, GSE122897, and GSE15629 were downloaded. Differentially expressed genes (DEGs) were screened using the limma package. Functional enrichment analysis was performed, and a PPI network was constructed. Furthermore, candidate key genes were identified using the least absolute shrinkage and selection operator (LASSO) regression model, support vector machine-recursive feature elimination (SVM-RFE) analysis, and PPI network analysis. ROC analysis was conducted to further verify the diagnostic value of the key genes. Results A total of 334 DEGs were screened, including 175 upregulated genes and 159 downregulated genes. Further functional analysis suggested that the DEGs were enriched in inflammation and immune response pathways. Fourteen hub genes were identified using the two algorithms. The PPI networks of the hub genes were analyzed using the Cytoscape plugin CytoNCA to obtain two key genes (IL10 and Integrin α5 (ITGA5)). The ROC curve analysis showed that the AUC values of IL10 and ITGA5 were 0.801, and 0.786, respectively. In addition, the two key genes were significantly positively correlated with macrophages and Treg (T) cells. The immune score and ESTIMATE score of the ruptured IA group were significantly higher than those of the unruptured IA group. Conclusion The increase in IL-10 and ITGA5 may weaken the vascular wall by promoting inflammation in blood vessels and immune cells, which could have a harmful effect on the rupture of IAs.
Collapse
Affiliation(s)
| | | | | | - Zhiying Lin
- Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| |
Collapse
|
4
|
Wu C, Von Schalscha T, Sansanwal D, Qian C, Jiang Q, Shepard RM, Wettersten HI, McCormack SJ, Weis SM, Cheresh DA. Targeting Pancreatic Cancer Cell Stemness by Blocking Fibronectin-Binding Integrins on Cancer-Associated Fibroblasts. CANCER RESEARCH COMMUNICATIONS 2025; 5:195-208. [PMID: 39785683 PMCID: PMC11783622 DOI: 10.1158/2767-9764.crc-24-0491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/06/2024] [Accepted: 01/07/2025] [Indexed: 01/12/2025]
Abstract
SIGNIFICANCE Simultaneous targeting of two integrins that function as receptors for FN, a protumor ECM protein, can prevent fibroblasts from supporting the malignant behavior of pancreatic cancer cells.
Collapse
Affiliation(s)
- Chengsheng Wu
- Department of Pathology, Moores Cancer Center, Sanford Consortium for Regenerative Medicine at the University of California, San Diego, La Jolla, California
| | - Tami Von Schalscha
- Department of Pathology, Moores Cancer Center, Sanford Consortium for Regenerative Medicine at the University of California, San Diego, La Jolla, California
| | - Diva Sansanwal
- Department of Pathology, Moores Cancer Center, Sanford Consortium for Regenerative Medicine at the University of California, San Diego, La Jolla, California
| | - Chen Qian
- Department of Pathology, Moores Cancer Center, Sanford Consortium for Regenerative Medicine at the University of California, San Diego, La Jolla, California
| | - Qinlin Jiang
- Department of Pathology, Moores Cancer Center, Sanford Consortium for Regenerative Medicine at the University of California, San Diego, La Jolla, California
| | - Ryan M. Shepard
- Department of Pathology, Moores Cancer Center, Sanford Consortium for Regenerative Medicine at the University of California, San Diego, La Jolla, California
| | - Hiromi I. Wettersten
- Department of Pathology, Moores Cancer Center, Sanford Consortium for Regenerative Medicine at the University of California, San Diego, La Jolla, California
| | | | - Sara M. Weis
- Department of Pathology, Moores Cancer Center, Sanford Consortium for Regenerative Medicine at the University of California, San Diego, La Jolla, California
| | - David A. Cheresh
- Department of Pathology, Moores Cancer Center, Sanford Consortium for Regenerative Medicine at the University of California, San Diego, La Jolla, California
| |
Collapse
|
5
|
Acimovic I, Gabrielová V, Martínková S, Eid M, Vlažný J, Moravčík P, Hlavsa J, Moráň L, Cakmakci RC, Staňo P, Procházka V, Kala Z, Trnka J, Vaňhara P. Ex-Vivo 3D Cellular Models of Pancreatic Ductal Adenocarcinoma: From Embryonic Development to Precision Oncology. Pancreas 2025; 54:e57-e71. [PMID: 39074056 DOI: 10.1097/mpa.0000000000002393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
ABSTRACT Pancreas is a vital gland of gastrointestinal system with exocrine and endocrine secretory functions, interweaved into essential metabolic circuitries of the human body. Pancreatic ductal adenocarcinoma (PDAC) represents one of the most lethal malignancies, with a 5-year survival rate of 11%. This poor prognosis is primarily attributed to the absence of early symptoms, rapid metastatic dissemination, and the limited efficacy of current therapeutic interventions. Despite recent advancements in understanding the etiopathogenesis and treatment of PDAC, there remains a pressing need for improved individualized models, identification of novel molecular targets, and development of unbiased predictors of disease progression. Here we aim to explore the concept of precision medicine utilizing 3-dimensional, patient-specific cellular models of pancreatic tumors and discuss their potential applications in uncovering novel druggable molecular targets and predicting clinical parameters for individual patients.
Collapse
Affiliation(s)
- Ivana Acimovic
- From the Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno
| | - Viktorie Gabrielová
- From the Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno
| | - Stanislava Martínková
- Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague
| | - Michal Eid
- Departments of Internal Medicine, Hematology and Oncology
| | | | - Petr Moravčík
- Surgery Clinic, University Hospital Brno, Faculty of Medicine, Masaryk University
| | - Jan Hlavsa
- Surgery Clinic, University Hospital Brno, Faculty of Medicine, Masaryk University
| | | | - Riza Can Cakmakci
- From the Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno
| | - Peter Staňo
- Departments of Internal Medicine, Hematology and Oncology
| | - Vladimír Procházka
- Surgery Clinic, University Hospital Brno, Faculty of Medicine, Masaryk University
| | - Zdeněk Kala
- Surgery Clinic, University Hospital Brno, Faculty of Medicine, Masaryk University
| | - Jan Trnka
- Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague
| | | |
Collapse
|
6
|
Messé M, Bernhard C, Foppolo S, Thomas L, Marchand P, Herold-Mende C, Idbaih A, Kessler H, Etienne-Selloum N, Ochoa C, Tambar UK, Elati M, Laquerriere P, Entz-Werle N, Martin S, Reita D, Dontenwill M. Hypoxia-driven heterogeneous expression of α5 integrin in glioblastoma stem cells is linked to HIF-2α. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167471. [PMID: 39154793 DOI: 10.1016/j.bbadis.2024.167471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 07/27/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
Despite numerous molecular targeted therapies tested in glioblastoma (GBM), no significant progress in patient survival has been achieved in the last 20 years in the overall population of GBM patients except with TTfield setup associated with the standard of care chemoradiotherapy. Therapy resistance is associated with target expression heterogeneity and plasticity between tumors and in tumor niches. We focused on α5 integrin implicated in aggressive GBM in preclinical and clinical samples. To address the characteristics of α5 integrin heterogeneity we started with patient data indicating that elevated levels of its mRNA are related to hypoxia pathways. We turned on glioma stem cells which are considered at the apex of tumor formation and recurrence but also as they localize in hypoxic niches. We demonstrated that α5 integrin expression is stem cell line dependent and is modulated positively by hypoxia in vitro. Importantly, heterogeneity of expression is conserved in in vivo stem cell-derived mice xenografts. In hypoxic niches, HIF-2α is preferentially implicated in α5 integrin expression which confers migratory capacity to GBM stem cells. Hence combining HIF-2α and α5 integrin inhibitors resulted in proliferation and migration impairment of α5 integrin expressing cells. Stabilization of HIF-2α is however not sufficient to control integrin α5 expression. Our results show that AHR (aryl hydrocarbon receptor) expression is inversely related to HIF-2α and α5 integrin expressions suggesting a functional competition between the two transcription factors. Collectively, data confirm the high heterogeneity of a GBM therapeutic target, its induction in hypoxic niches by HIF-2α and suggest a new way to attack molecularly defined GBM stem cells.
Collapse
Affiliation(s)
- Mélissa Messé
- UMR7021 CNRS, Tumoral Signaling and Therapeutic Targets, Strasbourg University, Faculty of Pharmacy, Illkirch, France; UMR7178 CNRS, Hubert Curien Multidisciplinary Institute, Strasbourg University, 67000 Strasbourg, France
| | - Chloé Bernhard
- UMR7021 CNRS, Tumoral Signaling and Therapeutic Targets, Strasbourg University, Faculty of Pharmacy, Illkirch, France
| | - Sophie Foppolo
- UMR7021 CNRS, Tumoral Signaling and Therapeutic Targets, Strasbourg University, Faculty of Pharmacy, Illkirch, France
| | - Lionel Thomas
- UMR7178 CNRS, Hubert Curien Multidisciplinary Institute, Strasbourg University, 67000 Strasbourg, France
| | - Patrice Marchand
- UMR7178 CNRS, Hubert Curien Multidisciplinary Institute, Strasbourg University, 67000 Strasbourg, France
| | - Christel Herold-Mende
- Division of Neurosurgical Research, Department of Neurosurgery, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Ahmed Idbaih
- Sorbonne University, AP-HP, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, F-75013 Paris, France
| | - Horst Kessler
- Institute for Advanced Study, Department Chemie, Technical University Munich (TUM), Lichtenbergstr. 4, 85747 Garching, Germany
| | - Nelly Etienne-Selloum
- UMR7021 CNRS, Tumoral Signaling and Therapeutic Targets, Strasbourg University, Faculty of Pharmacy, Illkirch, France; Pharmacy department, Institut de Cancérologie Strasbourg Europe (ICANS), 67200 Strasbourg, France
| | - Charles Ochoa
- Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, United States
| | - Uttam K Tambar
- Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, United States
| | - Mohamed Elati
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille F-59000, France
| | - Patrice Laquerriere
- UMR7178 CNRS, Hubert Curien Multidisciplinary Institute, Strasbourg University, 67000 Strasbourg, France
| | - Natacha Entz-Werle
- UMR7021 CNRS, Tumoral Signaling and Therapeutic Targets, Strasbourg University, Faculty of Pharmacy, Illkirch, France; Pédiatrie Onco-Hématologie-Pédiatrie III, Strasbourg University Hospital, 67091 Strasbourg, France
| | - Sophie Martin
- UMR7021 CNRS, Tumoral Signaling and Therapeutic Targets, Strasbourg University, Faculty of Pharmacy, Illkirch, France
| | - Damien Reita
- UMR7021 CNRS, Tumoral Signaling and Therapeutic Targets, Strasbourg University, Faculty of Pharmacy, Illkirch, France; Department of Cancer Molecular Genetics, Laboratory of Biochemistry and Molecular Biology, University Hospital of Strasbourg, 67200 Strasbourg, France
| | - Monique Dontenwill
- UMR7021 CNRS, Tumoral Signaling and Therapeutic Targets, Strasbourg University, Faculty of Pharmacy, Illkirch, France.
| |
Collapse
|
7
|
Xiao Y, Tao P, Zhang K, Chen L, Lv J, Chen Z, He L, Jia H, Sun J, Cao M, Hong J, Qu C. Myofibroblast-derived extracellular vesicles facilitate cancer stemness of hepatocellular carcinoma via transferring ITGA5 to tumor cells. Mol Cancer 2024; 23:262. [PMID: 39574133 PMCID: PMC11580229 DOI: 10.1186/s12943-024-02170-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 11/05/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND Myofibroblasts constitute a significant component of the tumor microenvironment (TME) and play a pivotal role in the progression of hepatocellular carcinoma (HCC). Integrin α5 (ITGA5) is a crucial regulator in myofibroblasts of malignant tumors. Therefore, the potential of ITGA5 as a novel target for the therapeutic strategy of HCC should be investigated. METHODS Digital scanning and analysis of the HCC tissue microarray were performed to locate the distribution of ITGA5 and conduct the prognosis analysis. CRISPR Cas9-mediated ITGA5 knockout was performed to establish the ITGA5-KO myofibroblast cell line. Extracellular vesicles (EVs) derived from LX2 were extracted for the treatment of HCC cells. Subsequently, the sphere-forming ability and the stemness markers expression of the treated HCC cells were examined. An orthotopic HCC mouse model with fibrotic injury was constructed to test the outcomes of ITGA5-targeting therapy and its efficacy in the programmed death-ligand 1 (PD-L1) treatment. Co-immunoprecipitation/mass spectrometry and transcriptome data were integrated to delve into the mechanism. RESULTS The tissue microarray results revealed that ITGA5 was highly enriched in the stromal myofibroblasts of HCC tissues and contributed to enhanced tumor progression and poor prognosis. Notably, ITGA5 transmission via extracellular vesicles (EVs) from myofibroblasts to HCC cells induced the acquisition of cancer stem cell-like properties. Mechanistically, ITGA5 directly bind to YES1, facilitating the activation of YES1 and its downstream pathways, thereby enhancing the stemness of HCC cells. Furthermore, the blockade of ITGA5 impeded tumor progression driven by ITGA5+ myofibroblasts and enhanced the efficacy of treatment with PD-L1 in a mouse model of HCC. CONCLUSIONS Our findings elucidated a novel mechanism by which the EV-mediated transfer of ITGA5 from myofibroblasts to tumor cells augmented HCC stemness. ITGA5-targeting therapy helped prevent the progression of HCC and improved the efficacy of PD-L1 treatment.
Collapse
Affiliation(s)
- Yang Xiao
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510000, China
- Endoscopy Department, Sichuan Cancer Center, Sichuan Cancer Hospital and Institute, Affiliate Cancer Hospital of University of Electronic Science and Technology of China (UESTC), Chengdu, 610000, China
| | - Ping Tao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510000, China
| | - Keke Zhang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510000, China
| | - Liuyan Chen
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510000, China
| | - Jinyu Lv
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510000, China
| | - Zhiwei Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510000, China
| | - Lu He
- Department of Radiotherapy, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510000, China
| | - Hongling Jia
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, 510000, China
| | - Jian Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510000, China
| | - Mingrong Cao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510000, China
| | - Jian Hong
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510000, China.
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510000, China.
| | - Chen Qu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510000, China.
| |
Collapse
|
8
|
Che X, Tian X, Wang Z, Zhu S, Ye S, Wang Y, Chen Y, Huang Y, Anwaier A, Yao P, Chen Y, Wu K, Liu Y, Xu W, Zhang H, Ye D. Systematic multiomics analysis and in vitro experiments suggest that ITGA5 could serve as a promising therapeutic target for ccRCC. Cancer Cell Int 2024; 24:363. [PMID: 39501306 PMCID: PMC11539770 DOI: 10.1186/s12935-024-03546-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Integrin alpha 5 (ITGA5) was previously confirmed to be related to prognosis in several cancer types; however, its function in clear cell renal cell carcinoma (ccRCC) and how this molecule regulates tumor progression and the tumor microenvironment (TME) remain to be elucidated. METHODS We investigated the prognostic implications of ITGA5 with a machine learning model and evaluated biological behaviors of different levels of ITGA5 expression in vitro. Bioinformatic analysis was performed to explain the comprehensive effect of ITGA5 on the TME and drug sensitivity. RESULTS We constructed a machine learning model to elaborate the prognostic implication of ITGA5. As tumorigenesis of ccRCC was tightly relevant with several mutant genes, we investigated the correlation between ITGA5 expression and frequent mutations and found ITGA5 upregulation in VHL mutant ccRCC (P = 0.016). Through overexpressing, silencing, and blocking ITGA5, we verified the role of ITGA5 in promoting ccRCC adverse biological activities; and the potential functions of ITGA5 in ccRCC were bioinformatically demonstrated, summarizing as cell proliferation, migration, and angiogenesis. The localization of ITGA5 primarily in endothelia and macrophages further verified its magnitude in angiogenesis and aroused our excavation in ITGA5 regulation of immune infiltration landscape. Generally, ITGA5-high ccRCC presented an immunosuppressive TME by inducing a lower level of CD8 + T cell infiltration. For the last part we predicted drug sensitivity relevant to ITGA5 and concluded that a joint medication of ITGA5 inhibitors and VEGFR-target drugs (including sunitinib, axitinib, pazopanib, and motesanib) might be a promising therapeutic strategy. CONCLUSION Our findings clarified the adverse outcome induced by high expression of ITGA5 in ccRCC patients. In vitro experiments and bioinformatical analysis identified ITGA5 function as predominantly cell proliferation, migration, angiogenesis, and macrophage recruitment. Further, we predicted immune infiltration and medication sensitivity regulation by ITGA5 and proposed a joint use of ITGA5 inhibitors and anti-angiogenetic drugs as a potential potent therapeutic strategy.
Collapse
Grants
- 22401 FDUROP (Fudan Undergraduate Research Opportunities Program)
- 22401 FDUROP (Fudan Undergraduate Research Opportunities Program)
- 22401 FDUROP (Fudan Undergraduate Research Opportunities Program)
- 22401 FDUROP (Fudan Undergraduate Research Opportunities Program)
- 22401 FDUROP (Fudan Undergraduate Research Opportunities Program)
- 22401 FDUROP (Fudan Undergraduate Research Opportunities Program)
- S202310246246 Shanghai Undergraduate Training Program on Innovation and Entrepreneurship (SUTPLE) grant
- S202310246246 Shanghai Undergraduate Training Program on Innovation and Entrepreneurship (SUTPLE) grant
- S202310246246 Shanghai Undergraduate Training Program on Innovation and Entrepreneurship (SUTPLE) grant
- S202310246246 Shanghai Undergraduate Training Program on Innovation and Entrepreneurship (SUTPLE) grant
- S202310246246 Shanghai Undergraduate Training Program on Innovation and Entrepreneurship (SUTPLE) grant
- S202310246246 Shanghai Undergraduate Training Program on Innovation and Entrepreneurship (SUTPLE) grant
- SACA-CY21A06,SACA-CY21B01,SACA-CY23A02,SACA-CY23C04 Shanghai Anti-Cancer Association
- SACA-CY21A06,SACA-CY21B01,SACA-CY23A02,SACA-CY23C04 Shanghai Anti-Cancer Association
- SACA-CY21A06,SACA-CY21B01,SACA-CY23A02,SACA-CY23C04 Shanghai Anti-Cancer Association
- SACA-CY21A06,SACA-CY21B01,SACA-CY23A02,SACA-CY23C04 Shanghai Anti-Cancer Association
- SACA-CY21A06,SACA-CY21B01,SACA-CY23A02,SACA-CY23C04 Shanghai Anti-Cancer Association
- SACA-CY21A06,SACA-CY21B01,SACA-CY23A02,SACA-CY23C04 Shanghai Anti-Cancer Association
- SACA-CY21A06,SACA-CY21B01,SACA-CY23A02,SACA-CY23C04 Shanghai Anti-Cancer Association
- SACA-CY21A06,SACA-CY21B01,SACA-CY23A02,SACA-CY23C04 Shanghai Anti-Cancer Association
- SACA-CY21A06,SACA-CY21B01,SACA-CY23A02,SACA-CY23C04 Shanghai Anti-Cancer Association
- SACA-CY21A06,SACA-CY21B01,SACA-CY23A02,SACA-CY23C04 Shanghai Anti-Cancer Association
- 2020CXJQ03 Shanghai Municipal Health Bureau
- 2020CXJQ03 Shanghai Municipal Health Bureau
- 2020CXJQ03 Shanghai Municipal Health Bureau
- 2020CXJQ03 Shanghai Municipal Health Bureau
- 2020CXJQ03 Shanghai Municipal Health Bureau
- 2020CXJQ03 Shanghai Municipal Health Bureau
- 2020CXJQ03 Shanghai Municipal Health Bureau
- 2020CXJQ03 Shanghai Municipal Health Bureau
- 2020CXJQ03 Shanghai Municipal Health Bureau
- 2020CXJQ03 Shanghai Municipal Health Bureau
- Y-HR2020MS-0948 Beijing Xisike Clinical Oncology Research Foundation
- Y-HR2020MS-0948 Beijing Xisike Clinical Oncology Research Foundation
- Y-HR2020MS-0948 Beijing Xisike Clinical Oncology Research Foundation
- Y-HR2020MS-0948 Beijing Xisike Clinical Oncology Research Foundation
- Y-HR2020MS-0948 Beijing Xisike Clinical Oncology Research Foundation
- Y-HR2020MS-0948 Beijing Xisike Clinical Oncology Research Foundation
- Y-HR2020MS-0948 Beijing Xisike Clinical Oncology Research Foundation
- Y-HR2020MS-0948 Beijing Xisike Clinical Oncology Research Foundation
- Y-HR2020MS-0948 Beijing Xisike Clinical Oncology Research Foundation
- Y-HR2020MS-0948 Beijing Xisike Clinical Oncology Research Foundation
Collapse
Affiliation(s)
- Xiangxian Che
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Fudan University Shanghai Medical College, Shanghai, 200032, People's Republic of China
| | - Xi Tian
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, People's Republic of China
- Department of Oncology, Fudan University Shanghai Medical College, Shanghai, 200032, People's Republic of China
| | - Zhenda Wang
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, People's Republic of China
- Department of Oncology, Fudan University Shanghai Medical College, Shanghai, 200032, People's Republic of China
| | - Shuxuan Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, People's Republic of China
- Department of Oncology, Fudan University Shanghai Medical College, Shanghai, 200032, People's Republic of China
| | - Shiqi Ye
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, People's Republic of China
- Department of Oncology, Fudan University Shanghai Medical College, Shanghai, 200032, People's Republic of China
| | - Yue Wang
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, People's Republic of China
- Department of Oncology, Fudan University Shanghai Medical College, Shanghai, 200032, People's Republic of China
| | - Yihan Chen
- Department of Oncology, Fudan University Shanghai Medical College, Shanghai, 200032, People's Republic of China
| | - Yiyun Huang
- Department of Oncology, Fudan University Shanghai Medical College, Shanghai, 200032, People's Republic of China
| | - Aihetaimujiang Anwaier
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, People's Republic of China
- Department of Oncology, Fudan University Shanghai Medical College, Shanghai, 200032, People's Republic of China
| | - Peifeng Yao
- School of Informatics, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Yijia Chen
- Department of Oncology, Fudan University Shanghai Medical College, Shanghai, 200032, People's Republic of China
| | - Keting Wu
- Department of Oncology, Fudan University Shanghai Medical College, Shanghai, 200032, People's Republic of China
| | - Yifei Liu
- Department of Oncology, Fudan University Shanghai Medical College, Shanghai, 200032, People's Republic of China
| | - Wenhao Xu
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China.
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, People's Republic of China.
- Department of Oncology, Fudan University Shanghai Medical College, Shanghai, 200032, People's Republic of China.
| | - Hailiang Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China.
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, People's Republic of China.
- Department of Oncology, Fudan University Shanghai Medical College, Shanghai, 200032, People's Republic of China.
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China.
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, People's Republic of China.
- Department of Oncology, Fudan University Shanghai Medical College, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
9
|
Liu J, Wang Y, Chen X, Chen X, Zhang M. ITGA5 is associated with prognosis marker and immunosuppression in head and neck squamous cell carcinoma. Diagn Pathol 2024; 19:134. [PMID: 39375732 PMCID: PMC11457354 DOI: 10.1186/s13000-024-01559-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/28/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is a major tumor that seriously threatens the health of the head and neck or mucosal system. It is manifested as a malignant phenotype of high metastasis and invasion caused by squamous cell transformation in the tissue area. Therefore, it is necessary to search for a biomarker that can systematically correlate and reflect the prognosis of HNSCC based on the characteristics of head and neck tumors. METHODS Based on TCGA-HNSCC data, R software was used to analyze gene expression, correlation, Venn diagram, immune invasive and immunosuppressive phenotypes respectively. The intrinsic effect of ITGA5 on the malignant phenotype of HNSCC cells was verified by cell experiments. Immunohistochemical images from The Human Protein Atlas (THPA) database display the differences in the expression of related proteins in HNSCC tissues. Based on functional enrichment and correlation analysis, the prognostic value of ITGA5 for HNSCC was explored, and the expression level of ITGA5 may affect the chemotherapy of targeting the PI3K-AKT. RESULTS In this study, the target gene ITGA5 may be identified as a valuable prognostic marker for HNSCC. The results of enrichment analysis showed that ITGA5 was mainly involved in the dynamic process of extracellular matrix, which may affect the migration or metastasis of tumor cells. Meanwhile, ITGA5 may be closely related to the infiltration of M2 macrophages, and its secretory phenotypes TGFB1, PDGFA and PDGFB may affect the immunosuppressive phenotypes of tumor cells, which reflects the systemic influence of ITGA5 in HNSCC. In addition, the expression levels of ITGA5 were negatively correlated with the efficacy of targeting PI3K-AKT chemotherapy. CONCLUSION ITGA5 can be used as a potential marker to systematically associate with prognosis of HNSCC, which may be associated with HNSCC malignant phenotype, immunosuppression and chemotherapy resistance.
Collapse
Affiliation(s)
- Jianmin Liu
- Department of Head and Neck Surgery, Sichuan Cancer Hospital, Chengdu City, Sichuan Province, China
| | - Yongkuan Wang
- Department of Otolaryngology/Head and Neck surgery, People's Hospital of Deyang City, Deyang City, Sichuan Province, China
| | - Xi Chen
- Department of Otolaryngology/Head and Neck surgery, People's Hospital of Deyang City, Deyang City, Sichuan Province, China
| | - Xiaofang Chen
- Department of Otolaryngology/Head and Neck surgery, People's Hospital of Deyang City, Deyang City, Sichuan Province, China
| | - Meng Zhang
- Department of Otolaryngology/Head and Neck surgery, People's Hospital of Deyang City, Deyang City, Sichuan Province, China.
| |
Collapse
|
10
|
Zhou P, Ding X, Du X, Wang L, Zhang Y. Targeting Reprogrammed Cancer-Associated Fibroblasts with Engineered Mesenchymal Stem Cell Extracellular Vesicles for Pancreatic Cancer Treatment. Biomater Res 2024; 28:0050. [PMID: 39099892 PMCID: PMC11293949 DOI: 10.34133/bmr.0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/06/2024] [Indexed: 08/06/2024] Open
Abstract
Background: As one of the most aggressive and lethal cancers, pancreatic cancer is highly associated with cancer-associated fibroblasts (CAFs) that influence the development and progression of cancer. Targeted reprogramming of CAFs may be a promising strategy for pancreatic cancer. This study aims to construct engineered extracellular vesicles (EVs) with surface modification of integrin α5 (ITGA5)-targeting peptide and high internal expression of miR-148a-3p by endogenous modification for targeted reprogramming of pancreatic CAFs. Methods: Bone marrow mesenchymal stem cells (BMSCs) and pancreatic CAFs were cocultured to examine the effect of BMSC-derived EVs on the expression levels of CAF markers. miR-148a-3p was identified as a functional molecule. The mechanism of miR-148a-3p was elucidated using the dual-luciferase reporter assay. BMSCs were infected with TERT-encoding and miR-148a-3p-encoding lentiviruses. Subsequently, BMSCs were modified with ITGA5-specific targeting peptide. The supernatant was ultracentrifuged to obtain the engineered EVs (ITGA5-EVs-148a), which were used to reprogram CAFs. Results: BMSCs modulated CAF marker expressions through EVs. miR-148a-3p was up-regulated in BMSCs. The expression of miR-148a-3p in pancreatic CAFs was down-regulated when compared with that in normal fibroblasts (NFs). Mechanistically, ITGA5-EVs-148a effectively suppressed the proliferation and migration of pancreatic CAFs by targeting ITGA5 through the TGF-β/SMAD pathway. ITGA5-EVs-148a was associated with enhanced cellular uptake and exhibited enhanced in vitro and in vivo targeting ability. Moreover, ITGA5-EVs-148a exerted strong reconfiguration effects in inactivating CAFs and reversing tumor-promoting effects in 3D heterospheroid and xenograft pancreatic cancer models. Conclusions: This targeted CAF reprogramming strategy with genetically engineered ITGA5-EVs-148a holds great promise as a precision therapeutics in clinical settings.
Collapse
Affiliation(s)
- Pengcheng Zhou
- School of Medicine,
Southeast University, Nanjing 210000, China
- Department of General Surgery,
Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Xian’guang Ding
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM),
Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Xuanlong Du
- School of Medicine,
Southeast University, Nanjing 210000, China
| | - Lianhui Wang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM),
Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Yewei Zhang
- Hepatobiliary and Pancreatic Center,
The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| |
Collapse
|
11
|
Pereira BA, Ritchie S, Chambers CR, Gordon KA, Magenau A, Murphy KJ, Nobis M, Tyma VM, Liew YF, Lucas MC, Naeini MM, Barkauskas DS, Chacon-Fajardo D, Howell AE, Parker AL, Warren SC, Reed DA, Lee V, Metcalf XL, Lee YK, O’Regan LP, Zhu J, Trpceski M, Fontaine ARM, Stoehr J, Rouet R, Lin X, Chitty JL, Porazinski S, Wu SZ, Filipe EC, Cadell AL, Holliday H, Yang J, Papanicolaou M, Lyons RJ, Zaratzian A, Tayao M, Da Silva A, Vennin C, Yin J, Dew AB, McMillan PJ, Goldstein LD, Deveson IW, Croucher DR, Samuel MS, Sim HW, Batten M, Chantrill L, Grimmond SM, Gill AJ, Samra J, Jeffry Evans TR, Sasaki T, Phan TG, Swarbrick A, Sansom OJ, Morton JP, Pajic M, Parker BL, Herrmann D, Cox TR, Timpson P. Temporally resolved proteomics identifies nidogen-2 as a cotarget in pancreatic cancer that modulates fibrosis and therapy response. SCIENCE ADVANCES 2024; 10:eadl1197. [PMID: 38959305 PMCID: PMC11221519 DOI: 10.1126/sciadv.adl1197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 05/30/2024] [Indexed: 07/05/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by increasing fibrosis, which can enhance tumor progression and spread. Here, we undertook an unbiased temporal assessment of the matrisome of the highly metastatic KPC (Pdx1-Cre, LSL-KrasG12D/+, LSL-Trp53R172H/+) and poorly metastatic KPflC (Pdx1-Cre, LSL-KrasG12D/+, Trp53fl/+) genetically engineered mouse models of pancreatic cancer using mass spectrometry proteomics. Our assessment at early-, mid-, and late-stage disease reveals an increased abundance of nidogen-2 (NID2) in the KPC model compared to KPflC, with further validation showing that NID2 is primarily expressed by cancer-associated fibroblasts (CAFs). Using biomechanical assessments, second harmonic generation imaging, and birefringence analysis, we show that NID2 reduction by CRISPR interference (CRISPRi) in CAFs reduces stiffness and matrix remodeling in three-dimensional models, leading to impaired cancer cell invasion. Intravital imaging revealed improved vascular patency in live NID2-depleted tumors, with enhanced response to gemcitabine/Abraxane. In orthotopic models, NID2 CRISPRi tumors had less liver metastasis and increased survival, highlighting NID2 as a potential PDAC cotarget.
Collapse
Affiliation(s)
- Brooke A. Pereira
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| | - Shona Ritchie
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| | - Cecilia R. Chambers
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| | - Katie A. Gordon
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| | - Astrid Magenau
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| | - Kendelle J. Murphy
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| | - Max Nobis
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- Intravital Imaging Expertise Center, VIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Victoria M. Tyma
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Ying Fei Liew
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Morghan C. Lucas
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Marjan M. Naeini
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Deborah S. Barkauskas
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- ACRF INCITe Intravital Imaging Centre, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Diego Chacon-Fajardo
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- Translational Oncology Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Anna E. Howell
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Amelia L. Parker
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| | - Sean C. Warren
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| | - Daniel A. Reed
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| | - Victoria Lee
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Xanthe L. Metcalf
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Young Kyung Lee
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Luke P. O’Regan
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Jessie Zhu
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| | - Michael Trpceski
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| | - Angela R. M. Fontaine
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- ACRF INCITe Intravital Imaging Centre, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Janett Stoehr
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Romain Rouet
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- Immune Biotherapies Program, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Xufeng Lin
- Data Science Platform, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Jessica L. Chitty
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| | - Sean Porazinski
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- Translational Oncology Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Sunny Z. Wu
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- Genentech Inc., South San Francisco, CA, USA
| | - Elysse C. Filipe
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| | - Antonia L. Cadell
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- Translational Oncology Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Holly Holliday
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
| | - Jessica Yang
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| | - Michael Papanicolaou
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| | - Ruth J. Lyons
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Anaiis Zaratzian
- Histopathology Platform, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Michael Tayao
- Histopathology Platform, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Andrew Da Silva
- Histopathology Platform, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Claire Vennin
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- Division of Molecular Pathology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, Netherlands
- Oncode Institute, Amsterdam, Netherlands
| | - Julia Yin
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- Translational Oncology Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Alysha B. Dew
- Centre for Advanced Histology & Microscopy, Peter MacCallum Cancer Centre, Parkville, Victoria, Australia
| | - Paul J. McMillan
- Centre for Advanced Histology & Microscopy, Peter MacCallum Cancer Centre, Parkville, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Biological Optical Microscopy Platform, The University of Melbourne, Parkville, Victoria, Australia
| | - Leonard D. Goldstein
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- Data Science Platform, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Ira W. Deveson
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - David R. Croucher
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- Translational Oncology Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Michael S. Samuel
- Centre for Cancer Biology, An Alliance of SA Pathology and University of South Australia, Adelaide, South Australia, Australia
- Basil Hetzel Institute for Translational Health Research, Queen Elizabeth Hospital, Woodville South, South Australia, Australia
| | - Hao-Wen Sim
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- NHMRC Clinical Trials Centre, University of Sydney, Camperdown, New South Wales, Australia
- Department of Medical Oncology, Chris O’Brien Lifehouse, Camperdown, New South Wales, Australia
| | - Marcel Batten
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Lorraine Chantrill
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- Department of Medical Oncology, Illawarra Shoalhaven Local Health District, Wollongong, New South Wales, Australia
| | - Sean M. Grimmond
- Centre for Cancer Research and Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Anthony J. Gill
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- Sydney Medical School, University of Sydney, Camperdown, New South Wales, Australia
| | - Jaswinder Samra
- Department of Surgery, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Thomas R. Jeffry Evans
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Takako Sasaki
- Department of Biochemistry, Faculty of Medicine, Oita University, Oita, Japan
| | - Tri G. Phan
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- Precision Immunology Program, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Alexander Swarbrick
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| | - Owen J. Sansom
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Jennifer P. Morton
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | | | - Marina Pajic
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- Translational Oncology Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Benjamin L. Parker
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - David Herrmann
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| | - Thomas R. Cox
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| | - Paul Timpson
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
| |
Collapse
|
12
|
Chen J, Liu Y, Lan J, Liu H, Tang Q, Li Z, Qiu X, Hu W, Xie J, Feng Y, Qin L, Zhang X, Liu J, Chen L. Identification and validation of COL6A1 as a novel target for tumor electric field therapy in glioblastoma. CNS Neurosci Ther 2024; 30:e14802. [PMID: 38887185 PMCID: PMC11183175 DOI: 10.1111/cns.14802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/14/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is the most aggressive primary brain malignancy. Novel therapeutic modalities like tumor electric field therapy (TEFT) have shown promise, but underlying mechanisms remain unclear. The extracellular matrix (ECM) is implicated in GBM progression, warranting investigation into TEFT-ECM interplay. METHODS T98G cells were treated with TEFT (200 kHz, 2.2 V/m) for 72 h. Collagen type VI alpha 1 (COL6A1) was identified as hub gene via comprehensive bioinformatic analysis based on RNA sequencing (RNA-seq) and public glioma datasets. TEFT intervention models were established using T98G and Ln229 cell lines. Pre-TEFT and post-TEFT GBM tissues were collected for further validation. Focal adhesion pathway activity was assessed by western blot. Functional partners of COL6A1 were identified and validated by co-localization and survival analysis. RESULTS TEFT altered ECM-related gene expression in T98G cells, including the hub gene COL6A1. COL6A1 was upregulated in GBM and associated with poor prognosis. Muti-database GBM single-cell analysis revealed high-COL6A1 expression predominantly in malignant cell subpopulations. Differential expression and functional enrichment analyses suggested COL6A1 might be involved in ECM organization and focal adhesion. Western blot (WB), immunofluorescence (IF), and co-immunoprecipitation (Co-IP) experiments revealed that TEFT significantly inhibited expression of COL6A1, hindering its interaction with ITGA5, consequently suppressing the FAK/Paxillin/AKT pathway activity. These results suggested that TEFT might exert its antitumor effects by downregulating COL6A1 and thereby inhibiting the activity of the focal adhesion pathway. CONCLUSION TEFT could remodel the ECM of GBM cells by downregulating COL6A1 expression and inhibiting focal adhesion pathway. COL6A1 could interact with ITGA5 and activate the focal adhesion pathway, suggesting that it might be a potential therapeutic target mediating the antitumor effects of TEFT.
Collapse
Affiliation(s)
- Junyi Chen
- Medical School of Chinese PLABeijingChina
- Department of NeurosurgeryChinese PLA General HospitalBeijingChina
| | - Yuyang Liu
- Department of Neurosurgery920th Hospital of Joint Logistics Support ForceKunmingChina
| | - Jinxin Lan
- Department of NeurosurgeryChinese PLA General HospitalBeijingChina
- School of MedicineNankai UniversityTianjinChina
| | - Hongyu Liu
- Medical School of Chinese PLABeijingChina
- Department of NeurosurgeryHainan Hospital of Chinese PLA General HospitalHainanChina
| | - Qingyun Tang
- Department of Gastroenterology920th Hospital of Joint Logistics Support ForceKunmingChina
| | - Ze Li
- Medical School of Chinese PLABeijingChina
- Department of NeurosurgeryChinese PLA General HospitalBeijingChina
| | - Xiaoguang Qiu
- Beijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Wentao Hu
- Department of NeurosurgeryChinese PLA General HospitalBeijingChina
- School of MedicineNankai UniversityTianjinChina
| | - Jiaxin Xie
- Department of Neurosurgery920th Hospital of Joint Logistics Support ForceKunmingChina
| | - Yaping Feng
- Department of Neurosurgery920th Hospital of Joint Logistics Support ForceKunmingChina
| | - Lilin Qin
- Zhejiang Cancer HospitalZhejiangHangzhouChina
| | - Xin Zhang
- Department of Neurosurgery920th Hospital of Joint Logistics Support ForceKunmingChina
| | - Jialin Liu
- Medical School of Chinese PLABeijingChina
- Department of NeurosurgeryChinese PLA General HospitalBeijingChina
| | - Ling Chen
- Medical School of Chinese PLABeijingChina
- Department of NeurosurgeryChinese PLA General HospitalBeijingChina
| |
Collapse
|
13
|
M R H Mostafa A, Petrai O, Poot AA, Prakash J. Polymeric nanofiber leveraged co-delivery of anti-stromal PAK1 inhibitor and paclitaxel enhances therapeutic effects in stroma-rich 3D spheroid models. Int J Pharm 2024; 656:124078. [PMID: 38569978 DOI: 10.1016/j.ijpharm.2024.124078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/05/2024]
Abstract
The role of tumor stroma in solid tumors has been widely recognized in cancer progression, metastasis and chemoresistance. Cancer-associated fibroblasts (CAFs) play a crucial role in matrix remodeling and promoting cancer cell stemness and resistance via reciprocal crosstalk. Residual tumor tissue after surgical removal as well as unresectable tumors face therapeutic challenges to achieve curable outcome. In this study, we propose to develop a dual delivery approach by combining p21-activated kinase 1 (PAK1) inhibitor (FRAX597) to inhibit tumor stroma and chemotherapeutic agent paclitaxel (PTX) to kill cancer cells using electrospun nanofibers. First, the role of the PAK1 pathway was established in CAF differentiation, migration and contraction using relevant in vitro models. Second, polycaprolactone polymer-based nanofibers were fabricated using a uniaxial electrospinning technique to incorporate FRAX597 and/or PTX, which showed a uniform texture and a prolonged release of both drugs for 16 days. To test nanofibers, stroma-rich 3D heterospheroid models were set up which showed high resistance to PTX nanofibers compared to stroma-free homospheroids. Interestingly, nanofibers containing PTX and FRAX597 showed strong anti-tumor effects on heterospheroids by reducing the growth and viability by > 90 % compared to either of single drug-loaded nanofibers. These effects were reflected by reduced intra-spheroidal expression levels of collagen 1 and α-smooth muscle actin (α-SMA). Overall, this study provides a new therapeutic strategy to inhibit the tumor stroma using PAK1 inhibitor and thereby enhance the efficacy of chemotherapy using nanofibers as a local delivery system for unresectable or residual tumor. Use of 3D models to evaluate nanofibers highlights these models as advanced in vitro tools to study the effect of controlled release local drug delivery systems before animal studies.
Collapse
Affiliation(s)
- Ahmed M R H Mostafa
- Engineered Therapeutics, Department of Advanced Organ Bioengineering and Therapeutics, TechMed Centre, University of Twente, Enschede, the Netherlands
| | - Ornela Petrai
- Engineered Therapeutics, Department of Advanced Organ Bioengineering and Therapeutics, TechMed Centre, University of Twente, Enschede, the Netherlands
| | - André A Poot
- Engineered Therapeutics, Department of Advanced Organ Bioengineering and Therapeutics, TechMed Centre, University of Twente, Enschede, the Netherlands
| | - Jai Prakash
- Engineered Therapeutics, Department of Advanced Organ Bioengineering and Therapeutics, TechMed Centre, University of Twente, Enschede, the Netherlands.
| |
Collapse
|
14
|
Parte S, Kaur AB, Nimmakayala RK, Ogunleye AO, Chirravuri R, Vengoji R, Leon F, Nallasamy P, Rauth S, Alsafwani ZW, Lele S, Cox JL, Bhat I, Singh S, Batra SK, Ponnusamy MP. Cancer-Associated Fibroblast Induces Acinar-to-Ductal Cell Transdifferentiation and Pancreatic Cancer Initiation Via LAMA5/ITGA4 Axis. Gastroenterology 2024; 166:842-858.e5. [PMID: 38154529 PMCID: PMC11694316 DOI: 10.1053/j.gastro.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 12/09/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND & AIMS Pancreatic ductal adenocarcinoma (PDAC) is characterized by desmoplastic stroma surrounding most tumors. Activated stromal fibroblasts, namely cancer-associated fibroblasts (CAFs), play a major role in PDAC progression. We analyzed whether CAFs influence acinar cells and impact PDAC initiation, that is, acinar-to-ductal metaplasia (ADM). ADM connection with PDAC pathophysiology is indicated, but not yet established. We hypothesized that CAF secretome might play a significant role in ADM in PDAC initiation. METHODS Mouse and human acinar cell organoids, acinar cells cocultured with CAFs and exposed to CAF-conditioned media, acinar cell explants, and CAF cocultures were examined by means of quantitative reverse transcription polymerase chain reaction, RNA sequencing, immunoblotting, and confocal microscopy. Data from liquid chromatography with tandem mass spectrometry analysis of CAF-conditioned medium and RNA sequencing data of acinar cells post-conditioned medium exposure were integrated using bioinformatics tools to identify the molecular mechanism for CAF-induced ADM. Using confocal microscopy, immunoblotting, and quantitative reverse transcription polymerase chain reaction analysis, we validated the depletion of a key signaling axis in the cell line, acinar explant coculture, and mouse cancer-associated fibroblasts (mCAFs). RESULTS A close association of acino-ductal markers (Ulex europaeus agglutinin 1, amylase, cytokeratin-19) and mCAFs (α-smooth muscle actin) in LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx1Cre (KPC) and LSL-KrasG12D/+; Pdx1Cre (KC) autochthonous progression tumor tissue was observed. Caerulein treatment-induced mCAFs increased cytokeratin-19 and decreased amylase in wild-type and KC pancreas. Likewise, acinar-mCAF cocultures revealed the induction of ductal transdifferentiation in cell line, acinar-organoid, and explant coculture formats in WT and KC mice pancreas. Proteomic and transcriptomic data integration revealed a novel laminin α5/integrinα4/stat3 axis responsible for CAF-mediated acinar-to-ductal cell transdifferentiation. CONCLUSIONS Results collectively suggest the first evidence for CAF-influenced acino-ductal phenotypic switchover, thus highlighting the tumor microenvironment role in pancreatic carcinogenesis inception.
Collapse
Affiliation(s)
- Seema Parte
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, Nebraska
| | - Annant B Kaur
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, Nebraska
| | - Rama Krishna Nimmakayala
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, Nebraska
| | - Ayoola O Ogunleye
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, Nebraska
| | - Ramakanth Chirravuri
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, Nebraska
| | - Raghupathy Vengoji
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, Nebraska
| | - Frank Leon
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, Nebraska
| | - Palanisamy Nallasamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, Nebraska
| | - Sanchita Rauth
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, Nebraska
| | - Zahraa Wajih Alsafwani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, Nebraska
| | - Subodh Lele
- Department of Pathology and Microbiology, University of Nebraska Medical Center at Omaha, Omaha, Nebraska
| | - Jesse L Cox
- Department of Pathology and Microbiology, University of Nebraska Medical Center at Omaha, Omaha, Nebraska
| | - Ishfaq Bhat
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Nebraska Medical Center at Omaha, Omaha, Nebraksa
| | - Shailender Singh
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Nebraska Medical Center at Omaha, Omaha, Nebraksa
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, Nebraska; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center at Omaha, Omaha, Nebraska.
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, Nebraska; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center at Omaha, Omaha, Nebraska.
| |
Collapse
|
15
|
Wang Y, Chen K, Liu G, Du C, Cheng Z, Wei D, Li F, Li C, Yang Y, Zhao Y, Nie G. Disruption of Super-Enhancers in Activated Pancreatic Stellate Cells Facilitates Chemotherapy and Immunotherapy in Pancreatic Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308637. [PMID: 38417121 PMCID: PMC11040371 DOI: 10.1002/advs.202308637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/27/2024] [Indexed: 03/01/2024]
Abstract
One major obstacle in the drug treatment of pancreatic ductal adenocarcinoma (PDAC) is its highly fibrotic tumor microenvironment, which is replete with activated pancreatic stellate cells (a-PSCs). These a-PSCs generate abundant extracellular matrix and secrete various cytokines to form biophysical and biochemical barriers, impeding drug access to tumor tissues. Therefore, it is imperative to develop a strategy for reversing PSC activation and thereby removing the barriers to facilitate PDAC drug treatment. Herein, by integrating chromatin immunoprecipitation (ChIP)-seq, Assays for Transposase-Accessible Chromatin (ATAC)-seq, and RNA-seq techniques, this work reveals that super-enhancers (SEs) promote the expression of various genes involved in PSC activation. Disruption of SE-associated transcription with JQ1 reverses the activated phenotype of a-PSCs and decreases stromal fibrosis in both orthotopic and patient-derived xenograft (PDX) models. More importantly, disruption of SEs by JQ1 treatments promotes vascularization, facilitates drug delivery, and alters the immune landscape in PDAC, thereby improving the efficacies of both chemotherapy (with gemcitabine) and immunotherapy (with IL-12). In summary, this study not only elucidates the contribution of SEs of a-PSCs in shaping the PDAC tumor microenvironment but also highlights that targeting SEs in a-PSCs may become a gate-opening strategy that benefits PDAC drug therapy by removing stromal barriers.
Collapse
Affiliation(s)
- Yazhou Wang
- Pancreas CenterThe First Affiliated Hospital of Nanjing Medical UniversityNanjing210000China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & NanosafetyCAS Center of Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190China
| | - Kai Chen
- Department of General SurgeryPeking University First HospitalBeijing100034China
| | - Gang Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of EducationNortheast Normal UniversityChangchun130024China
| | - Chong Du
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'an710061China
| | - Zhaoxia Cheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & NanosafetyCAS Center of Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190China
| | - Dan Wei
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & NanosafetyCAS Center of Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190China
| | - Fenfen Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & NanosafetyCAS Center of Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190China
| | - Chen Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & NanosafetyCAS Center of Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190China
| | - Yinmo Yang
- Department of General SurgeryPeking University First HospitalBeijing100034China
| | - Ying Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & NanosafetyCAS Center of Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & NanosafetyCAS Center of Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190China
| |
Collapse
|
16
|
Wang G, Li P, Su SW, Xu R, Huang ZY, Yang TX, Li JM. Identification of key pathways and mRNAs in interstitial cystitis/bladder pain syndrome treatment with quercetin through bioinformatics analysis of mRNA-sequence data. Aging (Albany NY) 2024; 16:5949-5966. [PMID: 38526326 PMCID: PMC11042929 DOI: 10.18632/aging.205682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/03/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND Interstitial cystitis/bladder pain syndrome (IC/BPS) is a chronic condition with painful bladder. At present, the pathogenesis of IC/BPS is still unknown. Quercetin (QCT) is a kind of natural flavonoid with wide sources and multiple biological activities. The purpose of this study was to explore the effects of QCT on mRNA expression and related regulatory signal pathways in IC model rats. METHODS LL-37 was used to induce the IC/BPS model rats. 20 mg/kg QCT was injected intraperitoneally into IC/BPS rats. ELISA, HE, Masson and TB staining were used to evaluate the level of inflammation and pathology. The concentration of QCT in rats was detected by HPLC. The mRNA sequencing was used to detect the differentially expressed (DE) mRNA in each group. The over-expression experiment of Lpl was carried out in IC/BPS model rats. RESULTS QCT treatment significantly decreased the level of MPO, IL-1β, IL-6 and TNF-α induced by LL-37 in rats, and alleviated bladder injury and mast cell degranulation. There were significant differences in mRNA sequencing data between groups, and the hub gene Lpl were screened by Cytohubba. The expression of Lpl was downregulated in IC/BPS rats. QCT intervention promoted Lpl expression. Overexpression of Lpl reduced the bladder injury induced by LL-37, increased GAG level and decreased the expression of MPO, IL-1β, IL-6 and TNF-α. CONCLUSION In this study, we provided the DE mRNA in IC/BPS rats treated with QCT, the signaling pathways for DE enrichment, screened out the hub genes, and revealed that Lpl overexpression alleviated IC/BPS model rats.
Collapse
Affiliation(s)
- Guang Wang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Pei Li
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Si-Wei Su
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Rui Xu
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Zi-Ye Huang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Tong-Xin Yang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Jiong-Ming Li
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| |
Collapse
|
17
|
Zhang C, Yu Z, Yang S, Liu Y, Song J, Mao J, Li M, Zhao Y. ZNF460-mediated circRPPH1 promotes TNBC progression through ITGA5-induced FAK/PI3K/AKT activation in a ceRNA manner. Mol Cancer 2024; 23:33. [PMID: 38355583 PMCID: PMC10865535 DOI: 10.1186/s12943-024-01944-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/23/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Circular RNAs are highly stable regulatory RNAs that have been increasingly associated with tumorigenesis and progression. However, the role of many circRNAs in triple-negative breast cancer (TNBC) and the related mechanisms have not been elucidated. METHODS In this study, we screened circRNAs with significant expression differences in the RNA sequencing datasets of TNBC and normal breast tissues and then detected the expression level of circRPPH1 by qRT‒PCR. The biological role of circRPPH1 in TNBC was then verified by in vivo and in vitro experiments. Mechanistically, we verified the regulatory effects between circRPPH1 and ZNF460 and between circRPPH1 and miR-326 by chromatin immunoprecipitation (ChIP), fluorescence in situ hybridization assay, dual luciferase reporter gene assay and RNA pull-down assay. In addition, to determine the expression of associated proteins, we performed immunohistochemistry, immunofluorescence, and western blotting. RESULTS The upregulation of circRPPH1 in TNBC was positively linked with a poor prognosis. Additionally, both in vivo and in vitro, circRPPH1 promoted the biologically malignant behavior of TNBC cells. Additionally, circRPPH1 may function as a molecular sponge for miR-326 to control integrin subunit alpha 5 (ITGA5) expression and activate the focal adhesion kinase (FAK)/PI3K/AKT pathway. CONCLUSION Our research showed that ZNF460 could promote circRPPH1 expression and that the circRPPH1/miR-326/ITGA5 axis could activate the FAK/PI3K/AKT pathway to promote the progression of TNBC. Therefore, circRPPH1 can be used as a therapeutic or diagnostic target for TNBC.
Collapse
Affiliation(s)
- Chuanpeng Zhang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Ziyi Yu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Susu Yang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Yitao Liu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Jiangni Song
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Juan Mao
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Minghui Li
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Yi Zhao
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China.
| |
Collapse
|
18
|
Tan Z, Liu C, He P, Wu Y, Li J, Zhang J, Dong W. Based on Weighted Gene Co-Expression Network Analysis Reveals the Hub Immune Infiltration-Related Genes Associated with Ulcerative Colitis. J Inflamm Res 2024; 17:357-370. [PMID: 38250142 PMCID: PMC10800091 DOI: 10.2147/jir.s428503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Purpose Immune infiltration plays a pivotal role in the pathogenesis of mucosal damage in ulcerative colitis (UC). The objective of this study was to systematically analyze and identify genetic characteristics associated with immune infiltration in UC. Patients and Methods Gene expression data from three independent datasets obtained from the Gene Expression Omnibus (GEO) were utilized. By employing the ssGSEA and CIBERSORT algorithms, we estimated the extent of immune cell infiltration in UC samples. Subsequently, Weighted Correlation Network Analysis (WGCNA) was performed to identify gene modules exhibiting significant associations with immune infiltration, and further identification of hub genes associated with immune infiltration was accomplished using least absolute shrinkage and selection operator (LASSO) regression analysis. The relationship between the identified hub genes and clinical information was subsequently investigated. Results Our findings revealed significant activation of both innate and adaptive immune cells in UC. Notably, the expression levels of CD44, IL1B, LYN, and ITGA5 displayed strong correlations with immune cell infiltration within the mucosa of UC patients. Immunohistochemical analysis confirmed the significant upregulation of CD44, LYN, and ITGA5 in UC samples, and their expression levels were found to be significantly associated with common inflammatory markers, including the systemic immune inflammation indices, C-reactive protein, and erythrocyte sedimentation rate. Conclusion CD44, LYN, and ITGA5 are involved in the immune infiltration pathogenesis of UC and may be potential therapeutic targets for UC.
Collapse
Affiliation(s)
- Zongbiao Tan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
| | - Chuan Liu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
| | - Pengzhan He
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
| | - Yanrui Wu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
| | - Jiao Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
| | - Jixiang Zhang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
| |
Collapse
|
19
|
Afshar K, Sanaei MJ, Ravari MS, Pourbagheri-Sigaroodi A, Bashash D. An overview of extracellular matrix and its remodeling in the development of cancer and metastasis with a glance at therapeutic approaches. Cell Biochem Funct 2023; 41:930-952. [PMID: 37665068 DOI: 10.1002/cbf.3846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023]
Abstract
The extracellular matrix (ECM) is an inevitable part of tissues able to provide structural support for cells depending on the purpose of tissues and organs. The dynamic characteristics of ECM let this system fluently interact with the extrinsic triggers and get stiffed, remodeled, and/or degraded ending in maintaining tissue homeostasis. ECM could serve as the platform for cancer progression. The dysregulation of biochemical and biomechanical ECM features might take participate in some pathological conditions such as aging, tissue destruction, fibrosis, and particularly cancer. Tumors can reprogram how ECM remodels by producing factors able to induce protein synthesis, matrix proteinase expression, degradation of the basement membrane, growth signals and proliferation, angiogenesis, and metastasis. Therefore, targeting the ECM components, their secretion, and their interactions with other cells or tumors could be a promising strategy in cancer therapies. The present study initially introduces the physiological functions of ECM and then discusses how tumor-dependent dysregulation of ECM could facilitate cancer progression and ends with reviewing the novel therapeutic strategies regarding ECM.
Collapse
Affiliation(s)
- Kimiya Afshar
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Javad Sanaei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrnaz Sadat Ravari
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Lu L, Gao Y, Huang D, Liu H, Yin D, Li M, Zheng J, Wang S, Wu W, Zhao L, Bi D, Zhang Y, Song F, Xie R, Wang J, Qin H, Wei Q. Targeting integrin α5 in fibroblasts potentiates colorectal cancer response to PD-L1 blockade by affecting extracellular-matrix deposition. J Immunother Cancer 2023; 11:e007447. [PMID: 38040421 PMCID: PMC10693881 DOI: 10.1136/jitc-2023-007447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND One reason patients with cancer cannot benefit from immunotherapy is the lack of immune cell infiltration in tumor tissues. Cancer-associated fibroblasts (CAFs) are emerging as central players in immune regulation that shapes tumor microenvironment (TME). Earlier we reported that integrin α5 was enriched in CAFs in colorectal cancer (CRC), however, its role in TME and cancer immunotherapy remains unclear. Here, we aimed to investigate the role for integrin α5 in fibroblasts in modulating antitumor immunity and therapeutic efficacy combined with checkpoint blockade in CRC. METHODS We analyzed the CRC single-cell RNA sequencing (scRNA-seq) database to define the expression of ITGA5 in CRC tumor stroma. Experimentally, we carried out in vivo mouse tumor xenograft models to confirm the targeting efficacy of combined α5β1 inhibition and anti-Programmed death ligand 1 (PD-L1) blockade and in vitro cell-co-culture assay to investigate the role of α5 in fibroblasts in affecting T-cell activity. Clinically, we analyzed the association between α5 expression and infiltrating T cells and evaluated their correlation with patient survival and immunotherapy prognosis in CRC. RESULTS We revealed that ITGA5 was enriched in FAP-CAFs. Both ITGA5 knockout fibroblasts and therapeutic targeting of α5 improved response to anti-PD-L1 treatment in mouse subcutaneous tumor models. Mechanistically, these treatments led to increased tumor-infiltrating CD8+ T cells. Furthermore, we found that α5 in fibroblasts correlated with extracellular matrix (ECM)-related genes and affected ECM deposition in CRC tumor stroma. Both in vivo analysis and in vitro culture and cell killing experiment showed that ECM proteins and α5 expression in fibroblasts influence T-cell infiltration and activity. Clinically, we confirmed that high α5 expression was associated with fewer CD3+ T and CD8+ T cells, and tissues with low α5 and high CD3+ T levels correlated with better patient survival and immunotherapy response in a CRC cohort with 29 patients. CONCLUSIONS Our study identified a role for integrin α5 in fibroblasts in modulating antitumor immunity by affecting ECM deposition and showed therapeutic efficacy for combined α5β1 inhibition and PD-L1 blockade in CRC.
Collapse
Affiliation(s)
- Ling Lu
- Department of Pathology, Shanghai Tenth People's Hospital, Shanghai, China
| | - Yaohui Gao
- Department of Pathology, Shanghai Tenth People's Hospital, Shanghai, China
| | - Dengfeng Huang
- Department of Pathology, Shanghai Tenth People's Hospital, Shanghai, China
| | - Hu Liu
- Department of Pathology, Shanghai Tenth People's Hospital, Shanghai, China
| | - Dingzi Yin
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, New York, USA
| | - Man Li
- Department of Pathology, Shanghai Tenth People's Hospital, Shanghai, China
| | - Jiayi Zheng
- Department of Pathology, Shanghai Tenth People's Hospital, Shanghai, China
| | - Shufei Wang
- Department of Pathology, Shanghai Tenth People's Hospital, Shanghai, China
| | - Weijun Wu
- Department of Pathology, Shanghai Tenth People's Hospital, Shanghai, China
| | - Li Zhao
- Department of Pathology, Shanghai Tenth People's Hospital, Shanghai, China
| | - Dexi Bi
- Department of Pathology, Shanghai Tenth People's Hospital, Shanghai, China
| | - Youhua Zhang
- Department of Pathology, Shanghai Tenth People's Hospital, Shanghai, China
| | - Feifei Song
- Department of Pathology, Shanghai Tenth People's Hospital, Shanghai, China
| | - Ruting Xie
- Department of Pathology, Shanghai Tenth People's Hospital, Shanghai, China
| | - Jifeng Wang
- Department of Pathology, Shanghai Tenth People's Hospital, Shanghai, China
| | - Huanlong Qin
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Shanghai, China
| | - Qing Wei
- Department of Pathology, Shanghai Tenth People's Hospital, Shanghai, China
| |
Collapse
|
21
|
Buryska S, Patel K, Wuertz B, Gaffney PM, Ondrey F. Potential Roles of Activin in Head and Neck Squamous Cell Carcinoma Progression and Mortality. Anticancer Res 2023; 43:5299-5310. [PMID: 38030164 PMCID: PMC11285815 DOI: 10.21873/anticanres.16733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND/AIM Activin, a member of the TGF-β super family of cytokines, is involved in head and neck squamous cell carcinoma (HNSCC). This study examined the constituents of the activin axis in order to further elucidate the role of activin A in HNSCC progression. MATERIALS AND METHODS Immunohistochemistry (IHC), reverse transcription polymerase chain reaction (RT-PCR), MTT, and matrigel invasion assays, in addition to analysis of the tumor cancer genome atlas (TCGA), were employed. RESULTS IHC in HNSCC and oral leukoplakia (OPL) lesions demonstrated increased expression of the inhibin subunit βA (INHBA) (p<0.0001), as well as activin receptor type IB (ACVR1B) (p<0.0032) compared to normal mucosa. TCGA analysis revealed increased INHBA expression was associated with lymph node positive tumors (p=0.024), decreased overall survival (p=0.0167), and decreased promoter methylation (p<0.0001). Concomitant up-regulated expression of gene pathways strongly correlated with INHBA expression demonstrated further deleterious effects on survival (p<0.0148). CONCLUSION Activin may be an important component of early carcinogenesis in OPL and HNSCC with unfavorable effects on clinical end-points such as survival.
Collapse
Affiliation(s)
- Seth Buryska
- Department of Otolaryngology-Head and Neck Surgery, University of Minnesota, Minneapolis, MN, U.S.A
| | - Ketan Patel
- North Memorial Health/Blaze Health, Minneapolis, MN, U.S.A
| | - Beverly Wuertz
- Department of Otolaryngology-Head and Neck Surgery, University of Minnesota, Minneapolis, MN, U.S.A.;
| | | | - Frank Ondrey
- Department of Otolaryngology-Head and Neck Surgery, University of Minnesota, Minneapolis, MN, U.S.A
| |
Collapse
|
22
|
Li M, Liu Y, Zhang Y, Yu N, Li J. Sono-Activatable Semiconducting Polymer Nanoreshapers Multiply Remodel Tumor Microenvironment for Potent Immunotherapy of Orthotopic Pancreatic Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2305150. [PMID: 37870196 PMCID: PMC10724419 DOI: 10.1002/advs.202305150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/11/2023] [Indexed: 10/24/2023]
Abstract
Due to the complicated tumor microenvironment that compromises the efficacies of various therapies, the effective treatment of pancreatic cancer remains a big challenge. Sono-activatable semiconducting polymer nanoreshapers (SPNDN H) are constructed to multiply remodel tumor microenvironment of orthotopic pancreatic cancer for potent immunotherapy. SPNDN H contain a semiconducting polymer, hydrogen sulfide (H2 S) donor, and indoleamine 2,3-dioxygenase (IDO) inhibitor (NLG919), which are encapsulated by singlet oxygen (1 O2 )-responsive shells with modification of hyaluronidase (HAase). After accumulation in orthotopic pancreatic tumor sites, SPNDN H degrade the major content of tumor microenvironment hyaluronic acid to promote nanoparticle enrichment and immune cell infiltration, and also release H2 S to relieve tumor hypoxia via inhibiting mitochondrion functions. Moreover, the relieved hypoxia enables amplified sonodynamic therapy (SDT) under ultrasound (US) irradiation with generation of 1 O2 , which leads to immunogenic cell death (ICD) and destruction of 1 O2 -responsive components to realize sono-activatable NLG919 release for reversing IDO-based immunosuppression. Through such a multiple remodeling mechanism, a potent antitumor immunological effect is triggered after SPNDN H-based treatment. Therefore, the growths of orthotopic pancreatic tumors in mouse models are almost inhibited and tumor metastases are effectively restricted. This study offers a sono-activatable nanoplatform to multiply remodel tumor microenvironment for effective and precise immunotherapy of deep-tissue orthotopic tumors.
Collapse
Affiliation(s)
- Meng Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Biological Science and Medical EngineeringDonghua UniversityShanghai201620China
| | - Yue Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Biological Science and Medical EngineeringDonghua UniversityShanghai201620China
| | - Yijing Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Biological Science and Medical EngineeringDonghua UniversityShanghai201620China
| | - Ningyue Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Biological Science and Medical EngineeringDonghua UniversityShanghai201620China
| | - Jingchao Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Biological Science and Medical EngineeringDonghua UniversityShanghai201620China
| |
Collapse
|
23
|
Park MN. Therapeutic Strategies for Pancreatic-Cancer-Related Type 2 Diabetes Centered around Natural Products. Int J Mol Sci 2023; 24:15906. [PMID: 37958889 PMCID: PMC10648679 DOI: 10.3390/ijms242115906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), a highly malignant neoplasm, is classified as one of the most severe and devastating types of cancer. PDAC is a notable malignancy that exhibits a discouraging prognosis and a rising occurrence. The interplay between diabetes and pancreatic cancer exhibits a reciprocal causation. The identified metabolic disorder has been observed to possess noteworthy consequences on health outcomes, resulting in elevated rates of morbidity. The principal mechanisms involve the suppression of the immune system, the activation of pancreatic stellate cells (PSCs), and the onset of systemic metabolic disease caused by dysfunction of the islets. From this point forward, it is important to recognize that pancreatic-cancer-related diabetes (PCRD) has the ability to increase the likelihood of developing pancreatic cancer. This highlights the complex relationship that exists between these two physiological states. Therefore, we investigated into the complex domain of PSCs, elucidating their intricate signaling pathways and the profound influence of chemokines on their behavior and final outcome. In order to surmount the obstacle of drug resistance and eliminate PDAC, researchers have undertaken extensive efforts to explore and cultivate novel natural compounds of the next generation. Additional investigation is necessary in order to comprehensively comprehend the effect of PCRD-mediated apoptosis on the progression and onset of PDAC through the utilization of natural compounds. This study aims to examine the potential anticancer properties of natural compounds in individuals with diabetes who are undergoing chemotherapy, targeted therapy, or immunotherapy. It is anticipated that these compounds will exhibit increased potency and possess enhanced pharmacological benefits. According to our research findings, it is indicated that naturally derived chemical compounds hold potential in the development of PDAC therapies that are both safe and efficacious.
Collapse
Affiliation(s)
- Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 05253, Republic of Korea
| |
Collapse
|
24
|
Biancacci I, De Santis D, Rama E, Benderski K, Momoh J, Pohlberger R, Moeckel D, Kaps L, Rijcken CJF, Prakash J, Thewissen M, Kiessling F, Shi Y, Peña Q, Sofias AM, Consolino L, Lammers T. Repurposing Tamoxifen for Tumor Microenvironment Priming and Enhanced Tumor-Targeted Drug Delivery. ADVANCED THERAPEUTICS 2023; 6:adtp.202300098. [PMID: 39376929 PMCID: PMC7616667 DOI: 10.1002/adtp.202300098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Indexed: 10/09/2024]
Abstract
The dense stromal matrix in fibrotic tumors hinders tumor-targeted drug delivery. Tamoxifen (TMX), an estrogen receptor modulator that is clinically used for the treatment of breast cancer, has been shown to reprogram the tumor microenvironment (TME) and to alleviate desmoplasia. We here investigated if TMX, administered in free and nano-formulated form, can be repurposed as a TME remodeling agent to improve tumor accumulation of nano-formulations in pancreatic ductal adenocarcinoma and triple-negative breast cancer mouse models, evaluated using clinical-stage Cy7-labeled core-crosslinked polymeric micelles (CCPM). Under control conditions, we found higher levels of Cy7-CCPM in PANC-1 tumors (16.7 % ID g-1 at 48 h post i.v. injection) than in 4T1 tumors (11.0 % ID g-1). In both models, free and nano-formulated TMX failed to improve CCPM delivery. These findings were congruent with the results from histopathological immunofluorescence analysis of tumor tissue, which indicated that TMX treatment did not significantly change vascularization, perfusion, macrophage infiltration, collagen density, and collagen fiber thickness. Altogether, our results demonstrate that in PANC-1 and 4T1 mouse models, TMX treatment does not contribute to beneficial TME priming and enhanced tumor-targeted drug delivery.
Collapse
Affiliation(s)
- Ilaria Biancacci
- RWTH Aachen University, Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Forckenbeckstrasse 55, 52074, Aachen, Germany
| | - Daniele De Santis
- RWTH Aachen University, Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Forckenbeckstrasse 55, 52074, Aachen, Germany
- University of Urbino, Department of Biomolecular Sciences, Piazza Rinascimento 6, 61029, Urbino, Italy
| | - Elena Rama
- RWTH Aachen University, Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Forckenbeckstrasse 55, 52074, Aachen, Germany
| | - Karina Benderski
- RWTH Aachen University, Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Forckenbeckstrasse 55, 52074, Aachen, Germany
| | - Jeffrey Momoh
- RWTH Aachen University, Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Forckenbeckstrasse 55, 52074, Aachen, Germany
| | - Robert Pohlberger
- RWTH Aachen University, Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Forckenbeckstrasse 55, 52074, Aachen, Germany
| | - Diana Moeckel
- RWTH Aachen University, Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Forckenbeckstrasse 55, 52074, Aachen, Germany
| | - Leonard Kaps
- University Medical Center of the Johannes Gutenberg-University Mainz, Department of Internal Medicine 1, Langenbeckstrasse 1, 55131, Mainz, Germany
- University Medical Center of the Johannes Gutenberg-University Mainz, Institute of Translational Immunology and Research Center for Immunotherapy/FZI), Obere Zahlbacher Str. 63, 55131, Mainz, Germany
| | | | - Jai Prakash
- University of Twente, Engineered Therapeutics Section, Department of Advanced Organ Bioengineering and Therapeutics, Technical Medical Centre, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands
| | - Marielle Thewissen
- Cristal Therapeutics, Oxfordlaan 55, 6229 EV, Maastricht, The Netherlands
| | - Fabian Kiessling
- RWTH Aachen University, Institute for Experimental Molecular Imaging, Forckenbeckstrasse 55, 52074, Aachen, Germany
- Fraunhofer Institute for Digital Medicine MEVIS, Max-Von-Laue-Strasse 2, 28359, Bremen, Germany
| | - Yang Shi
- RWTH Aachen University, Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Forckenbeckstrasse 55, 52074, Aachen, Germany
| | - Quim Peña
- RWTH Aachen University, Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Forckenbeckstrasse 55, 52074, Aachen, Germany
| | - Alexandros Marios Sofias
- RWTH Aachen University, Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Forckenbeckstrasse 55, 52074, Aachen, Germany
| | - Lorena Consolino
- RWTH Aachen University, Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Forckenbeckstrasse 55, 52074, Aachen, Germany
| | - Twan Lammers
- RWTH Aachen University, Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Forckenbeckstrasse 55, 52074, Aachen, Germany
| |
Collapse
|
25
|
Li Z, Cai H, Zheng J, Chen X, Liu G, Lv Y, Ye H, Cai G. Mitochondrial-related genes markers that predict survival in patients with head and neck squamous cell carcinoma affect immunomodulation through hypoxia, glycolysis, and angiogenesis pathways. Aging (Albany NY) 2023; 15:10347-10369. [PMID: 37796226 PMCID: PMC10599748 DOI: 10.18632/aging.205081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/08/2023] [Indexed: 10/06/2023]
Abstract
Mitochondria play a crucial role in the occurrence and development of tumors. We used mitochondria-related genes for consistent clustering to identify three stable molecular subtypes of head and neck squamous cell carcinoma (HNSCC) with different prognoses, mutations, and immune characteristics. Significant differences were observed in clinical characteristics, immune microenvironment, immune cell infiltration, and immune cell scores. TP53 was the most significantly mutated; cell cycle-related pathways and tumorigenesis-related pathways were activated in different subtypes. Risk modeling was conducted using a multifactor stepwise regression method, and nine genes were identified as mitochondria-related genes affecting prognosis (DKK1, EFNB2, ITGA5, AREG, EPHX3, CHGB, P4HA1, CCND1, and JCHAIN). Risk score calculations revealed significant differences in prognosis, immune cell scores, immune cell infiltration, and responses to conventional chemotherapy drugs. Glycolysis, angiogenesis, hypoxia, and tumor-related pathways were positively correlated with the RiskScore. Clinical samples were subjected to qPCR to validate the results. In this work, we constructed a prognostic model based on the mitochondrial correlation score, which well reflects the risk and positive factors for the prognosis of patients with HNSCC. This model can be used to guide individualized adjuvant and immunotherapy in patients with HNSCC.
Collapse
Affiliation(s)
- Zhonghua Li
- Department of Otolaryngology Head and Neck Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, China
| | - Haoxi Cai
- School of Stomatology, Ningxia Medical University, Yinchuan 750004, China
| | - Jinyang Zheng
- Department of Pathology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, China
| | - Xun Chen
- Department of Oral Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, China
| | - Guancheng Liu
- Department of Otolaryngology Head and Neck Surgery, The Hospital Affiliated of Guilin Medical College, Guilin 541000, China
| | - Yunxia Lv
- Department of Thyroid Surgery, The Second Affiliated Hospital to Nanchang University, Nanchang 330006, China
| | - Hui Ye
- Haicang Hospital Affiliated of Xiamen Medical College, Xiamen 361026, China
| | - Gengming Cai
- Haicang Hospital Affiliated of Xiamen Medical College, Xiamen 361026, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou 361026, China
- The Graduate School of Fujian Medical University, Fuzhou 361026, China
| |
Collapse
|
26
|
Li Y, Cai H, Yang J, Xie X, Pei S, Wu Y, Zhang J, Song G, Zhang J, Zhang Q, Chi H, Yang G. Decoding tumor heterogeneity in uveal melanoma: basement membrane genes as novel biomarkers and therapeutic targets revealed by multi-omics approaches for cancer immunotherapy. Front Pharmacol 2023; 14:1264345. [PMID: 37822877 PMCID: PMC10562578 DOI: 10.3389/fphar.2023.1264345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/15/2023] [Indexed: 10/13/2023] Open
Abstract
Background: Uveal melanoma (UVM) is a primary intraocular malignancy that poses a significant threat to patients' visual function and life. The basement membrane (BM) is critical for establishing and maintaining cell polarity, adult function, embryonic and organ morphogenesis, and many other biological processes. Some basement membrane protein genes have been proven to be prognostic biomarkers for various cancers. This research aimed to develop a novel risk assessment system based on BMRGs that would serve as a theoretical foundation for tailored and accurate treatment. Methods: We used gene expression profiles and clinical data from the TCGA-UVM cohort of 80 UVM patients as a training set. 56 UVM patients from the combined cohort of GSE84976 and GSE22138 were employed as an external validation dataset. Prognostic characteristics of basement membrane protein-related genes (BMRGs) were characterized by Lasso, stepwise multifactorial Cox. Multivariate analysis revealed BMRGs to be independent predictors of UVM. The TISCH database probes the crosstalk of BMEGs in the tumor microenvironment at the single-cell level. Finally, we investigated the function of ITGA5 in UVM using multiple experimental techniques, including CCK8, transwell, wound healing assay, and colony formation assay. Results: There are three genes in the prognostic risk model (ADAMTS10, ADAMTS14, and ITGA5). After validation, we determined that the model is quite reliable and accurately forecasts the prognosis of UVM patients. Immunotherapy is more likely to be beneficial for UVM patients in the high-risk group, whereas the survival advantage may be greater for UVM patients in the low-risk group. Knockdown of ITGA5 expression was shown to inhibit the proliferation, migration, and invasive ability of UVM cells in vitro experiments. Conclusion: The 3-BMRGs feature model we constructed has excellent predictive performance which plays a key role in the prognosis, informing the individualized treatment of UVM patients. It also provides a new perspective for assessing pre-immune efficacy.
Collapse
Affiliation(s)
- Yunyue Li
- Queen Mary College, Medical School of Nanchang University, Nanchang, China
| | - Huabao Cai
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jinyan Yang
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Xixi Xie
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Shengbin Pei
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yifan Wu
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jinhao Zhang
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Guobin Song
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Jieying Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qinhong Zhang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Guanhu Yang
- Department of Specialty Medicine, Ohio University, Athens, OH, United States
| |
Collapse
|
27
|
Zhao Z, Khurana A, Antony F, Young JW, Hewton KG, Brough Z, Zhong T, Parker SJ, Duong van Hoa F. A Peptidisc-Based Survey of the Plasma Membrane Proteome of a Mammalian Cell. Mol Cell Proteomics 2023; 22:100588. [PMID: 37295717 PMCID: PMC10416069 DOI: 10.1016/j.mcpro.2023.100588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 05/05/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023] Open
Abstract
Membrane proteins play critical roles at the cell surface and their misfunction is a hallmark of many human diseases. A precise evaluation of the plasma membrane proteome is therefore essential for cell biology and for discovering novel biomarkers and therapeutic targets. However, the low abundance of this proteome relative to soluble proteins makes it difficult to characterize, even with the most advanced proteomics technologies. Here, we apply the peptidisc membrane mimetic to purify the cell membrane proteome. Using the HeLa cell line as a reference, we capture 500 different integral membrane proteins, with half annotated to the plasma membrane. Notably, the peptidisc library is enriched with several ABC, SLC, GPCR, CD, and cell adhesion molecules that generally exist at low to very low copy numbers in the cell. We extend the method to compare two pancreatic cell lines, Panc-1 and hPSC. Here we observe a striking difference in the relative abundance of the cell surface cancer markers L1CAM, ANPEP, ITGB4, and CD70. We also identify two novel SLC transporters, SLC30A1 and SLC12A7, that are highly present in the Panc-1 cell only. The peptidisc library thus emerges as an effective way to survey and compare the membrane proteome of mammalian cells. Furthermore, since the method stabilizes membrane proteins in a water-soluble state, members of the library, here SLC12A7, can be specifically isolated.
Collapse
Affiliation(s)
- Zhiyu Zhao
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Arshdeep Khurana
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Frank Antony
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - John W Young
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Keeley G Hewton
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Zora Brough
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tianshuang Zhong
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Seth J Parker
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Franck Duong van Hoa
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
28
|
Giustarini G, Teng G, Pavesi A, Adriani G. Characterization of 3D heterocellular spheroids of pancreatic ductal adenocarcinoma for the study of cell interactions in the tumor immune microenvironment. Front Oncol 2023; 13:1156769. [PMID: 37519820 PMCID: PMC10375712 DOI: 10.3389/fonc.2023.1156769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignancies nowadays. The available chemo- and immunotherapies are often ineffective in treating PDAC due to its immunosuppressive and highly desmoplastic tumor immune microenvironment (TIME), which is hardly reproduced in the existing preclinical models. The PDAC TIME results from a peculiar spatial organization between different cell types. For this reason, developing new human models recapitulating the tissue organization and cell heterogeneity of PDAC is highly desirable. We developed human 3D heterocellular tumor spheroids of PDAC formed by cancer cells, endothelial cells, pancreatic stellate cells (PSC), and monocytes. As a control, we formed spheroids using immortalized epithelial pancreatic ductal cells (non-cancerous spheroids) with cellular heterogeneity similar to the tumor spheroids. Normal spheroids containing endothelial cells formed a complex 3D endothelial network significantly compromised in tumor spheroids. Monocyte/macrophages within the 4-culture tumor spheroids were characterized by a higher expression of CD163, CD206, PD-L1, and CD40 than those in the non-cancerous spheroids suggesting their differentiation towards an immunosuppressive phenotype. The heterocellular tumor spheroids presented a hypoxic core populated with PSC and monocytes/macrophages. The 4-culture tumor spheroids were characterized by spatial proximity of PSC and monocytes to the endothelial cells and a cytokine signature with increased concentrations of CXCL10, CCL2, and IL-6, which have been observed in PDAC patients and associated with poor survival. Further, 4-culture tumor spheroids decreased the concentrations of T-cell chemoattracting cytokines, i.e., CCL4, CCL5, and CXCL9, when compared with the non-cancerous spheroids, revealing a critical immunosuppressive feature of the different types of cells forming the tumor spheroids. Our results showed that the 4-culture tumor spheroids better resembled some critical features of patients' PDAC TIME than monoculture tumor spheroids. Using the proposed human 3D spheroid model for therapy testing at the preclinical stage may reveal pitfalls of chemo- and immuno-therapies to help the development of better anti-tumor therapies.
Collapse
Affiliation(s)
- Giulio Giustarini
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Germaine Teng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Andrea Pavesi
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Giulia Adriani
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
29
|
Bakhshinyan D, Suk Y, Kuhlmann L, Adile AA, Ignatchenko V, Custers S, Gwynne WD, Macklin A, Venugopal C, Kislinger T, Singh SK. Dynamic profiling of medulloblastoma surfaceome. Acta Neuropathol Commun 2023; 11:111. [PMID: 37430373 PMCID: PMC10331972 DOI: 10.1186/s40478-023-01609-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/26/2023] [Indexed: 07/12/2023] Open
Abstract
Medulloblastoma (MB) is the most common type of malignant pediatric brain cancer. The current standard of care (SOC) involves maximal safe resection and chemoradiotherapy in individuals older than 3 years, often leading to devastating neurocognitive and developmental deficits. Out of the four distinct molecular subgroups, Group 3 and 4 have the poorest patient outcomes due to the aggressive nature of the tumor and propensity to metastasize and recur post therapy. The toxicity of the SOC and lack of response in specific subtypes to the SOC underscores the urgent need for developing and translating novel treatment options including immunotherapies. To identify differentially enriched surface proteins that could be evaluated for potential future immunotherapeutic interventions, we leveraged N-glycocapture surfaceome profiling on Group 3 MB cells from primary tumor, through therapy, to recurrence using our established therapy-adapted patient derived xenograft model. Integrin 𝛼5 (ITGA5) was one of the most differentially enriched targets found at recurrence when compared to engraftment and untreated timepoints. In addition to being enriched at recurrence, shRNA-mediated knockdown and small molecule inhibition of ITGA5 have resulted in marked decrease in proliferation and self-renewal in vitro and demonstrated a survival advantage in vivo. Together, our data highlights the value of dynamic profiling of cells as they evolve through therapy and the identification of ITGA5 as a promising therapeutic target for recurrent Group 3 MB.
Collapse
Affiliation(s)
- David Bakhshinyan
- McMaster Centre for Discovery in Cancer Research, McMaster University, MDCL 5027, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Yujin Suk
- McMaster Centre for Discovery in Cancer Research, McMaster University, MDCL 5027, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Michael G DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | - Laura Kuhlmann
- Princess Margaret Cancer Center, UHN, Toronto, ON, Canada
| | - Ashley A Adile
- McMaster Centre for Discovery in Cancer Research, McMaster University, MDCL 5027, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Vladimir Ignatchenko
- Princess Margaret Cancer Center, UHN, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Stefan Custers
- McMaster Centre for Discovery in Cancer Research, McMaster University, MDCL 5027, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - William D Gwynne
- McMaster Centre for Discovery in Cancer Research, McMaster University, MDCL 5027, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Andrew Macklin
- Princess Margaret Cancer Center, UHN, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Chitra Venugopal
- McMaster Centre for Discovery in Cancer Research, McMaster University, MDCL 5027, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Thomas Kislinger
- Princess Margaret Cancer Center, UHN, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Sheila K Singh
- McMaster Centre for Discovery in Cancer Research, McMaster University, MDCL 5027, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada.
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada.
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
30
|
Wang Z, He R, Dong S, Zhou W. Pancreatic stellate cells in pancreatic cancer: as potential targets for future therapy. Front Oncol 2023; 13:1185093. [PMID: 37409257 PMCID: PMC10318188 DOI: 10.3389/fonc.2023.1185093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/05/2023] [Indexed: 07/07/2023] Open
Abstract
Pancreatic cancer is a strongly malignant gastrointestinal carcinoma characterized by late detection, high mortality rates, poor patient prognosis and lack of effective treatments. Consequently, there is an urgent need to identify novel therapeutic strategies for this disease. Pancreatic stellate cells, which constitute a significant component of the mesenchymal cellular layer within the pancreatic tumor microenvironment, play a pivotal role in modulating this environment through their interactions with pancreatic cancer cells. This paper reviews the mechanisms by which pancreatic stellate cells inhibit antitumor immune responses and promote cancer progression. We also discuss preclinical studies focusing on these cells, with the goal of providing some theoretical references for the development of new therapeutic approaches for pancreatic cancer.
Collapse
Affiliation(s)
- Zhengfeng Wang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Ru He
- The Second School of Clinical Medicine, Lanzhou University Medical College, Lanzhou, China
| | - Shi Dong
- The Second School of Clinical Medicine, Lanzhou University Medical College, Lanzhou, China
| | - Wence Zhou
- The Second School of Clinical Medicine, Lanzhou University Medical College, Lanzhou, China
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
31
|
Zhu L, Tu D, Li R, Li L, Zhang W, Jin W, Li T, Zhu H. The diagnostic significance of the ZNF gene family in pancreatic cancer: a bioinformatics and experimental study. Front Genet 2023; 14:1089023. [PMID: 37396042 PMCID: PMC10311482 DOI: 10.3389/fgene.2023.1089023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 06/06/2023] [Indexed: 07/04/2023] Open
Abstract
Background: Pancreatic adenocarcinoma (PAAD) is among the most devastating of all cancers with a poor survival rate. Therefore, we established a zinc finger (ZNF) protein-based prognostic prediction model for PAAD patients. Methods: The RNA-seq data for PAAD were downloaded from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases. Differentially expressed ZNF protein genes (DE-ZNFs) in PAAD and normal control tissues were screened using the "lemma" package in R. An optimal risk model and an independent prognostic value were established by univariate and multivariate Cox regression analyses. Survival analyses were performed to assess the prognostic ability of the model. Results: We constructed a ZNF family genes-related risk score model that is based on the 10 DE-ZNFs (ZNF185, PRKCI, RTP4, SERTAD2, DEF8, ZMAT1, SP110, U2AF1L4, CXXC1, and RMND5B). The risk score was found to be a significant independent prognostic factor for PAAD patients. Seven significantly differentially expressed immune cells were identified between the high- and low-risk patients. Then, based on the prognostic genes, we constructed a ceRNA regulatory network that includes 5 prognostic genes, 7 miRNAs and 35 lncRNAs. Expression analysis showed ZNF185, PRKCI and RTP4 were significantly upregulated, while ZMAT1 and CXXC1 were significantly downregulated in the PAAD samples in all TCGA - PAAD, GSE28735 and GSE15471 datasets. Moreover, the upregulation of RTP4, SERTAD2, and SP110 were verified by the cell experiments. Conclusion: We established and validated a novel, Zinc finger protein family - related prognostic risk model for patients with PAAD, that has the potential to inform patient management.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Dong Tu
- Department of Cardiothoracic Surgery, No. 920 Hospital of the PLA Joint Logistics Support Force, Kunming, China
| | - Ruixue Li
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Lin Li
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Wenjie Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Wenxiang Jin
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Tiehan Li
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Hong Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
32
|
Bruni S, Mercogliano MF, Mauro FL, Cordo Russo RI, Schillaci R. Cancer immune exclusion: breaking the barricade for a successful immunotherapy. Front Oncol 2023; 13:1135456. [PMID: 37284199 PMCID: PMC10239871 DOI: 10.3389/fonc.2023.1135456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/10/2023] [Indexed: 06/08/2023] Open
Abstract
Immunotherapy has changed the course of cancer treatment. The initial steps were made through tumor-specific antibodies that guided the setup of an antitumor immune response. A new and successful generation of antibodies are designed to target immune checkpoint molecules aimed to reinvigorate the antitumor immune response. The cellular counterpart is the adoptive cell therapy, where specific immune cells are expanded or engineered to target cancer cells. In all cases, the key for achieving positive clinical resolutions rests upon the access of immune cells to the tumor. In this review, we focus on how the tumor microenvironment architecture, including stromal cells, immunosuppressive cells and extracellular matrix, protects tumor cells from an immune attack leading to immunotherapy resistance, and on the available strategies to tackle immune evasion.
Collapse
|
33
|
Duan Y, Zhang X, Ying H, Xu J, Yang H, Sun K, He L, Li M, Ji Y, Liang T, Bai X. Targeting MFAP5 in cancer-associated fibroblasts sensitizes pancreatic cancer to PD-L1-based immunochemotherapy via remodeling the matrix. Oncogene 2023:10.1038/s41388-023-02711-9. [PMID: 37156839 DOI: 10.1038/s41388-023-02711-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023]
Abstract
Highly desmoplastic and immunosuppressive tumor microenvironment (TME) in pancreatic ductal adenocarcinoma (PDAC) contributes to tumor progression and resistance to current therapies. Clues targeting the notorious stromal environment have offered hope for improving therapeutic response whereas the underlying mechanism remains unclear. Here, we find that prognostic microfibril associated protein 5 (MFAP5) is involved in activation of cancer-associated fibroblasts (CAFs). Inhibition of MFAP5highCAFs shows synergistic effect with gemcitabine-based chemotherapy and PD-L1-based immunotherapy. Mechanistically, MFAP5 deficiency in CAFs downregulates HAS2 and CXCL10 via MFAP5/RCN2/ERK/STAT1 axis, leading to angiogenesis, hyaluronic acid (HA) and collagens deposition reduction, cytotoxic T cells infiltration, and tumor cells apoptosis. Additionally, in vivo blockade of CXCL10 with AMG487 could partially reverse the pro-tumor effect from MFAP5 overexpression in CAFs and synergize with anti-PD-L1 antibody to enhance the immunotherapeutic effect. Therefore, targeting MFAP5highCAFs might be a potential adjuvant therapy to enhance the immunochemotherapy effect in PDAC via remodeling the desmoplastic and immunosuppressive microenvironment.
Collapse
Affiliation(s)
- Yi Duan
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Innovation Center for The Study of Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for The Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, China
- Cancer Center, Zhejiang University, Hangzhou, 310000, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, 310000, Zhejiang, China
| | - Xiaozhen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Innovation Center for The Study of Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for The Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, China
- Cancer Center, Zhejiang University, Hangzhou, 310000, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, 310000, Zhejiang, China
| | - Honggang Ying
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Innovation Center for The Study of Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for The Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, China
- Cancer Center, Zhejiang University, Hangzhou, 310000, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, 310000, Zhejiang, China
| | - Jian Xu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Innovation Center for The Study of Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for The Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, China
- Cancer Center, Zhejiang University, Hangzhou, 310000, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, 310000, Zhejiang, China
| | - Hanshen Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Innovation Center for The Study of Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for The Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, China
- Cancer Center, Zhejiang University, Hangzhou, 310000, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, 310000, Zhejiang, China
| | - Kang Sun
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Innovation Center for The Study of Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for The Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, China
- Cancer Center, Zhejiang University, Hangzhou, 310000, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, 310000, Zhejiang, China
| | - Lihong He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Innovation Center for The Study of Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for The Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, China
- Cancer Center, Zhejiang University, Hangzhou, 310000, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, 310000, Zhejiang, China
| | - Muchun Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Innovation Center for The Study of Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for The Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, China
- Cancer Center, Zhejiang University, Hangzhou, 310000, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, 310000, Zhejiang, China
| | - Yongtao Ji
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Innovation Center for The Study of Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for The Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, China
- Cancer Center, Zhejiang University, Hangzhou, 310000, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, 310000, Zhejiang, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China.
- Zhejiang Provincial Innovation Center for The Study of Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, Zhejiang, China.
- Zhejiang Provincial Clinical Research Center for The Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, China.
- Cancer Center, Zhejiang University, Hangzhou, 310000, China.
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, 310000, Zhejiang, China.
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China.
- Zhejiang Provincial Innovation Center for The Study of Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, Zhejiang, China.
- Zhejiang Provincial Clinical Research Center for The Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, China.
- Cancer Center, Zhejiang University, Hangzhou, 310000, China.
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, 310000, Zhejiang, China.
| |
Collapse
|
34
|
Liu L, Xiao X, Guo J, Wang J, Liu S, Wang M, Peng Q, Jiang N. Aptamer and Peptide-Engineered Polydopamine Nanospheres for Target Delivery and Tumor Perfusion in Synergistic Chemo-Phototherapy of Pancreatic Cancer. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16539-16551. [PMID: 36961248 DOI: 10.1021/acsami.3c01967] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Pancreatic cancer (PC) is the fourth leading cause of cancer death, and the 5 year survival rate is only 4%. Chemotherapy is the treatment option for the majority of PC patients diagnosed at an advanced stage, whereas the desmoplastic stroma of PC could block the perfusion of chemotherapeutic agents to tumor tissues and contribute generally to chemoresistance. Therefore, the clinical status of PC calls for an urgent exploration in the effective treatment strategy. Chemo-phototherapy is an emerging modality against malignant tumors, but owing to the low targeting ability of theranostic agents or unspecific accumulation in the tumor region, majority of chemo-phototherapy techniques have disappointing therapeutic efficiencies. Herein, we have explored CD71-specific targeting aptamers and paclitaxel (PTX)-modified polydopamine (PDA) nanospheres with the conjugation of peptidomimetic AV3 (termed Apt-PDA@PTX/AV3 bioconjugates) to specifically target and combat PC in vivo by synergistic chemo-phototherapy. After the delivery of nanotheranostic agents to the tumor microenvironment (TME) or subsequent endocytic uptake by PC cells, a simultaneous release of AV3 and PTX from Apt-PDA@PTX/AV3 bioconjugates via near-infrared (NIR) irradiation can decrease desmoplastic stroma to enhance tumor perfusion and tumor-killing effects. Meanwhile, PDA cores utilize NIR laser to create unendurable hyperthermia within TME to "cook" tumors. Taken together, the current study finally suggests that our Apt-PDA@PTX/AV3 bioconjugates could act as a novel therapeutic approach by synergistic chemo-phototherapy for the programmable inhibition of PC.
Collapse
Affiliation(s)
- Liang Liu
- School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Xinyu Xiao
- School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Jiao Guo
- School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Jianwei Wang
- School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Shanshan Liu
- Department of Hepatobiliary Surgery, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Meijiao Wang
- School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Qiling Peng
- School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Ning Jiang
- Department of Pathology, Chongqing Medical University, Chongqing 400016, P. R. China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing 400016, P. R. China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P. R. China
| |
Collapse
|
35
|
Heinrich MA, Uboldi I, Kuninty PR, Ankone MJ, van Baarlen J, Zhang YS, Jain K, Prakash J. Microarchitectural mimicking of stroma-induced vasculature compression in pancreatic tumors using a 3D engineered model. Bioact Mater 2023; 22:18-33. [PMID: 36203956 PMCID: PMC9516389 DOI: 10.1016/j.bioactmat.2022.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/30/2022] [Accepted: 09/15/2022] [Indexed: 10/26/2022] Open
Abstract
Fibrotic tumors, such as pancreatic ductal adenocarcinoma (PDAC), are characterized for high desmoplastic reaction, which results in high intra-tumoral solid stress leading to the compression of blood vessels. These microarchitectural alterations cause loss of blood flow and poor intra-tumoral delivery of therapeutics. Currently, there is a lack of relevant in vitro models capable of replicating these mechanical characteristics and to test anti-desmoplastic compounds. Here, a multi-layered vascularized 3D PDAC model consisting of primary human pancreatic stellate cells (PSCs) embedded in collagen/fibrinogen (Col/Fib), mimicking tumor tissue within adjunct healthy tissue, is presented to study the fibrosis-induced compression of vasculature in PDAC. It is demonstrated how the mechanical and biological stimulation induce PSC activation, extracellular matrix production and eventually vessel compression. The clinical relevance is confirmed by correlating with patient transcriptomic data. Furthermore, the effects of gradual vessel compression on the fluid dynamics occurring within the channel is evaluated in silico. Finally, it is demonstrated how cancer-associated fibroblast (CAF)-modulatory therapeutics can inhibit the cell-mediated compression of blood vessels in PDAC in vitro, in silico and in vivo. It is envisioned that this 3D model is used to improve the understanding of mechanical characteristics in tumors and for evaluating novel anti-desmoplastic therapeutics.
Collapse
Affiliation(s)
- Marcel Alexander Heinrich
- Department of Advanced Organ Bioengineering and Therapeutics, Engineered Therapeutics Section, Technical Medical Centre, University of Twente, 7500AE, Enschede, the Netherlands
| | - Irene Uboldi
- Department of Advanced Organ Bioengineering and Therapeutics, Engineered Therapeutics Section, Technical Medical Centre, University of Twente, 7500AE, Enschede, the Netherlands
| | - Praneeth Reddy Kuninty
- Department of Advanced Organ Bioengineering and Therapeutics, Engineered Therapeutics Section, Technical Medical Centre, University of Twente, 7500AE, Enschede, the Netherlands
| | - Marc J.K. Ankone
- Department of Advanced Organ Bioengineering and Therapeutics, Engineered Therapeutics Section, Technical Medical Centre, University of Twente, 7500AE, Enschede, the Netherlands
| | - Joop van Baarlen
- Laboratorium Pathologie Oost-Nederland (LabPON), 7550 AM, Hengelo, the Netherlands
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne St, Cambridge, MA, 02139, USA
| | - Kartik Jain
- Department of Thermal and Fluid Engineering, Biofluid Dynamics Section, University of Twente, 7500 AE Enschede, the Netherlands
| | - Jai Prakash
- Department of Advanced Organ Bioengineering and Therapeutics, Engineered Therapeutics Section, Technical Medical Centre, University of Twente, 7500AE, Enschede, the Netherlands
| |
Collapse
|
36
|
Tosca EM, Ronchi D, Facciolo D, Magni P. Replacement, Reduction, and Refinement of Animal Experiments in Anticancer Drug Development: The Contribution of 3D In Vitro Cancer Models in the Drug Efficacy Assessment. Biomedicines 2023; 11:biomedicines11041058. [PMID: 37189676 DOI: 10.3390/biomedicines11041058] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
In the last decades three-dimensional (3D) in vitro cancer models have been proposed as a bridge between bidimensional (2D) cell cultures and in vivo animal models, the gold standards in the preclinical assessment of anticancer drug efficacy. 3D in vitro cancer models can be generated through a multitude of techniques, from both immortalized cancer cell lines and primary patient-derived tumor tissue. Among them, spheroids and organoids represent the most versatile and promising models, as they faithfully recapitulate the complexity and heterogeneity of human cancers. Although their recent applications include drug screening programs and personalized medicine, 3D in vitro cancer models have not yet been established as preclinical tools for studying anticancer drug efficacy and supporting preclinical-to-clinical translation, which remains mainly based on animal experimentation. In this review, we describe the state-of-the-art of 3D in vitro cancer models for the efficacy evaluation of anticancer agents, focusing on their potential contribution to replace, reduce and refine animal experimentations, highlighting their strength and weakness, and discussing possible perspectives to overcome current challenges.
Collapse
|
37
|
Pancreatic stellate cells exploit Wnt/β-catenin/TCF7-mediated glutamine metabolism to promote pancreatic cancer cells growth. Cancer Lett 2023; 555:216040. [PMID: 36565920 DOI: 10.1016/j.canlet.2022.216040] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/08/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Pancreatic stellate cells (PSCs) are crucial for metabolism and disease progression in pancreatic ductal adenocarcinoma (PDAC). However, detailed mechanisms of PSCs in glutamine (Gln) metabolism and tumor-stromal metabolic interactions have not been well clarified. Here we showed that tumor tissues displayed Gln deficiency in orthotopic PDAC models. Single-cell RNA sequencing analysis revealed metabolic heterogeneity in PDAC, with significantly higher expression of Gln catabolism pathway in stromal cells. Significantly higher glutamine synthetase (GS) protein expression was further validated in human tissues and cells. Elevated GS levels in tumor and stroma were independently prognostic of poorer prognosis in PDAC patients. Gln secreted by PSCs increased basal oxygen consumption rate in PCCs. Depletion of GS in PSCs significantly decreased PCCs proliferation in vitro and in vivo. Mechanistically, activation of Wnt signaling induced directly binding of β-catenin/TCF7 complex to GS promoter region and upregulated GS expression. Rescue experiments testified that GS overexpression recovered β-catenin knockdown-mediated function on Gln synthesis and tumor-promoting ability of PSCs. Overall, these findings identify the Wnt/β-catenin/TCF7/GS-mediated growth-promoting effect of PSCs and provide new insights into stromal Gln metabolism, which may offer novel therapeutic strategies for PDAC.
Collapse
|
38
|
Priwitaningrum DL, Pednekar K, Gabriël AV, Varela-Moreira AA, Le Gac S, Vellekoop I, Storm G, Hennink WE, Prakash J. Evaluation of paclitaxel-loaded polymeric nanoparticles in 3D tumor model: impact of tumor stroma on penetration and efficacy. Drug Deliv Transl Res 2023; 13:1470-1483. [PMID: 36853438 PMCID: PMC10102101 DOI: 10.1007/s13346-023-01310-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2023] [Indexed: 03/01/2023]
Abstract
Since tumor stroma poses as a barrier to achieve efficacy of nanomedicines, it is essential to evaluate nano-chemotherapeutics in stroma-mimicking 3D models that reliably predict their behavior regarding these hurdles limiting efficacy. In this study, we evaluated the effect of paclitaxel-loaded polymeric micelles (PTX-PMCs) and polymeric nanoparticles (PTX-PNPs) in a tumor stroma-mimicking 3D in vitro model. PTX-PMCs (77 nm) based on a amphiphilic block copolymer of mPEG-b-p(HPMAm-Bz) and PTX-PNPs (159 nm) based on poly(lactic-co-glycolic acid) were prepared, which had an encapsulation efficiency (EE%) of 81 ± 15% and 45 ± 8%, respectively. 3D homospheroids of mouse 4T1 breast cancer cells and heterospheroids of NIH3T3 fibroblasts and 4T1 (5:1 ratio) were prepared and characterized with high content two-photon microscopy and immunostaining. Data showed an induction of epithelial-mesenchymal transition (α-SMA) in both homo- and heterospheroids, while ECM (collagen) deposition only in heterospheroids. Two-photon imaging revealed that both fluorescently labeled PMCs and PNPs penetrated into the core of homospheroids and only PMCs penetrated into heterospheroids. Furthermore, PTX-PMCs, PTX-PNPs, and free PTX induced cytotoxicity in tumor cells and fibroblasts grown as monolayer, but these effects were substantially reduced in 3D models, in particular in heterospheroids. Gene expression analysis showed that heterospheroids had a significant increase of drug resistance markers (Bcl2, Abgc2) compared to 2D or 3D monocultures. Altogether, this study shows that the efficacy of nanotherapeutics is challenged by stroma-induced poor penetration and development of resistant phenotype. Therefore, this tumor stroma-mimicking 3D model can provide an excellent platform to study penetration and effects of nanotherapeutics before in vivo studies.
Collapse
Affiliation(s)
- Dwi L Priwitaningrum
- Engineered Therapeutics, Department of Advanced Organ Bioengineering and Therapeutics, TechMed Centre, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, 7500AE, Enschede, The Netherlands
- Department of Pharmaceutics, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Kunal Pednekar
- Engineered Therapeutics, Department of Advanced Organ Bioengineering and Therapeutics, TechMed Centre, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, 7500AE, Enschede, The Netherlands
| | - Alexandros V Gabriël
- Engineered Therapeutics, Department of Advanced Organ Bioengineering and Therapeutics, TechMed Centre, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, 7500AE, Enschede, The Netherlands
| | - Aida A Varela-Moreira
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Severine Le Gac
- Applied Microfluidics for BioEngineering Research, Faculty of Electrical Engineering, Mathematics and Computer Science, MESA+ Institute for Nanotechnology, TechMed Centre, University of Twente, Enschede, The Netherlands
| | - Ivo Vellekoop
- Biomedical Photonic Imaging, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Gert Storm
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Jai Prakash
- Engineered Therapeutics, Department of Advanced Organ Bioengineering and Therapeutics, TechMed Centre, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, 7500AE, Enschede, The Netherlands.
| |
Collapse
|
39
|
Jin QQ, Mei J, Hong L, Wang R, Wu SY, Wang SL, Jiang XY, Yang YT, Yao H, Zhang WY, Zhu YT, Ying J, Tian L, Chen G, Zhou SG. Identification and Validation of the Anoikis-Related Gene Signature as a Novel Prognostic Model for Cervical Squamous Cell Carcinoma, Endocervical Adenocarcinoma, and Revelation Immune Infiltration. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:358. [PMID: 36837559 PMCID: PMC9958637 DOI: 10.3390/medicina59020358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023]
Abstract
Background and Objectives: Cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) are malignant disorders with adverse prognoses for advanced patients. Anoikis, which is involved in tumor metastasis, facilitates the survival and separation of tumor cells from their initial site. Unfortunately, it is rarely studied, and in the literature, studies have only addressed the prognosis character of anoikis for patients with CESC. Materials and Methods: We utilized anoikis-related genes (ANRGs) to construct a prognostic signature in CESC patients that were selected from the Genecards and Harmonizome portals. Furthermore, we revealed the underlying clinical value of this signature for clinical maneuvers by providing clinical specialists with an innovative nomogram on the basis of ANRGs. Finally, we investigated the immune microenvironment and drug sensitivity in different risk groups. Results: We screened six genes from fifty-eight anoikis-related differentially expressed genes in the TCGA-CESC cohort, and we constructed a prognostic signature. Then, we built a nomogram combined with CESC clinicopathological traits and risk scores, which demonstrated that this model may improve the prognosis of CESC patients in clinical therapy. Next, the prognostic risk scores were confirmed to be an independent prognostic indicator. Additionally, we programmed a series of analyses, which included immune infiltration analysis, therapy-related analysis, and GSVA enrichment analysis, to identify the functions and mechanisms of the prognostic models during the progression of cancer in CESC patients. Finally, we performed quantitative reverse transcription polymerase chain reaction (qRT-PCR) to verify the six ANRGs. Conclusions: The present discovery verified that the predictive 6-anoikis-related gene (6-ANRG) signature and nomogram serve as imperative factors that might notably impact a CESC patient's prognosis, and they may be able to provide new clinical evidence to assume the role of underlying biological biomarkers and thus become indispensable indicators for prospective diagnoses and advancing therapy.
Collapse
Affiliation(s)
- Qin-Qin Jin
- Department of Gynecology, Maternal and Child Medical Centre of Anhui Medical University, Hefei 230001, China
- Department of Gynecology, Anhui Province Maternity and Child Healthcare Hospital, Hefei 230001, China
| | - Jie Mei
- Department of Gynecology, Maternal and Child Medical Centre of Anhui Medical University, Hefei 230001, China
- Department of Gynecology, Anhui Province Maternity and Child Healthcare Hospital, Hefei 230001, China
| | - Lin Hong
- Department of Gynecology, Maternal and Child Medical Centre of Anhui Medical University, Hefei 230001, China
- Department of Gynecology, Anhui Province Maternity and Child Healthcare Hospital, Hefei 230001, China
| | - Rui Wang
- Office of Health Care, Hefei Municipal Health Commission, Hefei 230071, China
| | - Shuang-Yue Wu
- Department of Gynecology, Maternal and Child Medical Centre of Anhui Medical University, Hefei 230001, China
- Department of Gynecology, Anhui Province Maternity and Child Healthcare Hospital, Hefei 230001, China
| | - Sen-Lin Wang
- Department of Clinical Laboratory, Anhui Province Maternity and Child Healthcare Hospital, Hefei 230001, China
| | - Xi-Ya Jiang
- Department of Gynecology, Maternal and Child Medical Centre of Anhui Medical University, Hefei 230001, China
- Department of Gynecology, Anhui Province Maternity and Child Healthcare Hospital, Hefei 230001, China
| | - Yin-Ting Yang
- Department of Gynecology, Maternal and Child Medical Centre of Anhui Medical University, Hefei 230001, China
- Department of Gynecology, Anhui Province Maternity and Child Healthcare Hospital, Hefei 230001, China
| | - Hui Yao
- Department of Gynecology, Maternal and Child Medical Centre of Anhui Medical University, Hefei 230001, China
- Department of Gynecology, Anhui Province Maternity and Child Healthcare Hospital, Hefei 230001, China
| | - Wei-Yu Zhang
- Department of Gynecology, Maternal and Child Medical Centre of Anhui Medical University, Hefei 230001, China
- Department of Gynecology, Anhui Province Maternity and Child Healthcare Hospital, Hefei 230001, China
| | - Yu-Ting Zhu
- Department of Gynecology, Maternal and Child Medical Centre of Anhui Medical University, Hefei 230001, China
- Department of Gynecology, Anhui Province Maternity and Child Healthcare Hospital, Hefei 230001, China
| | - Jie Ying
- Department of Gynecology, Maternal and Child Medical Centre of Anhui Medical University, Hefei 230001, China
- Department of Gynecology, Anhui Province Maternity and Child Healthcare Hospital, Hefei 230001, China
| | - Lu Tian
- Department of Gynecology, Maternal and Child Medical Centre of Anhui Medical University, Hefei 230001, China
- Department of Gynecology, Anhui Province Maternity and Child Healthcare Hospital, Hefei 230001, China
| | - Guo Chen
- Department of Gynecology, Maternal and Child Medical Centre of Anhui Medical University, Hefei 230001, China
- Department of Gynecology, Anhui Province Maternity and Child Healthcare Hospital, Hefei 230001, China
| | - Shu-Guang Zhou
- Department of Gynecology, Maternal and Child Medical Centre of Anhui Medical University, Hefei 230001, China
- Department of Gynecology, Anhui Province Maternity and Child Healthcare Hospital, Hefei 230001, China
| |
Collapse
|
40
|
Lu T, Oomens L, Terstappen LWMM, Prakash J. In Vivo Detection of Circulating Cancer-Associated Fibroblasts in Breast Tumor Mouse Xenograft: Impact of Tumor Stroma and Chemotherapy. Cancers (Basel) 2023; 15:cancers15041127. [PMID: 36831470 PMCID: PMC9954095 DOI: 10.3390/cancers15041127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/01/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) are important drivers in the tumor microenvironment and facilitate the growth and survival of tumor cells, as well as metastasis formation. They may travel together with tumor cells to support their survival and aid in the formation of a metastatic niche. In this study, we aimed to study circulating CAFs (cCAFs) and circulating tumor cells (CTCs) in a preclinical breast tumor model in mice in order to understand the effect of chemotherapy on cCAFs and CTC formation. Tumors with MDA-MB-231 human breast tumor cells with/without primary human mammary fibroblasts (representing CAFs) were coinjected in SCID mice to develop tumors. We found that the tumors with CAFs grew faster than tumors without CAFs. To study the effect of the stroma on CTCs and cCAFs, we isolated cells using microsieve filtration technology and established ITGA5 as a new cCAF biomarker, which showed good agreement with the CAF markers FAP and α-SMA. We found that ITGA5+ cCAFs shed in the blood of mice bearing stroma-rich coinjection-based tumors, while there was no difference in CTC formation. Although treatment with liposomal doxorubicin reduced tumor growth, it increased the numbers of both cCAFs and CTCs in blood. Moreover, cCAFs and CTCs were found to form clusters in the chemotherapy-treated mice. Altogether, these findings indicate that the tumor stroma supports tumor growth and the formation of cCAFs. Furthermore, chemotherapy may exacerbate the formation of cCAFs and CTCs, which may eventually support the formation of a metastasis niche in breast cancer.
Collapse
Affiliation(s)
- Tao Lu
- Engineered Therapeutics, Department of Advanced Organ Bioengineering and Therapeutics, TechMed Centre, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, 7500 AE Enschede, The Netherlands
| | - Lisa Oomens
- VyCAP B.V., Capitool 41, 7521 PL Enschede, The Netherlands
| | - Leon W. M. M. Terstappen
- Medical Cell BioPhysics, Faculty of Science and Technology, University of Twente, Hallenweg 23, 7522 NH Enschede, The Netherlands
| | - Jai Prakash
- Engineered Therapeutics, Department of Advanced Organ Bioengineering and Therapeutics, TechMed Centre, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, 7500 AE Enschede, The Netherlands
- Correspondence:
| |
Collapse
|
41
|
Zhang S, Liu D, Ning X, Zhang X, Lu Y, Zhang Y, Li A, Gao Z, Wang Z, Zhao X, Chen S, Cai Z. A Signature Constructed Based on the Integrin Family Predicts Prognosis and Correlates with the Tumor Microenvironment of Patients with Lung Adenocarcinoma. J Environ Pathol Toxicol Oncol 2023; 42:59-77. [PMID: 36749090 DOI: 10.1615/jenvironpatholtoxicoloncol.2022046232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
As an important element in regulating the tumor microenvironment (TME), integrin plays a key role in tumor progression. This study aimed to establish prognostic signatures to predict the overall survival and identify the immune landscape of patients with lung adenocarcinoma based on integrins. The Cancer Genome Atlas-Lung Adenocarcinoma (TCGA-LUAD) and Gene Expression Omnibus datasets were used to obtain information on mRNA levels and clinical factors (GSE72094). The least absolute shrinkage and selection operator (LASSO) model was used to create a prediction model that included six integrin genes. The nomogram, risk score, and time-dependent receiver operating characteristic analysis all revealed that the signatures had a good prognostic value. The gene signatures may be linked to carcinogenesis and TME, according to a gene set enrichment analysis. The immunological and stromal scores were computed using the ESTIMATE algorithm, and the data revealed, the low-risk group had a higher score. We discovered that the B lymphocytes, plasma, CD4+ T, dendritic, and mast cells were much higher in the group with low-risk using the CiberSort. Inflammatory processes and several HLA family genes were upregulated in the low-risk group. The low-risk group with a better prognosis is more sensitive to immune checkpoint inhibitor medication, according to immunophenoscore (IPS) research. We found that the patients in the high-risk group were more susceptible to chemotherapy than other group patients, according to the prophetic algorithm. The gene signatures could accurately predict the prognosis, identify the immune status of patients with lung adenocarcinoma, and provide guidance for therapy.
Collapse
Affiliation(s)
- Shusen Zhang
- Department of Pulmonary and Critical Care Medicine, Affiliated Xing Tai People Hospital of Hebei Medical University, Xingtai, Hebei, China; The First Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; Hebei Province Xingtai People's Hospital Postdoctoral Workstation, Xingtai, Hebei, China; Postdoctoral Mobile Station, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Dengxiang Liu
- Department of Oncology, Affiliated Xing Tai People Hospital of Hebei Medical University, Xingtai, Hebei, China
| | - Xuecong Ning
- Department of Pulmonary and Critical Care Medicine, Affiliated Xing Tai People Hospital of Hebei Medical University, Xingtai, Hebei, China
| | - Xiaochong Zhang
- Department of Oncology, Affiliated Xing Tai People Hospital of Hebei Medical University, Xingtai, Hebei, China
| | - Yuanyuan Lu
- Department of Anesthesiology, Affiliated Xing Tai People Hospital of Hebei Medical University, Xingtai, Hebei, China
| | - Yang Zhang
- Department of Pulmonary and Critical Care Medicine, Affiliated Xing Tai People Hospital of Hebei Medical University, Xingtai, Hebei, China
| | - Aimin Li
- Department of Pulmonary and Critical Care Medicine, Affiliated Xing Tai People Hospital of Hebei Medical University, Xingtai, Hebei, China
| | - Zhiguo Gao
- Department of Pulmonary and Critical Care Medicine, Affiliated Xing Tai People Hospital of Hebei Medical University, Xingtai, Hebei, China
| | - Zhihua Wang
- Department of Pulmonary and Critical Care Medicine, Affiliated Xing Tai People Hospital of Hebei Medical University, Xingtai, Hebei, China
| | - Xiaoling Zhao
- Department of Oncology, Affiliated Xing Tai People Hospital of Hebei Medical University, Xingtai, Hebei, China
| | - Shubo Chen
- Hebei Province Xingtai People's Hospital Postdoctoral Workstation, Xingtai, Hebei, China; Department of Oncology, Affiliated Xing Tai People Hospital of Hebei Medical University, Xingtai, Hebei, China
| | - Zhigang Cai
- The First Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; Department of Oncology, Affiliated Xing Tai People Hospital of Hebei Medical University, Xingtai, Hebei, China
| |
Collapse
|
42
|
Li X, Wang Q, Wang M, Wuhan B, Gu Y, Kang T, Jin H, Xu J. TMT-based quantitative proteomic analysis reveals the underlying mechanisms of glycidyl methacrylate-induced 16HBE cell malignant transformation. Toxicology 2023; 485:153427. [PMID: 36641056 DOI: 10.1016/j.tox.2023.153427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/28/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
Glycidyl methacrylate (GMA) has been widely used as tackifying/crosslinking copolymer monomer in the industrial section. Occupational and environmental exposure to GMA is inevitable. GMA is classified as a Group 2 A carcinogen. However, it still lacks a sufficient understanding of its carcinogenicity at the protein level. The major pathways and players during the malignant transformation process remain unknown. In this study, we first established and characterized a malignant transformation model using human bronchial epithelial (16HBE) cells exposed to 8 μg/mL GMA. Then the proteomics approach, western-blot analysis as well as quantitative PCR (qPCR) analysis were employed to investigate its underlying mechanisms of carcinogenicity. Our results showed that the 16HBE cells exposed to GMA and passaged to the 40th generation had undergone a malignant transformation. Proteomic analysis revealed that 123 proteins were significantly up-regulated while 160 proteins were down-regulated during the process of malignant transformation. Importantly, further pathway analysis identified the extracellular matrix-receptor (ECM-receptor) interaction pathway to be one of the major players mediating the process and most of the differentially expressed proteins (DEPs) were up-regulated, including two vital proteins, CD44 and MMP14, as well as members from integrin family. These results provide direct proteomic evidence that DEPs related to the ECM-receptor interaction pathway play an active role in reinforcing the carcinogenicity of GMA. The findings of this study might deepen our understanding of the underlying mechanisms of GMA carcinogenicity and thus facilitate the risk assessment of GMA.
Collapse
Affiliation(s)
- Xinwei Li
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China; Key Laboratory of Chemical Safety and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Quankai Wang
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China; Key Laboratory of Chemical Safety and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Miao Wang
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China; Key Laboratory of Chemical Safety and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Baolier Wuhan
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Yiting Gu
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Tongying Kang
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Huiping Jin
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China; Key Laboratory of Chemical Safety and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Jianning Xu
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China; Key Laboratory of Chemical Safety and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China.
| |
Collapse
|
43
|
Tanaka HY, Nakazawa T, Enomoto A, Masamune A, Kano MR. Therapeutic Strategies to Overcome Fibrotic Barriers to Nanomedicine in the Pancreatic Tumor Microenvironment. Cancers (Basel) 2023; 15:cancers15030724. [PMID: 36765684 PMCID: PMC9913712 DOI: 10.3390/cancers15030724] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
Pancreatic cancer is notorious for its dismal prognosis. The enhanced permeability and retention (EPR) effect theory posits that nanomedicines (therapeutics in the size range of approximately 10-200 nm) selectively accumulate in tumors. Nanomedicine has thus been suggested to be the "magic bullet"-both effective and safe-to treat pancreatic cancer. However, the densely fibrotic tumor microenvironment of pancreatic cancer impedes nanomedicine delivery. The EPR effect is thus insufficient to achieve a significant therapeutic effect. Intratumoral fibrosis is chiefly driven by aberrantly activated fibroblasts and the extracellular matrix (ECM) components secreted. Fibroblast and ECM abnormalities offer various potential targets for therapeutic intervention. In this review, we detail the diverse strategies being tested to overcome the fibrotic barriers to nanomedicine in pancreatic cancer. Strategies that target the fibrotic tissue/process are discussed first, which are followed by strategies to optimize nanomedicine design. We provide an overview of how a deeper understanding, increasingly at single-cell resolution, of fibroblast biology is revealing the complex role of the fibrotic stroma in pancreatic cancer pathogenesis and consider the therapeutic implications. Finally, we discuss critical gaps in our understanding and how we might better formulate strategies to successfully overcome the fibrotic barriers in pancreatic cancer.
Collapse
Affiliation(s)
- Hiroyoshi Y. Tanaka
- Department of Pharmaceutical Biomedicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi 700-8530, Okayama, Japan
| | - Takuya Nakazawa
- Department of Pharmaceutical Biomedicine, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi 700-8530, Okayama, Japan
| | - Atsushi Enomoto
- Department of Pathology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya-shi 466-8550, Aichi, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai-shi 980-8574, Miyagi, Japan
| | - Mitsunobu R. Kano
- Department of Pharmaceutical Biomedicine, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi 700-8530, Okayama, Japan
- Correspondence:
| |
Collapse
|
44
|
Construction and Verification of the Molecular Subtype and a Novel Prognostic Signature Based on Inflammatory Response-Related Genes in Uveal Melanoma. J Clin Med 2023; 12:jcm12030861. [PMID: 36769510 PMCID: PMC9918108 DOI: 10.3390/jcm12030861] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/08/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023] Open
Abstract
The significance of inflammation in tumorigenesis and progression has become prominent. This study aimed to construct and validate the molecular subtype and a novel prognostic signature based on inflammatory response-related genes in uveal melanoma (UM). Patients from the TCGA, GSE84976, and GSE22138 UM cohorts were enrolled. According to the consensus cluster analysis, patients were divided into two molecular subtypes, namely IC1 and IC2. Survival curves showed that patients in IC1 had a better prognosis. The IC2 subgroup had higher levels of immune cell infiltration and more enriched immunological pathways. There were statistical differences in the immune-inflammation microenvironment, immune checkpoint genes expression, and drug sensitivity. The prognostic signature constructed based on inflammatory response-related genes exhibited a stable predictive power. Multivariate analysis confirmed that the signature was a prognostic factor independent of clinical characteristics. Functional analyses showed that the high-risk group was associated with immunological response, inflammatory cell activation, and tumor-related signal pathways. The riskscore had a negative relationship with tumor purity and was positively correlated with immune and stromal scores. Furthermore, the prognostic signature could sensitively predict the response to drug treatments. In conclusion, the prognostic signature might aid in stratifying patients at risk premised on the prognosis and immunotherapy sensitivity.
Collapse
|
45
|
Integrative network analysis reveals subtype-specific long non-coding RNA regulatory mechanisms in head and neck squamous cell carcinoma. Comput Struct Biotechnol J 2022; 21:535-549. [PMID: 36659932 PMCID: PMC9816915 DOI: 10.1016/j.csbj.2022.12.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSC) is one of most common malignancies with high mortality worldwide. Importantly, the molecular heterogeneity of HNSC complicates the clinical diagnosis and treatment, leading to poor overall survival outcomes. To dissect the complex heterogeneity, recent studies have reported multiple molecular subtyping systems. For instance, HNSC can be subdivided to four distinct molecular subtypes: atypical, basal, classical, and mesenchymal, of which the mesenchymal subtype is characterized by upregulated epithelial-mesenchymal transition (EMT) and associated with poorer survival outcomes. Despite a wealth of studies into the complex molecular heterogeneity, the regulatory mechanism specific to this aggressive subtype remain largely unclear. Herein, we developed a network-based bioinformatics framework that integrates lncRNA and mRNA expression profiles to elucidate the subtype-specific regulatory mechanisms. Applying the framework to HNSC, we identified a clinically relevant lncRNA LNCOG as a key master regulator mediating EMT underlying the mesenchymal subtype. Five genes with strong prognostic values, namely ANXA5, ITGA5, CCBE1, P4HA2, and EPHX3, were predicted to be the putative targets of LNCOG and subsequently validated in other independent datasets. By integrative analysis of the miRNA expression profiles, we found that LNCOG may act as a ceRNA to sponge miR-148a-3p thereby upregulating ITGA5 to promote HNSC progression. Furthermore, our drug sensitivity analysis demonstrated that the five putative targets of LNCOG were also predictive of the sensitivities of multiple FDA-approved drugs. In summary, our bioinformatics framework facilitates the dissection of cancer subtype-specific lncRNA regulatory mechanisms, providing potential novel biomarkers for more optimized treatment of HNSC.
Collapse
Key Words
- AUC, area under the curve
- BH, Benjamini-Hochberg
- CI, confidence interval
- CTRP, The Cancer Therapeutics Response Portal
- Competitive endogenous RNA
- DEG, differentially expressed gene
- DEX, dexamethasone
- DFS, disease-free survival
- EMT, epithelial-mesenchymal transition
- FPKM, fragments per kilobase million
- GEO, Gene Expression Omnibus
- GO, Gene Ontology
- GSEA, gene set enrichment analysis
- HNSC, head and neck squamous cell carcinoma
- HR, hazard ratio
- Head and neck cancer
- ICGC, The International Cancer Genome Consortium
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- LASSO, least absolute shrinkage and selection operator
- Long non-coding RNAs
- Network inference
- OS, overall survival
- ROC, receiver operating characteristic curve
- Subtype-specific
- TCGA, The Cancer Genome Atlas
- TPM, transcripts per million
- UCSC, the University of California Santa Cruz
- ceRNA, the competitive endogenous RNA
- lncRNA, long non-coding RNA
- miRNA, microRNA
Collapse
|
46
|
Wang T, Yang J, Mao J, Zhu L, Luo X, Cheng C, Zhang L. ITGA5 inhibition in pancreatic stellate cells re-educates the in vitro tumor-stromal crosstalk. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:39. [PMID: 36469173 DOI: 10.1007/s12032-022-01902-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/16/2022] [Indexed: 12/07/2022]
Abstract
The interaction between pancreatic cancer cells (PCCs) and pancreatic stellate cells (PSCs) promotes aggressive progression of pancreatic cancer, and disrupting the tumor-stromal crosstalk is a promising therapeutic strategy. Integrin α5 (ITGA5) is specifically overexpressed in pancreatic cancer stroma and activated PSCs. ITGA5 acts as a mediator in PCCs-PSCs interaction, but its role in regulating biological behaviors of PSCs and PCCs is still not quite clear. In this study, ITGA5 in PSCs was inhibited using its specific inhibitor AV3 peptide or siRNA knockdown technique. Pancreatic cancer SW1990 cells conditioned medium (SW1990-CM) and an indirect co-culture system were used to mimic the environment of the in vitro tumor-stromal crosstalk. Our results showed that ITGA5 inhibition impaired the proliferation and migration of PSCs, but enhanced autophagy. After co-culture with PSCs, SW1990 cells gained some cancer stem cells (CSCs)-like characteristics, such as increased drug resistance, migration and invasion ability, but PSCs with ITGA5 knockdown were incapable of producing these effects. The present results suggested that ITGA5 was involved in the development of the malignant biological behaviors of PSCs and PCCs, and ITGA5 inhibition in PSCs might benefit the treatment of pancreatic cancer by re-educating PCCs-PSCs interaction.
Collapse
Affiliation(s)
- Tao Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China.
| | - Jian Yang
- Department of Nuclear Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Juanli Mao
- Department of Nuclear Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Lizhi Zhu
- Department of Nuclear Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Xiu Luo
- Department of Nuclear Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Chao Cheng
- Department of Nuclear Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China.
| | - Lu Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
47
|
Hypoxia activated HGF expression in pancreatic stellate cells confers resistance of pancreatic cancer cells to EGFR inhibition. EBioMedicine 2022; 86:104352. [PMID: 36371988 PMCID: PMC9664470 DOI: 10.1016/j.ebiom.2022.104352] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/18/2022] [Accepted: 10/21/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Epidermal growth factor receptor (EGFR) is an essential target for cancer treatment. However, EGFR inhibitor erlotinib showed limited clinical benefit in pancreatic cancer therapy. Here, we showed the underlying mechanism of tumor microenvironment suppressing the sensitivity of EGFR inhibitor through the pancreatic stellate cell (PSC). METHODS The expression of alpha-smooth muscle actin (α-SMA) and hypoxia marker in human pancreatic cancer tissues were detected by immunohistochemistry, and their correlation with overall survival was evaluated. Human immortalized PSC was constructed and used to investigate the potential effect on pancreatic cancer cell lines in hypoxia and normoxia. Luciferase reporter assay and Chromatin immunoprecipitation were performed to explore the potential mechanisms in vitro. The combined inhibition of EGFR and Met was evaluated in an orthotopic xenograft mouse model of pancreatic cancer. FINDINGS We found that high expression levels of α-SMA and hypoxia markers are associated with poor prognosis of pancreatic cancer patients. Mechanistically, we demonstrated that hypoxia induced the expression and secretion of HGF in PSC via transcription factor HIF-1α. PSC-derived HGF activates Met, the HGF receptor, suppressing the sensitivity of pancreatic cancer cells to EGFR inhibitor in a KRAS-independent manner by activating the PI3K-AKT pathway. Furthermore, we found that the combination of EGFR inhibitor and Met inhibitor significantly suppressed tumor growth in an orthotopic xenograft mouse model. INTERPRETATION Our study revealed a previously uncharacterized HIF1α-HGF-Met-PI3K-AKT signaling axis between PSC and cancer cells and indicated that EGFR inhibition plus Met inhibition might be a promising strategy for pancreatic cancer treatment. FUNDING This study was supported by The National Natural Science Foundation of China.
Collapse
|
48
|
Rimal R, Desai P, Daware R, Hosseinnejad A, Prakash J, Lammers T, Singh S. Cancer-associated fibroblasts: Origin, function, imaging, and therapeutic targeting. Adv Drug Deliv Rev 2022; 189:114504. [PMID: 35998825 DOI: 10.1016/j.addr.2022.114504] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 07/10/2022] [Accepted: 08/17/2022] [Indexed: 02/06/2023]
Abstract
The tumor microenvironment (TME) is emerging as one of the primary barriers in cancer therapy. Cancer-associated fibroblasts (CAF) are a common inhabitant of the TME in several tumor types and play a critical role in tumor progression and drug resistance via different mechanisms such as desmoplasia, angiogenesis, immune modulation, and cancer metabolism. Due to their abundance and significance in pro-tumorigenic mechanisms, CAF are gaining attention as a diagnostic target as well as to improve the efficacy of cancer therapy by their modulation. In this review, we highlight existing imaging techniques that are used for the visualization of CAF and CAF-induced fibrosis and provide an overview of compounds that are known to modulate CAF activity. Subsequently, we also discuss CAF-targeted and CAF-modulating nanocarriers. Finally, our review addresses ongoing challenges and provides a glimpse into the prospects that can spearhead the transition of CAF-targeted therapies from opportunity to reality.
Collapse
Affiliation(s)
- Rahul Rimal
- Max Planck Institute for Medical Research (MPImF), Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Prachi Desai
- DWI-Leibniz Institute for Interactive Materials, RWTH Aachen University, Forkenbeckstrasse 50, 52074 Aachen, Germany
| | - Rasika Daware
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Aisa Hosseinnejad
- DWI-Leibniz Institute for Interactive Materials, RWTH Aachen University, Forkenbeckstrasse 50, 52074 Aachen, Germany
| | - Jai Prakash
- Department of Advanced Organ Bioengineering and Therapeutics, Section: Engineered Therapeutics, Technical Medical Centre, University of Twente, 7500AE Enschede, the Netherlands.
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
| | - Smriti Singh
- Max Planck Institute for Medical Research (MPImF), Jahnstrasse 29, 69120 Heidelberg, Germany.
| |
Collapse
|
49
|
ITGA5 Promotes Tumor Progression through the Activation of the FAK/AKT Signaling Pathway in Human Gastric Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8611306. [PMID: 36193075 PMCID: PMC9526618 DOI: 10.1155/2022/8611306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022]
Abstract
Background ITGA5 is an adhesion molecule that integrates the intracellular structures with the extracellular matrix to perform biological functions. However, ITGA5 is highly expressed in a variety of tumors and is involved in tumor progression by promoting cell proliferation and metastasis. Nevertheless, little research has been performed on its function in gastric cancer. Therefore, the aim of this study was to investigate the role of ITGA5 in gastric cancer, focusing on the mechanism regulating the proliferation, invasion and migration. Methods The expression of ITGA5 in gastric cancer tissues was assessed by the use of molecular bioinformatics databases and high-throughput sequencing of gastric cancer tissues from patients. Western blot, qPCR, and immunohistochemistry were performed to detect the expression of ITGA5 in samples from gastric cancer patients and gastric cancer cell lines. Furthermore, the ITGA5 gene was silenced and overexpressed in gastric cancer cells, and the effect on proliferation, invasion, migration, and tumorigenic ability was assessed. Results ITGA5 mRNA and protein expression were upregulated in gastric cancer cell lines and tissues from patients, and its expression was closely associated with tumor size, lymph node metastasis, and TNM stage. In vitro and in vivo experiments showed that ITGA5 silencing resulted in the inhibition of proliferation, invasion, migration, and graft growth of gastric cancer cells; conversely, the overexpression resulted in the promotion of these cell functions. Our results finally showed that the effect of ITGA5 on proliferation, invasion, and migration of gastric cancer cells was performed through the activation of the FAK/AKT pathway. Conclusions ITGA5 promotes proliferation, invasion, and migration of gastric cancer cells through the activation of FAK/AKT signaling pathway, suggesting that ITGA5 may be potentially considered as a new target in gastric cancer therapy.
Collapse
|
50
|
Deng D, Patel R, Chiang CY, Hou P. Role of the Tumor Microenvironment in Regulating Pancreatic Cancer Therapy Resistance. Cells 2022; 11:2952. [PMID: 36230914 PMCID: PMC9563251 DOI: 10.3390/cells11192952] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/26/2022] Open
Abstract
Pancreatic cancer has a notoriously poor prognosis, exhibits persistent drug resistance, and lacks a cure. Unique features of the pancreatic tumor microenvironment exacerbate tumorigenesis, metastasis, and therapy resistance. Recent studies emphasize the importance of exploiting cells in the tumor microenvironment to thwart cancers. In this review, we summarize the hallmarks of the multifaceted pancreatic tumor microenvironment, notably pancreatic stellate cells, tumor-associated fibroblasts, macrophages, and neutrophils, in the regulation of chemo-, radio-, immuno-, and targeted therapy resistance in pancreatic cancer. The molecular insight will facilitate the development of novel therapeutics against pancreatic cancer.
Collapse
Affiliation(s)
- Daiyong Deng
- Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Riya Patel
- Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Cheng-Yao Chiang
- Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Pingping Hou
- Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| |
Collapse
|